if_stge.c revision 1.83 1 /* $NetBSD: if_stge.c,v 1.83 2020/03/02 15:13:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.83 2020/03/02 15:13:23 thorpej Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 #include <dev/mii/mii_bitbang.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_stgereg.h>
72
73 #include <prop/proplib.h>
74
75 /* #define STGE_CU_BUG 1 */
76 #define STGE_VLAN_UNTAG 1
77 /* #define STGE_VLAN_CFI 1 */
78
79 /*
80 * Transmit descriptor list size.
81 */
82 #define STGE_NTXDESC 256
83 #define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
84 #define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
85
86 /*
87 * Receive descriptor list size.
88 */
89 #define STGE_NRXDESC 256
90 #define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
91 #define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
92
93 /*
94 * Only interrupt every N frames. Must be a power-of-two.
95 */
96 #define STGE_TXINTR_SPACING 16
97 #define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
98
99 /*
100 * Control structures are DMA'd to the TC9021 chip. We allocate them in
101 * a single clump that maps to a single DMA segment to make several things
102 * easier.
103 */
104 struct stge_control_data {
105 /*
106 * The transmit descriptors.
107 */
108 struct stge_tfd scd_txdescs[STGE_NTXDESC];
109
110 /*
111 * The receive descriptors.
112 */
113 struct stge_rfd scd_rxdescs[STGE_NRXDESC];
114 };
115
116 #define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
117 #define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
118 #define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
119
120 /*
121 * Software state for transmit and receive jobs.
122 */
123 struct stge_descsoft {
124 struct mbuf *ds_mbuf; /* head of our mbuf chain */
125 bus_dmamap_t ds_dmamap; /* our DMA map */
126 };
127
128 /*
129 * Software state per device.
130 */
131 struct stge_softc {
132 device_t sc_dev; /* generic device information */
133 bus_space_tag_t sc_st; /* bus space tag */
134 bus_space_handle_t sc_sh; /* bus space handle */
135 bus_dma_tag_t sc_dmat; /* bus DMA tag */
136 struct ethercom sc_ethercom; /* ethernet common data */
137 int sc_rev; /* silicon revision */
138
139 void *sc_ih; /* interrupt cookie */
140
141 struct mii_data sc_mii; /* MII/media information */
142
143 callout_t sc_tick_ch; /* tick callout */
144
145 bus_dmamap_t sc_cddmamap; /* control data DMA map */
146 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
147
148 /*
149 * Software state for transmit and receive descriptors.
150 */
151 struct stge_descsoft sc_txsoft[STGE_NTXDESC];
152 struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
153
154 /*
155 * Control data structures.
156 */
157 struct stge_control_data *sc_control_data;
158 #define sc_txdescs sc_control_data->scd_txdescs
159 #define sc_rxdescs sc_control_data->scd_rxdescs
160
161 #ifdef STGE_EVENT_COUNTERS
162 /*
163 * Event counters.
164 */
165 struct evcnt sc_ev_txstall; /* Tx stalled */
166 struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
167 struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
168 struct evcnt sc_ev_rxintr; /* Rx interrupts */
169
170 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
171 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
172 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
173 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
174 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
175 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
176 struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
177
178 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
179 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
180 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
181
182 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
183 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
184 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
185 #endif /* STGE_EVENT_COUNTERS */
186
187 int sc_txpending; /* number of Tx requests pending */
188 int sc_txdirty; /* first dirty Tx descriptor */
189 int sc_txlast; /* last used Tx descriptor */
190
191 int sc_rxptr; /* next ready Rx descriptor/descsoft */
192 int sc_rxdiscard;
193 int sc_rxlen;
194 struct mbuf *sc_rxhead;
195 struct mbuf *sc_rxtail;
196 struct mbuf **sc_rxtailp;
197
198 int sc_txthresh; /* Tx threshold */
199 uint32_t sc_usefiber:1; /* if we're fiber */
200 uint32_t sc_stge1023:1; /* are we a 1023 */
201 uint32_t sc_DMACtrl; /* prototype DMACtrl register */
202 uint32_t sc_MACCtrl; /* prototype MacCtrl register */
203 uint16_t sc_IntEnable; /* prototype IntEnable register */
204 uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
205 uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
206 };
207
208 #define STGE_RXCHAIN_RESET(sc) \
209 do { \
210 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
211 *(sc)->sc_rxtailp = NULL; \
212 (sc)->sc_rxlen = 0; \
213 } while (/*CONSTCOND*/0)
214
215 #define STGE_RXCHAIN_LINK(sc, m) \
216 do { \
217 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
218 (sc)->sc_rxtailp = &(m)->m_next; \
219 } while (/*CONSTCOND*/0)
220
221 /*
222 * Register access macros
223 */
224 #define CSR_WRITE_4(_sc, reg, val) \
225 bus_space_write_4((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
226 #define CSR_WRITE_2(_sc, reg, val) \
227 bus_space_write_2((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
228 #define CSR_WRITE_1(_sc, reg, val) \
229 bus_space_write_1((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
230
231 #define CSR_READ_4(_sc, reg) \
232 bus_space_read_4((_sc)->sc_st, (_sc)->sc_sh, (reg))
233 #define CSR_READ_2(_sc, reg) \
234 bus_space_read_2((_sc)->sc_st, (_sc)->sc_sh, (reg))
235 #define CSR_READ_1(_sc, reg) \
236 bus_space_read_1((_sc)->sc_st, (_sc)->sc_sh, (reg))
237
238 #define STGE_TIMEOUT 1000
239
240 #ifdef STGE_EVENT_COUNTERS
241 #define STGE_EVCNT_INCR(ev) (ev)->ev_count++
242 #else
243 #define STGE_EVCNT_INCR(ev) /* nothing */
244 #endif
245
246 #define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
247 #define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
248
249 #define STGE_CDTXSYNC(sc, x, ops) \
250 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
251 STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
252
253 #define STGE_CDRXSYNC(sc, x, ops) \
254 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
256
257 #define STGE_INIT_RXDESC(sc, x) \
258 do { \
259 struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
260 struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
261 \
262 /* \
263 * Note: We scoot the packet forward 2 bytes in the buffer \
264 * so that the payload after the Ethernet header is aligned \
265 * to a 4-byte boundary. \
266 */ \
267 __rfd->rfd_frag.frag_word0 = \
268 htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
269 FRAG_LEN(MCLBYTES - 2)); \
270 __rfd->rfd_next = \
271 htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
272 __rfd->rfd_status = 0; \
273 STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
274 } while (/*CONSTCOND*/0)
275
276 static void stge_start(struct ifnet *);
277 static void stge_watchdog(struct ifnet *);
278 static int stge_ioctl(struct ifnet *, u_long, void *);
279 static int stge_init(struct ifnet *);
280 static void stge_stop(struct ifnet *, int);
281
282 static bool stge_shutdown(device_t, int);
283
284 static void stge_reset(struct stge_softc *);
285 static void stge_rxdrain(struct stge_softc *);
286 static int stge_add_rxbuf(struct stge_softc *, int);
287 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
288 static void stge_tick(void *);
289
290 static void stge_stats_update(struct stge_softc *);
291
292 static void stge_set_filter(struct stge_softc *);
293
294 static int stge_intr(void *);
295 static void stge_txintr(struct stge_softc *);
296 static void stge_rxintr(struct stge_softc *);
297
298 static int stge_mii_readreg(device_t, int, int, uint16_t *);
299 static int stge_mii_writereg(device_t, int, int, uint16_t);
300 static void stge_mii_statchg(struct ifnet *);
301
302 static int stge_match(device_t, cfdata_t, void *);
303 static void stge_attach(device_t, device_t, void *);
304
305 int stge_copy_small = 0;
306
307 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
308 stge_match, stge_attach, NULL, NULL);
309
310 static uint32_t stge_mii_bitbang_read(device_t);
311 static void stge_mii_bitbang_write(device_t, uint32_t);
312
313 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
314 stge_mii_bitbang_read,
315 stge_mii_bitbang_write,
316 {
317 PC_MgmtData, /* MII_BIT_MDO */
318 PC_MgmtData, /* MII_BIT_MDI */
319 PC_MgmtClk, /* MII_BIT_MDC */
320 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
321 0, /* MII_BIT_DIR_PHY_HOST */
322 }
323 };
324
325 /*
326 * Devices supported by this driver.
327 */
328 static const struct stge_product {
329 pci_vendor_id_t stge_vendor;
330 pci_product_id_t stge_product;
331 const char *stge_name;
332 } stge_products[] = {
333 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST1023,
334 "Sundance ST-1023 Gigabit Ethernet" },
335
336 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
337 "Sundance ST-2021 Gigabit Ethernet" },
338
339 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
340 "Tamarack TC9021 Gigabit Ethernet" },
341
342 { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
343 "Tamarack TC9021 Gigabit Ethernet" },
344
345 /*
346 * The Sundance sample boards use the Sundance vendor ID,
347 * but the Tamarack product ID.
348 */
349 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
350 "Sundance TC9021 Gigabit Ethernet" },
351
352 { PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
353 "Sundance TC9021 Gigabit Ethernet" },
354
355 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
356 "D-Link DL-4000 Gigabit Ethernet" },
357
358 { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
359 "Antares Gigabit Ethernet" },
360
361 { 0, 0,
362 NULL },
363 };
364
365 static const struct stge_product *
366 stge_lookup(const struct pci_attach_args *pa)
367 {
368 const struct stge_product *sp;
369
370 for (sp = stge_products; sp->stge_name != NULL; sp++) {
371 if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
372 PCI_PRODUCT(pa->pa_id) == sp->stge_product)
373 return (sp);
374 }
375 return (NULL);
376 }
377
378 static int
379 stge_match(device_t parent, cfdata_t cf, void *aux)
380 {
381 struct pci_attach_args *pa = aux;
382
383 if (stge_lookup(pa) != NULL)
384 return (1);
385
386 return (0);
387 }
388
389 static void
390 stge_attach(device_t parent, device_t self, void *aux)
391 {
392 struct stge_softc *sc = device_private(self);
393 struct pci_attach_args *pa = aux;
394 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
395 struct mii_data * const mii = &sc->sc_mii;
396 pci_chipset_tag_t pc = pa->pa_pc;
397 pci_intr_handle_t ih;
398 const char *intrstr = NULL;
399 bus_space_tag_t iot, memt;
400 bus_space_handle_t ioh, memh;
401 bus_dma_segment_t seg;
402 prop_dictionary_t dict;
403 prop_data_t data;
404 int ioh_valid, memh_valid;
405 int i, rseg, error;
406 const struct stge_product *sp;
407 uint8_t enaddr[ETHER_ADDR_LEN];
408 char intrbuf[PCI_INTRSTR_LEN];
409
410 sc->sc_dev = self;
411 callout_init(&sc->sc_tick_ch, 0);
412 callout_setfunc(&sc->sc_tick_ch, stge_tick, sc);
413
414 sp = stge_lookup(pa);
415 if (sp == NULL) {
416 printf("\n");
417 panic("ste_attach: impossible");
418 }
419
420 sc->sc_rev = PCI_REVISION(pa->pa_class);
421
422 pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
423
424 /*
425 * Map the device.
426 */
427 ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
428 PCI_MAPREG_TYPE_IO, 0,
429 &iot, &ioh, NULL, NULL) == 0);
430 memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
431 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
432 &memt, &memh, NULL, NULL) == 0);
433
434 if (memh_valid) {
435 sc->sc_st = memt;
436 sc->sc_sh = memh;
437 } else if (ioh_valid) {
438 sc->sc_st = iot;
439 sc->sc_sh = ioh;
440 } else {
441 aprint_error_dev(self, "unable to map device registers\n");
442 return;
443 }
444
445 /*
446 * We have a 40-bit limit on our DMA addresses. This isn't an
447 * issue if we're only using a 32-bit DMA tag, but we have to
448 * account for it if the 64-bit DMA tag is available.
449 */
450 if (pci_dma64_available(pa)) {
451 if (bus_dmatag_subregion(pa->pa_dmat64,
452 0,
453 (bus_addr_t)(FRAG_ADDR_MASK + 1ULL),
454 &sc->sc_dmat,
455 BUS_DMA_WAITOK) != 0) {
456 aprint_error_dev(self,
457 "WARNING: failed to restrict dma range,"
458 " falling back to parent bus dma range\n");
459 }
460 } else {
461 sc->sc_dmat = pa->pa_dmat;
462 }
463
464 /* Enable bus mastering. */
465 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
466 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
467 PCI_COMMAND_MASTER_ENABLE);
468
469 /* power up chip */
470 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
471 error != EOPNOTSUPP) {
472 aprint_error_dev(self, "cannot activate %d\n", error);
473 return;
474 }
475 /*
476 * Map and establish our interrupt.
477 */
478 if (pci_intr_map(pa, &ih)) {
479 aprint_error_dev(self, "unable to map interrupt\n");
480 return;
481 }
482 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
483 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
484 device_xname(self));
485 if (sc->sc_ih == NULL) {
486 aprint_error_dev(self, "unable to establish interrupt");
487 if (intrstr != NULL)
488 aprint_error(" at %s", intrstr);
489 aprint_error("\n");
490 return;
491 }
492 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
493
494 /*
495 * Allocate the control data structures, and create and load the
496 * DMA map for it.
497 */
498 if ((error = bus_dmamem_alloc(sc->sc_dmat,
499 sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
500 0)) != 0) {
501 aprint_error_dev(self,
502 "unable to allocate control data, error = %d\n", error);
503 goto fail_0;
504 }
505
506 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
507 sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
508 BUS_DMA_COHERENT)) != 0) {
509 aprint_error_dev(self,
510 "unable to map control data, error = %d\n", error);
511 goto fail_1;
512 }
513
514 if ((error = bus_dmamap_create(sc->sc_dmat,
515 sizeof(struct stge_control_data), 1,
516 sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
517 aprint_error_dev(self,
518 "unable to create control data DMA map, error = %d\n",
519 error);
520 goto fail_2;
521 }
522
523 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
524 sc->sc_control_data, sizeof(struct stge_control_data), NULL,
525 0)) != 0) {
526 aprint_error_dev(self,
527 "unable to load control data DMA map, error = %d\n",
528 error);
529 goto fail_3;
530 }
531
532 /*
533 * Create the transmit buffer DMA maps. Note that rev B.3
534 * and earlier seem to have a bug regarding multi-fragment
535 * packets. We need to limit the number of Tx segments on
536 * such chips to 1.
537 */
538 for (i = 0; i < STGE_NTXDESC; i++) {
539 if ((error = bus_dmamap_create(sc->sc_dmat,
540 ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
541 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
542 aprint_error_dev(self,
543 "unable to create tx DMA map %d, error = %d\n",
544 i, error);
545 goto fail_4;
546 }
547 }
548
549 /*
550 * Create the receive buffer DMA maps.
551 */
552 for (i = 0; i < STGE_NRXDESC; i++) {
553 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
554 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
555 aprint_error_dev(self,
556 "unable to create rx DMA map %d, error = %d\n",
557 i, error);
558 goto fail_5;
559 }
560 sc->sc_rxsoft[i].ds_mbuf = NULL;
561 }
562
563 /*
564 * Determine if we're copper or fiber. It affects how we
565 * reset the card.
566 */
567 if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
568 sc->sc_usefiber = 1;
569 else
570 sc->sc_usefiber = 0;
571
572 /*
573 * Reset the chip to a known state.
574 */
575 stge_reset(sc);
576
577 /*
578 * Reading the station address from the EEPROM doesn't seem
579 * to work, at least on my sample boards. Instead, since
580 * the reset sequence does AutoInit, read it from the station
581 * address registers. For Sundance 1023 you can only read it
582 * from EEPROM.
583 */
584 if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
585 enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff;
586 enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8;
587 enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff;
588 enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8;
589 enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff;
590 enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8;
591 sc->sc_stge1023 = 0;
592 } else {
593 data = prop_dictionary_get(device_properties(self),
594 "mac-address");
595 if (data != NULL) {
596 /*
597 * Try to get the station address from device
598 * properties first, in case the EEPROM is missing.
599 */
600 KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
601 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
602 (void)memcpy(enaddr, prop_data_data_nocopy(data),
603 ETHER_ADDR_LEN);
604 } else {
605 uint16_t myaddr[ETHER_ADDR_LEN / 2];
606 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
607 stge_read_eeprom(sc,
608 STGE_EEPROM_StationAddress0 + i,
609 &myaddr[i]);
610 myaddr[i] = le16toh(myaddr[i]);
611 }
612 (void)memcpy(enaddr, myaddr, sizeof(enaddr));
613 }
614 sc->sc_stge1023 = 1;
615 }
616
617 /* Set need_loaddspcode before mii_attach() */
618 dict = device_properties(self);
619 prop_dictionary_set_bool(dict, "need_loaddspcode",
620 ((sc->sc_rev >= 0x40) && (sc->sc_rev <= 0x4e)) ? true : false);
621
622 aprint_normal_dev(self, "Ethernet address %s\n",
623 ether_sprintf(enaddr));
624
625 /*
626 * Read some important bits from the PhyCtrl register.
627 */
628 sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
629 (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
630
631 /*
632 * Initialize our media structures and probe the MII.
633 */
634 mii->mii_ifp = ifp;
635 mii->mii_readreg = stge_mii_readreg;
636 mii->mii_writereg = stge_mii_writereg;
637 mii->mii_statchg = stge_mii_statchg;
638 sc->sc_ethercom.ec_mii = mii;
639 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
640 ether_mediastatus);
641 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
642 MII_OFFSET_ANY, MIIF_DOPAUSE);
643 if (LIST_FIRST(&mii->mii_phys) == NULL) {
644 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
645 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
646 } else
647 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
648
649 ifp = &sc->sc_ethercom.ec_if;
650 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
651 ifp->if_softc = sc;
652 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
653 ifp->if_ioctl = stge_ioctl;
654 ifp->if_start = stge_start;
655 ifp->if_watchdog = stge_watchdog;
656 ifp->if_init = stge_init;
657 ifp->if_stop = stge_stop;
658 IFQ_SET_READY(&ifp->if_snd);
659
660 /*
661 * The manual recommends disabling early transmit, so we
662 * do. It's disabled anyway, if using IP checksumming,
663 * since the entire packet must be in the FIFO in order
664 * for the chip to perform the checksum.
665 */
666 sc->sc_txthresh = 0x0fff;
667
668 /*
669 * Disable MWI if the PCI layer tells us to.
670 */
671 sc->sc_DMACtrl = 0;
672 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
673 sc->sc_DMACtrl |= DMAC_MWIDisable;
674
675 /*
676 * We can support 802.1Q VLAN-sized frames and jumbo
677 * Ethernet frames.
678 *
679 * XXX Figure out how to do hw-assisted VLAN tagging in
680 * XXX a reasonable way on this chip.
681 */
682 sc->sc_ethercom.ec_capabilities |=
683 ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
684 ETHERCAP_VLAN_HWTAGGING;
685 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
686
687 /*
688 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
689 */
690 sc->sc_ethercom.ec_if.if_capabilities |=
691 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
692 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
693 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
694
695 /*
696 * Attach the interface.
697 */
698 if_attach(ifp);
699 if_deferred_start_init(ifp, NULL);
700 ether_ifattach(ifp, enaddr);
701
702 #ifdef STGE_EVENT_COUNTERS
703 /*
704 * Attach event counters.
705 */
706 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
707 NULL, device_xname(self), "txstall");
708 evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
709 NULL, device_xname(self), "txdmaintr");
710 evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
711 NULL, device_xname(self), "txindintr");
712 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
713 NULL, device_xname(self), "rxintr");
714
715 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
716 NULL, device_xname(self), "txseg1");
717 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
718 NULL, device_xname(self), "txseg2");
719 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
720 NULL, device_xname(self), "txseg3");
721 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
722 NULL, device_xname(self), "txseg4");
723 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
724 NULL, device_xname(self), "txseg5");
725 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
726 NULL, device_xname(self), "txsegmore");
727 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
728 NULL, device_xname(self), "txcopy");
729
730 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
731 NULL, device_xname(self), "rxipsum");
732 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
733 NULL, device_xname(self), "rxtcpsum");
734 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
735 NULL, device_xname(self), "rxudpsum");
736 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
737 NULL, device_xname(self), "txipsum");
738 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
739 NULL, device_xname(self), "txtcpsum");
740 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
741 NULL, device_xname(self), "txudpsum");
742 #endif /* STGE_EVENT_COUNTERS */
743
744 /*
745 * Make sure the interface is shutdown during reboot.
746 */
747 if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
748 pmf_class_network_register(self, ifp);
749 else
750 aprint_error_dev(self, "couldn't establish power handler\n");
751
752 return;
753
754 /*
755 * Free any resources we've allocated during the failed attach
756 * attempt. Do this in reverse order and fall through.
757 */
758 fail_5:
759 for (i = 0; i < STGE_NRXDESC; i++) {
760 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
761 bus_dmamap_destroy(sc->sc_dmat,
762 sc->sc_rxsoft[i].ds_dmamap);
763 }
764 fail_4:
765 for (i = 0; i < STGE_NTXDESC; i++) {
766 if (sc->sc_txsoft[i].ds_dmamap != NULL)
767 bus_dmamap_destroy(sc->sc_dmat,
768 sc->sc_txsoft[i].ds_dmamap);
769 }
770 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
771 fail_3:
772 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
773 fail_2:
774 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
775 sizeof(struct stge_control_data));
776 fail_1:
777 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
778 fail_0:
779 return;
780 }
781
782 /*
783 * stge_shutdown:
784 *
785 * Make sure the interface is stopped at reboot time.
786 */
787 static bool
788 stge_shutdown(device_t self, int howto)
789 {
790 struct stge_softc *sc = device_private(self);
791 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
792
793 stge_stop(ifp, 1);
794 stge_reset(sc);
795 return true;
796 }
797
798 static void
799 stge_dma_wait(struct stge_softc *sc)
800 {
801 int i;
802
803 for (i = 0; i < STGE_TIMEOUT; i++) {
804 delay(2);
805 if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
806 break;
807 }
808
809 if (i == STGE_TIMEOUT)
810 printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
811 }
812
813 /*
814 * stge_start: [ifnet interface function]
815 *
816 * Start packet transmission on the interface.
817 */
818 static void
819 stge_start(struct ifnet *ifp)
820 {
821 struct stge_softc *sc = ifp->if_softc;
822 struct mbuf *m0;
823 struct stge_descsoft *ds;
824 struct stge_tfd *tfd;
825 bus_dmamap_t dmamap;
826 int error, firsttx, nexttx, opending, seg, totlen;
827 uint64_t csum_flags;
828
829 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
830 return;
831
832 /*
833 * Remember the previous number of pending transmissions
834 * and the first descriptor we will use.
835 */
836 opending = sc->sc_txpending;
837 firsttx = STGE_NEXTTX(sc->sc_txlast);
838
839 /*
840 * Loop through the send queue, setting up transmit descriptors
841 * until we drain the queue, or use up all available transmit
842 * descriptors.
843 */
844 for (;;) {
845 uint64_t tfc;
846 bool have_vtag;
847 uint16_t vtag;
848
849 /*
850 * Grab a packet off the queue.
851 */
852 IFQ_POLL(&ifp->if_snd, m0);
853 if (m0 == NULL)
854 break;
855
856 /*
857 * Leave one unused descriptor at the end of the
858 * list to prevent wrapping completely around.
859 */
860 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
861 STGE_EVCNT_INCR(&sc->sc_ev_txstall);
862 break;
863 }
864
865 /*
866 * See if we have any VLAN stuff.
867 */
868 have_vtag = vlan_has_tag(m0);
869 if (have_vtag)
870 vtag = vlan_get_tag(m0);
871
872 /*
873 * Get the last and next available transmit descriptor.
874 */
875 nexttx = STGE_NEXTTX(sc->sc_txlast);
876 tfd = &sc->sc_txdescs[nexttx];
877 ds = &sc->sc_txsoft[nexttx];
878
879 dmamap = ds->ds_dmamap;
880
881 /*
882 * Load the DMA map. If this fails, the packet either
883 * didn't fit in the alloted number of segments, or we
884 * were short on resources. For the too-many-segments
885 * case, we simply report an error and drop the packet,
886 * since we can't sanely copy a jumbo packet to a single
887 * buffer.
888 */
889 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
890 BUS_DMA_NOWAIT);
891 if (error) {
892 if (error == EFBIG) {
893 printf("%s: Tx packet consumes too many "
894 "DMA segments, dropping...\n",
895 device_xname(sc->sc_dev));
896 IFQ_DEQUEUE(&ifp->if_snd, m0);
897 m_freem(m0);
898 continue;
899 }
900 /*
901 * Short on resources, just stop for now.
902 */
903 break;
904 }
905
906 IFQ_DEQUEUE(&ifp->if_snd, m0);
907
908 /*
909 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
910 */
911
912 /* Sync the DMA map. */
913 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
914 BUS_DMASYNC_PREWRITE);
915
916 /* Initialize the fragment list. */
917 for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
918 tfd->tfd_frags[seg].frag_word0 =
919 htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
920 FRAG_LEN(dmamap->dm_segs[seg].ds_len));
921 totlen += dmamap->dm_segs[seg].ds_len;
922 }
923
924 #ifdef STGE_EVENT_COUNTERS
925 switch (dmamap->dm_nsegs) {
926 case 1:
927 STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
928 break;
929 case 2:
930 STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
931 break;
932 case 3:
933 STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
934 break;
935 case 4:
936 STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
937 break;
938 case 5:
939 STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
940 break;
941 default:
942 STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
943 break;
944 }
945 #endif /* STGE_EVENT_COUNTERS */
946
947 /*
948 * Initialize checksumming flags in the descriptor.
949 * Byte-swap constants so the compiler can optimize.
950 */
951 csum_flags = 0;
952 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
953 STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
954 csum_flags |= TFD_IPChecksumEnable;
955 }
956
957 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
958 STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
959 csum_flags |= TFD_TCPChecksumEnable;
960 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
961 STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
962 csum_flags |= TFD_UDPChecksumEnable;
963 }
964
965 /*
966 * Initialize the descriptor and give it to the chip.
967 * Check to see if we have a VLAN tag to insert.
968 */
969
970 tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
971 TFD_FragCount(seg) | csum_flags |
972 (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
973 TFD_TxDMAIndicate : 0);
974 if (have_vtag) {
975 #if 0
976 struct ether_header *eh =
977 mtod(m0, struct ether_header *);
978 uint16_t etype = ntohs(eh->ether_type);
979 printf("%s: xmit (tag %d) etype %x\n",
980 ifp->if_xname, *mtod(n, int *), etype);
981 #endif
982 tfc |= TFD_VLANTagInsert |
983 #ifdef STGE_VLAN_CFI
984 TFD_CFI |
985 #endif
986 TFD_VID(vtag);
987 }
988 tfd->tfd_control = htole64(tfc);
989
990 /* Sync the descriptor. */
991 STGE_CDTXSYNC(sc, nexttx,
992 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
993
994 /*
995 * Kick the transmit DMA logic.
996 */
997 CSR_WRITE_4(sc, STGE_DMACtrl,
998 sc->sc_DMACtrl | DMAC_TxDMAPollNow);
999
1000 /*
1001 * Store a pointer to the packet so we can free it later.
1002 */
1003 ds->ds_mbuf = m0;
1004
1005 /* Advance the tx pointer. */
1006 sc->sc_txpending++;
1007 sc->sc_txlast = nexttx;
1008
1009 /*
1010 * Pass the packet to any BPF listeners.
1011 */
1012 bpf_mtap(ifp, m0, BPF_D_OUT);
1013 }
1014
1015 if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
1016 /* No more slots left; notify upper layer. */
1017 ifp->if_flags |= IFF_OACTIVE;
1018 }
1019
1020 if (sc->sc_txpending != opending) {
1021 /*
1022 * We enqueued packets. If the transmitter was idle,
1023 * reset the txdirty pointer.
1024 */
1025 if (opending == 0)
1026 sc->sc_txdirty = firsttx;
1027
1028 /* Set a watchdog timer in case the chip flakes out. */
1029 ifp->if_timer = 5;
1030 }
1031 }
1032
1033 /*
1034 * stge_watchdog: [ifnet interface function]
1035 *
1036 * Watchdog timer handler.
1037 */
1038 static void
1039 stge_watchdog(struct ifnet *ifp)
1040 {
1041 struct stge_softc *sc = ifp->if_softc;
1042
1043 /*
1044 * Sweep up first, since we don't interrupt every frame.
1045 */
1046 stge_txintr(sc);
1047 if (sc->sc_txpending != 0) {
1048 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1049 if_statinc(ifp, if_oerrors);
1050
1051 (void) stge_init(ifp);
1052
1053 /* Try to get more packets going. */
1054 stge_start(ifp);
1055 }
1056 }
1057
1058 /*
1059 * stge_ioctl: [ifnet interface function]
1060 *
1061 * Handle control requests from the operator.
1062 */
1063 static int
1064 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1065 {
1066 struct stge_softc *sc = ifp->if_softc;
1067 int s, error;
1068
1069 s = splnet();
1070
1071 error = ether_ioctl(ifp, cmd, data);
1072 if (error == ENETRESET) {
1073 error = 0;
1074
1075 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1076 ;
1077 else if (ifp->if_flags & IFF_RUNNING) {
1078 /*
1079 * Multicast list has changed; set the hardware filter
1080 * accordingly.
1081 */
1082 stge_set_filter(sc);
1083 }
1084 }
1085
1086 /* Try to get more packets going. */
1087 stge_start(ifp);
1088
1089 splx(s);
1090 return (error);
1091 }
1092
1093 /*
1094 * stge_intr:
1095 *
1096 * Interrupt service routine.
1097 */
1098 static int
1099 stge_intr(void *arg)
1100 {
1101 struct stge_softc *sc = arg;
1102 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 uint32_t txstat;
1104 int wantinit;
1105 uint16_t isr;
1106
1107 if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
1108 return (0);
1109
1110 for (wantinit = 0; wantinit == 0;) {
1111 isr = CSR_READ_2(sc, STGE_IntStatusAck);
1112 if ((isr & sc->sc_IntEnable) == 0)
1113 break;
1114
1115 /* Host interface errors. */
1116 if (isr & IS_HostError) {
1117 printf("%s: Host interface error\n",
1118 device_xname(sc->sc_dev));
1119 wantinit = 1;
1120 continue;
1121 }
1122
1123 /* Receive interrupts. */
1124 if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
1125 STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1126 stge_rxintr(sc);
1127 if (isr & IS_RFDListEnd) {
1128 printf("%s: receive ring overflow\n",
1129 device_xname(sc->sc_dev));
1130 /*
1131 * XXX Should try to recover from this
1132 * XXX more gracefully.
1133 */
1134 wantinit = 1;
1135 }
1136 }
1137
1138 /* Transmit interrupts. */
1139 if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
1140 #ifdef STGE_EVENT_COUNTERS
1141 if (isr & IS_TxDMAComplete)
1142 STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
1143 #endif
1144 stge_txintr(sc);
1145 }
1146
1147 /* Statistics overflow. */
1148 if (isr & IS_UpdateStats)
1149 stge_stats_update(sc);
1150
1151 /* Transmission errors. */
1152 if (isr & IS_TxComplete) {
1153 STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
1154 for (;;) {
1155 txstat = CSR_READ_4(sc, STGE_TxStatus);
1156 if ((txstat & TS_TxComplete) == 0)
1157 break;
1158 if (txstat & TS_TxUnderrun) {
1159 sc->sc_txthresh++;
1160 if (sc->sc_txthresh > 0x0fff)
1161 sc->sc_txthresh = 0x0fff;
1162 printf("%s: transmit underrun, new "
1163 "threshold: %d bytes\n",
1164 device_xname(sc->sc_dev),
1165 sc->sc_txthresh << 5);
1166 }
1167 if (txstat & TS_MaxCollisions)
1168 printf("%s: excessive collisions\n",
1169 device_xname(sc->sc_dev));
1170 }
1171 wantinit = 1;
1172 }
1173
1174 }
1175
1176 if (wantinit)
1177 stge_init(ifp);
1178
1179 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1180
1181 /* Try to get more packets going. */
1182 if_schedule_deferred_start(ifp);
1183
1184 return (1);
1185 }
1186
1187 /*
1188 * stge_txintr:
1189 *
1190 * Helper; handle transmit interrupts.
1191 */
1192 static void
1193 stge_txintr(struct stge_softc *sc)
1194 {
1195 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1196 struct stge_descsoft *ds;
1197 uint64_t control;
1198 int i;
1199
1200 ifp->if_flags &= ~IFF_OACTIVE;
1201
1202 /*
1203 * Go through our Tx list and free mbufs for those
1204 * frames which have been transmitted.
1205 */
1206 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1207 i = STGE_NEXTTX(i), sc->sc_txpending--) {
1208 ds = &sc->sc_txsoft[i];
1209
1210 STGE_CDTXSYNC(sc, i,
1211 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1212
1213 control = le64toh(sc->sc_txdescs[i].tfd_control);
1214 if ((control & TFD_TFDDone) == 0)
1215 break;
1216
1217 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1218 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1219 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1220 m_freem(ds->ds_mbuf);
1221 ds->ds_mbuf = NULL;
1222 }
1223
1224 /* Update the dirty transmit buffer pointer. */
1225 sc->sc_txdirty = i;
1226
1227 /*
1228 * If there are no more pending transmissions, cancel the watchdog
1229 * timer.
1230 */
1231 if (sc->sc_txpending == 0)
1232 ifp->if_timer = 0;
1233 }
1234
1235 /*
1236 * stge_rxintr:
1237 *
1238 * Helper; handle receive interrupts.
1239 */
1240 static void
1241 stge_rxintr(struct stge_softc *sc)
1242 {
1243 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1244 struct stge_descsoft *ds;
1245 struct mbuf *m, *tailm;
1246 uint64_t status;
1247 int i, len;
1248
1249 for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
1250 ds = &sc->sc_rxsoft[i];
1251
1252 STGE_CDRXSYNC(sc, i,
1253 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1254
1255 status = le64toh(sc->sc_rxdescs[i].rfd_status);
1256
1257 if ((status & RFD_RFDDone) == 0)
1258 break;
1259
1260 if (__predict_false(sc->sc_rxdiscard)) {
1261 STGE_INIT_RXDESC(sc, i);
1262 if (status & RFD_FrameEnd) {
1263 /* Reset our state. */
1264 sc->sc_rxdiscard = 0;
1265 }
1266 continue;
1267 }
1268
1269 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1270 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1271
1272 m = ds->ds_mbuf;
1273
1274 /*
1275 * Add a new receive buffer to the ring.
1276 */
1277 if (stge_add_rxbuf(sc, i) != 0) {
1278 /*
1279 * Failed, throw away what we've done so
1280 * far, and discard the rest of the packet.
1281 */
1282 if_statinc(ifp, if_ierrors);
1283 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1284 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285 STGE_INIT_RXDESC(sc, i);
1286 if ((status & RFD_FrameEnd) == 0)
1287 sc->sc_rxdiscard = 1;
1288 if (sc->sc_rxhead != NULL)
1289 m_freem(sc->sc_rxhead);
1290 STGE_RXCHAIN_RESET(sc);
1291 continue;
1292 }
1293
1294 #ifdef DIAGNOSTIC
1295 if (status & RFD_FrameStart) {
1296 KASSERT(sc->sc_rxhead == NULL);
1297 KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
1298 }
1299 #endif
1300
1301 STGE_RXCHAIN_LINK(sc, m);
1302
1303 /*
1304 * If this is not the end of the packet, keep
1305 * looking.
1306 */
1307 if ((status & RFD_FrameEnd) == 0) {
1308 sc->sc_rxlen += m->m_len;
1309 continue;
1310 }
1311
1312 /*
1313 * Okay, we have the entire packet now...
1314 */
1315 *sc->sc_rxtailp = NULL;
1316 m = sc->sc_rxhead;
1317 tailm = sc->sc_rxtail;
1318
1319 STGE_RXCHAIN_RESET(sc);
1320
1321 /*
1322 * If the packet had an error, drop it. Note we
1323 * count the error later in the periodic stats update.
1324 */
1325 if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1326 RFD_RxAlignmentError | RFD_RxFCSError |
1327 RFD_RxLengthError)) {
1328 m_freem(m);
1329 continue;
1330 }
1331
1332 /*
1333 * No errors.
1334 *
1335 * Note we have configured the chip to not include
1336 * the CRC at the end of the packet.
1337 */
1338 len = RFD_RxDMAFrameLen(status);
1339 tailm->m_len = len - sc->sc_rxlen;
1340
1341 /*
1342 * If the packet is small enough to fit in a
1343 * single header mbuf, allocate one and copy
1344 * the data into it. This greatly reduces
1345 * memory consumption when we receive lots
1346 * of small packets.
1347 */
1348 if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
1349 struct mbuf *nm;
1350 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1351 if (nm == NULL) {
1352 if_statinc(ifp, if_ierrors);
1353 m_freem(m);
1354 continue;
1355 }
1356 nm->m_data += 2;
1357 nm->m_pkthdr.len = nm->m_len = len;
1358 m_copydata(m, 0, len, mtod(nm, void *));
1359 m_freem(m);
1360 m = nm;
1361 }
1362
1363 /*
1364 * Set the incoming checksum information for the packet.
1365 */
1366 if (status & RFD_IPDetected) {
1367 STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1368 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1369 if (status & RFD_IPError)
1370 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1371 if (status & RFD_TCPDetected) {
1372 STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1373 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1374 if (status & RFD_TCPError)
1375 m->m_pkthdr.csum_flags |=
1376 M_CSUM_TCP_UDP_BAD;
1377 } else if (status & RFD_UDPDetected) {
1378 STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1379 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1380 if (status & RFD_UDPError)
1381 m->m_pkthdr.csum_flags |=
1382 M_CSUM_TCP_UDP_BAD;
1383 }
1384 }
1385
1386 m_set_rcvif(m, ifp);
1387 m->m_pkthdr.len = len;
1388
1389 /*
1390 * Pass this up to any BPF listeners, but only
1391 * pass if up the stack if it's for us.
1392 */
1393 #ifdef STGE_VLAN_UNTAG
1394 /*
1395 * Check for VLAN tagged packets
1396 */
1397 if (status & RFD_VLANDetected)
1398 vlan_set_tag(m, RFD_TCI(status));
1399
1400 #endif
1401 #if 0
1402 if (status & RFD_VLANDetected) {
1403 struct ether_header *eh;
1404 uint16_t etype;
1405
1406 eh = mtod(m, struct ether_header *);
1407 etype = ntohs(eh->ether_type);
1408 printf("%s: VLANtag detected (TCI %d) etype %x\n",
1409 ifp->if_xname, (uint16_t) RFD_TCI(status),
1410 etype);
1411 }
1412 #endif
1413 /* Pass it on. */
1414 if_percpuq_enqueue(ifp->if_percpuq, m);
1415 }
1416
1417 /* Update the receive pointer. */
1418 sc->sc_rxptr = i;
1419 }
1420
1421 /*
1422 * stge_tick:
1423 *
1424 * One second timer, used to tick the MII.
1425 */
1426 static void
1427 stge_tick(void *arg)
1428 {
1429 struct stge_softc *sc = arg;
1430 int s;
1431
1432 s = splnet();
1433 mii_tick(&sc->sc_mii);
1434 stge_stats_update(sc);
1435 splx(s);
1436
1437 callout_schedule(&sc->sc_tick_ch, hz);
1438 }
1439
1440 /*
1441 * stge_stats_update:
1442 *
1443 * Read the TC9021 statistics counters.
1444 */
1445 static void
1446 stge_stats_update(struct stge_softc *sc)
1447 {
1448 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1449
1450 (void) CSR_READ_4(sc, STGE_OctetRcvOk);
1451
1452 (void) CSR_READ_4(sc, STGE_FramesRcvdOk);
1453
1454 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1455
1456 if_statadd_ref(nsr, if_ierrors,
1457 (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors));
1458
1459 (void) CSR_READ_4(sc, STGE_OctetXmtdOk);
1460
1461 if_statadd_ref(nsr, if_opackets,
1462 CSR_READ_4(sc, STGE_FramesXmtdOk));
1463
1464 if_statadd_ref(nsr, if_collisions,
1465 CSR_READ_4(sc, STGE_LateCollisions) +
1466 CSR_READ_4(sc, STGE_MultiColFrames) +
1467 CSR_READ_4(sc, STGE_SingleColFrames));
1468
1469 if_statadd_ref(nsr, if_oerrors,
1470 (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1471 (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal));
1472
1473 IF_STAT_PUTREF(ifp);
1474 }
1475
1476 /*
1477 * stge_reset:
1478 *
1479 * Perform a soft reset on the TC9021.
1480 */
1481 static void
1482 stge_reset(struct stge_softc *sc)
1483 {
1484 uint32_t ac;
1485 int i;
1486
1487 ac = CSR_READ_4(sc, STGE_AsicCtrl);
1488
1489 /*
1490 * Only assert RstOut if we're fiber. We need GMII clocks
1491 * to be present in order for the reset to complete on fiber
1492 * cards.
1493 */
1494 CSR_WRITE_4(sc, STGE_AsicCtrl,
1495 ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1496 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1497 (sc->sc_usefiber ? AC_RstOut : 0));
1498
1499 delay(50000);
1500
1501 for (i = 0; i < STGE_TIMEOUT; i++) {
1502 delay(5000);
1503 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1504 break;
1505 }
1506
1507 if (i == STGE_TIMEOUT)
1508 printf("%s: reset failed to complete\n",
1509 device_xname(sc->sc_dev));
1510
1511 delay(1000);
1512 }
1513
1514 /*
1515 * stge_init: [ ifnet interface function ]
1516 *
1517 * Initialize the interface. Must be called at splnet().
1518 */
1519 static int
1520 stge_init(struct ifnet *ifp)
1521 {
1522 struct stge_softc *sc = ifp->if_softc;
1523 struct stge_descsoft *ds;
1524 int i, error = 0;
1525
1526 /*
1527 * Cancel any pending I/O.
1528 */
1529 stge_stop(ifp, 0);
1530
1531 /*
1532 * Reset the chip to a known state.
1533 */
1534 stge_reset(sc);
1535
1536 /*
1537 * Initialize the transmit descriptor ring.
1538 */
1539 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1540 for (i = 0; i < STGE_NTXDESC; i++) {
1541 sc->sc_txdescs[i].tfd_next = htole64(
1542 STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1543 sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1544 }
1545 sc->sc_txpending = 0;
1546 sc->sc_txdirty = 0;
1547 sc->sc_txlast = STGE_NTXDESC - 1;
1548
1549 /*
1550 * Initialize the receive descriptor and receive job
1551 * descriptor rings.
1552 */
1553 for (i = 0; i < STGE_NRXDESC; i++) {
1554 ds = &sc->sc_rxsoft[i];
1555 if (ds->ds_mbuf == NULL) {
1556 if ((error = stge_add_rxbuf(sc, i)) != 0) {
1557 printf("%s: unable to allocate or map rx "
1558 "buffer %d, error = %d\n",
1559 device_xname(sc->sc_dev), i, error);
1560 /*
1561 * XXX Should attempt to run with fewer receive
1562 * XXX buffers instead of just failing.
1563 */
1564 stge_rxdrain(sc);
1565 goto out;
1566 }
1567 } else
1568 STGE_INIT_RXDESC(sc, i);
1569 }
1570 sc->sc_rxptr = 0;
1571 sc->sc_rxdiscard = 0;
1572 STGE_RXCHAIN_RESET(sc);
1573
1574 /* Set the station address. */
1575 for (i = 0; i < 6; i++)
1576 CSR_WRITE_1(sc, STGE_StationAddress0 + i,
1577 CLLADDR(ifp->if_sadl)[i]);
1578
1579 /*
1580 * Set the statistics masks. Disable all the RMON stats,
1581 * and disable selected stats in the non-RMON stats registers.
1582 */
1583 CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
1584 CSR_WRITE_4(sc, STGE_StatisticsMask,
1585 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1586 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1587 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1588 (1U << 21));
1589
1590 /* Set up the receive filter. */
1591 stge_set_filter(sc);
1592
1593 /*
1594 * Give the transmit and receive ring to the chip.
1595 */
1596 CSR_WRITE_4(sc, STGE_TFDListPtrHi,
1597 ((uint64_t)STGE_CDTXADDR(sc, sc->sc_txdirty)) >> 32);
1598 CSR_WRITE_4(sc, STGE_TFDListPtrLo,
1599 STGE_CDTXADDR(sc, sc->sc_txdirty));
1600
1601 CSR_WRITE_4(sc, STGE_RFDListPtrHi,
1602 ((uint64_t)STGE_CDRXADDR(sc, sc->sc_rxptr)) >> 32);
1603 CSR_WRITE_4(sc, STGE_RFDListPtrLo,
1604 STGE_CDRXADDR(sc, sc->sc_rxptr));
1605
1606 /*
1607 * Initialize the Tx auto-poll period. It's OK to make this number
1608 * large (255 is the max, but we use 127) -- we explicitly kick the
1609 * transmit engine when there's actually a packet.
1610 */
1611 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
1612
1613 /* ..and the Rx auto-poll period. */
1614 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
1615
1616 /* Initialize the Tx start threshold. */
1617 CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
1618
1619 /* RX DMA thresholds, from linux */
1620 CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
1621 CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
1622
1623 /* Rx early threhold, from Linux */
1624 CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
1625
1626 /* Tx DMA thresholds, from Linux */
1627 CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
1628 CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
1629
1630 /*
1631 * Initialize the Rx DMA interrupt control register. We
1632 * request an interrupt after every incoming packet, but
1633 * defer it for 32us (64 * 512 ns). When the number of
1634 * interrupts pending reaches 8, we stop deferring the
1635 * interrupt, and signal it immediately.
1636 */
1637 CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
1638 RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1639
1640 /*
1641 * Initialize the interrupt mask.
1642 */
1643 sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1644 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1645 CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
1646 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1647
1648 /*
1649 * Configure the DMA engine.
1650 * XXX Should auto-tune TxBurstLimit.
1651 */
1652 CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
1653 DMAC_TxBurstLimit(3));
1654
1655 /*
1656 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1657 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
1658 * in the Rx FIFO.
1659 */
1660 CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
1661 CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
1662
1663 /*
1664 * Set the maximum frame size.
1665 */
1666 CSR_WRITE_2(sc, STGE_MaxFrameSize,
1667 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1668 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
1669 ETHER_VLAN_ENCAP_LEN : 0));
1670
1671 /*
1672 * Initialize MacCtrl -- do it before setting the media,
1673 * as setting the media will actually program the register.
1674 *
1675 * Note: We have to poke the IFS value before poking
1676 * anything else.
1677 */
1678 sc->sc_MACCtrl = MC_IFSSelect(0);
1679 CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1680 sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1681 #ifdef STGE_VLAN_UNTAG
1682 sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1683 #endif
1684
1685 if (sc->sc_rev >= 6) { /* >= B.2 */
1686 /* Multi-frag frame bug work-around. */
1687 CSR_WRITE_2(sc, STGE_DebugCtrl,
1688 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
1689
1690 /* Tx Poll Now bug work-around. */
1691 CSR_WRITE_2(sc, STGE_DebugCtrl,
1692 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
1693 /* XXX ? from linux */
1694 CSR_WRITE_2(sc, STGE_DebugCtrl,
1695 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
1696 }
1697
1698 /*
1699 * Set the current media.
1700 */
1701 if ((error = ether_mediachange(ifp)) != 0)
1702 goto out;
1703
1704 /*
1705 * Start the one second MII clock.
1706 */
1707 callout_schedule(&sc->sc_tick_ch, hz);
1708
1709 /*
1710 * ...all done!
1711 */
1712 ifp->if_flags |= IFF_RUNNING;
1713 ifp->if_flags &= ~IFF_OACTIVE;
1714
1715 out:
1716 if (error)
1717 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1718 return (error);
1719 }
1720
1721 /*
1722 * stge_drain:
1723 *
1724 * Drain the receive queue.
1725 */
1726 static void
1727 stge_rxdrain(struct stge_softc *sc)
1728 {
1729 struct stge_descsoft *ds;
1730 int i;
1731
1732 for (i = 0; i < STGE_NRXDESC; i++) {
1733 ds = &sc->sc_rxsoft[i];
1734 if (ds->ds_mbuf != NULL) {
1735 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1736 ds->ds_mbuf->m_next = NULL;
1737 m_freem(ds->ds_mbuf);
1738 ds->ds_mbuf = NULL;
1739 }
1740 }
1741 }
1742
1743 /*
1744 * stge_stop: [ ifnet interface function ]
1745 *
1746 * Stop transmission on the interface.
1747 */
1748 static void
1749 stge_stop(struct ifnet *ifp, int disable)
1750 {
1751 struct stge_softc *sc = ifp->if_softc;
1752 struct stge_descsoft *ds;
1753 int i;
1754
1755 /*
1756 * Stop the one second clock.
1757 */
1758 callout_stop(&sc->sc_tick_ch);
1759
1760 /* Down the MII. */
1761 mii_down(&sc->sc_mii);
1762
1763 /*
1764 * Disable interrupts.
1765 */
1766 CSR_WRITE_2(sc, STGE_IntEnable, 0);
1767
1768 /*
1769 * Stop receiver, transmitter, and stats update.
1770 */
1771 CSR_WRITE_4(sc, STGE_MACCtrl,
1772 MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1773
1774 /*
1775 * Stop the transmit and receive DMA.
1776 */
1777 stge_dma_wait(sc);
1778 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
1779 CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
1780 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
1781 CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
1782
1783 /*
1784 * Release any queued transmit buffers.
1785 */
1786 for (i = 0; i < STGE_NTXDESC; i++) {
1787 ds = &sc->sc_txsoft[i];
1788 if (ds->ds_mbuf != NULL) {
1789 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1790 m_freem(ds->ds_mbuf);
1791 ds->ds_mbuf = NULL;
1792 }
1793 }
1794
1795 /*
1796 * Mark the interface down and cancel the watchdog timer.
1797 */
1798 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1799 ifp->if_timer = 0;
1800
1801 if (disable)
1802 stge_rxdrain(sc);
1803 }
1804
1805 static int
1806 stge_eeprom_wait(struct stge_softc *sc)
1807 {
1808 int i;
1809
1810 for (i = 0; i < STGE_TIMEOUT; i++) {
1811 delay(1000);
1812 if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
1813 return (0);
1814 }
1815 return (1);
1816 }
1817
1818 /*
1819 * stge_read_eeprom:
1820 *
1821 * Read data from the serial EEPROM.
1822 */
1823 static void
1824 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1825 {
1826
1827 if (stge_eeprom_wait(sc))
1828 printf("%s: EEPROM failed to come ready\n",
1829 device_xname(sc->sc_dev));
1830
1831 CSR_WRITE_2(sc, STGE_EepromCtrl,
1832 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1833 if (stge_eeprom_wait(sc))
1834 printf("%s: EEPROM read timed out\n",
1835 device_xname(sc->sc_dev));
1836 *data = CSR_READ_2(sc, STGE_EepromData);
1837 }
1838
1839 /*
1840 * stge_add_rxbuf:
1841 *
1842 * Add a receive buffer to the indicated descriptor.
1843 */
1844 static int
1845 stge_add_rxbuf(struct stge_softc *sc, int idx)
1846 {
1847 struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1848 struct mbuf *m;
1849 int error;
1850
1851 MGETHDR(m, M_DONTWAIT, MT_DATA);
1852 if (m == NULL)
1853 return (ENOBUFS);
1854
1855 MCLGET(m, M_DONTWAIT);
1856 if ((m->m_flags & M_EXT) == 0) {
1857 m_freem(m);
1858 return (ENOBUFS);
1859 }
1860
1861 m->m_data = m->m_ext.ext_buf + 2;
1862 m->m_len = MCLBYTES - 2;
1863
1864 if (ds->ds_mbuf != NULL)
1865 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1866
1867 ds->ds_mbuf = m;
1868
1869 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1870 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1871 if (error) {
1872 printf("%s: can't load rx DMA map %d, error = %d\n",
1873 device_xname(sc->sc_dev), idx, error);
1874 panic("stge_add_rxbuf"); /* XXX */
1875 }
1876
1877 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1878 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1879
1880 STGE_INIT_RXDESC(sc, idx);
1881
1882 return (0);
1883 }
1884
1885 /*
1886 * stge_set_filter:
1887 *
1888 * Set up the receive filter.
1889 */
1890 static void
1891 stge_set_filter(struct stge_softc *sc)
1892 {
1893 struct ethercom *ec = &sc->sc_ethercom;
1894 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1895 struct ether_multi *enm;
1896 struct ether_multistep step;
1897 uint32_t crc;
1898 uint32_t mchash[2];
1899
1900 sc->sc_ReceiveMode = RM_ReceiveUnicast;
1901 if (ifp->if_flags & IFF_BROADCAST)
1902 sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1903
1904 /* XXX: ST1023 only works in promiscuous mode */
1905 if (sc->sc_stge1023)
1906 ifp->if_flags |= IFF_PROMISC;
1907
1908 if (ifp->if_flags & IFF_PROMISC) {
1909 sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1910 goto allmulti;
1911 }
1912
1913 /*
1914 * Set up the multicast address filter by passing all multicast
1915 * addresses through a CRC generator, and then using the low-order
1916 * 6 bits as an index into the 64 bit multicast hash table. The
1917 * high order bits select the register, while the rest of the bits
1918 * select the bit within the register.
1919 */
1920
1921 memset(mchash, 0, sizeof(mchash));
1922
1923 ETHER_LOCK(ec);
1924 ETHER_FIRST_MULTI(step, ec, enm);
1925 if (enm == NULL) {
1926 ETHER_UNLOCK(ec);
1927 goto done;
1928 }
1929
1930 while (enm != NULL) {
1931 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1932 /*
1933 * We must listen to a range of multicast addresses.
1934 * For now, just accept all multicasts, rather than
1935 * trying to set only those filter bits needed to match
1936 * the range. (At this time, the only use of address
1937 * ranges is for IP multicast routing, for which the
1938 * range is big enough to require all bits set.)
1939 */
1940 ETHER_UNLOCK(ec);
1941 goto allmulti;
1942 }
1943
1944 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1945
1946 /* Just want the 6 least significant bits. */
1947 crc &= 0x3f;
1948
1949 /* Set the corresponding bit in the hash table. */
1950 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1951
1952 ETHER_NEXT_MULTI(step, enm);
1953 }
1954 ETHER_UNLOCK(ec);
1955
1956 sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1957
1958 ifp->if_flags &= ~IFF_ALLMULTI;
1959 goto done;
1960
1961 allmulti:
1962 ifp->if_flags |= IFF_ALLMULTI;
1963 sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1964
1965 done:
1966 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1967 /*
1968 * Program the multicast hash table.
1969 */
1970 CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
1971 CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
1972 }
1973
1974 CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
1975 }
1976
1977 /*
1978 * stge_mii_readreg: [mii interface function]
1979 *
1980 * Read a PHY register on the MII of the TC9021.
1981 */
1982 static int
1983 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1984 {
1985
1986 return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
1987 }
1988
1989 /*
1990 * stge_mii_writereg: [mii interface function]
1991 *
1992 * Write a PHY register on the MII of the TC9021.
1993 */
1994 static int
1995 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1996 {
1997
1998 return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
1999 val);
2000 }
2001
2002 /*
2003 * stge_mii_statchg: [mii interface function]
2004 *
2005 * Callback from MII layer when media changes.
2006 */
2007 static void
2008 stge_mii_statchg(struct ifnet *ifp)
2009 {
2010 struct stge_softc *sc = ifp->if_softc;
2011
2012 sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
2013 MC_TxFlowControlEnable);
2014
2015 if (sc->sc_mii.mii_media_active & IFM_FDX)
2016 sc->sc_MACCtrl |= MC_DuplexSelect;
2017 if ((sc->sc_mii.mii_media_active & IFM_ETH_RXPAUSE) != 0)
2018 sc->sc_MACCtrl |= MC_RxFlowControlEnable;
2019 if ((sc->sc_mii.mii_media_active & IFM_ETH_TXPAUSE) != 0)
2020 sc->sc_MACCtrl |= MC_TxFlowControlEnable;
2021
2022 CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
2023 }
2024
2025 /*
2026 * sste_mii_bitbang_read: [mii bit-bang interface function]
2027 *
2028 * Read the MII serial port for the MII bit-bang module.
2029 */
2030 static uint32_t
2031 stge_mii_bitbang_read(device_t self)
2032 {
2033 struct stge_softc *sc = device_private(self);
2034
2035 return (CSR_READ_1(sc, STGE_PhyCtrl));
2036 }
2037
2038 /*
2039 * stge_mii_bitbang_write: [mii big-bang interface function]
2040 *
2041 * Write the MII serial port for the MII bit-bang module.
2042 */
2043 static void
2044 stge_mii_bitbang_write(device_t self, uint32_t val)
2045 {
2046 struct stge_softc *sc = device_private(self);
2047
2048 CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
2049 }
2050