Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.87
      1 /*	$NetBSD: if_stge.c,v 1.87 2020/07/02 09:02:04 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.87 2020/07/02 09:02:04 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #include <net/bpf.h>
     59 
     60 #include <sys/bus.h>
     61 #include <sys/intr.h>
     62 
     63 #include <dev/mii/mii.h>
     64 #include <dev/mii/miivar.h>
     65 #include <dev/mii/mii_bitbang.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/pci/if_stgereg.h>
     72 
     73 #include <prop/proplib.h>
     74 
     75 /* #define	STGE_CU_BUG			1 */
     76 #define	STGE_VLAN_UNTAG			1
     77 /* #define	STGE_VLAN_CFI		1 */
     78 
     79 /*
     80  * Transmit descriptor list size.
     81  */
     82 #define	STGE_NTXDESC		256
     83 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     84 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     85 
     86 /*
     87  * Receive descriptor list size.
     88  */
     89 #define	STGE_NRXDESC		256
     90 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     91 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     92 
     93 /*
     94  * Only interrupt every N frames.  Must be a power-of-two.
     95  */
     96 #define	STGE_TXINTR_SPACING	16
     97 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
     98 
     99 /*
    100  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    101  * a single clump that maps to a single DMA segment to make several things
    102  * easier.
    103  */
    104 struct stge_control_data {
    105 	/*
    106 	 * The transmit descriptors.
    107 	 */
    108 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    109 
    110 	/*
    111 	 * The receive descriptors.
    112 	 */
    113 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    114 };
    115 
    116 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    117 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    118 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    119 
    120 /*
    121  * Software state for transmit and receive jobs.
    122  */
    123 struct stge_descsoft {
    124 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    125 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    126 };
    127 
    128 /*
    129  * Software state per device.
    130  */
    131 struct stge_softc {
    132 	device_t sc_dev;		/* generic device information */
    133 	bus_space_tag_t sc_st;		/* bus space tag */
    134 	bus_space_handle_t sc_sh;	/* bus space handle */
    135 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    136 	struct ethercom sc_ethercom;	/* ethernet common data */
    137 	int sc_rev;			/* silicon revision */
    138 
    139 	void *sc_ih;			/* interrupt cookie */
    140 
    141 	struct mii_data sc_mii;		/* MII/media information */
    142 
    143 	callout_t sc_tick_ch;		/* tick callout */
    144 
    145 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    146 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    147 
    148 	/*
    149 	 * Software state for transmit and receive descriptors.
    150 	 */
    151 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    152 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    153 
    154 	/*
    155 	 * Control data structures.
    156 	 */
    157 	struct stge_control_data *sc_control_data;
    158 #define	sc_txdescs	sc_control_data->scd_txdescs
    159 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    160 
    161 #ifdef STGE_EVENT_COUNTERS
    162 	/*
    163 	 * Event counters.
    164 	 */
    165 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    166 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    167 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    168 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    169 
    170 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    171 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    172 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    173 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    174 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    175 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    176 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    177 
    178 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    179 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    180 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    181 
    182 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    183 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    184 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    185 #endif /* STGE_EVENT_COUNTERS */
    186 
    187 	int	sc_txpending;		/* number of Tx requests pending */
    188 	int	sc_txdirty;		/* first dirty Tx descriptor */
    189 	int	sc_txlast;		/* last used Tx descriptor */
    190 
    191 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    192 	int	sc_rxdiscard;
    193 	int	sc_rxlen;
    194 	struct mbuf *sc_rxhead;
    195 	struct mbuf *sc_rxtail;
    196 	struct mbuf **sc_rxtailp;
    197 
    198 	int	sc_txthresh;		/* Tx threshold */
    199 	uint32_t sc_usefiber:1;		/* if we're fiber */
    200 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    201 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    202 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    203 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    204 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    205 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    206 };
    207 
    208 #define	STGE_RXCHAIN_RESET(sc)						\
    209 do {									\
    210 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    211 	*(sc)->sc_rxtailp = NULL;					\
    212 	(sc)->sc_rxlen = 0;						\
    213 } while (/*CONSTCOND*/0)
    214 
    215 #define	STGE_RXCHAIN_LINK(sc, m)					\
    216 do {									\
    217 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    218 	(sc)->sc_rxtailp = &(m)->m_next;				\
    219 } while (/*CONSTCOND*/0)
    220 
    221 /*
    222  * Register access macros
    223  */
    224 #define CSR_WRITE_4(_sc, reg, val)	\
    225 	bus_space_write_4((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
    226 #define CSR_WRITE_2(_sc, reg, val)	\
    227 	bus_space_write_2((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
    228 #define CSR_WRITE_1(_sc, reg, val)	\
    229 	bus_space_write_1((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
    230 
    231 #define CSR_READ_4(_sc, reg)		\
    232 	bus_space_read_4((_sc)->sc_st, (_sc)->sc_sh, (reg))
    233 #define CSR_READ_2(_sc, reg)		\
    234 	bus_space_read_2((_sc)->sc_st, (_sc)->sc_sh, (reg))
    235 #define CSR_READ_1(_sc, reg)		\
    236 	bus_space_read_1((_sc)->sc_st, (_sc)->sc_sh, (reg))
    237 
    238 #define STGE_TIMEOUT	1000
    239 
    240 #ifdef STGE_EVENT_COUNTERS
    241 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    242 #else
    243 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    244 #endif
    245 
    246 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    247 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    248 
    249 #define	STGE_CDTXSYNC(sc, x, ops)					\
    250 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    251 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    252 
    253 #define	STGE_CDRXSYNC(sc, x, ops)					\
    254 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    255 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    256 
    257 #define	STGE_INIT_RXDESC(sc, x)						\
    258 do {									\
    259 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    260 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    261 									\
    262 	/*								\
    263 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    264 	 * so that the payload after the Ethernet header is aligned	\
    265 	 * to a 4-byte boundary.					\
    266 	 */								\
    267 	__rfd->rfd_frag.frag_word0 =					\
    268 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    269 	    FRAG_LEN(MCLBYTES - 2));					\
    270 	__rfd->rfd_next =						\
    271 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    272 	__rfd->rfd_status = 0;						\
    273 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    274 } while (/*CONSTCOND*/0)
    275 
    276 static void	stge_start(struct ifnet *);
    277 static void	stge_watchdog(struct ifnet *);
    278 static int	stge_ioctl(struct ifnet *, u_long, void *);
    279 static int	stge_init(struct ifnet *);
    280 static void	stge_stop(struct ifnet *, int);
    281 
    282 static bool	stge_shutdown(device_t, int);
    283 
    284 static void	stge_reset(struct stge_softc *);
    285 static void	stge_rxdrain(struct stge_softc *);
    286 static int	stge_add_rxbuf(struct stge_softc *, int);
    287 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    288 static void	stge_tick(void *);
    289 
    290 static void	stge_stats_update(struct stge_softc *);
    291 
    292 static void	stge_set_filter(struct stge_softc *);
    293 
    294 static int	stge_intr(void *);
    295 static void	stge_txintr(struct stge_softc *);
    296 static void	stge_rxintr(struct stge_softc *);
    297 
    298 static int	stge_mii_readreg(device_t, int, int, uint16_t *);
    299 static int	stge_mii_writereg(device_t, int, int, uint16_t);
    300 static void	stge_mii_statchg(struct ifnet *);
    301 
    302 static int	stge_match(device_t, cfdata_t, void *);
    303 static void	stge_attach(device_t, device_t, void *);
    304 
    305 int	stge_copy_small = 0;
    306 
    307 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    308     stge_match, stge_attach, NULL, NULL);
    309 
    310 static uint32_t stge_mii_bitbang_read(device_t);
    311 static void	stge_mii_bitbang_write(device_t, uint32_t);
    312 
    313 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    314 	stge_mii_bitbang_read,
    315 	stge_mii_bitbang_write,
    316 	{
    317 		PC_MgmtData,		/* MII_BIT_MDO */
    318 		PC_MgmtData,		/* MII_BIT_MDI */
    319 		PC_MgmtClk,		/* MII_BIT_MDC */
    320 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    321 		0,			/* MII_BIT_DIR_PHY_HOST */
    322 	}
    323 };
    324 
    325 /*
    326  * Devices supported by this driver.
    327  */
    328 static const struct stge_product {
    329 	pci_vendor_id_t		stge_vendor;
    330 	pci_product_id_t	stge_product;
    331 	const char		*stge_name;
    332 } stge_products[] = {
    333 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    334 	  "Sundance ST-1023 Gigabit Ethernet" },
    335 
    336 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    337 	  "Sundance ST-2021 Gigabit Ethernet" },
    338 
    339 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    340 	  "Tamarack TC9021 Gigabit Ethernet" },
    341 
    342 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    343 	  "Tamarack TC9021 Gigabit Ethernet" },
    344 
    345 	/*
    346 	 * The Sundance sample boards use the Sundance vendor ID,
    347 	 * but the Tamarack product ID.
    348 	 */
    349 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    350 	  "Sundance TC9021 Gigabit Ethernet" },
    351 
    352 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    353 	  "Sundance TC9021 Gigabit Ethernet" },
    354 
    355 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    356 	  "D-Link DL-4000 Gigabit Ethernet" },
    357 
    358 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    359 	  "Antares Gigabit Ethernet" },
    360 
    361 	{ 0,				0,
    362 	  NULL },
    363 };
    364 
    365 static const struct stge_product *
    366 stge_lookup(const struct pci_attach_args *pa)
    367 {
    368 	const struct stge_product *sp;
    369 
    370 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    371 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    372 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    373 			return (sp);
    374 	}
    375 	return (NULL);
    376 }
    377 
    378 static int
    379 stge_match(device_t parent, cfdata_t cf, void *aux)
    380 {
    381 	struct pci_attach_args *pa = aux;
    382 
    383 	if (stge_lookup(pa) != NULL)
    384 		return (1);
    385 
    386 	return (0);
    387 }
    388 
    389 static void
    390 stge_attach(device_t parent, device_t self, void *aux)
    391 {
    392 	struct stge_softc *sc = device_private(self);
    393 	struct pci_attach_args *pa = aux;
    394 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    395 	struct mii_data * const mii = &sc->sc_mii;
    396 	pci_chipset_tag_t pc = pa->pa_pc;
    397 	pci_intr_handle_t ih;
    398 	const char *intrstr = NULL;
    399 	bus_space_tag_t iot, memt;
    400 	bus_space_handle_t ioh, memh;
    401 	bus_dma_segment_t seg;
    402 	prop_dictionary_t dict;
    403 	prop_data_t data;
    404 	int ioh_valid, memh_valid;
    405 	int i, rseg, error;
    406 	const struct stge_product *sp;
    407 	uint8_t enaddr[ETHER_ADDR_LEN];
    408 	char intrbuf[PCI_INTRSTR_LEN];
    409 
    410 	sc->sc_dev = self;
    411 	callout_init(&sc->sc_tick_ch, 0);
    412 	callout_setfunc(&sc->sc_tick_ch, stge_tick, sc);
    413 
    414 	sp = stge_lookup(pa);
    415 	if (sp == NULL) {
    416 		printf("\n");
    417 		panic("ste_attach: impossible");
    418 	}
    419 
    420 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    421 
    422 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
    423 
    424 	/*
    425 	 * Map the device.
    426 	 */
    427 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    428 	    PCI_MAPREG_TYPE_IO, 0,
    429 	    &iot, &ioh, NULL, NULL) == 0);
    430 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    431 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    432 	    &memt, &memh, NULL, NULL) == 0);
    433 
    434 	if (memh_valid) {
    435 		sc->sc_st = memt;
    436 		sc->sc_sh = memh;
    437 	} else if (ioh_valid) {
    438 		sc->sc_st = iot;
    439 		sc->sc_sh = ioh;
    440 	} else {
    441 		aprint_error_dev(self, "unable to map device registers\n");
    442 		return;
    443 	}
    444 
    445 	/*
    446 	 * We have a 40-bit limit on our DMA addresses.  This isn't an
    447 	 * issue if we're only using a 32-bit DMA tag, but we have to
    448 	 * account for it if the 64-bit DMA tag is available.
    449 	 */
    450 	if (pci_dma64_available(pa)) {
    451 		if (bus_dmatag_subregion(pa->pa_dmat64,
    452 					 0,
    453 					 (bus_addr_t)(FRAG_ADDR_MASK + 1ULL),
    454 					 &sc->sc_dmat,
    455 					 BUS_DMA_WAITOK) != 0) {
    456 			aprint_error_dev(self,
    457 			    "WARNING: failed to restrict dma range,"
    458 			    " falling back to parent bus dma range\n");
    459 			sc->sc_dmat = pa->pa_dmat64;
    460 		}
    461 	} else {
    462 		sc->sc_dmat = pa->pa_dmat;
    463 	}
    464 
    465 	/* Enable bus mastering. */
    466 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    467 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    468 	    PCI_COMMAND_MASTER_ENABLE);
    469 
    470 	/* power up chip */
    471 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    472 	    error != EOPNOTSUPP) {
    473 		aprint_error_dev(self, "cannot activate %d\n", error);
    474 		return;
    475 	}
    476 	/*
    477 	 * Map and establish our interrupt.
    478 	 */
    479 	if (pci_intr_map(pa, &ih)) {
    480 		aprint_error_dev(self, "unable to map interrupt\n");
    481 		return;
    482 	}
    483 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    484 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
    485 	    device_xname(self));
    486 	if (sc->sc_ih == NULL) {
    487 		aprint_error_dev(self, "unable to establish interrupt");
    488 		if (intrstr != NULL)
    489 			aprint_error(" at %s", intrstr);
    490 		aprint_error("\n");
    491 		return;
    492 	}
    493 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    494 
    495 	/*
    496 	 * Allocate the control data structures, and create and load the
    497 	 * DMA map for it.
    498 	 */
    499 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    500 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    501 	    0)) != 0) {
    502 		aprint_error_dev(self,
    503 		    "unable to allocate control data, error = %d\n", error);
    504 		goto fail_0;
    505 	}
    506 
    507 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    508 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    509 	    BUS_DMA_COHERENT)) != 0) {
    510 		aprint_error_dev(self,
    511 		    "unable to map control data, error = %d\n", error);
    512 		goto fail_1;
    513 	}
    514 
    515 	if ((error = bus_dmamap_create(sc->sc_dmat,
    516 	    sizeof(struct stge_control_data), 1,
    517 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    518 		aprint_error_dev(self,
    519 		    "unable to create control data DMA map, error = %d\n",
    520 		    error);
    521 		goto fail_2;
    522 	}
    523 
    524 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    525 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    526 	    0)) != 0) {
    527 		aprint_error_dev(self,
    528 		    "unable to load control data DMA map, error = %d\n",
    529 		    error);
    530 		goto fail_3;
    531 	}
    532 
    533 	/*
    534 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    535 	 * and earlier seem to have a bug regarding multi-fragment
    536 	 * packets.  We need to limit the number of Tx segments on
    537 	 * such chips to 1.
    538 	 */
    539 	for (i = 0; i < STGE_NTXDESC; i++) {
    540 		if ((error = bus_dmamap_create(sc->sc_dmat,
    541 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    542 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    543 			aprint_error_dev(self,
    544 			    "unable to create tx DMA map %d, error = %d\n",
    545 			    i, error);
    546 			goto fail_4;
    547 		}
    548 	}
    549 
    550 	/*
    551 	 * Create the receive buffer DMA maps.
    552 	 */
    553 	for (i = 0; i < STGE_NRXDESC; i++) {
    554 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    555 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    556 			aprint_error_dev(self,
    557 			    "unable to create rx DMA map %d, error = %d\n",
    558 			    i, error);
    559 			goto fail_5;
    560 		}
    561 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    562 	}
    563 
    564 	/*
    565 	 * Determine if we're copper or fiber.  It affects how we
    566 	 * reset the card.
    567 	 */
    568 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
    569 		sc->sc_usefiber = 1;
    570 	else
    571 		sc->sc_usefiber = 0;
    572 
    573 	/*
    574 	 * Reset the chip to a known state.
    575 	 */
    576 	stge_reset(sc);
    577 
    578 	/*
    579 	 * Reading the station address from the EEPROM doesn't seem
    580 	 * to work, at least on my sample boards.  Instead, since
    581 	 * the reset sequence does AutoInit, read it from the station
    582 	 * address registers. For Sundance 1023 you can only read it
    583 	 * from EEPROM.
    584 	 */
    585 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    586 		enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff;
    587 		enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8;
    588 		enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff;
    589 		enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8;
    590 		enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff;
    591 		enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8;
    592 		sc->sc_stge1023 = 0;
    593 	} else {
    594 		data = prop_dictionary_get(device_properties(self),
    595 		    "mac-address");
    596 		if (data != NULL) {
    597 			/*
    598 			 * Try to get the station address from device
    599 			 * properties first, in case the EEPROM is missing.
    600 			 */
    601 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
    602 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
    603 			(void)memcpy(enaddr, prop_data_value(data),
    604 			    ETHER_ADDR_LEN);
    605 		} else {
    606 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
    607 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    608 				stge_read_eeprom(sc,
    609 				    STGE_EEPROM_StationAddress0 + i,
    610 				    &myaddr[i]);
    611 				myaddr[i] = le16toh(myaddr[i]);
    612 			}
    613 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    614 		}
    615 		sc->sc_stge1023 = 1;
    616 	}
    617 
    618 	/* Set need_loaddspcode before mii_attach() */
    619 	dict = device_properties(self);
    620 	prop_dictionary_set_bool(dict, "need_loaddspcode",
    621 	    ((sc->sc_rev >= 0x40) && (sc->sc_rev <= 0x4e)) ? true : false);
    622 
    623 	aprint_normal_dev(self, "Ethernet address %s\n",
    624 	    ether_sprintf(enaddr));
    625 
    626 	/*
    627 	 * Read some important bits from the PhyCtrl register.
    628 	 */
    629 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
    630 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    631 
    632 	/*
    633 	 * Initialize our media structures and probe the MII.
    634 	 */
    635 	mii->mii_ifp = ifp;
    636 	mii->mii_readreg = stge_mii_readreg;
    637 	mii->mii_writereg = stge_mii_writereg;
    638 	mii->mii_statchg = stge_mii_statchg;
    639 	sc->sc_ethercom.ec_mii = mii;
    640 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    641 	    ether_mediastatus);
    642 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
    643 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    644 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    645 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    646 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    647 	} else
    648 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    649 
    650 	ifp = &sc->sc_ethercom.ec_if;
    651 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    652 	ifp->if_softc = sc;
    653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    654 	ifp->if_ioctl = stge_ioctl;
    655 	ifp->if_start = stge_start;
    656 	ifp->if_watchdog = stge_watchdog;
    657 	ifp->if_init = stge_init;
    658 	ifp->if_stop = stge_stop;
    659 	IFQ_SET_READY(&ifp->if_snd);
    660 
    661 	/*
    662 	 * The manual recommends disabling early transmit, so we
    663 	 * do.  It's disabled anyway, if using IP checksumming,
    664 	 * since the entire packet must be in the FIFO in order
    665 	 * for the chip to perform the checksum.
    666 	 */
    667 	sc->sc_txthresh = 0x0fff;
    668 
    669 	/*
    670 	 * Disable MWI if the PCI layer tells us to.
    671 	 */
    672 	sc->sc_DMACtrl = 0;
    673 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    674 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    675 
    676 	/*
    677 	 * We can support 802.1Q VLAN-sized frames and jumbo
    678 	 * Ethernet frames.
    679 	 *
    680 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    681 	 * XXX a reasonable way on this chip.
    682 	 */
    683 	sc->sc_ethercom.ec_capabilities |=
    684 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    685 	    ETHERCAP_VLAN_HWTAGGING;
    686 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    687 
    688 	/*
    689 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    690 	 */
    691 	sc->sc_ethercom.ec_if.if_capabilities |=
    692 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    693 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    694 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    695 
    696 	/*
    697 	 * Attach the interface.
    698 	 */
    699 	if_attach(ifp);
    700 	if_deferred_start_init(ifp, NULL);
    701 	ether_ifattach(ifp, enaddr);
    702 
    703 #ifdef STGE_EVENT_COUNTERS
    704 	/*
    705 	 * Attach event counters.
    706 	 */
    707 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    708 	    NULL, device_xname(self), "txstall");
    709 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    710 	    NULL, device_xname(self), "txdmaintr");
    711 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    712 	    NULL, device_xname(self), "txindintr");
    713 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    714 	    NULL, device_xname(self), "rxintr");
    715 
    716 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    717 	    NULL, device_xname(self), "txseg1");
    718 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    719 	    NULL, device_xname(self), "txseg2");
    720 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    721 	    NULL, device_xname(self), "txseg3");
    722 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    723 	    NULL, device_xname(self), "txseg4");
    724 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    725 	    NULL, device_xname(self), "txseg5");
    726 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    727 	    NULL, device_xname(self), "txsegmore");
    728 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    729 	    NULL, device_xname(self), "txcopy");
    730 
    731 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    732 	    NULL, device_xname(self), "rxipsum");
    733 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    734 	    NULL, device_xname(self), "rxtcpsum");
    735 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    736 	    NULL, device_xname(self), "rxudpsum");
    737 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    738 	    NULL, device_xname(self), "txipsum");
    739 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    740 	    NULL, device_xname(self), "txtcpsum");
    741 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    742 	    NULL, device_xname(self), "txudpsum");
    743 #endif /* STGE_EVENT_COUNTERS */
    744 
    745 	/*
    746 	 * Make sure the interface is shutdown during reboot.
    747 	 */
    748 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
    749 		pmf_class_network_register(self, ifp);
    750 	else
    751 		aprint_error_dev(self, "couldn't establish power handler\n");
    752 
    753 	return;
    754 
    755 	/*
    756 	 * Free any resources we've allocated during the failed attach
    757 	 * attempt.  Do this in reverse order and fall through.
    758 	 */
    759  fail_5:
    760 	for (i = 0; i < STGE_NRXDESC; i++) {
    761 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    762 			bus_dmamap_destroy(sc->sc_dmat,
    763 			    sc->sc_rxsoft[i].ds_dmamap);
    764 	}
    765  fail_4:
    766 	for (i = 0; i < STGE_NTXDESC; i++) {
    767 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    768 			bus_dmamap_destroy(sc->sc_dmat,
    769 			    sc->sc_txsoft[i].ds_dmamap);
    770 	}
    771 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    772  fail_3:
    773 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    774  fail_2:
    775 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    776 	    sizeof(struct stge_control_data));
    777  fail_1:
    778 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    779  fail_0:
    780 	return;
    781 }
    782 
    783 /*
    784  * stge_shutdown:
    785  *
    786  *	Make sure the interface is stopped at reboot time.
    787  */
    788 static bool
    789 stge_shutdown(device_t self, int howto)
    790 {
    791 	struct stge_softc *sc = device_private(self);
    792 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    793 
    794 	stge_stop(ifp, 1);
    795 	stge_reset(sc);
    796 	return true;
    797 }
    798 
    799 static void
    800 stge_dma_wait(struct stge_softc *sc)
    801 {
    802 	int i;
    803 
    804 	for (i = 0; i < STGE_TIMEOUT; i++) {
    805 		delay(2);
    806 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
    807 			break;
    808 	}
    809 
    810 	if (i == STGE_TIMEOUT)
    811 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    812 }
    813 
    814 /*
    815  * stge_start:		[ifnet interface function]
    816  *
    817  *	Start packet transmission on the interface.
    818  */
    819 static void
    820 stge_start(struct ifnet *ifp)
    821 {
    822 	struct stge_softc *sc = ifp->if_softc;
    823 	struct mbuf *m0;
    824 	struct stge_descsoft *ds;
    825 	struct stge_tfd *tfd;
    826 	bus_dmamap_t dmamap;
    827 	int error, firsttx, nexttx, opending, seg, totlen;
    828 	uint64_t csum_flags;
    829 
    830 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
    831 		return;
    832 
    833 	/*
    834 	 * Remember the previous number of pending transmissions
    835 	 * and the first descriptor we will use.
    836 	 */
    837 	opending = sc->sc_txpending;
    838 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    839 
    840 	/*
    841 	 * Loop through the send queue, setting up transmit descriptors
    842 	 * until we drain the queue, or use up all available transmit
    843 	 * descriptors.
    844 	 */
    845 	for (;;) {
    846 		uint64_t tfc;
    847 		bool have_vtag;
    848 		uint16_t vtag;
    849 
    850 		/*
    851 		 * Grab a packet off the queue.
    852 		 */
    853 		IFQ_POLL(&ifp->if_snd, m0);
    854 		if (m0 == NULL)
    855 			break;
    856 
    857 		/*
    858 		 * Leave one unused descriptor at the end of the
    859 		 * list to prevent wrapping completely around.
    860 		 */
    861 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    862 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    863 			break;
    864 		}
    865 
    866 		/*
    867 		 * See if we have any VLAN stuff.
    868 		 */
    869 		have_vtag = vlan_has_tag(m0);
    870 		if (have_vtag)
    871 			vtag = vlan_get_tag(m0);
    872 
    873 		/*
    874 		 * Get the last and next available transmit descriptor.
    875 		 */
    876 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    877 		tfd = &sc->sc_txdescs[nexttx];
    878 		ds = &sc->sc_txsoft[nexttx];
    879 
    880 		dmamap = ds->ds_dmamap;
    881 
    882 		/*
    883 		 * Load the DMA map.  If this fails, the packet either
    884 		 * didn't fit in the alloted number of segments, or we
    885 		 * were short on resources.  For the too-many-segments
    886 		 * case, we simply report an error and drop the packet,
    887 		 * since we can't sanely copy a jumbo packet to a single
    888 		 * buffer.
    889 		 */
    890 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    891 		    BUS_DMA_NOWAIT);
    892 		if (error) {
    893 			if (error == EFBIG) {
    894 				printf("%s: Tx packet consumes too many "
    895 				    "DMA segments, dropping...\n",
    896 				    device_xname(sc->sc_dev));
    897 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    898 				m_freem(m0);
    899 				continue;
    900 			}
    901 			/*
    902 			 * Short on resources, just stop for now.
    903 			 */
    904 			break;
    905 		}
    906 
    907 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    908 
    909 		/*
    910 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    911 		 */
    912 
    913 		/* Sync the DMA map. */
    914 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    915 		    BUS_DMASYNC_PREWRITE);
    916 
    917 		/* Initialize the fragment list. */
    918 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    919 			tfd->tfd_frags[seg].frag_word0 =
    920 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    921 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    922 			totlen += dmamap->dm_segs[seg].ds_len;
    923 		}
    924 
    925 #ifdef STGE_EVENT_COUNTERS
    926 		switch (dmamap->dm_nsegs) {
    927 		case 1:
    928 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    929 			break;
    930 		case 2:
    931 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    932 			break;
    933 		case 3:
    934 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    935 			break;
    936 		case 4:
    937 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    938 			break;
    939 		case 5:
    940 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    941 			break;
    942 		default:
    943 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    944 			break;
    945 		}
    946 #endif /* STGE_EVENT_COUNTERS */
    947 
    948 		/*
    949 		 * Initialize checksumming flags in the descriptor.
    950 		 * Byte-swap constants so the compiler can optimize.
    951 		 */
    952 		csum_flags = 0;
    953 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    954 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    955 			csum_flags |= TFD_IPChecksumEnable;
    956 		}
    957 
    958 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    959 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    960 			csum_flags |= TFD_TCPChecksumEnable;
    961 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    962 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    963 			csum_flags |= TFD_UDPChecksumEnable;
    964 		}
    965 
    966 		/*
    967 		 * Initialize the descriptor and give it to the chip.
    968 		 * Check to see if we have a VLAN tag to insert.
    969 		 */
    970 
    971 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    972 		    TFD_FragCount(seg) | csum_flags |
    973 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    974 			TFD_TxDMAIndicate : 0);
    975 		if (have_vtag) {
    976 #if	0
    977 			struct ether_header *eh =
    978 			    mtod(m0, struct ether_header *);
    979 			uint16_t etype = ntohs(eh->ether_type);
    980 			printf("%s: xmit (tag %d) etype %x\n",
    981 			   ifp->if_xname, *mtod(n, int *), etype);
    982 #endif
    983 			tfc |= TFD_VLANTagInsert |
    984 #ifdef	STGE_VLAN_CFI
    985 			    TFD_CFI |
    986 #endif
    987 			    TFD_VID(vtag);
    988 		}
    989 		tfd->tfd_control = htole64(tfc);
    990 
    991 		/* Sync the descriptor. */
    992 		STGE_CDTXSYNC(sc, nexttx,
    993 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    994 
    995 		/*
    996 		 * Kick the transmit DMA logic.
    997 		 */
    998 		CSR_WRITE_4(sc, STGE_DMACtrl,
    999 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
   1000 
   1001 		/*
   1002 		 * Store a pointer to the packet so we can free it later.
   1003 		 */
   1004 		ds->ds_mbuf = m0;
   1005 
   1006 		/* Advance the tx pointer. */
   1007 		sc->sc_txpending++;
   1008 		sc->sc_txlast = nexttx;
   1009 
   1010 		/*
   1011 		 * Pass the packet to any BPF listeners.
   1012 		 */
   1013 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1014 	}
   1015 
   1016 	if (sc->sc_txpending != opending) {
   1017 		/*
   1018 		 * We enqueued packets.  If the transmitter was idle,
   1019 		 * reset the txdirty pointer.
   1020 		 */
   1021 		if (opending == 0)
   1022 			sc->sc_txdirty = firsttx;
   1023 
   1024 		/* Set a watchdog timer in case the chip flakes out. */
   1025 		ifp->if_timer = 5;
   1026 	}
   1027 }
   1028 
   1029 /*
   1030  * stge_watchdog:	[ifnet interface function]
   1031  *
   1032  *	Watchdog timer handler.
   1033  */
   1034 static void
   1035 stge_watchdog(struct ifnet *ifp)
   1036 {
   1037 	struct stge_softc *sc = ifp->if_softc;
   1038 
   1039 	/*
   1040 	 * Sweep up first, since we don't interrupt every frame.
   1041 	 */
   1042 	stge_txintr(sc);
   1043 	if (sc->sc_txpending != 0) {
   1044 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1045 		if_statinc(ifp, if_oerrors);
   1046 
   1047 		(void) stge_init(ifp);
   1048 
   1049 		/* Try to get more packets going. */
   1050 		stge_start(ifp);
   1051 	}
   1052 }
   1053 
   1054 /*
   1055  * stge_ioctl:		[ifnet interface function]
   1056  *
   1057  *	Handle control requests from the operator.
   1058  */
   1059 static int
   1060 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1061 {
   1062 	struct stge_softc *sc = ifp->if_softc;
   1063 	int s, error;
   1064 
   1065 	s = splnet();
   1066 
   1067 	error = ether_ioctl(ifp, cmd, data);
   1068 	if (error == ENETRESET) {
   1069 		error = 0;
   1070 
   1071 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1072 			;
   1073 		else if (ifp->if_flags & IFF_RUNNING) {
   1074 			/*
   1075 			 * Multicast list has changed; set the hardware filter
   1076 			 * accordingly.
   1077 			 */
   1078 			stge_set_filter(sc);
   1079 		}
   1080 	}
   1081 
   1082 	/* Try to get more packets going. */
   1083 	stge_start(ifp);
   1084 
   1085 	splx(s);
   1086 	return (error);
   1087 }
   1088 
   1089 /*
   1090  * stge_intr:
   1091  *
   1092  *	Interrupt service routine.
   1093  */
   1094 static int
   1095 stge_intr(void *arg)
   1096 {
   1097 	struct stge_softc *sc = arg;
   1098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1099 	uint32_t txstat;
   1100 	int wantinit;
   1101 	uint16_t isr;
   1102 
   1103 	if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
   1104 		return (0);
   1105 
   1106 	for (wantinit = 0; wantinit == 0;) {
   1107 		isr = CSR_READ_2(sc, STGE_IntStatusAck);
   1108 		if ((isr & sc->sc_IntEnable) == 0)
   1109 			break;
   1110 
   1111 		/* Host interface errors. */
   1112 		if (isr & IS_HostError) {
   1113 			printf("%s: Host interface error\n",
   1114 			    device_xname(sc->sc_dev));
   1115 			wantinit = 1;
   1116 			continue;
   1117 		}
   1118 
   1119 		/* Receive interrupts. */
   1120 		if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
   1121 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1122 			stge_rxintr(sc);
   1123 			if (isr & IS_RFDListEnd) {
   1124 				printf("%s: receive ring overflow\n",
   1125 				    device_xname(sc->sc_dev));
   1126 				/*
   1127 				 * XXX Should try to recover from this
   1128 				 * XXX more gracefully.
   1129 				 */
   1130 				wantinit = 1;
   1131 			}
   1132 		}
   1133 
   1134 		/* Transmit interrupts. */
   1135 		if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
   1136 #ifdef STGE_EVENT_COUNTERS
   1137 			if (isr & IS_TxDMAComplete)
   1138 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1139 #endif
   1140 			stge_txintr(sc);
   1141 		}
   1142 
   1143 		/* Statistics overflow. */
   1144 		if (isr & IS_UpdateStats)
   1145 			stge_stats_update(sc);
   1146 
   1147 		/* Transmission errors. */
   1148 		if (isr & IS_TxComplete) {
   1149 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1150 			for (;;) {
   1151 				txstat = CSR_READ_4(sc, STGE_TxStatus);
   1152 				if ((txstat & TS_TxComplete) == 0)
   1153 					break;
   1154 				if (txstat & TS_TxUnderrun) {
   1155 					sc->sc_txthresh++;
   1156 					if (sc->sc_txthresh > 0x0fff)
   1157 						sc->sc_txthresh = 0x0fff;
   1158 					printf("%s: transmit underrun, new "
   1159 					    "threshold: %d bytes\n",
   1160 					    device_xname(sc->sc_dev),
   1161 					    sc->sc_txthresh << 5);
   1162 				}
   1163 				if (txstat & TS_MaxCollisions)
   1164 					printf("%s: excessive collisions\n",
   1165 					    device_xname(sc->sc_dev));
   1166 			}
   1167 			wantinit = 1;
   1168 		}
   1169 
   1170 	}
   1171 
   1172 	if (wantinit)
   1173 		stge_init(ifp);
   1174 
   1175 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
   1176 
   1177 	/* Try to get more packets going. */
   1178 	if_schedule_deferred_start(ifp);
   1179 
   1180 	return (1);
   1181 }
   1182 
   1183 /*
   1184  * stge_txintr:
   1185  *
   1186  *	Helper; handle transmit interrupts.
   1187  */
   1188 static void
   1189 stge_txintr(struct stge_softc *sc)
   1190 {
   1191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1192 	struct stge_descsoft *ds;
   1193 	uint64_t control;
   1194 	int i;
   1195 
   1196 	/*
   1197 	 * Go through our Tx list and free mbufs for those
   1198 	 * frames which have been transmitted.
   1199 	 */
   1200 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1201 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1202 		ds = &sc->sc_txsoft[i];
   1203 
   1204 		STGE_CDTXSYNC(sc, i,
   1205 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1206 
   1207 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1208 		if ((control & TFD_TFDDone) == 0)
   1209 			break;
   1210 
   1211 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1212 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1213 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1214 		m_freem(ds->ds_mbuf);
   1215 		ds->ds_mbuf = NULL;
   1216 	}
   1217 
   1218 	/* Update the dirty transmit buffer pointer. */
   1219 	sc->sc_txdirty = i;
   1220 
   1221 	/*
   1222 	 * If there are no more pending transmissions, cancel the watchdog
   1223 	 * timer.
   1224 	 */
   1225 	if (sc->sc_txpending == 0)
   1226 		ifp->if_timer = 0;
   1227 }
   1228 
   1229 /*
   1230  * stge_rxintr:
   1231  *
   1232  *	Helper; handle receive interrupts.
   1233  */
   1234 static void
   1235 stge_rxintr(struct stge_softc *sc)
   1236 {
   1237 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1238 	struct stge_descsoft *ds;
   1239 	struct mbuf *m, *tailm;
   1240 	uint64_t status;
   1241 	int i, len;
   1242 
   1243 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1244 		ds = &sc->sc_rxsoft[i];
   1245 
   1246 		STGE_CDRXSYNC(sc, i,
   1247 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1248 
   1249 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1250 
   1251 		if ((status & RFD_RFDDone) == 0)
   1252 			break;
   1253 
   1254 		if (__predict_false(sc->sc_rxdiscard)) {
   1255 			STGE_INIT_RXDESC(sc, i);
   1256 			if (status & RFD_FrameEnd) {
   1257 				/* Reset our state. */
   1258 				sc->sc_rxdiscard = 0;
   1259 			}
   1260 			continue;
   1261 		}
   1262 
   1263 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1264 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1265 
   1266 		m = ds->ds_mbuf;
   1267 
   1268 		/*
   1269 		 * Add a new receive buffer to the ring.
   1270 		 */
   1271 		if (stge_add_rxbuf(sc, i) != 0) {
   1272 			/*
   1273 			 * Failed, throw away what we've done so
   1274 			 * far, and discard the rest of the packet.
   1275 			 */
   1276 			if_statinc(ifp, if_ierrors);
   1277 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1278 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1279 			STGE_INIT_RXDESC(sc, i);
   1280 			if ((status & RFD_FrameEnd) == 0)
   1281 				sc->sc_rxdiscard = 1;
   1282 			if (sc->sc_rxhead != NULL)
   1283 				m_freem(sc->sc_rxhead);
   1284 			STGE_RXCHAIN_RESET(sc);
   1285 			continue;
   1286 		}
   1287 
   1288 #ifdef DIAGNOSTIC
   1289 		if (status & RFD_FrameStart) {
   1290 			KASSERT(sc->sc_rxhead == NULL);
   1291 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1292 		}
   1293 #endif
   1294 
   1295 		STGE_RXCHAIN_LINK(sc, m);
   1296 
   1297 		/*
   1298 		 * If this is not the end of the packet, keep
   1299 		 * looking.
   1300 		 */
   1301 		if ((status & RFD_FrameEnd) == 0) {
   1302 			sc->sc_rxlen += m->m_len;
   1303 			continue;
   1304 		}
   1305 
   1306 		/*
   1307 		 * Okay, we have the entire packet now...
   1308 		 */
   1309 		*sc->sc_rxtailp = NULL;
   1310 		m = sc->sc_rxhead;
   1311 		tailm = sc->sc_rxtail;
   1312 
   1313 		STGE_RXCHAIN_RESET(sc);
   1314 
   1315 		/*
   1316 		 * If the packet had an error, drop it.  Note we
   1317 		 * count the error later in the periodic stats update.
   1318 		 */
   1319 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1320 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1321 			      RFD_RxLengthError)) {
   1322 			m_freem(m);
   1323 			continue;
   1324 		}
   1325 
   1326 		/*
   1327 		 * No errors.
   1328 		 *
   1329 		 * Note we have configured the chip to not include
   1330 		 * the CRC at the end of the packet.
   1331 		 */
   1332 		len = RFD_RxDMAFrameLen(status);
   1333 		tailm->m_len = len - sc->sc_rxlen;
   1334 
   1335 		/*
   1336 		 * If the packet is small enough to fit in a
   1337 		 * single header mbuf, allocate one and copy
   1338 		 * the data into it.  This greatly reduces
   1339 		 * memory consumption when we receive lots
   1340 		 * of small packets.
   1341 		 */
   1342 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1343 			struct mbuf *nm;
   1344 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1345 			if (nm == NULL) {
   1346 				if_statinc(ifp, if_ierrors);
   1347 				m_freem(m);
   1348 				continue;
   1349 			}
   1350 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1351 			nm->m_data += 2;
   1352 			nm->m_pkthdr.len = nm->m_len = len;
   1353 			m_copydata(m, 0, len, mtod(nm, void *));
   1354 			m_freem(m);
   1355 			m = nm;
   1356 		}
   1357 
   1358 		/*
   1359 		 * Set the incoming checksum information for the packet.
   1360 		 */
   1361 		if (status & RFD_IPDetected) {
   1362 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1363 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1364 			if (status & RFD_IPError)
   1365 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1366 			if (status & RFD_TCPDetected) {
   1367 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1368 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1369 				if (status & RFD_TCPError)
   1370 					m->m_pkthdr.csum_flags |=
   1371 					    M_CSUM_TCP_UDP_BAD;
   1372 			} else if (status & RFD_UDPDetected) {
   1373 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1374 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1375 				if (status & RFD_UDPError)
   1376 					m->m_pkthdr.csum_flags |=
   1377 					    M_CSUM_TCP_UDP_BAD;
   1378 			}
   1379 		}
   1380 
   1381 		m_set_rcvif(m, ifp);
   1382 		m->m_pkthdr.len = len;
   1383 
   1384 		/*
   1385 		 * Pass this up to any BPF listeners, but only
   1386 		 * pass if up the stack if it's for us.
   1387 		 */
   1388 #ifdef	STGE_VLAN_UNTAG
   1389 		/*
   1390 		 * Check for VLAN tagged packets
   1391 		 */
   1392 		if (status & RFD_VLANDetected)
   1393 			vlan_set_tag(m, RFD_TCI(status));
   1394 
   1395 #endif
   1396 #if	0
   1397 		if (status & RFD_VLANDetected) {
   1398 			struct ether_header *eh;
   1399 			uint16_t etype;
   1400 
   1401 			eh = mtod(m, struct ether_header *);
   1402 			etype = ntohs(eh->ether_type);
   1403 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1404 			    ifp->if_xname, (uint16_t) RFD_TCI(status),
   1405 			    etype);
   1406 		}
   1407 #endif
   1408 		/* Pass it on. */
   1409 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1410 	}
   1411 
   1412 	/* Update the receive pointer. */
   1413 	sc->sc_rxptr = i;
   1414 }
   1415 
   1416 /*
   1417  * stge_tick:
   1418  *
   1419  *	One second timer, used to tick the MII.
   1420  */
   1421 static void
   1422 stge_tick(void *arg)
   1423 {
   1424 	struct stge_softc *sc = arg;
   1425 	int s;
   1426 
   1427 	s = splnet();
   1428 	mii_tick(&sc->sc_mii);
   1429 	stge_stats_update(sc);
   1430 	splx(s);
   1431 
   1432 	callout_schedule(&sc->sc_tick_ch, hz);
   1433 }
   1434 
   1435 /*
   1436  * stge_stats_update:
   1437  *
   1438  *	Read the TC9021 statistics counters.
   1439  */
   1440 static void
   1441 stge_stats_update(struct stge_softc *sc)
   1442 {
   1443 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1444 
   1445 	(void) CSR_READ_4(sc, STGE_OctetRcvOk);
   1446 
   1447 	(void) CSR_READ_4(sc, STGE_FramesRcvdOk);
   1448 
   1449 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1450 
   1451 	if_statadd_ref(nsr, if_ierrors,
   1452 	    (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors));
   1453 
   1454 	(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
   1455 
   1456 	if_statadd_ref(nsr, if_opackets,
   1457 	    CSR_READ_4(sc, STGE_FramesXmtdOk));
   1458 
   1459 	if_statadd_ref(nsr, if_collisions,
   1460 	    CSR_READ_4(sc, STGE_LateCollisions) +
   1461 	    CSR_READ_4(sc, STGE_MultiColFrames) +
   1462 	    CSR_READ_4(sc, STGE_SingleColFrames));
   1463 
   1464 	if_statadd_ref(nsr, if_oerrors,
   1465 	    (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
   1466 	    (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal));
   1467 
   1468 	IF_STAT_PUTREF(ifp);
   1469 }
   1470 
   1471 /*
   1472  * stge_reset:
   1473  *
   1474  *	Perform a soft reset on the TC9021.
   1475  */
   1476 static void
   1477 stge_reset(struct stge_softc *sc)
   1478 {
   1479 	uint32_t ac;
   1480 	int i;
   1481 
   1482 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
   1483 
   1484 	/*
   1485 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1486 	 * to be present in order for the reset to complete on fiber
   1487 	 * cards.
   1488 	 */
   1489 	CSR_WRITE_4(sc, STGE_AsicCtrl,
   1490 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1491 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1492 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1493 
   1494 	delay(50000);
   1495 
   1496 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1497 		delay(5000);
   1498 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
   1499 			break;
   1500 	}
   1501 
   1502 	if (i == STGE_TIMEOUT)
   1503 		printf("%s: reset failed to complete\n",
   1504 		    device_xname(sc->sc_dev));
   1505 
   1506 	delay(1000);
   1507 }
   1508 
   1509 /*
   1510  * stge_init:		[ ifnet interface function ]
   1511  *
   1512  *	Initialize the interface.  Must be called at splnet().
   1513  */
   1514 static int
   1515 stge_init(struct ifnet *ifp)
   1516 {
   1517 	struct stge_softc *sc = ifp->if_softc;
   1518 	struct stge_descsoft *ds;
   1519 	int i, error = 0;
   1520 
   1521 	/*
   1522 	 * Cancel any pending I/O.
   1523 	 */
   1524 	stge_stop(ifp, 0);
   1525 
   1526 	/*
   1527 	 * Reset the chip to a known state.
   1528 	 */
   1529 	stge_reset(sc);
   1530 
   1531 	/*
   1532 	 * Initialize the transmit descriptor ring.
   1533 	 */
   1534 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1535 	for (i = 0; i < STGE_NTXDESC; i++) {
   1536 		sc->sc_txdescs[i].tfd_next = htole64(
   1537 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1538 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1539 	}
   1540 	sc->sc_txpending = 0;
   1541 	sc->sc_txdirty = 0;
   1542 	sc->sc_txlast = STGE_NTXDESC - 1;
   1543 
   1544 	/*
   1545 	 * Initialize the receive descriptor and receive job
   1546 	 * descriptor rings.
   1547 	 */
   1548 	for (i = 0; i < STGE_NRXDESC; i++) {
   1549 		ds = &sc->sc_rxsoft[i];
   1550 		if (ds->ds_mbuf == NULL) {
   1551 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1552 				printf("%s: unable to allocate or map rx "
   1553 				    "buffer %d, error = %d\n",
   1554 				    device_xname(sc->sc_dev), i, error);
   1555 				/*
   1556 				 * XXX Should attempt to run with fewer receive
   1557 				 * XXX buffers instead of just failing.
   1558 				 */
   1559 				stge_rxdrain(sc);
   1560 				goto out;
   1561 			}
   1562 		} else
   1563 			STGE_INIT_RXDESC(sc, i);
   1564 	}
   1565 	sc->sc_rxptr = 0;
   1566 	sc->sc_rxdiscard = 0;
   1567 	STGE_RXCHAIN_RESET(sc);
   1568 
   1569 	/* Set the station address. */
   1570 	for (i = 0; i < 6; i++)
   1571 		CSR_WRITE_1(sc, STGE_StationAddress0 + i,
   1572 		    CLLADDR(ifp->if_sadl)[i]);
   1573 
   1574 	/*
   1575 	 * Set the statistics masks.  Disable all the RMON stats,
   1576 	 * and disable selected stats in the non-RMON stats registers.
   1577 	 */
   1578 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
   1579 	CSR_WRITE_4(sc, STGE_StatisticsMask,
   1580 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1581 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1582 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1583 	    (1U << 21));
   1584 
   1585 	/* Set up the receive filter. */
   1586 	stge_set_filter(sc);
   1587 
   1588 	/*
   1589 	 * Give the transmit and receive ring to the chip.
   1590 	 */
   1591 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
   1592 	    ((uint64_t)STGE_CDTXADDR(sc, sc->sc_txdirty)) >> 32);
   1593 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
   1594 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1595 
   1596 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
   1597 	    ((uint64_t)STGE_CDRXADDR(sc, sc->sc_rxptr)) >> 32);
   1598 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
   1599 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1600 
   1601 	/*
   1602 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1603 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1604 	 * transmit engine when there's actually a packet.
   1605 	 */
   1606 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
   1607 
   1608 	/* ..and the Rx auto-poll period. */
   1609 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
   1610 
   1611 	/* Initialize the Tx start threshold. */
   1612 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
   1613 
   1614 	/* RX DMA thresholds, from linux */
   1615 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
   1616 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
   1617 
   1618 	/* Rx early threhold, from Linux */
   1619 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
   1620 
   1621 	/* Tx DMA thresholds, from Linux */
   1622 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
   1623 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
   1624 
   1625 	/*
   1626 	 * Initialize the Rx DMA interrupt control register.  We
   1627 	 * request an interrupt after every incoming packet, but
   1628 	 * defer it for 32us (64 * 512 ns).  When the number of
   1629 	 * interrupts pending reaches 8, we stop deferring the
   1630 	 * interrupt, and signal it immediately.
   1631 	 */
   1632 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
   1633 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1634 
   1635 	/*
   1636 	 * Initialize the interrupt mask.
   1637 	 */
   1638 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1639 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1640 	CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
   1641 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
   1642 
   1643 	/*
   1644 	 * Configure the DMA engine.
   1645 	 * XXX Should auto-tune TxBurstLimit.
   1646 	 */
   1647 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
   1648 	    DMAC_TxBurstLimit(3));
   1649 
   1650 	/*
   1651 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1652 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
   1653 	 * in the Rx FIFO.
   1654 	 */
   1655 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
   1656 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
   1657 
   1658 	/*
   1659 	 * Set the maximum frame size.
   1660 	 */
   1661 	CSR_WRITE_2(sc, STGE_MaxFrameSize,
   1662 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1663 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1664 	     ETHER_VLAN_ENCAP_LEN : 0));
   1665 
   1666 	/*
   1667 	 * Initialize MacCtrl -- do it before setting the media,
   1668 	 * as setting the media will actually program the register.
   1669 	 *
   1670 	 * Note: We have to poke the IFS value before poking
   1671 	 * anything else.
   1672 	 */
   1673 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1674 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
   1675 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1676 #ifdef	STGE_VLAN_UNTAG
   1677 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1678 #endif
   1679 
   1680 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1681 		/* Multi-frag frame bug work-around. */
   1682 		CSR_WRITE_2(sc, STGE_DebugCtrl,
   1683 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
   1684 
   1685 		/* Tx Poll Now bug work-around. */
   1686 		CSR_WRITE_2(sc, STGE_DebugCtrl,
   1687 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
   1688 		/* XXX ? from linux */
   1689 		CSR_WRITE_2(sc, STGE_DebugCtrl,
   1690 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
   1691 	}
   1692 
   1693 	/*
   1694 	 * Set the current media.
   1695 	 */
   1696 	if ((error = ether_mediachange(ifp)) != 0)
   1697 		goto out;
   1698 
   1699 	/*
   1700 	 * Start the one second MII clock.
   1701 	 */
   1702 	callout_schedule(&sc->sc_tick_ch, hz);
   1703 
   1704 	/*
   1705 	 * ...all done!
   1706 	 */
   1707 	ifp->if_flags |= IFF_RUNNING;
   1708 
   1709  out:
   1710 	if (error)
   1711 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1712 	return (error);
   1713 }
   1714 
   1715 /*
   1716  * stge_drain:
   1717  *
   1718  *	Drain the receive queue.
   1719  */
   1720 static void
   1721 stge_rxdrain(struct stge_softc *sc)
   1722 {
   1723 	struct stge_descsoft *ds;
   1724 	int i;
   1725 
   1726 	for (i = 0; i < STGE_NRXDESC; i++) {
   1727 		ds = &sc->sc_rxsoft[i];
   1728 		if (ds->ds_mbuf != NULL) {
   1729 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1730 			ds->ds_mbuf->m_next = NULL;
   1731 			m_freem(ds->ds_mbuf);
   1732 			ds->ds_mbuf = NULL;
   1733 		}
   1734 	}
   1735 }
   1736 
   1737 /*
   1738  * stge_stop:		[ ifnet interface function ]
   1739  *
   1740  *	Stop transmission on the interface.
   1741  */
   1742 static void
   1743 stge_stop(struct ifnet *ifp, int disable)
   1744 {
   1745 	struct stge_softc *sc = ifp->if_softc;
   1746 	struct stge_descsoft *ds;
   1747 	int i;
   1748 
   1749 	/*
   1750 	 * Stop the one second clock.
   1751 	 */
   1752 	callout_stop(&sc->sc_tick_ch);
   1753 
   1754 	/* Down the MII. */
   1755 	mii_down(&sc->sc_mii);
   1756 
   1757 	/*
   1758 	 * Disable interrupts.
   1759 	 */
   1760 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
   1761 
   1762 	/*
   1763 	 * Stop receiver, transmitter, and stats update.
   1764 	 */
   1765 	CSR_WRITE_4(sc, STGE_MACCtrl,
   1766 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1767 
   1768 	/*
   1769 	 * Stop the transmit and receive DMA.
   1770 	 */
   1771 	stge_dma_wait(sc);
   1772 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
   1773 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
   1774 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
   1775 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
   1776 
   1777 	/*
   1778 	 * Release any queued transmit buffers.
   1779 	 */
   1780 	for (i = 0; i < STGE_NTXDESC; i++) {
   1781 		ds = &sc->sc_txsoft[i];
   1782 		if (ds->ds_mbuf != NULL) {
   1783 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1784 			m_freem(ds->ds_mbuf);
   1785 			ds->ds_mbuf = NULL;
   1786 		}
   1787 	}
   1788 
   1789 	/*
   1790 	 * Mark the interface down and cancel the watchdog timer.
   1791 	 */
   1792 	ifp->if_flags &= ~IFF_RUNNING;
   1793 	ifp->if_timer = 0;
   1794 
   1795 	if (disable)
   1796 		stge_rxdrain(sc);
   1797 }
   1798 
   1799 static int
   1800 stge_eeprom_wait(struct stge_softc *sc)
   1801 {
   1802 	int i;
   1803 
   1804 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1805 		delay(1000);
   1806 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
   1807 			return (0);
   1808 	}
   1809 	return (1);
   1810 }
   1811 
   1812 /*
   1813  * stge_read_eeprom:
   1814  *
   1815  *	Read data from the serial EEPROM.
   1816  */
   1817 static void
   1818 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1819 {
   1820 
   1821 	if (stge_eeprom_wait(sc))
   1822 		printf("%s: EEPROM failed to come ready\n",
   1823 		    device_xname(sc->sc_dev));
   1824 
   1825 	CSR_WRITE_2(sc, STGE_EepromCtrl,
   1826 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1827 	if (stge_eeprom_wait(sc))
   1828 		printf("%s: EEPROM read timed out\n",
   1829 		    device_xname(sc->sc_dev));
   1830 	*data = CSR_READ_2(sc, STGE_EepromData);
   1831 }
   1832 
   1833 /*
   1834  * stge_add_rxbuf:
   1835  *
   1836  *	Add a receive buffer to the indicated descriptor.
   1837  */
   1838 static int
   1839 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1840 {
   1841 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1842 	struct mbuf *m;
   1843 	int error;
   1844 
   1845 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1846 	if (m == NULL)
   1847 		return (ENOBUFS);
   1848 
   1849 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1850 	MCLGET(m, M_DONTWAIT);
   1851 	if ((m->m_flags & M_EXT) == 0) {
   1852 		m_freem(m);
   1853 		return (ENOBUFS);
   1854 	}
   1855 
   1856 	m->m_data = m->m_ext.ext_buf + 2;
   1857 	m->m_len = MCLBYTES - 2;
   1858 
   1859 	if (ds->ds_mbuf != NULL)
   1860 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1861 
   1862 	ds->ds_mbuf = m;
   1863 
   1864 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1865 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1866 	if (error) {
   1867 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1868 		    device_xname(sc->sc_dev), idx, error);
   1869 		panic("stge_add_rxbuf");	/* XXX */
   1870 	}
   1871 
   1872 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1873 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1874 
   1875 	STGE_INIT_RXDESC(sc, idx);
   1876 
   1877 	return (0);
   1878 }
   1879 
   1880 /*
   1881  * stge_set_filter:
   1882  *
   1883  *	Set up the receive filter.
   1884  */
   1885 static void
   1886 stge_set_filter(struct stge_softc *sc)
   1887 {
   1888 	struct ethercom *ec = &sc->sc_ethercom;
   1889 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1890 	struct ether_multi *enm;
   1891 	struct ether_multistep step;
   1892 	uint32_t crc;
   1893 	uint32_t mchash[2];
   1894 
   1895 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1896 	if (ifp->if_flags & IFF_BROADCAST)
   1897 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1898 
   1899 	/* XXX: ST1023 only works in promiscuous mode */
   1900 	if (sc->sc_stge1023)
   1901 		ifp->if_flags |= IFF_PROMISC;
   1902 
   1903 	if (ifp->if_flags & IFF_PROMISC) {
   1904 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1905 		goto allmulti;
   1906 	}
   1907 
   1908 	/*
   1909 	 * Set up the multicast address filter by passing all multicast
   1910 	 * addresses through a CRC generator, and then using the low-order
   1911 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1912 	 * high order bits select the register, while the rest of the bits
   1913 	 * select the bit within the register.
   1914 	 */
   1915 
   1916 	memset(mchash, 0, sizeof(mchash));
   1917 
   1918 	ETHER_LOCK(ec);
   1919 	ETHER_FIRST_MULTI(step, ec, enm);
   1920 	if (enm == NULL) {
   1921 		ETHER_UNLOCK(ec);
   1922 		goto done;
   1923 	}
   1924 
   1925 	while (enm != NULL) {
   1926 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1927 			/*
   1928 			 * We must listen to a range of multicast addresses.
   1929 			 * For now, just accept all multicasts, rather than
   1930 			 * trying to set only those filter bits needed to match
   1931 			 * the range.  (At this time, the only use of address
   1932 			 * ranges is for IP multicast routing, for which the
   1933 			 * range is big enough to require all bits set.)
   1934 			 */
   1935 			ETHER_UNLOCK(ec);
   1936 			goto allmulti;
   1937 		}
   1938 
   1939 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1940 
   1941 		/* Just want the 6 least significant bits. */
   1942 		crc &= 0x3f;
   1943 
   1944 		/* Set the corresponding bit in the hash table. */
   1945 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1946 
   1947 		ETHER_NEXT_MULTI(step, enm);
   1948 	}
   1949 	ETHER_UNLOCK(ec);
   1950 
   1951 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1952 
   1953 	ifp->if_flags &= ~IFF_ALLMULTI;
   1954 	goto done;
   1955 
   1956  allmulti:
   1957 	ifp->if_flags |= IFF_ALLMULTI;
   1958 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1959 
   1960  done:
   1961 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1962 		/*
   1963 		 * Program the multicast hash table.
   1964 		 */
   1965 		CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
   1966 		CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
   1967 	}
   1968 
   1969 	CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
   1970 }
   1971 
   1972 /*
   1973  * stge_mii_readreg:	[mii interface function]
   1974  *
   1975  *	Read a PHY register on the MII of the TC9021.
   1976  */
   1977 static int
   1978 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1979 {
   1980 
   1981 	return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1982 }
   1983 
   1984 /*
   1985  * stge_mii_writereg:	[mii interface function]
   1986  *
   1987  *	Write a PHY register on the MII of the TC9021.
   1988  */
   1989 static int
   1990 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1991 {
   1992 
   1993 	return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
   1994 	    val);
   1995 }
   1996 
   1997 /*
   1998  * stge_mii_statchg:	[mii interface function]
   1999  *
   2000  *	Callback from MII layer when media changes.
   2001  */
   2002 static void
   2003 stge_mii_statchg(struct ifnet *ifp)
   2004 {
   2005 	struct stge_softc *sc = ifp->if_softc;
   2006 
   2007 	sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
   2008 	    MC_TxFlowControlEnable);
   2009 
   2010 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2011 		sc->sc_MACCtrl |= MC_DuplexSelect;
   2012 	if ((sc->sc_mii.mii_media_active & IFM_ETH_RXPAUSE) != 0)
   2013 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
   2014 	if ((sc->sc_mii.mii_media_active & IFM_ETH_TXPAUSE) != 0)
   2015 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
   2016 
   2017 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
   2018 }
   2019 
   2020 /*
   2021  * sste_mii_bitbang_read: [mii bit-bang interface function]
   2022  *
   2023  *	Read the MII serial port for the MII bit-bang module.
   2024  */
   2025 static uint32_t
   2026 stge_mii_bitbang_read(device_t self)
   2027 {
   2028 	struct stge_softc *sc = device_private(self);
   2029 
   2030 	return (CSR_READ_1(sc, STGE_PhyCtrl));
   2031 }
   2032 
   2033 /*
   2034  * stge_mii_bitbang_write: [mii big-bang interface function]
   2035  *
   2036  *	Write the MII serial port for the MII bit-bang module.
   2037  */
   2038 static void
   2039 stge_mii_bitbang_write(device_t self, uint32_t val)
   2040 {
   2041 	struct stge_softc *sc = device_private(self);
   2042 
   2043 	CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
   2044 }
   2045