Home | History | Annotate | Line # | Download | only in pci
if_stge.c revision 1.92
      1 /*	$NetBSD: if_stge.c,v 1.92 2024/06/29 12:11:12 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. TC9021 10/100/1000
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.92 2024/06/29 12:11:12 riastradh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/kernel.h>
     46 #include <sys/socket.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/errno.h>
     49 #include <sys/device.h>
     50 #include <sys/queue.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #include <sys/bus.h>
     60 #include <sys/intr.h>
     61 
     62 #include <dev/mii/mii.h>
     63 #include <dev/mii/miivar.h>
     64 #include <dev/mii/mii_bitbang.h>
     65 
     66 #include <dev/pci/pcireg.h>
     67 #include <dev/pci/pcivar.h>
     68 #include <dev/pci/pcidevs.h>
     69 
     70 #include <dev/pci/if_stgereg.h>
     71 
     72 #include <prop/proplib.h>
     73 
     74 /* #define	STGE_CU_BUG			1 */
     75 #define	STGE_VLAN_UNTAG			1
     76 /* #define	STGE_VLAN_CFI		1 */
     77 
     78 /*
     79  * Transmit descriptor list size.
     80  */
     81 #define	STGE_NTXDESC		256
     82 #define	STGE_NTXDESC_MASK	(STGE_NTXDESC - 1)
     83 #define	STGE_NEXTTX(x)		(((x) + 1) & STGE_NTXDESC_MASK)
     84 
     85 /*
     86  * Receive descriptor list size.
     87  */
     88 #define	STGE_NRXDESC		256
     89 #define	STGE_NRXDESC_MASK	(STGE_NRXDESC - 1)
     90 #define	STGE_NEXTRX(x)		(((x) + 1) & STGE_NRXDESC_MASK)
     91 
     92 /*
     93  * Only interrupt every N frames.  Must be a power-of-two.
     94  */
     95 #define	STGE_TXINTR_SPACING	16
     96 #define	STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
     97 
     98 /*
     99  * Control structures are DMA'd to the TC9021 chip.  We allocate them in
    100  * a single clump that maps to a single DMA segment to make several things
    101  * easier.
    102  */
    103 struct stge_control_data {
    104 	/*
    105 	 * The transmit descriptors.
    106 	 */
    107 	struct stge_tfd scd_txdescs[STGE_NTXDESC];
    108 
    109 	/*
    110 	 * The receive descriptors.
    111 	 */
    112 	struct stge_rfd scd_rxdescs[STGE_NRXDESC];
    113 };
    114 
    115 #define	STGE_CDOFF(x)	offsetof(struct stge_control_data, x)
    116 #define	STGE_CDTXOFF(x)	STGE_CDOFF(scd_txdescs[(x)])
    117 #define	STGE_CDRXOFF(x)	STGE_CDOFF(scd_rxdescs[(x)])
    118 
    119 /*
    120  * Software state for transmit and receive jobs.
    121  */
    122 struct stge_descsoft {
    123 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    124 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    125 };
    126 
    127 /*
    128  * Software state per device.
    129  */
    130 struct stge_softc {
    131 	device_t sc_dev;		/* generic device information */
    132 	bus_space_tag_t sc_st;		/* bus space tag */
    133 	bus_space_handle_t sc_sh;	/* bus space handle */
    134 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    135 	struct ethercom sc_ethercom;	/* ethernet common data */
    136 	int sc_rev;			/* silicon revision */
    137 
    138 	void *sc_ih;			/* interrupt cookie */
    139 
    140 	struct mii_data sc_mii;		/* MII/media information */
    141 
    142 	callout_t sc_tick_ch;		/* tick callout */
    143 
    144 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    145 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    146 
    147 	/*
    148 	 * Software state for transmit and receive descriptors.
    149 	 */
    150 	struct stge_descsoft sc_txsoft[STGE_NTXDESC];
    151 	struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
    152 
    153 	/*
    154 	 * Control data structures.
    155 	 */
    156 	struct stge_control_data *sc_control_data;
    157 #define	sc_txdescs	sc_control_data->scd_txdescs
    158 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    159 
    160 #ifdef STGE_EVENT_COUNTERS
    161 	/*
    162 	 * Event counters.
    163 	 */
    164 	struct evcnt sc_ev_txstall;	/* Tx stalled */
    165 	struct evcnt sc_ev_txdmaintr;	/* Tx DMA interrupts */
    166 	struct evcnt sc_ev_txindintr;	/* Tx Indicate interrupts */
    167 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    168 
    169 	struct evcnt sc_ev_txseg1;	/* Tx packets w/ 1 segment */
    170 	struct evcnt sc_ev_txseg2;	/* Tx packets w/ 2 segments */
    171 	struct evcnt sc_ev_txseg3;	/* Tx packets w/ 3 segments */
    172 	struct evcnt sc_ev_txseg4;	/* Tx packets w/ 4 segments */
    173 	struct evcnt sc_ev_txseg5;	/* Tx packets w/ 5 segments */
    174 	struct evcnt sc_ev_txsegmore;	/* Tx packets w/ more than 5 segments */
    175 	struct evcnt sc_ev_txcopy;	/* Tx packets that we had to copy */
    176 
    177 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    178 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    179 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-bound */
    180 
    181 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    182 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    183 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    184 #endif /* STGE_EVENT_COUNTERS */
    185 
    186 	int	sc_txpending;		/* number of Tx requests pending */
    187 	int	sc_txdirty;		/* first dirty Tx descriptor */
    188 	int	sc_txlast;		/* last used Tx descriptor */
    189 
    190 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    191 	int	sc_rxdiscard;
    192 	int	sc_rxlen;
    193 	struct mbuf *sc_rxhead;
    194 	struct mbuf *sc_rxtail;
    195 	struct mbuf **sc_rxtailp;
    196 
    197 	int	sc_txthresh;		/* Tx threshold */
    198 	uint32_t sc_usefiber:1;		/* if we're fiber */
    199 	uint32_t sc_stge1023:1;		/* are we a 1023 */
    200 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    201 	uint32_t sc_MACCtrl;		/* prototype MacCtrl register */
    202 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    203 	uint16_t sc_ReceiveMode;	/* prototype ReceiveMode register */
    204 	uint8_t sc_PhyCtrl;		/* prototype PhyCtrl register */
    205 };
    206 
    207 #define	STGE_RXCHAIN_RESET(sc)						\
    208 do {									\
    209 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    210 	*(sc)->sc_rxtailp = NULL;					\
    211 	(sc)->sc_rxlen = 0;						\
    212 } while (/*CONSTCOND*/0)
    213 
    214 #define	STGE_RXCHAIN_LINK(sc, m)					\
    215 do {									\
    216 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    217 	(sc)->sc_rxtailp = &(m)->m_next;				\
    218 } while (/*CONSTCOND*/0)
    219 
    220 /*
    221  * Register access macros
    222  */
    223 #define CSR_WRITE_4(_sc, reg, val)	\
    224 	bus_space_write_4((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
    225 #define CSR_WRITE_2(_sc, reg, val)	\
    226 	bus_space_write_2((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
    227 #define CSR_WRITE_1(_sc, reg, val)	\
    228 	bus_space_write_1((_sc)->sc_st, (_sc)->sc_sh, (reg), (val))
    229 
    230 #define CSR_READ_4(_sc, reg)		\
    231 	bus_space_read_4((_sc)->sc_st, (_sc)->sc_sh, (reg))
    232 #define CSR_READ_2(_sc, reg)		\
    233 	bus_space_read_2((_sc)->sc_st, (_sc)->sc_sh, (reg))
    234 #define CSR_READ_1(_sc, reg)		\
    235 	bus_space_read_1((_sc)->sc_st, (_sc)->sc_sh, (reg))
    236 
    237 #define STGE_TIMEOUT	1000
    238 
    239 #ifdef STGE_EVENT_COUNTERS
    240 #define	STGE_EVCNT_INCR(ev)	(ev)->ev_count++
    241 #else
    242 #define	STGE_EVCNT_INCR(ev)	/* nothing */
    243 #endif
    244 
    245 #define	STGE_CDTXADDR(sc, x)	((sc)->sc_cddma + STGE_CDTXOFF((x)))
    246 #define	STGE_CDRXADDR(sc, x)	((sc)->sc_cddma + STGE_CDRXOFF((x)))
    247 
    248 #define	STGE_CDTXSYNC(sc, x, ops)					\
    249 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    250 	    STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
    251 
    252 #define	STGE_CDRXSYNC(sc, x, ops)					\
    253 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    254 	    STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
    255 
    256 #define	STGE_INIT_RXDESC(sc, x)						\
    257 do {									\
    258 	struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    259 	struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)];		\
    260 									\
    261 	/*								\
    262 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    263 	 * so that the payload after the Ethernet header is aligned	\
    264 	 * to a 4-byte boundary.					\
    265 	 */								\
    266 	__rfd->rfd_frag.frag_word0 =					\
    267 	    htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
    268 	    FRAG_LEN(MCLBYTES - 2));					\
    269 	__rfd->rfd_next =						\
    270 	    htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x))));	\
    271 	__rfd->rfd_status = 0;						\
    272 	STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    273 } while (/*CONSTCOND*/0)
    274 
    275 static void	stge_start(struct ifnet *);
    276 static void	stge_watchdog(struct ifnet *);
    277 static int	stge_ioctl(struct ifnet *, u_long, void *);
    278 static int	stge_init(struct ifnet *);
    279 static void	stge_stop(struct ifnet *, int);
    280 
    281 static bool	stge_shutdown(device_t, int);
    282 
    283 static void	stge_reset(struct stge_softc *);
    284 static void	stge_rxdrain(struct stge_softc *);
    285 static int	stge_add_rxbuf(struct stge_softc *, int);
    286 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
    287 static void	stge_tick(void *);
    288 
    289 static void	stge_stats_update(struct stge_softc *);
    290 
    291 static void	stge_set_filter(struct stge_softc *);
    292 
    293 static int	stge_intr(void *);
    294 static void	stge_txintr(struct stge_softc *);
    295 static void	stge_rxintr(struct stge_softc *);
    296 
    297 static int	stge_mii_readreg(device_t, int, int, uint16_t *);
    298 static int	stge_mii_writereg(device_t, int, int, uint16_t);
    299 static void	stge_mii_statchg(struct ifnet *);
    300 
    301 static int	stge_match(device_t, cfdata_t, void *);
    302 static void	stge_attach(device_t, device_t, void *);
    303 
    304 int	stge_copy_small = 0;
    305 
    306 CFATTACH_DECL_NEW(stge, sizeof(struct stge_softc),
    307     stge_match, stge_attach, NULL, NULL);
    308 
    309 static uint32_t stge_mii_bitbang_read(device_t);
    310 static void	stge_mii_bitbang_write(device_t, uint32_t);
    311 
    312 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
    313 	stge_mii_bitbang_read,
    314 	stge_mii_bitbang_write,
    315 	{
    316 		PC_MgmtData,		/* MII_BIT_MDO */
    317 		PC_MgmtData,		/* MII_BIT_MDI */
    318 		PC_MgmtClk,		/* MII_BIT_MDC */
    319 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    320 		0,			/* MII_BIT_DIR_PHY_HOST */
    321 	}
    322 };
    323 
    324 /*
    325  * Devices supported by this driver.
    326  */
    327 static const struct stge_product {
    328 	pci_vendor_id_t		stge_vendor;
    329 	pci_product_id_t	stge_product;
    330 	const char		*stge_name;
    331 } stge_products[] = {
    332 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST1023,
    333 	  "Sundance ST-1023 Gigabit Ethernet" },
    334 
    335 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST2021,
    336 	  "Sundance ST-2021 Gigabit Ethernet" },
    337 
    338 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021,
    339 	  "Tamarack TC9021 Gigabit Ethernet" },
    340 
    341 	{ PCI_VENDOR_TAMARACK,		PCI_PRODUCT_TAMARACK_TC9021_ALT,
    342 	  "Tamarack TC9021 Gigabit Ethernet" },
    343 
    344 	/*
    345 	 * The Sundance sample boards use the Sundance vendor ID,
    346 	 * but the Tamarack product ID.
    347 	 */
    348 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021,
    349 	  "Sundance TC9021 Gigabit Ethernet" },
    350 
    351 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_TAMARACK_TC9021_ALT,
    352 	  "Sundance TC9021 Gigabit Ethernet" },
    353 
    354 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL4000,
    355 	  "D-Link DL-4000 Gigabit Ethernet" },
    356 
    357 	{ PCI_VENDOR_ANTARES,		PCI_PRODUCT_ANTARES_TC9021,
    358 	  "Antares Gigabit Ethernet" },
    359 
    360 	{ 0,				0,
    361 	  NULL },
    362 };
    363 
    364 static const struct stge_product *
    365 stge_lookup(const struct pci_attach_args *pa)
    366 {
    367 	const struct stge_product *sp;
    368 
    369 	for (sp = stge_products; sp->stge_name != NULL; sp++) {
    370 		if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
    371 		    PCI_PRODUCT(pa->pa_id) == sp->stge_product)
    372 			return (sp);
    373 	}
    374 	return (NULL);
    375 }
    376 
    377 static int
    378 stge_match(device_t parent, cfdata_t cf, void *aux)
    379 {
    380 	struct pci_attach_args *pa = aux;
    381 
    382 	if (stge_lookup(pa) != NULL)
    383 		return (1);
    384 
    385 	return (0);
    386 }
    387 
    388 static void
    389 stge_attach(device_t parent, device_t self, void *aux)
    390 {
    391 	struct stge_softc *sc = device_private(self);
    392 	struct pci_attach_args *pa = aux;
    393 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    394 	struct mii_data * const mii = &sc->sc_mii;
    395 	pci_chipset_tag_t pc = pa->pa_pc;
    396 	pci_intr_handle_t ih;
    397 	const char *intrstr = NULL;
    398 	bus_space_tag_t iot, memt;
    399 	bus_space_handle_t ioh, memh;
    400 	bus_dma_segment_t seg;
    401 	prop_dictionary_t dict;
    402 	prop_data_t data;
    403 	int ioh_valid, memh_valid;
    404 	int i, rseg, error;
    405 	const struct stge_product *sp;
    406 	uint8_t enaddr[ETHER_ADDR_LEN];
    407 	char intrbuf[PCI_INTRSTR_LEN];
    408 
    409 	sc->sc_dev = self;
    410 	callout_init(&sc->sc_tick_ch, 0);
    411 	callout_setfunc(&sc->sc_tick_ch, stge_tick, sc);
    412 
    413 	sp = stge_lookup(pa);
    414 	if (sp == NULL) {
    415 		printf("\n");
    416 		panic("ste_attach: impossible");
    417 	}
    418 
    419 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    420 
    421 	pci_aprint_devinfo_fancy(pa, NULL, sp->stge_name, 1);
    422 
    423 	/*
    424 	 * Map the device.
    425 	 */
    426 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
    427 	    PCI_MAPREG_TYPE_IO, 0,
    428 	    &iot, &ioh, NULL, NULL) == 0);
    429 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
    430 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    431 	    &memt, &memh, NULL, NULL) == 0);
    432 
    433 	if (memh_valid) {
    434 		sc->sc_st = memt;
    435 		sc->sc_sh = memh;
    436 	} else if (ioh_valid) {
    437 		sc->sc_st = iot;
    438 		sc->sc_sh = ioh;
    439 	} else {
    440 		aprint_error_dev(self, "unable to map device registers\n");
    441 		return;
    442 	}
    443 
    444 	/*
    445 	 * We have a 40-bit limit on our DMA addresses.  This isn't an
    446 	 * issue if we're only using a 32-bit DMA tag, but we have to
    447 	 * account for it if the 64-bit DMA tag is available.
    448 	 */
    449 	if (pci_dma64_available(pa)) {
    450 		if (bus_dmatag_subregion(pa->pa_dmat64,
    451 					 0,
    452 					 (bus_addr_t)FRAG_ADDR_MASK,
    453 					 &sc->sc_dmat,
    454 					 BUS_DMA_WAITOK) != 0) {
    455 			aprint_error_dev(self,
    456 			    "WARNING: failed to restrict dma range,"
    457 			    " falling back to parent bus dma range\n");
    458 			sc->sc_dmat = pa->pa_dmat64;
    459 		}
    460 	} else {
    461 		sc->sc_dmat = pa->pa_dmat;
    462 	}
    463 
    464 	/* Enable bus mastering. */
    465 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    466 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    467 	    PCI_COMMAND_MASTER_ENABLE);
    468 
    469 	/* power up chip */
    470 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
    471 	    error != EOPNOTSUPP) {
    472 		aprint_error_dev(self, "cannot activate %d\n", error);
    473 		return;
    474 	}
    475 	/*
    476 	 * Map and establish our interrupt.
    477 	 */
    478 	if (pci_intr_map(pa, &ih)) {
    479 		aprint_error_dev(self, "unable to map interrupt\n");
    480 		return;
    481 	}
    482 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    483 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, stge_intr, sc,
    484 	    device_xname(self));
    485 	if (sc->sc_ih == NULL) {
    486 		aprint_error_dev(self, "unable to establish interrupt");
    487 		if (intrstr != NULL)
    488 			aprint_error(" at %s", intrstr);
    489 		aprint_error("\n");
    490 		return;
    491 	}
    492 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    493 
    494 	/*
    495 	 * Allocate the control data structures, and create and load the
    496 	 * DMA map for it.
    497 	 */
    498 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    499 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    500 	    0)) != 0) {
    501 		aprint_error_dev(self,
    502 		    "unable to allocate control data, error = %d\n", error);
    503 		goto fail_0;
    504 	}
    505 
    506 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    507 	    sizeof(struct stge_control_data), (void **)&sc->sc_control_data,
    508 	    BUS_DMA_COHERENT)) != 0) {
    509 		aprint_error_dev(self,
    510 		    "unable to map control data, error = %d\n", error);
    511 		goto fail_1;
    512 	}
    513 
    514 	if ((error = bus_dmamap_create(sc->sc_dmat,
    515 	    sizeof(struct stge_control_data), 1,
    516 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    517 		aprint_error_dev(self,
    518 		    "unable to create control data DMA map, error = %d\n",
    519 		    error);
    520 		goto fail_2;
    521 	}
    522 
    523 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    524 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
    525 	    0)) != 0) {
    526 		aprint_error_dev(self,
    527 		    "unable to load control data DMA map, error = %d\n",
    528 		    error);
    529 		goto fail_3;
    530 	}
    531 
    532 	/*
    533 	 * Create the transmit buffer DMA maps.  Note that rev B.3
    534 	 * and earlier seem to have a bug regarding multi-fragment
    535 	 * packets.  We need to limit the number of Tx segments on
    536 	 * such chips to 1.
    537 	 */
    538 	for (i = 0; i < STGE_NTXDESC; i++) {
    539 		if ((error = bus_dmamap_create(sc->sc_dmat,
    540 		    ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
    541 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    542 			aprint_error_dev(self,
    543 			    "unable to create tx DMA map %d, error = %d\n",
    544 			    i, error);
    545 			goto fail_4;
    546 		}
    547 	}
    548 
    549 	/*
    550 	 * Create the receive buffer DMA maps.
    551 	 */
    552 	for (i = 0; i < STGE_NRXDESC; i++) {
    553 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    554 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    555 			aprint_error_dev(self,
    556 			    "unable to create rx DMA map %d, error = %d\n",
    557 			    i, error);
    558 			goto fail_5;
    559 		}
    560 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    561 	}
    562 
    563 	/*
    564 	 * Determine if we're copper or fiber.  It affects how we
    565 	 * reset the card.
    566 	 */
    567 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
    568 		sc->sc_usefiber = 1;
    569 	else
    570 		sc->sc_usefiber = 0;
    571 
    572 	/*
    573 	 * Reset the chip to a known state.
    574 	 */
    575 	stge_reset(sc);
    576 
    577 	/*
    578 	 * Reading the station address from the EEPROM doesn't seem
    579 	 * to work, at least on my sample boards.  Instead, since
    580 	 * the reset sequence does AutoInit, read it from the station
    581 	 * address registers. For Sundance 1023 you can only read it
    582 	 * from EEPROM.
    583 	 */
    584 	if (sp->stge_product != PCI_PRODUCT_SUNDANCETI_ST1023) {
    585 		enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff;
    586 		enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8;
    587 		enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff;
    588 		enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8;
    589 		enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff;
    590 		enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8;
    591 		sc->sc_stge1023 = 0;
    592 	} else {
    593 		data = prop_dictionary_get(device_properties(self),
    594 		    "mac-address");
    595 		if (data != NULL) {
    596 			/*
    597 			 * Try to get the station address from device
    598 			 * properties first, in case the EEPROM is missing.
    599 			 */
    600 			KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
    601 			KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
    602 			(void)memcpy(enaddr, prop_data_value(data),
    603 			    ETHER_ADDR_LEN);
    604 		} else {
    605 			uint16_t myaddr[ETHER_ADDR_LEN / 2];
    606 			for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
    607 				stge_read_eeprom(sc,
    608 				    STGE_EEPROM_StationAddress0 + i,
    609 				    &myaddr[i]);
    610 				myaddr[i] = le16toh(myaddr[i]);
    611 			}
    612 			(void)memcpy(enaddr, myaddr, sizeof(enaddr));
    613 		}
    614 		sc->sc_stge1023 = 1;
    615 	}
    616 
    617 	/* Set need_loaddspcode before mii_attach() */
    618 	dict = device_properties(self);
    619 	prop_dictionary_set_bool(dict, "need_loaddspcode",
    620 	    ((sc->sc_rev >= 0x40) && (sc->sc_rev <= 0x4e)) ? true : false);
    621 
    622 	aprint_normal_dev(self, "Ethernet address %s\n",
    623 	    ether_sprintf(enaddr));
    624 
    625 	/*
    626 	 * Read some important bits from the PhyCtrl register.
    627 	 */
    628 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
    629 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
    630 
    631 	/*
    632 	 * Initialize our media structures and probe the MII.
    633 	 */
    634 	mii->mii_ifp = ifp;
    635 	mii->mii_readreg = stge_mii_readreg;
    636 	mii->mii_writereg = stge_mii_writereg;
    637 	mii->mii_statchg = stge_mii_statchg;
    638 	sc->sc_ethercom.ec_mii = mii;
    639 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    640 	    ether_mediastatus);
    641 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
    642 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    643 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    644 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    645 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    646 	} else
    647 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    648 
    649 	ifp = &sc->sc_ethercom.ec_if;
    650 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    651 	ifp->if_softc = sc;
    652 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    653 	ifp->if_ioctl = stge_ioctl;
    654 	ifp->if_start = stge_start;
    655 	ifp->if_watchdog = stge_watchdog;
    656 	ifp->if_init = stge_init;
    657 	ifp->if_stop = stge_stop;
    658 	IFQ_SET_READY(&ifp->if_snd);
    659 
    660 	/*
    661 	 * The manual recommends disabling early transmit, so we
    662 	 * do.  It's disabled anyway, if using IP checksumming,
    663 	 * since the entire packet must be in the FIFO in order
    664 	 * for the chip to perform the checksum.
    665 	 */
    666 	sc->sc_txthresh = 0x0fff;
    667 
    668 	/*
    669 	 * Disable MWI if the PCI layer tells us to.
    670 	 */
    671 	sc->sc_DMACtrl = 0;
    672 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    673 		sc->sc_DMACtrl |= DMAC_MWIDisable;
    674 
    675 	/*
    676 	 * We can support 802.1Q VLAN-sized frames and jumbo
    677 	 * Ethernet frames.
    678 	 *
    679 	 * XXX Figure out how to do hw-assisted VLAN tagging in
    680 	 * XXX a reasonable way on this chip.
    681 	 */
    682 	sc->sc_ethercom.ec_capabilities |=
    683 	    ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
    684 	    ETHERCAP_VLAN_HWTAGGING;
    685 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    686 
    687 	/*
    688 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    689 	 */
    690 	sc->sc_ethercom.ec_if.if_capabilities |=
    691 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    692 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    693 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    694 
    695 	/*
    696 	 * Attach the interface.
    697 	 */
    698 	if_attach(ifp);
    699 	if_deferred_start_init(ifp, NULL);
    700 	ether_ifattach(ifp, enaddr);
    701 
    702 #ifdef STGE_EVENT_COUNTERS
    703 	/*
    704 	 * Attach event counters.
    705 	 */
    706 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    707 	    NULL, device_xname(self), "txstall");
    708 	evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
    709 	    NULL, device_xname(self), "txdmaintr");
    710 	evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
    711 	    NULL, device_xname(self), "txindintr");
    712 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    713 	    NULL, device_xname(self), "rxintr");
    714 
    715 	evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
    716 	    NULL, device_xname(self), "txseg1");
    717 	evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
    718 	    NULL, device_xname(self), "txseg2");
    719 	evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
    720 	    NULL, device_xname(self), "txseg3");
    721 	evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
    722 	    NULL, device_xname(self), "txseg4");
    723 	evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
    724 	    NULL, device_xname(self), "txseg5");
    725 	evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
    726 	    NULL, device_xname(self), "txsegmore");
    727 	evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
    728 	    NULL, device_xname(self), "txcopy");
    729 
    730 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    731 	    NULL, device_xname(self), "rxipsum");
    732 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    733 	    NULL, device_xname(self), "rxtcpsum");
    734 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    735 	    NULL, device_xname(self), "rxudpsum");
    736 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    737 	    NULL, device_xname(self), "txipsum");
    738 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    739 	    NULL, device_xname(self), "txtcpsum");
    740 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    741 	    NULL, device_xname(self), "txudpsum");
    742 #endif /* STGE_EVENT_COUNTERS */
    743 
    744 	/*
    745 	 * Make sure the interface is shutdown during reboot.
    746 	 */
    747 	if (pmf_device_register1(self, NULL, NULL, stge_shutdown))
    748 		pmf_class_network_register(self, ifp);
    749 	else
    750 		aprint_error_dev(self, "couldn't establish power handler\n");
    751 
    752 	return;
    753 
    754 	/*
    755 	 * Free any resources we've allocated during the failed attach
    756 	 * attempt.  Do this in reverse order and fall through.
    757 	 */
    758  fail_5:
    759 	for (i = 0; i < STGE_NRXDESC; i++) {
    760 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    761 			bus_dmamap_destroy(sc->sc_dmat,
    762 			    sc->sc_rxsoft[i].ds_dmamap);
    763 	}
    764  fail_4:
    765 	for (i = 0; i < STGE_NTXDESC; i++) {
    766 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    767 			bus_dmamap_destroy(sc->sc_dmat,
    768 			    sc->sc_txsoft[i].ds_dmamap);
    769 	}
    770 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    771  fail_3:
    772 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    773  fail_2:
    774 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    775 	    sizeof(struct stge_control_data));
    776  fail_1:
    777 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    778  fail_0:
    779 	return;
    780 }
    781 
    782 /*
    783  * stge_shutdown:
    784  *
    785  *	Make sure the interface is stopped at reboot time.
    786  */
    787 static bool
    788 stge_shutdown(device_t self, int howto)
    789 {
    790 	struct stge_softc *sc = device_private(self);
    791 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    792 
    793 	stge_stop(ifp, 1);
    794 	stge_reset(sc);
    795 	return true;
    796 }
    797 
    798 static void
    799 stge_dma_wait(struct stge_softc *sc)
    800 {
    801 	int i;
    802 
    803 	for (i = 0; i < STGE_TIMEOUT; i++) {
    804 		delay(2);
    805 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
    806 			break;
    807 	}
    808 
    809 	if (i == STGE_TIMEOUT)
    810 		printf("%s: DMA wait timed out\n", device_xname(sc->sc_dev));
    811 }
    812 
    813 /*
    814  * stge_start:		[ifnet interface function]
    815  *
    816  *	Start packet transmission on the interface.
    817  */
    818 static void
    819 stge_start(struct ifnet *ifp)
    820 {
    821 	struct stge_softc *sc = ifp->if_softc;
    822 	struct mbuf *m0;
    823 	struct stge_descsoft *ds;
    824 	struct stge_tfd *tfd;
    825 	bus_dmamap_t dmamap;
    826 	int error, firsttx, nexttx, opending, seg, totlen;
    827 	uint64_t csum_flags;
    828 
    829 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
    830 		return;
    831 
    832 	/*
    833 	 * Remember the previous number of pending transmissions
    834 	 * and the first descriptor we will use.
    835 	 */
    836 	opending = sc->sc_txpending;
    837 	firsttx = STGE_NEXTTX(sc->sc_txlast);
    838 
    839 	/*
    840 	 * Loop through the send queue, setting up transmit descriptors
    841 	 * until we drain the queue, or use up all available transmit
    842 	 * descriptors.
    843 	 */
    844 	for (;;) {
    845 		uint64_t tfc;
    846 		bool have_vtag;
    847 		uint16_t vtag;
    848 
    849 		/*
    850 		 * Grab a packet off the queue.
    851 		 */
    852 		IFQ_POLL(&ifp->if_snd, m0);
    853 		if (m0 == NULL)
    854 			break;
    855 
    856 		/*
    857 		 * Leave one unused descriptor at the end of the
    858 		 * list to prevent wrapping completely around.
    859 		 */
    860 		if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
    861 			STGE_EVCNT_INCR(&sc->sc_ev_txstall);
    862 			break;
    863 		}
    864 
    865 		/*
    866 		 * See if we have any VLAN stuff.
    867 		 */
    868 		have_vtag = vlan_has_tag(m0);
    869 		if (have_vtag)
    870 			vtag = vlan_get_tag(m0);
    871 
    872 		/*
    873 		 * Get the last and next available transmit descriptor.
    874 		 */
    875 		nexttx = STGE_NEXTTX(sc->sc_txlast);
    876 		tfd = &sc->sc_txdescs[nexttx];
    877 		ds = &sc->sc_txsoft[nexttx];
    878 
    879 		dmamap = ds->ds_dmamap;
    880 
    881 		/*
    882 		 * Load the DMA map.  If this fails, the packet either
    883 		 * didn't fit in the allotted number of segments, or we
    884 		 * were short on resources.  For the too-many-segments
    885 		 * case, we simply report an error and drop the packet,
    886 		 * since we can't sanely copy a jumbo packet to a single
    887 		 * buffer.
    888 		 */
    889 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    890 		    BUS_DMA_NOWAIT);
    891 		if (error) {
    892 			if (error == EFBIG) {
    893 				printf("%s: Tx packet consumes too many "
    894 				    "DMA segments, dropping...\n",
    895 				    device_xname(sc->sc_dev));
    896 				IFQ_DEQUEUE(&ifp->if_snd, m0);
    897 				m_freem(m0);
    898 				continue;
    899 			}
    900 			/*
    901 			 * Short on resources, just stop for now.
    902 			 */
    903 			break;
    904 		}
    905 
    906 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    907 
    908 		/*
    909 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    910 		 */
    911 
    912 		/* Sync the DMA map. */
    913 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    914 		    BUS_DMASYNC_PREWRITE);
    915 
    916 		/* Initialize the fragment list. */
    917 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    918 			tfd->tfd_frags[seg].frag_word0 =
    919 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
    920 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
    921 			totlen += dmamap->dm_segs[seg].ds_len;
    922 		}
    923 
    924 #ifdef STGE_EVENT_COUNTERS
    925 		switch (dmamap->dm_nsegs) {
    926 		case 1:
    927 			STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
    928 			break;
    929 		case 2:
    930 			STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
    931 			break;
    932 		case 3:
    933 			STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
    934 			break;
    935 		case 4:
    936 			STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
    937 			break;
    938 		case 5:
    939 			STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
    940 			break;
    941 		default:
    942 			STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
    943 			break;
    944 		}
    945 #endif /* STGE_EVENT_COUNTERS */
    946 
    947 		/*
    948 		 * Initialize checksumming flags in the descriptor.
    949 		 * Byte-swap constants so the compiler can optimize.
    950 		 */
    951 		csum_flags = 0;
    952 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    953 			STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    954 			csum_flags |= TFD_IPChecksumEnable;
    955 		}
    956 
    957 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
    958 			STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
    959 			csum_flags |= TFD_TCPChecksumEnable;
    960 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
    961 			STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
    962 			csum_flags |= TFD_UDPChecksumEnable;
    963 		}
    964 
    965 		/*
    966 		 * Initialize the descriptor and give it to the chip.
    967 		 * Check to see if we have a VLAN tag to insert.
    968 		 */
    969 
    970 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
    971 		    TFD_FragCount(seg) | csum_flags |
    972 		    (((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
    973 			TFD_TxDMAIndicate : 0);
    974 		if (have_vtag) {
    975 #if	0
    976 			struct ether_header *eh =
    977 			    mtod(m0, struct ether_header *);
    978 			uint16_t etype = ntohs(eh->ether_type);
    979 			printf("%s: xmit (tag %d) etype %x\n",
    980 			   ifp->if_xname, *mtod(n, int *), etype);
    981 #endif
    982 			tfc |= TFD_VLANTagInsert |
    983 #ifdef	STGE_VLAN_CFI
    984 			    TFD_CFI |
    985 #endif
    986 			    TFD_VID(vtag);
    987 		}
    988 		tfd->tfd_control = htole64(tfc);
    989 
    990 		/* Sync the descriptor. */
    991 		STGE_CDTXSYNC(sc, nexttx,
    992 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    993 
    994 		/*
    995 		 * Kick the transmit DMA logic.
    996 		 */
    997 		CSR_WRITE_4(sc, STGE_DMACtrl,
    998 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
    999 
   1000 		/*
   1001 		 * Store a pointer to the packet so we can free it later.
   1002 		 */
   1003 		ds->ds_mbuf = m0;
   1004 
   1005 		/* Advance the tx pointer. */
   1006 		sc->sc_txpending++;
   1007 		sc->sc_txlast = nexttx;
   1008 
   1009 		/*
   1010 		 * Pass the packet to any BPF listeners.
   1011 		 */
   1012 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1013 	}
   1014 
   1015 	if (sc->sc_txpending != opending) {
   1016 		/*
   1017 		 * We enqueued packets.  If the transmitter was idle,
   1018 		 * reset the txdirty pointer.
   1019 		 */
   1020 		if (opending == 0)
   1021 			sc->sc_txdirty = firsttx;
   1022 
   1023 		/* Set a watchdog timer in case the chip flakes out. */
   1024 		ifp->if_timer = 5;
   1025 	}
   1026 }
   1027 
   1028 /*
   1029  * stge_watchdog:	[ifnet interface function]
   1030  *
   1031  *	Watchdog timer handler.
   1032  */
   1033 static void
   1034 stge_watchdog(struct ifnet *ifp)
   1035 {
   1036 	struct stge_softc *sc = ifp->if_softc;
   1037 
   1038 	/*
   1039 	 * Sweep up first, since we don't interrupt every frame.
   1040 	 */
   1041 	stge_txintr(sc);
   1042 	if (sc->sc_txpending != 0) {
   1043 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1044 		if_statinc(ifp, if_oerrors);
   1045 
   1046 		(void) stge_init(ifp);
   1047 
   1048 		/* Try to get more packets going. */
   1049 		stge_start(ifp);
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * stge_ioctl:		[ifnet interface function]
   1055  *
   1056  *	Handle control requests from the operator.
   1057  */
   1058 static int
   1059 stge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1060 {
   1061 	struct stge_softc *sc = ifp->if_softc;
   1062 	int s, error;
   1063 
   1064 	s = splnet();
   1065 
   1066 	error = ether_ioctl(ifp, cmd, data);
   1067 	if (error == ENETRESET) {
   1068 		error = 0;
   1069 
   1070 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1071 			;
   1072 		else if (ifp->if_flags & IFF_RUNNING) {
   1073 			/*
   1074 			 * Multicast list has changed; set the hardware filter
   1075 			 * accordingly.
   1076 			 */
   1077 			stge_set_filter(sc);
   1078 		}
   1079 	}
   1080 
   1081 	/* Try to get more packets going. */
   1082 	stge_start(ifp);
   1083 
   1084 	splx(s);
   1085 	return (error);
   1086 }
   1087 
   1088 /*
   1089  * stge_intr:
   1090  *
   1091  *	Interrupt service routine.
   1092  */
   1093 static int
   1094 stge_intr(void *arg)
   1095 {
   1096 	struct stge_softc *sc = arg;
   1097 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1098 	uint32_t txstat;
   1099 	int wantinit;
   1100 	uint16_t isr;
   1101 
   1102 	if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
   1103 		return (0);
   1104 
   1105 	for (wantinit = 0; wantinit == 0;) {
   1106 		isr = CSR_READ_2(sc, STGE_IntStatusAck);
   1107 		if ((isr & sc->sc_IntEnable) == 0)
   1108 			break;
   1109 
   1110 		/* Host interface errors. */
   1111 		if (isr & IS_HostError) {
   1112 			printf("%s: Host interface error\n",
   1113 			    device_xname(sc->sc_dev));
   1114 			wantinit = 1;
   1115 			continue;
   1116 		}
   1117 
   1118 		/* Receive interrupts. */
   1119 		if (isr & (IS_RxDMAComplete | IS_RFDListEnd)) {
   1120 			STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1121 			stge_rxintr(sc);
   1122 			if (isr & IS_RFDListEnd) {
   1123 				printf("%s: receive ring overflow\n",
   1124 				    device_xname(sc->sc_dev));
   1125 				/*
   1126 				 * XXX Should try to recover from this
   1127 				 * XXX more gracefully.
   1128 				 */
   1129 				wantinit = 1;
   1130 			}
   1131 		}
   1132 
   1133 		/* Transmit interrupts. */
   1134 		if (isr & (IS_TxDMAComplete | IS_TxComplete)) {
   1135 #ifdef STGE_EVENT_COUNTERS
   1136 			if (isr & IS_TxDMAComplete)
   1137 				STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
   1138 #endif
   1139 			stge_txintr(sc);
   1140 		}
   1141 
   1142 		/* Statistics overflow. */
   1143 		if (isr & IS_UpdateStats)
   1144 			stge_stats_update(sc);
   1145 
   1146 		/* Transmission errors. */
   1147 		if (isr & IS_TxComplete) {
   1148 			STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
   1149 			for (;;) {
   1150 				txstat = CSR_READ_4(sc, STGE_TxStatus);
   1151 				if ((txstat & TS_TxComplete) == 0)
   1152 					break;
   1153 				if (txstat & TS_TxUnderrun) {
   1154 					sc->sc_txthresh++;
   1155 					if (sc->sc_txthresh > 0x0fff)
   1156 						sc->sc_txthresh = 0x0fff;
   1157 					printf("%s: transmit underrun, new "
   1158 					    "threshold: %d bytes\n",
   1159 					    device_xname(sc->sc_dev),
   1160 					    sc->sc_txthresh << 5);
   1161 				}
   1162 				if (txstat & TS_MaxCollisions)
   1163 					printf("%s: excessive collisions\n",
   1164 					    device_xname(sc->sc_dev));
   1165 			}
   1166 			wantinit = 1;
   1167 		}
   1168 
   1169 	}
   1170 
   1171 	if (wantinit)
   1172 		stge_init(ifp);
   1173 
   1174 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
   1175 
   1176 	/* Try to get more packets going. */
   1177 	if_schedule_deferred_start(ifp);
   1178 
   1179 	return (1);
   1180 }
   1181 
   1182 /*
   1183  * stge_txintr:
   1184  *
   1185  *	Helper; handle transmit interrupts.
   1186  */
   1187 static void
   1188 stge_txintr(struct stge_softc *sc)
   1189 {
   1190 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1191 	struct stge_descsoft *ds;
   1192 	uint64_t control;
   1193 	int i;
   1194 
   1195 	/*
   1196 	 * Go through our Tx list and free mbufs for those
   1197 	 * frames which have been transmitted.
   1198 	 */
   1199 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1200 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
   1201 		ds = &sc->sc_txsoft[i];
   1202 
   1203 		STGE_CDTXSYNC(sc, i,
   1204 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1205 
   1206 		control = le64toh(sc->sc_txdescs[i].tfd_control);
   1207 		if ((control & TFD_TFDDone) == 0)
   1208 			break;
   1209 
   1210 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1211 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1212 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1213 		m_freem(ds->ds_mbuf);
   1214 		ds->ds_mbuf = NULL;
   1215 	}
   1216 
   1217 	/* Update the dirty transmit buffer pointer. */
   1218 	sc->sc_txdirty = i;
   1219 
   1220 	/*
   1221 	 * If there are no more pending transmissions, cancel the watchdog
   1222 	 * timer.
   1223 	 */
   1224 	if (sc->sc_txpending == 0)
   1225 		ifp->if_timer = 0;
   1226 }
   1227 
   1228 /*
   1229  * stge_rxintr:
   1230  *
   1231  *	Helper; handle receive interrupts.
   1232  */
   1233 static void
   1234 stge_rxintr(struct stge_softc *sc)
   1235 {
   1236 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1237 	struct stge_descsoft *ds;
   1238 	struct mbuf *m, *tailm;
   1239 	uint64_t status;
   1240 	int i, len;
   1241 
   1242 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
   1243 		ds = &sc->sc_rxsoft[i];
   1244 
   1245 		STGE_CDRXSYNC(sc, i,
   1246 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1247 
   1248 		status = le64toh(sc->sc_rxdescs[i].rfd_status);
   1249 
   1250 		if ((status & RFD_RFDDone) == 0)
   1251 			break;
   1252 
   1253 		if (__predict_false(sc->sc_rxdiscard)) {
   1254 			STGE_INIT_RXDESC(sc, i);
   1255 			if (status & RFD_FrameEnd) {
   1256 				/* Reset our state. */
   1257 				sc->sc_rxdiscard = 0;
   1258 			}
   1259 			continue;
   1260 		}
   1261 
   1262 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1263 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1264 
   1265 		m = ds->ds_mbuf;
   1266 
   1267 		/*
   1268 		 * Add a new receive buffer to the ring.
   1269 		 */
   1270 		if (stge_add_rxbuf(sc, i) != 0) {
   1271 			/*
   1272 			 * Failed, throw away what we've done so
   1273 			 * far, and discard the rest of the packet.
   1274 			 */
   1275 			if_statinc(ifp, if_ierrors);
   1276 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1277 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1278 			STGE_INIT_RXDESC(sc, i);
   1279 			if ((status & RFD_FrameEnd) == 0)
   1280 				sc->sc_rxdiscard = 1;
   1281 			if (sc->sc_rxhead != NULL)
   1282 				m_freem(sc->sc_rxhead);
   1283 			STGE_RXCHAIN_RESET(sc);
   1284 			continue;
   1285 		}
   1286 
   1287 #ifdef DIAGNOSTIC
   1288 		if (status & RFD_FrameStart) {
   1289 			KASSERT(sc->sc_rxhead == NULL);
   1290 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
   1291 		}
   1292 #endif
   1293 
   1294 		STGE_RXCHAIN_LINK(sc, m);
   1295 
   1296 		/*
   1297 		 * If this is not the end of the packet, keep
   1298 		 * looking.
   1299 		 */
   1300 		if ((status & RFD_FrameEnd) == 0) {
   1301 			sc->sc_rxlen += m->m_len;
   1302 			continue;
   1303 		}
   1304 
   1305 		/*
   1306 		 * Okay, we have the entire packet now...
   1307 		 */
   1308 		*sc->sc_rxtailp = NULL;
   1309 		m = sc->sc_rxhead;
   1310 		tailm = sc->sc_rxtail;
   1311 
   1312 		STGE_RXCHAIN_RESET(sc);
   1313 
   1314 		/*
   1315 		 * If the packet had an error, drop it.  Note we
   1316 		 * count the error later in the periodic stats update.
   1317 		 */
   1318 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
   1319 			      RFD_RxAlignmentError | RFD_RxFCSError |
   1320 			      RFD_RxLengthError)) {
   1321 			m_freem(m);
   1322 			continue;
   1323 		}
   1324 
   1325 		/*
   1326 		 * No errors.
   1327 		 *
   1328 		 * Note we have configured the chip to not include
   1329 		 * the CRC at the end of the packet.
   1330 		 */
   1331 		len = RFD_RxDMAFrameLen(status);
   1332 		tailm->m_len = len - sc->sc_rxlen;
   1333 
   1334 		/*
   1335 		 * If the packet is small enough to fit in a
   1336 		 * single header mbuf, allocate one and copy
   1337 		 * the data into it.  This greatly reduces
   1338 		 * memory consumption when we receive lots
   1339 		 * of small packets.
   1340 		 */
   1341 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
   1342 			struct mbuf *nm;
   1343 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1344 			if (nm == NULL) {
   1345 				if_statinc(ifp, if_ierrors);
   1346 				m_freem(m);
   1347 				continue;
   1348 			}
   1349 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1350 			nm->m_data += 2;
   1351 			nm->m_pkthdr.len = nm->m_len = len;
   1352 			m_copydata(m, 0, len, mtod(nm, void *));
   1353 			m_freem(m);
   1354 			m = nm;
   1355 		}
   1356 
   1357 		/*
   1358 		 * Set the incoming checksum information for the packet.
   1359 		 */
   1360 		if (status & RFD_IPDetected) {
   1361 			STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1362 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1363 			if (status & RFD_IPError)
   1364 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1365 			if (status & RFD_TCPDetected) {
   1366 				STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1367 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1368 				if (status & RFD_TCPError)
   1369 					m->m_pkthdr.csum_flags |=
   1370 					    M_CSUM_TCP_UDP_BAD;
   1371 			} else if (status & RFD_UDPDetected) {
   1372 				STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1373 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1374 				if (status & RFD_UDPError)
   1375 					m->m_pkthdr.csum_flags |=
   1376 					    M_CSUM_TCP_UDP_BAD;
   1377 			}
   1378 		}
   1379 
   1380 		m_set_rcvif(m, ifp);
   1381 		m->m_pkthdr.len = len;
   1382 
   1383 		/*
   1384 		 * Pass this up to any BPF listeners, but only
   1385 		 * pass if up the stack if it's for us.
   1386 		 */
   1387 #ifdef	STGE_VLAN_UNTAG
   1388 		/*
   1389 		 * Check for VLAN tagged packets
   1390 		 */
   1391 		if (status & RFD_VLANDetected)
   1392 			vlan_set_tag(m, RFD_TCI(status));
   1393 
   1394 #endif
   1395 #if	0
   1396 		if (status & RFD_VLANDetected) {
   1397 			struct ether_header *eh;
   1398 			uint16_t etype;
   1399 
   1400 			eh = mtod(m, struct ether_header *);
   1401 			etype = ntohs(eh->ether_type);
   1402 			printf("%s: VLANtag detected (TCI %d) etype %x\n",
   1403 			    ifp->if_xname, (uint16_t) RFD_TCI(status),
   1404 			    etype);
   1405 		}
   1406 #endif
   1407 		/* Pass it on. */
   1408 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1409 	}
   1410 
   1411 	/* Update the receive pointer. */
   1412 	sc->sc_rxptr = i;
   1413 }
   1414 
   1415 /*
   1416  * stge_tick:
   1417  *
   1418  *	One second timer, used to tick the MII.
   1419  */
   1420 static void
   1421 stge_tick(void *arg)
   1422 {
   1423 	struct stge_softc *sc = arg;
   1424 	int s;
   1425 
   1426 	s = splnet();
   1427 	mii_tick(&sc->sc_mii);
   1428 	stge_stats_update(sc);
   1429 	splx(s);
   1430 
   1431 	callout_schedule(&sc->sc_tick_ch, hz);
   1432 }
   1433 
   1434 /*
   1435  * stge_stats_update:
   1436  *
   1437  *	Read the TC9021 statistics counters.
   1438  */
   1439 static void
   1440 stge_stats_update(struct stge_softc *sc)
   1441 {
   1442 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1443 
   1444 	(void) CSR_READ_4(sc, STGE_OctetRcvOk);
   1445 
   1446 	(void) CSR_READ_4(sc, STGE_FramesRcvdOk);
   1447 
   1448 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1449 
   1450 	if_statadd_ref(ifp, nsr, if_ierrors,
   1451 	    (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors));
   1452 
   1453 	(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
   1454 
   1455 	if_statadd_ref(ifp, nsr, if_opackets,
   1456 	    CSR_READ_4(sc, STGE_FramesXmtdOk));
   1457 
   1458 	if_statadd_ref(ifp, nsr, if_collisions,
   1459 	    CSR_READ_4(sc, STGE_LateCollisions) +
   1460 	    CSR_READ_4(sc, STGE_MultiColFrames) +
   1461 	    CSR_READ_4(sc, STGE_SingleColFrames));
   1462 
   1463 	if_statadd_ref(ifp, nsr, if_oerrors,
   1464 	    (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
   1465 	    (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal));
   1466 
   1467 	IF_STAT_PUTREF(ifp);
   1468 }
   1469 
   1470 /*
   1471  * stge_reset:
   1472  *
   1473  *	Perform a soft reset on the TC9021.
   1474  */
   1475 static void
   1476 stge_reset(struct stge_softc *sc)
   1477 {
   1478 	uint32_t ac;
   1479 	int i;
   1480 
   1481 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
   1482 
   1483 	/*
   1484 	 * Only assert RstOut if we're fiber.  We need GMII clocks
   1485 	 * to be present in order for the reset to complete on fiber
   1486 	 * cards.
   1487 	 */
   1488 	CSR_WRITE_4(sc, STGE_AsicCtrl,
   1489 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
   1490 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
   1491 	    (sc->sc_usefiber ? AC_RstOut : 0));
   1492 
   1493 	delay(50000);
   1494 
   1495 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1496 		delay(5000);
   1497 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
   1498 			break;
   1499 	}
   1500 
   1501 	if (i == STGE_TIMEOUT)
   1502 		printf("%s: reset failed to complete\n",
   1503 		    device_xname(sc->sc_dev));
   1504 
   1505 	delay(1000);
   1506 }
   1507 
   1508 /*
   1509  * stge_init:		[ ifnet interface function ]
   1510  *
   1511  *	Initialize the interface.  Must be called at splnet().
   1512  */
   1513 static int
   1514 stge_init(struct ifnet *ifp)
   1515 {
   1516 	struct stge_softc *sc = ifp->if_softc;
   1517 	struct stge_descsoft *ds;
   1518 	int i, error = 0;
   1519 
   1520 	/*
   1521 	 * Cancel any pending I/O.
   1522 	 */
   1523 	stge_stop(ifp, 0);
   1524 
   1525 	/*
   1526 	 * Reset the chip to a known state.
   1527 	 */
   1528 	stge_reset(sc);
   1529 
   1530 	/*
   1531 	 * Initialize the transmit descriptor ring.
   1532 	 */
   1533 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1534 	for (i = 0; i < STGE_NTXDESC; i++) {
   1535 		sc->sc_txdescs[i].tfd_next = htole64(
   1536 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
   1537 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
   1538 	}
   1539 	sc->sc_txpending = 0;
   1540 	sc->sc_txdirty = 0;
   1541 	sc->sc_txlast = STGE_NTXDESC - 1;
   1542 
   1543 	/*
   1544 	 * Initialize the receive descriptor and receive job
   1545 	 * descriptor rings.
   1546 	 */
   1547 	for (i = 0; i < STGE_NRXDESC; i++) {
   1548 		ds = &sc->sc_rxsoft[i];
   1549 		if (ds->ds_mbuf == NULL) {
   1550 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
   1551 				printf("%s: unable to allocate or map rx "
   1552 				    "buffer %d, error = %d\n",
   1553 				    device_xname(sc->sc_dev), i, error);
   1554 				/*
   1555 				 * XXX Should attempt to run with fewer receive
   1556 				 * XXX buffers instead of just failing.
   1557 				 */
   1558 				stge_rxdrain(sc);
   1559 				goto out;
   1560 			}
   1561 		} else
   1562 			STGE_INIT_RXDESC(sc, i);
   1563 	}
   1564 	sc->sc_rxptr = 0;
   1565 	sc->sc_rxdiscard = 0;
   1566 	STGE_RXCHAIN_RESET(sc);
   1567 
   1568 	/* Set the station address. */
   1569 	for (i = 0; i < 6; i++)
   1570 		CSR_WRITE_1(sc, STGE_StationAddress0 + i,
   1571 		    CLLADDR(ifp->if_sadl)[i]);
   1572 
   1573 	/*
   1574 	 * Set the statistics masks.  Disable all the RMON stats,
   1575 	 * and disable selected stats in the non-RMON stats registers.
   1576 	 */
   1577 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
   1578 	CSR_WRITE_4(sc, STGE_StatisticsMask,
   1579 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
   1580 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
   1581 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
   1582 	    (1U << 21));
   1583 
   1584 	/* Set up the receive filter. */
   1585 	stge_set_filter(sc);
   1586 
   1587 	/*
   1588 	 * Give the transmit and receive ring to the chip.
   1589 	 */
   1590 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
   1591 	    ((uint64_t)STGE_CDTXADDR(sc, sc->sc_txdirty)) >> 32);
   1592 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
   1593 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
   1594 
   1595 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
   1596 	    ((uint64_t)STGE_CDRXADDR(sc, sc->sc_rxptr)) >> 32);
   1597 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
   1598 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
   1599 
   1600 	/*
   1601 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1602 	 * large (255 is the max, but we use 127) -- we explicitly kick the
   1603 	 * transmit engine when there's actually a packet.
   1604 	 */
   1605 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
   1606 
   1607 	/* ..and the Rx auto-poll period. */
   1608 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
   1609 
   1610 	/* Initialize the Tx start threshold. */
   1611 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
   1612 
   1613 	/* RX DMA thresholds, from linux */
   1614 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
   1615 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
   1616 
   1617 	/* Rx early threhold, from Linux */
   1618 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
   1619 
   1620 	/* Tx DMA thresholds, from Linux */
   1621 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
   1622 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
   1623 
   1624 	/*
   1625 	 * Initialize the Rx DMA interrupt control register.  We
   1626 	 * request an interrupt after every incoming packet, but
   1627 	 * defer it for 32us (64 * 512 ns).  When the number of
   1628 	 * interrupts pending reaches 8, we stop deferring the
   1629 	 * interrupt, and signal it immediately.
   1630 	 */
   1631 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
   1632 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
   1633 
   1634 	/*
   1635 	 * Initialize the interrupt mask.
   1636 	 */
   1637 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
   1638 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
   1639 	CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
   1640 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
   1641 
   1642 	/*
   1643 	 * Configure the DMA engine.
   1644 	 * XXX Should auto-tune TxBurstLimit.
   1645 	 */
   1646 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
   1647 	    DMAC_TxBurstLimit(3));
   1648 
   1649 	/*
   1650 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
   1651 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
   1652 	 * in the Rx FIFO.
   1653 	 */
   1654 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
   1655 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
   1656 
   1657 	/*
   1658 	 * Set the maximum frame size.
   1659 	 */
   1660 	CSR_WRITE_2(sc, STGE_MaxFrameSize,
   1661 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
   1662 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
   1663 	     ETHER_VLAN_ENCAP_LEN : 0));
   1664 
   1665 	/*
   1666 	 * Initialize MacCtrl -- do it before setting the media,
   1667 	 * as setting the media will actually program the register.
   1668 	 *
   1669 	 * Note: We have to poke the IFS value before poking
   1670 	 * anything else.
   1671 	 */
   1672 	sc->sc_MACCtrl = MC_IFSSelect(0);
   1673 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
   1674 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
   1675 #ifdef	STGE_VLAN_UNTAG
   1676 	sc->sc_MACCtrl |= MC_AutoVLANuntagging;
   1677 #endif
   1678 
   1679 	if (sc->sc_rev >= 6) {		/* >= B.2 */
   1680 		/* Multi-frag frame bug work-around. */
   1681 		CSR_WRITE_2(sc, STGE_DebugCtrl,
   1682 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
   1683 
   1684 		/* Tx Poll Now bug work-around. */
   1685 		CSR_WRITE_2(sc, STGE_DebugCtrl,
   1686 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
   1687 		/* XXX ? from linux */
   1688 		CSR_WRITE_2(sc, STGE_DebugCtrl,
   1689 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
   1690 	}
   1691 
   1692 	/*
   1693 	 * Set the current media.
   1694 	 */
   1695 	if ((error = ether_mediachange(ifp)) != 0)
   1696 		goto out;
   1697 
   1698 	/*
   1699 	 * Start the one second MII clock.
   1700 	 */
   1701 	callout_schedule(&sc->sc_tick_ch, hz);
   1702 
   1703 	/*
   1704 	 * ...all done!
   1705 	 */
   1706 	ifp->if_flags |= IFF_RUNNING;
   1707 
   1708  out:
   1709 	if (error)
   1710 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1711 	return (error);
   1712 }
   1713 
   1714 /*
   1715  * stge_drain:
   1716  *
   1717  *	Drain the receive queue.
   1718  */
   1719 static void
   1720 stge_rxdrain(struct stge_softc *sc)
   1721 {
   1722 	struct stge_descsoft *ds;
   1723 	int i;
   1724 
   1725 	for (i = 0; i < STGE_NRXDESC; i++) {
   1726 		ds = &sc->sc_rxsoft[i];
   1727 		if (ds->ds_mbuf != NULL) {
   1728 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1729 			ds->ds_mbuf->m_next = NULL;
   1730 			m_freem(ds->ds_mbuf);
   1731 			ds->ds_mbuf = NULL;
   1732 		}
   1733 	}
   1734 }
   1735 
   1736 /*
   1737  * stge_stop:		[ ifnet interface function ]
   1738  *
   1739  *	Stop transmission on the interface.
   1740  */
   1741 static void
   1742 stge_stop(struct ifnet *ifp, int disable)
   1743 {
   1744 	struct stge_softc *sc = ifp->if_softc;
   1745 	struct stge_descsoft *ds;
   1746 	int i;
   1747 
   1748 	/*
   1749 	 * Stop the one second clock.
   1750 	 */
   1751 	callout_stop(&sc->sc_tick_ch);
   1752 
   1753 	/* Down the MII. */
   1754 	mii_down(&sc->sc_mii);
   1755 
   1756 	/*
   1757 	 * Disable interrupts.
   1758 	 */
   1759 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
   1760 
   1761 	/*
   1762 	 * Stop receiver, transmitter, and stats update.
   1763 	 */
   1764 	CSR_WRITE_4(sc, STGE_MACCtrl,
   1765 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
   1766 
   1767 	/*
   1768 	 * Stop the transmit and receive DMA.
   1769 	 */
   1770 	stge_dma_wait(sc);
   1771 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
   1772 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
   1773 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
   1774 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
   1775 
   1776 	/*
   1777 	 * Release any queued transmit buffers.
   1778 	 */
   1779 	for (i = 0; i < STGE_NTXDESC; i++) {
   1780 		ds = &sc->sc_txsoft[i];
   1781 		if (ds->ds_mbuf != NULL) {
   1782 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1783 			m_freem(ds->ds_mbuf);
   1784 			ds->ds_mbuf = NULL;
   1785 		}
   1786 	}
   1787 
   1788 	/*
   1789 	 * Mark the interface down and cancel the watchdog timer.
   1790 	 */
   1791 	ifp->if_flags &= ~IFF_RUNNING;
   1792 	ifp->if_timer = 0;
   1793 
   1794 	if (disable)
   1795 		stge_rxdrain(sc);
   1796 }
   1797 
   1798 static int
   1799 stge_eeprom_wait(struct stge_softc *sc)
   1800 {
   1801 	int i;
   1802 
   1803 	for (i = 0; i < STGE_TIMEOUT; i++) {
   1804 		delay(1000);
   1805 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
   1806 			return (0);
   1807 	}
   1808 	return (1);
   1809 }
   1810 
   1811 /*
   1812  * stge_read_eeprom:
   1813  *
   1814  *	Read data from the serial EEPROM.
   1815  */
   1816 static void
   1817 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
   1818 {
   1819 
   1820 	if (stge_eeprom_wait(sc))
   1821 		printf("%s: EEPROM failed to come ready\n",
   1822 		    device_xname(sc->sc_dev));
   1823 
   1824 	CSR_WRITE_2(sc, STGE_EepromCtrl,
   1825 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
   1826 	if (stge_eeprom_wait(sc))
   1827 		printf("%s: EEPROM read timed out\n",
   1828 		    device_xname(sc->sc_dev));
   1829 	*data = CSR_READ_2(sc, STGE_EepromData);
   1830 }
   1831 
   1832 /*
   1833  * stge_add_rxbuf:
   1834  *
   1835  *	Add a receive buffer to the indicated descriptor.
   1836  */
   1837 static int
   1838 stge_add_rxbuf(struct stge_softc *sc, int idx)
   1839 {
   1840 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
   1841 	struct mbuf *m;
   1842 	int error;
   1843 
   1844 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1845 	if (m == NULL)
   1846 		return (ENOBUFS);
   1847 
   1848 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1849 	MCLGET(m, M_DONTWAIT);
   1850 	if ((m->m_flags & M_EXT) == 0) {
   1851 		m_freem(m);
   1852 		return (ENOBUFS);
   1853 	}
   1854 
   1855 	m->m_data = m->m_ext.ext_buf + 2;
   1856 	m->m_len = MCLBYTES - 2;
   1857 
   1858 	if (ds->ds_mbuf != NULL)
   1859 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1860 
   1861 	ds->ds_mbuf = m;
   1862 
   1863 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1864 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1865 	if (error) {
   1866 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1867 		    device_xname(sc->sc_dev), idx, error);
   1868 		panic("stge_add_rxbuf");	/* XXX */
   1869 	}
   1870 
   1871 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1872 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1873 
   1874 	STGE_INIT_RXDESC(sc, idx);
   1875 
   1876 	return (0);
   1877 }
   1878 
   1879 /*
   1880  * stge_set_filter:
   1881  *
   1882  *	Set up the receive filter.
   1883  */
   1884 static void
   1885 stge_set_filter(struct stge_softc *sc)
   1886 {
   1887 	struct ethercom *ec = &sc->sc_ethercom;
   1888 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1889 	struct ether_multi *enm;
   1890 	struct ether_multistep step;
   1891 	uint32_t crc;
   1892 	uint32_t mchash[2];
   1893 
   1894 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1895 	if (ifp->if_flags & IFF_BROADCAST)
   1896 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1897 
   1898 	/* XXX: ST1023 only works in promiscuous mode */
   1899 	if (sc->sc_stge1023)
   1900 		ifp->if_flags |= IFF_PROMISC;
   1901 
   1902 	if (ifp->if_flags & IFF_PROMISC) {
   1903 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1904 		goto allmulti;
   1905 	}
   1906 
   1907 	/*
   1908 	 * Set up the multicast address filter by passing all multicast
   1909 	 * addresses through a CRC generator, and then using the low-order
   1910 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1911 	 * high order bits select the register, while the rest of the bits
   1912 	 * select the bit within the register.
   1913 	 */
   1914 
   1915 	memset(mchash, 0, sizeof(mchash));
   1916 
   1917 	ETHER_LOCK(ec);
   1918 	ETHER_FIRST_MULTI(step, ec, enm);
   1919 	if (enm == NULL) {
   1920 		ETHER_UNLOCK(ec);
   1921 		goto done;
   1922 	}
   1923 
   1924 	while (enm != NULL) {
   1925 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1926 			/*
   1927 			 * We must listen to a range of multicast addresses.
   1928 			 * For now, just accept all multicasts, rather than
   1929 			 * trying to set only those filter bits needed to match
   1930 			 * the range.  (At this time, the only use of address
   1931 			 * ranges is for IP multicast routing, for which the
   1932 			 * range is big enough to require all bits set.)
   1933 			 */
   1934 			ETHER_UNLOCK(ec);
   1935 			goto allmulti;
   1936 		}
   1937 
   1938 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1939 
   1940 		/* Just want the 6 least significant bits. */
   1941 		crc &= 0x3f;
   1942 
   1943 		/* Set the corresponding bit in the hash table. */
   1944 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1945 
   1946 		ETHER_NEXT_MULTI(step, enm);
   1947 	}
   1948 	ETHER_UNLOCK(ec);
   1949 
   1950 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1951 
   1952 	ifp->if_flags &= ~IFF_ALLMULTI;
   1953 	goto done;
   1954 
   1955  allmulti:
   1956 	ifp->if_flags |= IFF_ALLMULTI;
   1957 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1958 
   1959  done:
   1960 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1961 		/*
   1962 		 * Program the multicast hash table.
   1963 		 */
   1964 		CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
   1965 		CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
   1966 	}
   1967 
   1968 	CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
   1969 }
   1970 
   1971 /*
   1972  * stge_mii_readreg:	[mii interface function]
   1973  *
   1974  *	Read a PHY register on the MII of the TC9021.
   1975  */
   1976 static int
   1977 stge_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1978 {
   1979 
   1980 	return mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg, val);
   1981 }
   1982 
   1983 /*
   1984  * stge_mii_writereg:	[mii interface function]
   1985  *
   1986  *	Write a PHY register on the MII of the TC9021.
   1987  */
   1988 static int
   1989 stge_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1990 {
   1991 
   1992 	return mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg,
   1993 	    val);
   1994 }
   1995 
   1996 /*
   1997  * stge_mii_statchg:	[mii interface function]
   1998  *
   1999  *	Callback from MII layer when media changes.
   2000  */
   2001 static void
   2002 stge_mii_statchg(struct ifnet *ifp)
   2003 {
   2004 	struct stge_softc *sc = ifp->if_softc;
   2005 
   2006 	sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
   2007 	    MC_TxFlowControlEnable);
   2008 
   2009 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2010 		sc->sc_MACCtrl |= MC_DuplexSelect;
   2011 	if ((sc->sc_mii.mii_media_active & IFM_ETH_RXPAUSE) != 0)
   2012 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
   2013 	if ((sc->sc_mii.mii_media_active & IFM_ETH_TXPAUSE) != 0)
   2014 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
   2015 
   2016 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
   2017 }
   2018 
   2019 /*
   2020  * sste_mii_bitbang_read: [mii bit-bang interface function]
   2021  *
   2022  *	Read the MII serial port for the MII bit-bang module.
   2023  */
   2024 static uint32_t
   2025 stge_mii_bitbang_read(device_t self)
   2026 {
   2027 	struct stge_softc *sc = device_private(self);
   2028 
   2029 	return (CSR_READ_1(sc, STGE_PhyCtrl));
   2030 }
   2031 
   2032 /*
   2033  * stge_mii_bitbang_write: [mii big-bang interface function]
   2034  *
   2035  *	Write the MII serial port for the MII bit-bang module.
   2036  */
   2037 static void
   2038 stge_mii_bitbang_write(device_t self, uint32_t val)
   2039 {
   2040 	struct stge_softc *sc = device_private(self);
   2041 
   2042 	CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
   2043 }
   2044