if_ti.c revision 1.20 1 1.20 enami /* $NetBSD: if_ti.c,v 1.20 2001/01/29 01:24:42 enami Exp $ */
2 1.1 drochner
3 1.1 drochner /*
4 1.1 drochner * Copyright (c) 1997, 1998, 1999
5 1.1 drochner * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 1.1 drochner *
7 1.1 drochner * Redistribution and use in source and binary forms, with or without
8 1.1 drochner * modification, are permitted provided that the following conditions
9 1.1 drochner * are met:
10 1.1 drochner * 1. Redistributions of source code must retain the above copyright
11 1.1 drochner * notice, this list of conditions and the following disclaimer.
12 1.1 drochner * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 drochner * notice, this list of conditions and the following disclaimer in the
14 1.1 drochner * documentation and/or other materials provided with the distribution.
15 1.1 drochner * 3. All advertising materials mentioning features or use of this software
16 1.1 drochner * must display the following acknowledgement:
17 1.1 drochner * This product includes software developed by Bill Paul.
18 1.1 drochner * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 drochner * may be used to endorse or promote products derived from this software
20 1.1 drochner * without specific prior written permission.
21 1.1 drochner *
22 1.1 drochner * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 drochner * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 drochner * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 drochner * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 drochner * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 drochner * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 drochner * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 drochner * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 drochner * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 drochner * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 drochner * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 drochner *
34 1.1 drochner * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 1.1 drochner */
36 1.1 drochner
37 1.1 drochner /*
38 1.1 drochner * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 1.1 drochner * Manuals, sample driver and firmware source kits are available
40 1.1 drochner * from http://www.alteon.com/support/openkits.
41 1.1 drochner *
42 1.1 drochner * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 1.1 drochner * Electrical Engineering Department
44 1.1 drochner * Columbia University, New York City
45 1.1 drochner */
46 1.1 drochner
47 1.1 drochner /*
48 1.1 drochner * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 1.1 drochner * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 1.1 drochner * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 1.1 drochner * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 1.1 drochner * filtering and jumbo (9014 byte) frames. The hardware is largely
53 1.1 drochner * controlled by firmware, which must be loaded into the NIC during
54 1.1 drochner * initialization.
55 1.1 drochner *
56 1.1 drochner * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 1.1 drochner * revision, which supports new features such as extended commands,
58 1.1 drochner * extended jumbo receive ring desciptors and a mini receive ring.
59 1.1 drochner *
60 1.1 drochner * Alteon Networks is to be commended for releasing such a vast amount
61 1.1 drochner * of development material for the Tigon NIC without requiring an NDA
62 1.1 drochner * (although they really should have done it a long time ago). With
63 1.1 drochner * any luck, the other vendors will finally wise up and follow Alteon's
64 1.1 drochner * stellar example.
65 1.1 drochner *
66 1.1 drochner * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 1.1 drochner * this driver by #including it as a C header file. This bloats the
68 1.1 drochner * driver somewhat, but it's the easiest method considering that the
69 1.1 drochner * driver code and firmware code need to be kept in sync. The source
70 1.1 drochner * for the firmware is not provided with the FreeBSD distribution since
71 1.1 drochner * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 1.1 drochner *
73 1.1 drochner * The following people deserve special thanks:
74 1.1 drochner * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 1.1 drochner * for testing
76 1.1 drochner * - Raymond Lee of Netgear, for providing a pair of Netgear
77 1.1 drochner * GA620 Tigon 2 boards for testing
78 1.3 thorpej * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 1.1 drochner * convincing me to write this driver.
80 1.1 drochner * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 1.1 drochner */
82 1.1 drochner
83 1.1 drochner #include "bpfilter.h"
84 1.1 drochner #include "opt_inet.h"
85 1.1 drochner #include "opt_ns.h"
86 1.1 drochner
87 1.1 drochner #include <sys/param.h>
88 1.1 drochner #include <sys/systm.h>
89 1.1 drochner #include <sys/sockio.h>
90 1.1 drochner #include <sys/mbuf.h>
91 1.1 drochner #include <sys/malloc.h>
92 1.1 drochner #include <sys/kernel.h>
93 1.1 drochner #include <sys/socket.h>
94 1.1 drochner #include <sys/queue.h>
95 1.1 drochner #include <sys/device.h>
96 1.9 jdolecek #include <sys/reboot.h>
97 1.1 drochner
98 1.13 thorpej #include <uvm/uvm_extern.h>
99 1.13 thorpej
100 1.1 drochner #include <net/if.h>
101 1.1 drochner #include <net/if_arp.h>
102 1.1 drochner #include <net/if_ether.h>
103 1.1 drochner #include <net/if_dl.h>
104 1.1 drochner #include <net/if_media.h>
105 1.1 drochner
106 1.1 drochner #if NBPFILTER > 0
107 1.1 drochner #include <net/bpf.h>
108 1.1 drochner #endif
109 1.1 drochner
110 1.1 drochner #ifdef INET
111 1.1 drochner #include <netinet/in.h>
112 1.1 drochner #include <netinet/if_inarp.h>
113 1.1 drochner #endif
114 1.1 drochner
115 1.2 drochner #ifdef NS
116 1.2 drochner #include <netns/ns.h>
117 1.2 drochner #include <netns/ns_if.h>
118 1.2 drochner #endif
119 1.2 drochner
120 1.1 drochner #include <machine/bus.h>
121 1.1 drochner
122 1.1 drochner #include <dev/pci/pcireg.h>
123 1.1 drochner #include <dev/pci/pcivar.h>
124 1.1 drochner #include <dev/pci/pcidevs.h>
125 1.1 drochner
126 1.1 drochner #include <dev/pci/if_tireg.h>
127 1.1 drochner #include <dev/pci/ti_fw.h>
128 1.1 drochner #include <dev/pci/ti_fw2.h>
129 1.1 drochner
130 1.1 drochner #ifdef M_HWCKSUM
131 1.1 drochner /*#define TI_CSUM_OFFLOAD*/
132 1.1 drochner #endif
133 1.1 drochner
134 1.1 drochner /*
135 1.1 drochner * Various supported device vendors/types and their names.
136 1.1 drochner */
137 1.1 drochner
138 1.19 jdolecek static const struct ti_type ti_devs[] = {
139 1.1 drochner { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
140 1.15 bouyer "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
141 1.15 bouyer { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
142 1.15 bouyer "Alteon AceNIC 1000baseT Gigabit Ethernet" },
143 1.1 drochner { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
144 1.1 drochner "3Com 3c985-SX Gigabit Ethernet" },
145 1.1 drochner { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
146 1.15 bouyer "Netgear GA620 1000baseSX Gigabit Ethernet" },
147 1.15 bouyer { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
148 1.15 bouyer "Netgear GA620 1000baseT Gigabit Ethernet" },
149 1.1 drochner { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
150 1.1 drochner "Silicon Graphics Gigabit Ethernet" },
151 1.1 drochner { 0, 0, NULL }
152 1.1 drochner };
153 1.1 drochner
154 1.19 jdolecek static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
155 1.1 drochner static int ti_probe __P((struct device *, struct cfdata *, void *));
156 1.1 drochner static void ti_attach __P((struct device *, struct device *, void *));
157 1.6 bouyer static void ti_shutdown __P((void *));
158 1.1 drochner static void ti_txeof __P((struct ti_softc *));
159 1.1 drochner static void ti_rxeof __P((struct ti_softc *));
160 1.1 drochner
161 1.1 drochner static void ti_stats_update __P((struct ti_softc *));
162 1.1 drochner static int ti_encap __P((struct ti_softc *, struct mbuf *,
163 1.1 drochner u_int32_t *));
164 1.1 drochner
165 1.1 drochner static int ti_intr __P((void *));
166 1.1 drochner static void ti_start __P((struct ifnet *));
167 1.1 drochner static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
168 1.1 drochner static void ti_init __P((void *));
169 1.1 drochner static void ti_init2 __P((struct ti_softc *));
170 1.1 drochner static void ti_stop __P((struct ti_softc *));
171 1.1 drochner static void ti_watchdog __P((struct ifnet *));
172 1.1 drochner static int ti_ifmedia_upd __P((struct ifnet *));
173 1.1 drochner static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
174 1.1 drochner
175 1.1 drochner static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
176 1.1 drochner static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
177 1.1 drochner int, u_int8_t *));
178 1.1 drochner static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
179 1.1 drochner
180 1.1 drochner static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
181 1.1 drochner static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
182 1.1 drochner static void ti_setmulti __P((struct ti_softc *));
183 1.1 drochner
184 1.1 drochner static void ti_mem __P((struct ti_softc *, u_int32_t,
185 1.1 drochner u_int32_t, caddr_t));
186 1.1 drochner static void ti_loadfw __P((struct ti_softc *));
187 1.1 drochner static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
188 1.1 drochner static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
189 1.1 drochner caddr_t, int));
190 1.1 drochner static void ti_handle_events __P((struct ti_softc *));
191 1.1 drochner static int ti_alloc_jumbo_mem __P((struct ti_softc *));
192 1.1 drochner static void *ti_jalloc __P((struct ti_softc *));
193 1.1 drochner static void ti_jfree __P((caddr_t, u_int, void *));
194 1.1 drochner static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
195 1.1 drochner static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
196 1.1 drochner static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
197 1.1 drochner static int ti_init_rx_ring_std __P((struct ti_softc *));
198 1.1 drochner static void ti_free_rx_ring_std __P((struct ti_softc *));
199 1.1 drochner static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
200 1.1 drochner static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
201 1.1 drochner static int ti_init_rx_ring_mini __P((struct ti_softc *));
202 1.1 drochner static void ti_free_rx_ring_mini __P((struct ti_softc *));
203 1.1 drochner static void ti_free_tx_ring __P((struct ti_softc *));
204 1.1 drochner static int ti_init_tx_ring __P((struct ti_softc *));
205 1.1 drochner
206 1.1 drochner static int ti_64bitslot_war __P((struct ti_softc *));
207 1.1 drochner static int ti_chipinit __P((struct ti_softc *));
208 1.1 drochner static int ti_gibinit __P((struct ti_softc *));
209 1.1 drochner
210 1.1 drochner static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
211 1.1 drochner
212 1.1 drochner struct cfattach ti_ca = {
213 1.1 drochner sizeof(struct ti_softc), ti_probe, ti_attach
214 1.1 drochner };
215 1.1 drochner
216 1.1 drochner /*
217 1.1 drochner * Send an instruction or address to the EEPROM, check for ACK.
218 1.1 drochner */
219 1.1 drochner static u_int32_t ti_eeprom_putbyte(sc, byte)
220 1.1 drochner struct ti_softc *sc;
221 1.1 drochner int byte;
222 1.1 drochner {
223 1.8 augustss int i, ack = 0;
224 1.1 drochner
225 1.1 drochner /*
226 1.1 drochner * Make sure we're in TX mode.
227 1.1 drochner */
228 1.1 drochner TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
229 1.1 drochner
230 1.1 drochner /*
231 1.1 drochner * Feed in each bit and stobe the clock.
232 1.1 drochner */
233 1.1 drochner for (i = 0x80; i; i >>= 1) {
234 1.1 drochner if (byte & i) {
235 1.1 drochner TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
236 1.1 drochner } else {
237 1.1 drochner TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
238 1.1 drochner }
239 1.1 drochner DELAY(1);
240 1.1 drochner TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
241 1.1 drochner DELAY(1);
242 1.1 drochner TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
243 1.1 drochner }
244 1.1 drochner
245 1.1 drochner /*
246 1.1 drochner * Turn off TX mode.
247 1.1 drochner */
248 1.1 drochner TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
249 1.1 drochner
250 1.1 drochner /*
251 1.1 drochner * Check for ack.
252 1.1 drochner */
253 1.1 drochner TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 1.1 drochner ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
255 1.1 drochner TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256 1.1 drochner
257 1.1 drochner return(ack);
258 1.1 drochner }
259 1.1 drochner
260 1.1 drochner /*
261 1.1 drochner * Read a byte of data stored in the EEPROM at address 'addr.'
262 1.1 drochner * We have to send two address bytes since the EEPROM can hold
263 1.1 drochner * more than 256 bytes of data.
264 1.1 drochner */
265 1.1 drochner static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
266 1.1 drochner struct ti_softc *sc;
267 1.1 drochner int addr;
268 1.1 drochner u_int8_t *dest;
269 1.1 drochner {
270 1.8 augustss int i;
271 1.1 drochner u_int8_t byte = 0;
272 1.1 drochner
273 1.1 drochner EEPROM_START;
274 1.1 drochner
275 1.1 drochner /*
276 1.1 drochner * Send write control code to EEPROM.
277 1.1 drochner */
278 1.1 drochner if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
279 1.1 drochner printf("%s: failed to send write command, status: %x\n",
280 1.1 drochner sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
281 1.1 drochner return(1);
282 1.1 drochner }
283 1.1 drochner
284 1.1 drochner /*
285 1.1 drochner * Send first byte of address of byte we want to read.
286 1.1 drochner */
287 1.1 drochner if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
288 1.1 drochner printf("%s: failed to send address, status: %x\n",
289 1.1 drochner sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
290 1.1 drochner return(1);
291 1.1 drochner }
292 1.1 drochner /*
293 1.1 drochner * Send second byte address of byte we want to read.
294 1.1 drochner */
295 1.1 drochner if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
296 1.1 drochner printf("%s: failed to send address, status: %x\n",
297 1.1 drochner sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 1.1 drochner return(1);
299 1.1 drochner }
300 1.1 drochner
301 1.1 drochner EEPROM_STOP;
302 1.1 drochner EEPROM_START;
303 1.1 drochner /*
304 1.1 drochner * Send read control code to EEPROM.
305 1.1 drochner */
306 1.1 drochner if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
307 1.1 drochner printf("%s: failed to send read command, status: %x\n",
308 1.1 drochner sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
309 1.1 drochner return(1);
310 1.1 drochner }
311 1.1 drochner
312 1.1 drochner /*
313 1.1 drochner * Start reading bits from EEPROM.
314 1.1 drochner */
315 1.1 drochner TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
316 1.1 drochner for (i = 0x80; i; i >>= 1) {
317 1.1 drochner TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 1.1 drochner DELAY(1);
319 1.1 drochner if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
320 1.1 drochner byte |= i;
321 1.1 drochner TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 1.1 drochner DELAY(1);
323 1.1 drochner }
324 1.1 drochner
325 1.1 drochner EEPROM_STOP;
326 1.1 drochner
327 1.1 drochner /*
328 1.1 drochner * No ACK generated for read, so just return byte.
329 1.1 drochner */
330 1.1 drochner
331 1.1 drochner *dest = byte;
332 1.1 drochner
333 1.1 drochner return(0);
334 1.1 drochner }
335 1.1 drochner
336 1.1 drochner /*
337 1.1 drochner * Read a sequence of bytes from the EEPROM.
338 1.1 drochner */
339 1.1 drochner static int ti_read_eeprom(sc, dest, off, cnt)
340 1.1 drochner struct ti_softc *sc;
341 1.1 drochner caddr_t dest;
342 1.1 drochner int off;
343 1.1 drochner int cnt;
344 1.1 drochner {
345 1.1 drochner int err = 0, i;
346 1.1 drochner u_int8_t byte = 0;
347 1.1 drochner
348 1.1 drochner for (i = 0; i < cnt; i++) {
349 1.1 drochner err = ti_eeprom_getbyte(sc, off + i, &byte);
350 1.1 drochner if (err)
351 1.1 drochner break;
352 1.1 drochner *(dest + i) = byte;
353 1.1 drochner }
354 1.1 drochner
355 1.1 drochner return(err ? 1 : 0);
356 1.1 drochner }
357 1.1 drochner
358 1.1 drochner /*
359 1.1 drochner * NIC memory access function. Can be used to either clear a section
360 1.1 drochner * of NIC local memory or (if buf is non-NULL) copy data into it.
361 1.1 drochner */
362 1.1 drochner static void ti_mem(sc, addr, len, buf)
363 1.1 drochner struct ti_softc *sc;
364 1.1 drochner u_int32_t addr, len;
365 1.1 drochner caddr_t buf;
366 1.1 drochner {
367 1.1 drochner int segptr, segsize, cnt;
368 1.6 bouyer caddr_t ptr;
369 1.1 drochner
370 1.1 drochner segptr = addr;
371 1.1 drochner cnt = len;
372 1.1 drochner ptr = buf;
373 1.1 drochner
374 1.1 drochner while(cnt) {
375 1.1 drochner if (cnt < TI_WINLEN)
376 1.1 drochner segsize = cnt;
377 1.1 drochner else
378 1.1 drochner segsize = TI_WINLEN - (segptr % TI_WINLEN);
379 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
380 1.6 bouyer if (buf == NULL) {
381 1.6 bouyer bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
382 1.6 bouyer TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
383 1.6 bouyer segsize / 4);
384 1.6 bouyer } else {
385 1.6 bouyer bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
386 1.6 bouyer TI_WINDOW + (segptr & (TI_WINLEN - 1)),
387 1.6 bouyer (u_int32_t *)ptr, segsize / 4);
388 1.1 drochner ptr += segsize;
389 1.1 drochner }
390 1.1 drochner segptr += segsize;
391 1.1 drochner cnt -= segsize;
392 1.1 drochner }
393 1.1 drochner
394 1.1 drochner return;
395 1.1 drochner }
396 1.1 drochner
397 1.1 drochner /*
398 1.1 drochner * Load firmware image into the NIC. Check that the firmware revision
399 1.1 drochner * is acceptable and see if we want the firmware for the Tigon 1 or
400 1.1 drochner * Tigon 2.
401 1.1 drochner */
402 1.1 drochner static void ti_loadfw(sc)
403 1.1 drochner struct ti_softc *sc;
404 1.1 drochner {
405 1.1 drochner switch(sc->ti_hwrev) {
406 1.1 drochner case TI_HWREV_TIGON:
407 1.1 drochner if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
408 1.1 drochner tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
409 1.1 drochner tigonFwReleaseFix != TI_FIRMWARE_FIX) {
410 1.1 drochner printf("%s: firmware revision mismatch; want "
411 1.1 drochner "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
412 1.1 drochner TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
413 1.1 drochner TI_FIRMWARE_FIX, tigonFwReleaseMajor,
414 1.1 drochner tigonFwReleaseMinor, tigonFwReleaseFix);
415 1.1 drochner return;
416 1.1 drochner }
417 1.1 drochner ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
418 1.1 drochner (caddr_t)tigonFwText);
419 1.1 drochner ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
420 1.1 drochner (caddr_t)tigonFwData);
421 1.1 drochner ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
422 1.1 drochner (caddr_t)tigonFwRodata);
423 1.1 drochner ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
424 1.1 drochner ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
425 1.1 drochner CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
426 1.1 drochner break;
427 1.1 drochner case TI_HWREV_TIGON_II:
428 1.1 drochner if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
429 1.1 drochner tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
430 1.1 drochner tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
431 1.1 drochner printf("%s: firmware revision mismatch; want "
432 1.1 drochner "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
433 1.1 drochner TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
434 1.1 drochner TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
435 1.1 drochner tigon2FwReleaseMinor, tigon2FwReleaseFix);
436 1.1 drochner return;
437 1.1 drochner }
438 1.1 drochner ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
439 1.1 drochner (caddr_t)tigon2FwText);
440 1.1 drochner ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
441 1.1 drochner (caddr_t)tigon2FwData);
442 1.1 drochner ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
443 1.1 drochner (caddr_t)tigon2FwRodata);
444 1.1 drochner ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
445 1.1 drochner ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
446 1.1 drochner CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
447 1.1 drochner break;
448 1.1 drochner default:
449 1.1 drochner printf("%s: can't load firmware: unknown hardware rev\n",
450 1.1 drochner sc->sc_dev.dv_xname);
451 1.1 drochner break;
452 1.1 drochner }
453 1.1 drochner
454 1.1 drochner return;
455 1.1 drochner }
456 1.1 drochner
457 1.1 drochner /*
458 1.1 drochner * Send the NIC a command via the command ring.
459 1.1 drochner */
460 1.1 drochner static void ti_cmd(sc, cmd)
461 1.1 drochner struct ti_softc *sc;
462 1.1 drochner struct ti_cmd_desc *cmd;
463 1.1 drochner {
464 1.1 drochner u_int32_t index;
465 1.1 drochner
466 1.1 drochner index = sc->ti_cmd_saved_prodidx;
467 1.1 drochner CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
468 1.1 drochner TI_INC(index, TI_CMD_RING_CNT);
469 1.1 drochner CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
470 1.1 drochner sc->ti_cmd_saved_prodidx = index;
471 1.1 drochner
472 1.1 drochner return;
473 1.1 drochner }
474 1.1 drochner
475 1.1 drochner /*
476 1.1 drochner * Send the NIC an extended command. The 'len' parameter specifies the
477 1.1 drochner * number of command slots to include after the initial command.
478 1.1 drochner */
479 1.1 drochner static void ti_cmd_ext(sc, cmd, arg, len)
480 1.1 drochner struct ti_softc *sc;
481 1.1 drochner struct ti_cmd_desc *cmd;
482 1.1 drochner caddr_t arg;
483 1.1 drochner int len;
484 1.1 drochner {
485 1.1 drochner u_int32_t index;
486 1.8 augustss int i;
487 1.1 drochner
488 1.1 drochner index = sc->ti_cmd_saved_prodidx;
489 1.1 drochner CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
490 1.1 drochner TI_INC(index, TI_CMD_RING_CNT);
491 1.1 drochner for (i = 0; i < len; i++) {
492 1.1 drochner CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
493 1.1 drochner *(u_int32_t *)(&arg[i * 4]));
494 1.1 drochner TI_INC(index, TI_CMD_RING_CNT);
495 1.1 drochner }
496 1.1 drochner CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
497 1.1 drochner sc->ti_cmd_saved_prodidx = index;
498 1.1 drochner
499 1.1 drochner return;
500 1.1 drochner }
501 1.1 drochner
502 1.1 drochner /*
503 1.1 drochner * Handle events that have triggered interrupts.
504 1.1 drochner */
505 1.1 drochner static void ti_handle_events(sc)
506 1.1 drochner struct ti_softc *sc;
507 1.1 drochner {
508 1.1 drochner struct ti_event_desc *e;
509 1.1 drochner
510 1.1 drochner if (sc->ti_rdata->ti_event_ring == NULL)
511 1.1 drochner return;
512 1.1 drochner
513 1.1 drochner while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
514 1.1 drochner e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
515 1.1 drochner switch(e->ti_event) {
516 1.1 drochner case TI_EV_LINKSTAT_CHANGED:
517 1.1 drochner sc->ti_linkstat = e->ti_code;
518 1.1 drochner if (e->ti_code == TI_EV_CODE_LINK_UP)
519 1.1 drochner printf("%s: 10/100 link up\n",
520 1.1 drochner sc->sc_dev.dv_xname);
521 1.1 drochner else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
522 1.1 drochner printf("%s: gigabit link up\n",
523 1.1 drochner sc->sc_dev.dv_xname);
524 1.1 drochner else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
525 1.1 drochner printf("%s: link down\n",
526 1.1 drochner sc->sc_dev.dv_xname);
527 1.1 drochner break;
528 1.1 drochner case TI_EV_ERROR:
529 1.1 drochner if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
530 1.1 drochner printf("%s: invalid command\n",
531 1.1 drochner sc->sc_dev.dv_xname);
532 1.1 drochner else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
533 1.1 drochner printf("%s: unknown command\n",
534 1.1 drochner sc->sc_dev.dv_xname);
535 1.1 drochner else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
536 1.1 drochner printf("%s: bad config data\n",
537 1.1 drochner sc->sc_dev.dv_xname);
538 1.1 drochner break;
539 1.1 drochner case TI_EV_FIRMWARE_UP:
540 1.1 drochner ti_init2(sc);
541 1.1 drochner break;
542 1.1 drochner case TI_EV_STATS_UPDATED:
543 1.1 drochner ti_stats_update(sc);
544 1.1 drochner break;
545 1.1 drochner case TI_EV_RESET_JUMBO_RING:
546 1.1 drochner case TI_EV_MCAST_UPDATED:
547 1.1 drochner /* Who cares. */
548 1.1 drochner break;
549 1.1 drochner default:
550 1.1 drochner printf("%s: unknown event: %d\n",
551 1.1 drochner sc->sc_dev.dv_xname, e->ti_event);
552 1.1 drochner break;
553 1.1 drochner }
554 1.1 drochner /* Advance the consumer index. */
555 1.1 drochner TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
556 1.1 drochner CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
557 1.1 drochner }
558 1.1 drochner
559 1.1 drochner return;
560 1.1 drochner }
561 1.1 drochner
562 1.1 drochner /*
563 1.1 drochner * Memory management for the jumbo receive ring is a pain in the
564 1.1 drochner * butt. We need to allocate at least 9018 bytes of space per frame,
565 1.1 drochner * _and_ it has to be contiguous (unless you use the extended
566 1.1 drochner * jumbo descriptor format). Using malloc() all the time won't
567 1.1 drochner * work: malloc() allocates memory in powers of two, which means we
568 1.1 drochner * would end up wasting a considerable amount of space by allocating
569 1.1 drochner * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
570 1.1 drochner * to do our own memory management.
571 1.1 drochner *
572 1.1 drochner * The driver needs to allocate a contiguous chunk of memory at boot
573 1.1 drochner * time. We then chop this up ourselves into 9K pieces and use them
574 1.1 drochner * as external mbuf storage.
575 1.1 drochner *
576 1.1 drochner * One issue here is how much memory to allocate. The jumbo ring has
577 1.1 drochner * 256 slots in it, but at 9K per slot than can consume over 2MB of
578 1.1 drochner * RAM. This is a bit much, especially considering we also need
579 1.1 drochner * RAM for the standard ring and mini ring (on the Tigon 2). To
580 1.1 drochner * save space, we only actually allocate enough memory for 64 slots
581 1.1 drochner * by default, which works out to between 500 and 600K. This can
582 1.1 drochner * be tuned by changing a #define in if_tireg.h.
583 1.1 drochner */
584 1.1 drochner
585 1.1 drochner static int ti_alloc_jumbo_mem(sc)
586 1.1 drochner struct ti_softc *sc;
587 1.1 drochner {
588 1.1 drochner caddr_t ptr;
589 1.8 augustss int i;
590 1.1 drochner struct ti_jpool_entry *entry;
591 1.1 drochner bus_dma_segment_t dmaseg;
592 1.1 drochner int error, dmanseg;
593 1.1 drochner
594 1.1 drochner /* Grab a big chunk o' storage. */
595 1.1 drochner if ((error = bus_dmamem_alloc(sc->sc_dmat,
596 1.13 thorpej TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
597 1.1 drochner BUS_DMA_NOWAIT)) != 0) {
598 1.1 drochner printf("%s: can't allocate jumbo buffer, error = %d\n",
599 1.1 drochner sc->sc_dev.dv_xname, error);
600 1.1 drochner return (error);
601 1.1 drochner }
602 1.1 drochner
603 1.1 drochner if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
604 1.1 drochner TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
605 1.1 drochner BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
606 1.1 drochner printf("%s: can't map jumbo buffer, error = %d\n",
607 1.1 drochner sc->sc_dev.dv_xname, error);
608 1.1 drochner return (error);
609 1.1 drochner }
610 1.1 drochner
611 1.1 drochner if ((error = bus_dmamap_create(sc->sc_dmat,
612 1.1 drochner TI_JMEM, 1,
613 1.1 drochner TI_JMEM, 0, BUS_DMA_NOWAIT,
614 1.1 drochner &sc->jumbo_dmamap)) != 0) {
615 1.1 drochner printf("%s: can't create jumbo buffer DMA map, error = %d\n",
616 1.1 drochner sc->sc_dev.dv_xname, error);
617 1.1 drochner return (error);
618 1.1 drochner }
619 1.1 drochner
620 1.1 drochner if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
621 1.1 drochner sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
622 1.1 drochner BUS_DMA_NOWAIT)) != 0) {
623 1.1 drochner printf("%s: can't load jumbo buffer DMA map, error = %d\n",
624 1.1 drochner sc->sc_dev.dv_xname, error);
625 1.1 drochner return (error);
626 1.1 drochner }
627 1.1 drochner sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
628 1.1 drochner
629 1.1 drochner SIMPLEQ_INIT(&sc->ti_jfree_listhead);
630 1.1 drochner SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
631 1.1 drochner
632 1.1 drochner /*
633 1.1 drochner * Now divide it up into 9K pieces and save the addresses
634 1.15 bouyer * in an array.
635 1.1 drochner */
636 1.1 drochner ptr = sc->ti_cdata.ti_jumbo_buf;
637 1.1 drochner for (i = 0; i < TI_JSLOTS; i++) {
638 1.15 bouyer sc->ti_cdata.ti_jslots[i] = ptr;
639 1.15 bouyer ptr += TI_JLEN;
640 1.1 drochner entry = malloc(sizeof(struct ti_jpool_entry),
641 1.1 drochner M_DEVBUF, M_NOWAIT);
642 1.1 drochner if (entry == NULL) {
643 1.1 drochner free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
644 1.1 drochner sc->ti_cdata.ti_jumbo_buf = NULL;
645 1.1 drochner printf("%s: no memory for jumbo "
646 1.1 drochner "buffer queue!\n", sc->sc_dev.dv_xname);
647 1.1 drochner return(ENOBUFS);
648 1.1 drochner }
649 1.1 drochner entry->slot = i;
650 1.1 drochner SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
651 1.1 drochner jpool_entries);
652 1.1 drochner }
653 1.1 drochner
654 1.1 drochner return(0);
655 1.1 drochner }
656 1.1 drochner
657 1.1 drochner /*
658 1.1 drochner * Allocate a jumbo buffer.
659 1.1 drochner */
660 1.1 drochner static void *ti_jalloc(sc)
661 1.1 drochner struct ti_softc *sc;
662 1.1 drochner {
663 1.1 drochner struct ti_jpool_entry *entry;
664 1.1 drochner
665 1.1 drochner entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
666 1.1 drochner
667 1.1 drochner if (entry == NULL) {
668 1.1 drochner printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
669 1.1 drochner return(NULL);
670 1.1 drochner }
671 1.1 drochner
672 1.1 drochner SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
673 1.1 drochner SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
674 1.15 bouyer return(sc->ti_cdata.ti_jslots[entry->slot]);
675 1.1 drochner }
676 1.1 drochner
677 1.1 drochner /*
678 1.1 drochner * Release a jumbo buffer.
679 1.1 drochner */
680 1.1 drochner static void ti_jfree(buf, size, arg)
681 1.1 drochner caddr_t buf;
682 1.1 drochner u_int size;
683 1.15 bouyer void *arg;
684 1.1 drochner {
685 1.1 drochner struct ti_softc *sc;
686 1.1 drochner int i;
687 1.1 drochner struct ti_jpool_entry *entry;
688 1.1 drochner
689 1.1 drochner /* Extract the softc struct pointer. */
690 1.15 bouyer sc = (struct ti_softc *)arg;
691 1.1 drochner
692 1.1 drochner if (sc == NULL)
693 1.15 bouyer panic("ti_jfree: didn't get softc pointer!");
694 1.1 drochner
695 1.1 drochner /* calculate the slot this buffer belongs to */
696 1.1 drochner
697 1.15 bouyer i = ((caddr_t)buf
698 1.1 drochner - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
699 1.1 drochner
700 1.1 drochner if ((i < 0) || (i >= TI_JSLOTS))
701 1.1 drochner panic("ti_jfree: asked to free buffer that we don't manage!");
702 1.15 bouyer entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
703 1.15 bouyer if (entry == NULL)
704 1.15 bouyer panic("ti_jfree: buffer not in use!");
705 1.15 bouyer entry->slot = i;
706 1.15 bouyer SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
707 1.15 bouyer entry, jpool_entries);
708 1.15 bouyer SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
709 1.15 bouyer entry, jpool_entries);
710 1.1 drochner
711 1.1 drochner return;
712 1.1 drochner }
713 1.1 drochner
714 1.1 drochner
715 1.1 drochner /*
716 1.1 drochner * Intialize a standard receive ring descriptor.
717 1.1 drochner */
718 1.1 drochner static int ti_newbuf_std(sc, i, m, dmamap)
719 1.1 drochner struct ti_softc *sc;
720 1.1 drochner int i;
721 1.1 drochner struct mbuf *m;
722 1.1 drochner bus_dmamap_t dmamap; /* required if (m != NULL) */
723 1.1 drochner {
724 1.1 drochner struct mbuf *m_new = NULL;
725 1.1 drochner struct ti_rx_desc *r;
726 1.1 drochner int error;
727 1.1 drochner
728 1.1 drochner if (dmamap == NULL) {
729 1.1 drochner /* if (m) panic() */
730 1.1 drochner
731 1.1 drochner if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
732 1.1 drochner MCLBYTES, 0, BUS_DMA_NOWAIT,
733 1.1 drochner &dmamap)) != 0) {
734 1.1 drochner printf("%s: can't create recv map, error = %d\n",
735 1.1 drochner sc->sc_dev.dv_xname, error);
736 1.1 drochner return(ENOMEM);
737 1.1 drochner }
738 1.1 drochner }
739 1.1 drochner sc->std_dmamap[i] = dmamap;
740 1.1 drochner
741 1.1 drochner if (m == NULL) {
742 1.1 drochner MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 1.1 drochner if (m_new == NULL) {
744 1.1 drochner printf("%s: mbuf allocation failed "
745 1.1 drochner "-- packet dropped!\n", sc->sc_dev.dv_xname);
746 1.1 drochner return(ENOBUFS);
747 1.1 drochner }
748 1.1 drochner
749 1.1 drochner MCLGET(m_new, M_DONTWAIT);
750 1.1 drochner if (!(m_new->m_flags & M_EXT)) {
751 1.1 drochner printf("%s: cluster allocation failed "
752 1.1 drochner "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 1.1 drochner m_freem(m_new);
754 1.1 drochner return(ENOBUFS);
755 1.1 drochner }
756 1.1 drochner m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
757 1.1 drochner m_adj(m_new, ETHER_ALIGN);
758 1.1 drochner
759 1.1 drochner if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
760 1.1 drochner mtod(m_new, caddr_t), m_new->m_len, NULL,
761 1.1 drochner BUS_DMA_NOWAIT)) != 0) {
762 1.1 drochner printf("%s: can't load recv map, error = %d\n",
763 1.1 drochner sc->sc_dev.dv_xname, error);
764 1.1 drochner return (ENOMEM);
765 1.1 drochner }
766 1.1 drochner } else {
767 1.1 drochner m_new = m;
768 1.1 drochner m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
769 1.1 drochner m_new->m_data = m_new->m_ext.ext_buf;
770 1.1 drochner m_adj(m_new, ETHER_ALIGN);
771 1.1 drochner
772 1.1 drochner /* reuse the dmamap */
773 1.1 drochner }
774 1.1 drochner
775 1.1 drochner sc->ti_cdata.ti_rx_std_chain[i] = m_new;
776 1.1 drochner r = &sc->ti_rdata->ti_rx_std_ring[i];
777 1.1 drochner TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
778 1.1 drochner r->ti_type = TI_BDTYPE_RECV_BD;
779 1.1 drochner #ifdef TI_CSUM_OFFLOAD
780 1.1 drochner r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
781 1.1 drochner #else
782 1.1 drochner r->ti_flags = 0;
783 1.1 drochner #endif
784 1.1 drochner r->ti_len = m_new->m_len; /* == ds_len */
785 1.1 drochner r->ti_idx = i;
786 1.1 drochner
787 1.1 drochner return(0);
788 1.1 drochner }
789 1.1 drochner
790 1.1 drochner /*
791 1.1 drochner * Intialize a mini receive ring descriptor. This only applies to
792 1.1 drochner * the Tigon 2.
793 1.1 drochner */
794 1.1 drochner static int ti_newbuf_mini(sc, i, m, dmamap)
795 1.1 drochner struct ti_softc *sc;
796 1.1 drochner int i;
797 1.1 drochner struct mbuf *m;
798 1.1 drochner bus_dmamap_t dmamap; /* required if (m != NULL) */
799 1.1 drochner {
800 1.1 drochner struct mbuf *m_new = NULL;
801 1.1 drochner struct ti_rx_desc *r;
802 1.1 drochner int error;
803 1.1 drochner
804 1.1 drochner if (dmamap == NULL) {
805 1.1 drochner /* if (m) panic() */
806 1.1 drochner
807 1.1 drochner if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
808 1.1 drochner MHLEN, 0, BUS_DMA_NOWAIT,
809 1.1 drochner &dmamap)) != 0) {
810 1.1 drochner printf("%s: can't create recv map, error = %d\n",
811 1.1 drochner sc->sc_dev.dv_xname, error);
812 1.1 drochner return(ENOMEM);
813 1.1 drochner }
814 1.1 drochner }
815 1.1 drochner sc->mini_dmamap[i] = dmamap;
816 1.1 drochner
817 1.1 drochner if (m == NULL) {
818 1.1 drochner MGETHDR(m_new, M_DONTWAIT, MT_DATA);
819 1.1 drochner if (m_new == NULL) {
820 1.1 drochner printf("%s: mbuf allocation failed "
821 1.1 drochner "-- packet dropped!\n", sc->sc_dev.dv_xname);
822 1.1 drochner return(ENOBUFS);
823 1.1 drochner }
824 1.1 drochner m_new->m_len = m_new->m_pkthdr.len = MHLEN;
825 1.1 drochner m_adj(m_new, ETHER_ALIGN);
826 1.1 drochner
827 1.1 drochner if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
828 1.1 drochner mtod(m_new, caddr_t), m_new->m_len, NULL,
829 1.1 drochner BUS_DMA_NOWAIT)) != 0) {
830 1.1 drochner printf("%s: can't load recv map, error = %d\n",
831 1.1 drochner sc->sc_dev.dv_xname, error);
832 1.1 drochner return (ENOMEM);
833 1.1 drochner }
834 1.1 drochner } else {
835 1.1 drochner m_new = m;
836 1.1 drochner m_new->m_data = m_new->m_pktdat;
837 1.1 drochner m_new->m_len = m_new->m_pkthdr.len = MHLEN;
838 1.1 drochner m_adj(m_new, ETHER_ALIGN);
839 1.1 drochner
840 1.1 drochner /* reuse the dmamap */
841 1.1 drochner }
842 1.1 drochner
843 1.1 drochner r = &sc->ti_rdata->ti_rx_mini_ring[i];
844 1.1 drochner sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
845 1.1 drochner TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
846 1.1 drochner r->ti_type = TI_BDTYPE_RECV_BD;
847 1.1 drochner r->ti_flags = TI_BDFLAG_MINI_RING;
848 1.1 drochner #ifdef TI_CSUM_OFFLOAD
849 1.1 drochner r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
850 1.1 drochner #endif
851 1.1 drochner r->ti_len = m_new->m_len; /* == ds_len */
852 1.1 drochner r->ti_idx = i;
853 1.1 drochner
854 1.1 drochner return(0);
855 1.1 drochner }
856 1.1 drochner
857 1.1 drochner /*
858 1.1 drochner * Initialize a jumbo receive ring descriptor. This allocates
859 1.1 drochner * a jumbo buffer from the pool managed internally by the driver.
860 1.1 drochner */
861 1.1 drochner static int ti_newbuf_jumbo(sc, i, m)
862 1.1 drochner struct ti_softc *sc;
863 1.1 drochner int i;
864 1.1 drochner struct mbuf *m;
865 1.1 drochner {
866 1.1 drochner struct mbuf *m_new = NULL;
867 1.1 drochner struct ti_rx_desc *r;
868 1.1 drochner
869 1.1 drochner if (m == NULL) {
870 1.1 drochner caddr_t *buf = NULL;
871 1.1 drochner
872 1.1 drochner /* Allocate the mbuf. */
873 1.1 drochner MGETHDR(m_new, M_DONTWAIT, MT_DATA);
874 1.1 drochner if (m_new == NULL) {
875 1.1 drochner printf("%s: mbuf allocation failed "
876 1.1 drochner "-- packet dropped!\n", sc->sc_dev.dv_xname);
877 1.1 drochner return(ENOBUFS);
878 1.1 drochner }
879 1.1 drochner
880 1.1 drochner /* Allocate the jumbo buffer */
881 1.1 drochner buf = ti_jalloc(sc);
882 1.1 drochner if (buf == NULL) {
883 1.1 drochner m_freem(m_new);
884 1.1 drochner printf("%s: jumbo allocation failed "
885 1.1 drochner "-- packet dropped!\n", sc->sc_dev.dv_xname);
886 1.1 drochner return(ENOBUFS);
887 1.1 drochner }
888 1.1 drochner
889 1.1 drochner /* Attach the buffer to the mbuf. */
890 1.1 drochner m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
891 1.1 drochner m_new->m_flags |= M_EXT;
892 1.1 drochner m_new->m_len = m_new->m_pkthdr.len =
893 1.1 drochner m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
894 1.1 drochner m_new->m_ext.ext_free = ti_jfree;
895 1.1 drochner m_new->m_ext.ext_arg = sc;
896 1.1 drochner MCLINITREFERENCE(m_new);
897 1.1 drochner } else {
898 1.1 drochner m_new = m;
899 1.1 drochner m_new->m_data = m_new->m_ext.ext_buf;
900 1.1 drochner m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
901 1.1 drochner }
902 1.1 drochner
903 1.1 drochner m_adj(m_new, ETHER_ALIGN);
904 1.1 drochner /* Set up the descriptor. */
905 1.1 drochner r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
906 1.1 drochner sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
907 1.1 drochner TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
908 1.1 drochner ((caddr_t)mtod(m_new, caddr_t)
909 1.1 drochner - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
910 1.1 drochner r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
911 1.1 drochner r->ti_flags = TI_BDFLAG_JUMBO_RING;
912 1.1 drochner #ifdef TI_CSUM_OFFLOAD
913 1.1 drochner r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
914 1.1 drochner #endif
915 1.1 drochner r->ti_len = m_new->m_len;
916 1.1 drochner r->ti_idx = i;
917 1.1 drochner
918 1.1 drochner return(0);
919 1.1 drochner }
920 1.1 drochner
921 1.1 drochner /*
922 1.1 drochner * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
923 1.1 drochner * that's 1MB or memory, which is a lot. For now, we fill only the first
924 1.1 drochner * 256 ring entries and hope that our CPU is fast enough to keep up with
925 1.1 drochner * the NIC.
926 1.1 drochner */
927 1.1 drochner static int ti_init_rx_ring_std(sc)
928 1.1 drochner struct ti_softc *sc;
929 1.1 drochner {
930 1.8 augustss int i;
931 1.1 drochner struct ti_cmd_desc cmd;
932 1.1 drochner
933 1.1 drochner for (i = 0; i < TI_SSLOTS; i++) {
934 1.1 drochner if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
935 1.1 drochner return(ENOBUFS);
936 1.1 drochner };
937 1.1 drochner
938 1.1 drochner TI_UPDATE_STDPROD(sc, i - 1);
939 1.1 drochner sc->ti_std = i - 1;
940 1.1 drochner
941 1.1 drochner return(0);
942 1.1 drochner }
943 1.1 drochner
944 1.1 drochner static void ti_free_rx_ring_std(sc)
945 1.1 drochner struct ti_softc *sc;
946 1.1 drochner {
947 1.8 augustss int i;
948 1.1 drochner
949 1.1 drochner for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
950 1.1 drochner if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
951 1.1 drochner m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
952 1.1 drochner sc->ti_cdata.ti_rx_std_chain[i] = NULL;
953 1.1 drochner
954 1.1 drochner /* if (sc->std_dmamap[i] == 0) panic() */
955 1.1 drochner bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
956 1.1 drochner sc->std_dmamap[i] = 0;
957 1.1 drochner }
958 1.1 drochner bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
959 1.1 drochner sizeof(struct ti_rx_desc));
960 1.1 drochner }
961 1.1 drochner
962 1.1 drochner return;
963 1.1 drochner }
964 1.1 drochner
965 1.1 drochner static int ti_init_rx_ring_jumbo(sc)
966 1.1 drochner struct ti_softc *sc;
967 1.1 drochner {
968 1.8 augustss int i;
969 1.1 drochner struct ti_cmd_desc cmd;
970 1.1 drochner
971 1.1 drochner for (i = 0; i < (TI_JSLOTS - 20); i++) {
972 1.1 drochner if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
973 1.1 drochner return(ENOBUFS);
974 1.1 drochner };
975 1.1 drochner
976 1.1 drochner TI_UPDATE_JUMBOPROD(sc, i - 1);
977 1.1 drochner sc->ti_jumbo = i - 1;
978 1.1 drochner
979 1.1 drochner return(0);
980 1.1 drochner }
981 1.1 drochner
982 1.1 drochner static void ti_free_rx_ring_jumbo(sc)
983 1.1 drochner struct ti_softc *sc;
984 1.1 drochner {
985 1.8 augustss int i;
986 1.1 drochner
987 1.1 drochner for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
988 1.1 drochner if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
989 1.1 drochner m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
990 1.1 drochner sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
991 1.1 drochner }
992 1.1 drochner bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
993 1.1 drochner sizeof(struct ti_rx_desc));
994 1.1 drochner }
995 1.1 drochner
996 1.1 drochner return;
997 1.1 drochner }
998 1.1 drochner
999 1.1 drochner static int ti_init_rx_ring_mini(sc)
1000 1.1 drochner struct ti_softc *sc;
1001 1.1 drochner {
1002 1.8 augustss int i;
1003 1.1 drochner
1004 1.1 drochner for (i = 0; i < TI_MSLOTS; i++) {
1005 1.1 drochner if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1006 1.1 drochner return(ENOBUFS);
1007 1.1 drochner };
1008 1.1 drochner
1009 1.1 drochner TI_UPDATE_MINIPROD(sc, i - 1);
1010 1.1 drochner sc->ti_mini = i - 1;
1011 1.1 drochner
1012 1.1 drochner return(0);
1013 1.1 drochner }
1014 1.1 drochner
1015 1.1 drochner static void ti_free_rx_ring_mini(sc)
1016 1.1 drochner struct ti_softc *sc;
1017 1.1 drochner {
1018 1.8 augustss int i;
1019 1.1 drochner
1020 1.1 drochner for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021 1.1 drochner if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1022 1.1 drochner m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1023 1.1 drochner sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1024 1.1 drochner
1025 1.1 drochner /* if (sc->mini_dmamap[i] == 0) panic() */
1026 1.1 drochner bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1027 1.1 drochner sc->mini_dmamap[i] = 0;
1028 1.1 drochner }
1029 1.1 drochner bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1030 1.1 drochner sizeof(struct ti_rx_desc));
1031 1.1 drochner }
1032 1.1 drochner
1033 1.1 drochner return;
1034 1.1 drochner }
1035 1.1 drochner
1036 1.1 drochner static void ti_free_tx_ring(sc)
1037 1.1 drochner struct ti_softc *sc;
1038 1.1 drochner {
1039 1.8 augustss int i;
1040 1.1 drochner struct txdmamap_pool_entry *dma;
1041 1.1 drochner
1042 1.1 drochner if (sc->ti_rdata->ti_tx_ring == NULL)
1043 1.1 drochner return;
1044 1.1 drochner
1045 1.1 drochner for (i = 0; i < TI_TX_RING_CNT; i++) {
1046 1.1 drochner if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1047 1.1 drochner m_freem(sc->ti_cdata.ti_tx_chain[i]);
1048 1.1 drochner sc->ti_cdata.ti_tx_chain[i] = NULL;
1049 1.1 drochner
1050 1.1 drochner /* if (sc->txdma[i] == 0) panic() */
1051 1.1 drochner SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1052 1.1 drochner link);
1053 1.1 drochner sc->txdma[i] = 0;
1054 1.1 drochner }
1055 1.1 drochner bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1056 1.1 drochner sizeof(struct ti_tx_desc));
1057 1.1 drochner }
1058 1.1 drochner
1059 1.1 drochner while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1060 1.1 drochner SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1061 1.1 drochner bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1062 1.1 drochner free(dma, M_DEVBUF);
1063 1.1 drochner }
1064 1.1 drochner
1065 1.1 drochner return;
1066 1.1 drochner }
1067 1.1 drochner
1068 1.1 drochner static int ti_init_tx_ring(sc)
1069 1.1 drochner struct ti_softc *sc;
1070 1.1 drochner {
1071 1.1 drochner int i, error;
1072 1.1 drochner bus_dmamap_t dmamap;
1073 1.1 drochner struct txdmamap_pool_entry *dma;
1074 1.1 drochner
1075 1.1 drochner sc->ti_txcnt = 0;
1076 1.1 drochner sc->ti_tx_saved_considx = 0;
1077 1.1 drochner CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1078 1.1 drochner
1079 1.1 drochner SIMPLEQ_INIT(&sc->txdma_list);
1080 1.1 drochner for (i = 0; i < TI_RSLOTS; i++) {
1081 1.1 drochner /* I've seen mbufs with 30 fragments. */
1082 1.1 drochner if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1083 1.1 drochner 40, TI_JUMBO_FRAMELEN, 0,
1084 1.1 drochner BUS_DMA_NOWAIT, &dmamap)) != 0) {
1085 1.1 drochner printf("%s: can't create tx map, error = %d\n",
1086 1.1 drochner sc->sc_dev.dv_xname, error);
1087 1.1 drochner return(ENOMEM);
1088 1.1 drochner }
1089 1.1 drochner dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1090 1.1 drochner if (!dma) {
1091 1.1 drochner printf("%s: can't alloc txdmamap_pool_entry\n",
1092 1.1 drochner sc->sc_dev.dv_xname);
1093 1.1 drochner bus_dmamap_destroy(sc->sc_dmat, dmamap);
1094 1.1 drochner return (ENOMEM);
1095 1.1 drochner }
1096 1.1 drochner dma->dmamap = dmamap;
1097 1.1 drochner SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1098 1.1 drochner }
1099 1.1 drochner
1100 1.1 drochner return(0);
1101 1.1 drochner }
1102 1.1 drochner
1103 1.1 drochner /*
1104 1.1 drochner * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1105 1.1 drochner * but we have to support the old way too so that Tigon 1 cards will
1106 1.1 drochner * work.
1107 1.1 drochner */
1108 1.1 drochner void ti_add_mcast(sc, addr)
1109 1.1 drochner struct ti_softc *sc;
1110 1.1 drochner struct ether_addr *addr;
1111 1.1 drochner {
1112 1.1 drochner struct ti_cmd_desc cmd;
1113 1.1 drochner u_int16_t *m;
1114 1.1 drochner u_int32_t ext[2] = {0, 0};
1115 1.1 drochner
1116 1.1 drochner m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1117 1.1 drochner
1118 1.1 drochner switch(sc->ti_hwrev) {
1119 1.1 drochner case TI_HWREV_TIGON:
1120 1.1 drochner CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1121 1.1 drochner CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1122 1.1 drochner TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1123 1.1 drochner break;
1124 1.1 drochner case TI_HWREV_TIGON_II:
1125 1.1 drochner ext[0] = htons(m[0]);
1126 1.1 drochner ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1127 1.1 drochner TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1128 1.1 drochner break;
1129 1.1 drochner default:
1130 1.1 drochner printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1131 1.1 drochner break;
1132 1.1 drochner }
1133 1.1 drochner
1134 1.1 drochner return;
1135 1.1 drochner }
1136 1.1 drochner
1137 1.1 drochner void ti_del_mcast(sc, addr)
1138 1.1 drochner struct ti_softc *sc;
1139 1.1 drochner struct ether_addr *addr;
1140 1.1 drochner {
1141 1.1 drochner struct ti_cmd_desc cmd;
1142 1.1 drochner u_int16_t *m;
1143 1.1 drochner u_int32_t ext[2] = {0, 0};
1144 1.1 drochner
1145 1.1 drochner m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1146 1.1 drochner
1147 1.1 drochner switch(sc->ti_hwrev) {
1148 1.1 drochner case TI_HWREV_TIGON:
1149 1.1 drochner CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1150 1.1 drochner CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1151 1.1 drochner TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1152 1.1 drochner break;
1153 1.1 drochner case TI_HWREV_TIGON_II:
1154 1.1 drochner ext[0] = htons(m[0]);
1155 1.1 drochner ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1156 1.1 drochner TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1157 1.1 drochner break;
1158 1.1 drochner default:
1159 1.1 drochner printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1160 1.1 drochner break;
1161 1.1 drochner }
1162 1.1 drochner
1163 1.1 drochner return;
1164 1.1 drochner }
1165 1.1 drochner
1166 1.1 drochner /*
1167 1.1 drochner * Configure the Tigon's multicast address filter.
1168 1.1 drochner *
1169 1.1 drochner * The actual multicast table management is a bit of a pain, thanks to
1170 1.1 drochner * slight brain damage on the part of both Alteon and us. With our
1171 1.1 drochner * multicast code, we are only alerted when the multicast address table
1172 1.1 drochner * changes and at that point we only have the current list of addresses:
1173 1.1 drochner * we only know the current state, not the previous state, so we don't
1174 1.1 drochner * actually know what addresses were removed or added. The firmware has
1175 1.1 drochner * state, but we can't get our grubby mits on it, and there is no 'delete
1176 1.1 drochner * all multicast addresses' command. Hence, we have to maintain our own
1177 1.1 drochner * state so we know what addresses have been programmed into the NIC at
1178 1.1 drochner * any given time.
1179 1.1 drochner */
1180 1.1 drochner static void ti_setmulti(sc)
1181 1.1 drochner struct ti_softc *sc;
1182 1.1 drochner {
1183 1.1 drochner struct ifnet *ifp;
1184 1.1 drochner struct ti_cmd_desc cmd;
1185 1.1 drochner struct ti_mc_entry *mc;
1186 1.1 drochner u_int32_t intrs;
1187 1.1 drochner struct ether_multi *enm;
1188 1.1 drochner struct ether_multistep step;
1189 1.1 drochner
1190 1.1 drochner ifp = &sc->ethercom.ec_if;
1191 1.1 drochner
1192 1.1 drochner /* Disable interrupts. */
1193 1.1 drochner intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1194 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1195 1.1 drochner
1196 1.1 drochner /* First, zot all the existing filters. */
1197 1.20 enami while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1198 1.1 drochner ti_del_mcast(sc, &mc->mc_addr);
1199 1.1 drochner SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1200 1.1 drochner free(mc, M_DEVBUF);
1201 1.1 drochner }
1202 1.1 drochner
1203 1.20 enami /*
1204 1.20 enami * Remember all multicast addresses so that we can delete them
1205 1.20 enami * later. Punt if there is a range of addresses or memory shortage.
1206 1.20 enami */
1207 1.1 drochner ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1208 1.1 drochner while (enm != NULL) {
1209 1.20 enami if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1210 1.20 enami ETHER_ADDR_LEN) != 0)
1211 1.20 enami goto allmulti;
1212 1.20 enami if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1213 1.20 enami M_NOWAIT)) == NULL)
1214 1.20 enami goto allmulti;
1215 1.20 enami memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1216 1.1 drochner SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1217 1.1 drochner ETHER_NEXT_MULTI(step, enm);
1218 1.1 drochner }
1219 1.1 drochner
1220 1.20 enami /* Accept only programmed multicast addresses */
1221 1.20 enami ifp->if_flags &= ~IFF_ALLMULTI;
1222 1.20 enami TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1223 1.20 enami
1224 1.20 enami /* Now program new ones. */
1225 1.20 enami for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
1226 1.20 enami mc = SIMPLEQ_NEXT(mc, mc_entries))
1227 1.20 enami ti_add_mcast(sc, &mc->mc_addr);
1228 1.20 enami
1229 1.1 drochner /* Re-enable interrupts. */
1230 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1231 1.1 drochner
1232 1.1 drochner return;
1233 1.20 enami
1234 1.20 enami allmulti:
1235 1.20 enami /* No need to keep individual multicast addresses */
1236 1.20 enami while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1237 1.20 enami SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
1238 1.20 enami mc_entries);
1239 1.20 enami free(mc, M_DEVBUF);
1240 1.20 enami }
1241 1.20 enami
1242 1.20 enami /* Accept all multicast addresses */
1243 1.20 enami ifp->if_flags |= IFF_ALLMULTI;
1244 1.20 enami TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1245 1.20 enami
1246 1.20 enami /* Re-enable interrupts. */
1247 1.20 enami CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1248 1.1 drochner }
1249 1.1 drochner
1250 1.1 drochner /*
1251 1.1 drochner * Check to see if the BIOS has configured us for a 64 bit slot when
1252 1.1 drochner * we aren't actually in one. If we detect this condition, we can work
1253 1.1 drochner * around it on the Tigon 2 by setting a bit in the PCI state register,
1254 1.1 drochner * but for the Tigon 1 we must give up and abort the interface attach.
1255 1.1 drochner */
1256 1.1 drochner static int ti_64bitslot_war(sc)
1257 1.1 drochner struct ti_softc *sc;
1258 1.1 drochner {
1259 1.1 drochner if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1260 1.1 drochner CSR_WRITE_4(sc, 0x600, 0);
1261 1.1 drochner CSR_WRITE_4(sc, 0x604, 0);
1262 1.1 drochner CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1263 1.1 drochner if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1264 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON)
1265 1.1 drochner return(EINVAL);
1266 1.1 drochner else {
1267 1.1 drochner TI_SETBIT(sc, TI_PCI_STATE,
1268 1.1 drochner TI_PCISTATE_32BIT_BUS);
1269 1.1 drochner return(0);
1270 1.1 drochner }
1271 1.1 drochner }
1272 1.1 drochner }
1273 1.1 drochner
1274 1.1 drochner return(0);
1275 1.1 drochner }
1276 1.1 drochner
1277 1.1 drochner /*
1278 1.1 drochner * Do endian, PCI and DMA initialization. Also check the on-board ROM
1279 1.1 drochner * self-test results.
1280 1.1 drochner */
1281 1.1 drochner static int ti_chipinit(sc)
1282 1.1 drochner struct ti_softc *sc;
1283 1.1 drochner {
1284 1.1 drochner u_int32_t cacheline;
1285 1.1 drochner u_int32_t pci_writemax = 0;
1286 1.1 drochner
1287 1.1 drochner /* Initialize link to down state. */
1288 1.1 drochner sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1289 1.1 drochner
1290 1.1 drochner /* Set endianness before we access any non-PCI registers. */
1291 1.1 drochner #if BYTE_ORDER == BIG_ENDIAN
1292 1.1 drochner CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1293 1.1 drochner TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1294 1.1 drochner #else
1295 1.1 drochner CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1296 1.1 drochner TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1297 1.1 drochner #endif
1298 1.1 drochner
1299 1.1 drochner /* Check the ROM failed bit to see if self-tests passed. */
1300 1.1 drochner if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1301 1.1 drochner printf("%s: board self-diagnostics failed!\n",
1302 1.1 drochner sc->sc_dev.dv_xname);
1303 1.1 drochner return(ENODEV);
1304 1.1 drochner }
1305 1.1 drochner
1306 1.1 drochner /* Halt the CPU. */
1307 1.1 drochner TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1308 1.1 drochner
1309 1.1 drochner /* Figure out the hardware revision. */
1310 1.1 drochner switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1311 1.1 drochner case TI_REV_TIGON_I:
1312 1.1 drochner sc->ti_hwrev = TI_HWREV_TIGON;
1313 1.1 drochner break;
1314 1.1 drochner case TI_REV_TIGON_II:
1315 1.1 drochner sc->ti_hwrev = TI_HWREV_TIGON_II;
1316 1.1 drochner break;
1317 1.1 drochner default:
1318 1.1 drochner printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1319 1.1 drochner return(ENODEV);
1320 1.1 drochner }
1321 1.1 drochner
1322 1.1 drochner /* Do special setup for Tigon 2. */
1323 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1324 1.1 drochner TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1325 1.1 drochner TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1326 1.1 drochner TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1327 1.1 drochner }
1328 1.1 drochner
1329 1.1 drochner /* Set up the PCI state register. */
1330 1.1 drochner CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1331 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1332 1.1 drochner TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1333 1.1 drochner }
1334 1.1 drochner
1335 1.1 drochner /* Clear the read/write max DMA parameters. */
1336 1.1 drochner TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1337 1.1 drochner TI_PCISTATE_READ_MAXDMA));
1338 1.1 drochner
1339 1.1 drochner /* Get cache line size. */
1340 1.1 drochner cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1341 1.1 drochner
1342 1.1 drochner /*
1343 1.1 drochner * If the system has set enabled the PCI memory write
1344 1.1 drochner * and invalidate command in the command register, set
1345 1.1 drochner * the write max parameter accordingly. This is necessary
1346 1.1 drochner * to use MWI with the Tigon 2.
1347 1.1 drochner */
1348 1.1 drochner if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1349 1.1 drochner & PCI_COMMAND_INVALIDATE_ENABLE) {
1350 1.1 drochner switch(cacheline) {
1351 1.1 drochner case 1:
1352 1.1 drochner case 4:
1353 1.1 drochner case 8:
1354 1.1 drochner case 16:
1355 1.1 drochner case 32:
1356 1.1 drochner case 64:
1357 1.1 drochner break;
1358 1.1 drochner default:
1359 1.1 drochner /* Disable PCI memory write and invalidate. */
1360 1.1 drochner if (bootverbose)
1361 1.1 drochner printf("%s: cache line size %d not "
1362 1.1 drochner "supported; disabling PCI MWI\n",
1363 1.1 drochner sc->sc_dev.dv_xname, cacheline);
1364 1.1 drochner CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1365 1.1 drochner CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1366 1.1 drochner & ~PCI_COMMAND_INVALIDATE_ENABLE);
1367 1.1 drochner break;
1368 1.1 drochner }
1369 1.1 drochner }
1370 1.1 drochner
1371 1.1 drochner #ifdef __brokenalpha__
1372 1.1 drochner /*
1373 1.1 drochner * From the Alteon sample driver:
1374 1.1 drochner * Must insure that we do not cross an 8K (bytes) boundary
1375 1.1 drochner * for DMA reads. Our highest limit is 1K bytes. This is a
1376 1.1 drochner * restriction on some ALPHA platforms with early revision
1377 1.1 drochner * 21174 PCI chipsets, such as the AlphaPC 164lx
1378 1.1 drochner */
1379 1.1 drochner TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1380 1.1 drochner #else
1381 1.1 drochner TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1382 1.1 drochner #endif
1383 1.1 drochner
1384 1.1 drochner /* This sets the min dma param all the way up (0xff). */
1385 1.1 drochner TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1386 1.1 drochner
1387 1.1 drochner /* Configure DMA variables. */
1388 1.1 drochner #if BYTE_ORDER == BIG_ENDIAN
1389 1.1 drochner CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1390 1.1 drochner TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1391 1.1 drochner TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1392 1.1 drochner TI_OPMODE_DONT_FRAG_JUMBO);
1393 1.1 drochner #else
1394 1.1 drochner CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1395 1.1 drochner TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1396 1.1 drochner TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1397 1.1 drochner #endif
1398 1.1 drochner
1399 1.1 drochner /*
1400 1.1 drochner * Only allow 1 DMA channel to be active at a time.
1401 1.1 drochner * I don't think this is a good idea, but without it
1402 1.1 drochner * the firmware racks up lots of nicDmaReadRingFull
1403 1.1 drochner * errors.
1404 1.1 drochner */
1405 1.1 drochner #ifndef TI_CSUM_OFFLOAD
1406 1.1 drochner TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1407 1.1 drochner #endif
1408 1.1 drochner
1409 1.1 drochner /* Recommended settings from Tigon manual. */
1410 1.1 drochner CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1411 1.1 drochner CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1412 1.1 drochner
1413 1.1 drochner if (ti_64bitslot_war(sc)) {
1414 1.1 drochner printf("%s: bios thinks we're in a 64 bit slot, "
1415 1.1 drochner "but we aren't", sc->sc_dev.dv_xname);
1416 1.1 drochner return(EINVAL);
1417 1.1 drochner }
1418 1.1 drochner
1419 1.1 drochner return(0);
1420 1.1 drochner }
1421 1.1 drochner
1422 1.1 drochner /*
1423 1.1 drochner * Initialize the general information block and firmware, and
1424 1.1 drochner * start the CPU(s) running.
1425 1.1 drochner */
1426 1.1 drochner static int ti_gibinit(sc)
1427 1.1 drochner struct ti_softc *sc;
1428 1.1 drochner {
1429 1.1 drochner struct ti_rcb *rcb;
1430 1.1 drochner int i;
1431 1.1 drochner struct ifnet *ifp;
1432 1.1 drochner
1433 1.1 drochner ifp = &sc->ethercom.ec_if;
1434 1.1 drochner
1435 1.1 drochner /* Disable interrupts for now. */
1436 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1437 1.1 drochner
1438 1.1 drochner /* Tell the chip where to find the general information block. */
1439 1.1 drochner CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1440 1.1 drochner CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1441 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1442 1.1 drochner
1443 1.1 drochner /* Load the firmware into SRAM. */
1444 1.1 drochner ti_loadfw(sc);
1445 1.1 drochner
1446 1.1 drochner /* Set up the contents of the general info and ring control blocks. */
1447 1.1 drochner
1448 1.1 drochner /* Set up the event ring and producer pointer. */
1449 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1450 1.1 drochner
1451 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1452 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1453 1.1 drochner rcb->ti_flags = 0;
1454 1.1 drochner TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1455 1.1 drochner sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1456 1.1 drochner - (caddr_t)sc->ti_rdata);
1457 1.1 drochner sc->ti_ev_prodidx.ti_idx = 0;
1458 1.1 drochner CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1459 1.1 drochner sc->ti_ev_saved_considx = 0;
1460 1.1 drochner
1461 1.1 drochner /* Set up the command ring and producer mailbox. */
1462 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1463 1.1 drochner
1464 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1465 1.1 drochner rcb->ti_flags = 0;
1466 1.1 drochner rcb->ti_max_len = 0;
1467 1.1 drochner for (i = 0; i < TI_CMD_RING_CNT; i++) {
1468 1.1 drochner CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1469 1.1 drochner }
1470 1.1 drochner CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1471 1.1 drochner CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1472 1.1 drochner sc->ti_cmd_saved_prodidx = 0;
1473 1.1 drochner
1474 1.1 drochner /*
1475 1.1 drochner * Assign the address of the stats refresh buffer.
1476 1.1 drochner * We re-use the current stats buffer for this to
1477 1.1 drochner * conserve memory.
1478 1.1 drochner */
1479 1.1 drochner TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1480 1.1 drochner sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1481 1.1 drochner - (caddr_t)sc->ti_rdata);
1482 1.1 drochner
1483 1.1 drochner /* Set up the standard receive ring. */
1484 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1485 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1486 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1487 1.1 drochner - (caddr_t)sc->ti_rdata);
1488 1.1 drochner rcb->ti_max_len = TI_FRAMELEN;
1489 1.1 drochner rcb->ti_flags = 0;
1490 1.1 drochner #ifdef TI_CSUM_OFFLOAD
1491 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1492 1.1 drochner #endif
1493 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1494 1.1 drochner
1495 1.1 drochner /* Set up the jumbo receive ring. */
1496 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1497 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1498 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1499 1.1 drochner rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1500 1.1 drochner rcb->ti_flags = 0;
1501 1.1 drochner #ifdef TI_CSUM_OFFLOAD
1502 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1503 1.1 drochner #endif
1504 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1505 1.1 drochner
1506 1.1 drochner /*
1507 1.1 drochner * Set up the mini ring. Only activated on the
1508 1.1 drochner * Tigon 2 but the slot in the config block is
1509 1.1 drochner * still there on the Tigon 1.
1510 1.1 drochner */
1511 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1512 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1513 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1514 1.2 drochner rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1515 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON)
1516 1.1 drochner rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1517 1.1 drochner else
1518 1.1 drochner rcb->ti_flags = 0;
1519 1.1 drochner #ifdef TI_CSUM_OFFLOAD
1520 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1521 1.1 drochner #endif
1522 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1523 1.1 drochner
1524 1.1 drochner /*
1525 1.1 drochner * Set up the receive return ring.
1526 1.1 drochner */
1527 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1528 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1529 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1530 1.1 drochner rcb->ti_flags = 0;
1531 1.1 drochner rcb->ti_max_len = TI_RETURN_RING_CNT;
1532 1.1 drochner TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1533 1.1 drochner sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1534 1.1 drochner - (caddr_t)sc->ti_rdata);
1535 1.1 drochner
1536 1.1 drochner /*
1537 1.1 drochner * Set up the tx ring. Note: for the Tigon 2, we have the option
1538 1.1 drochner * of putting the transmit ring in the host's address space and
1539 1.1 drochner * letting the chip DMA it instead of leaving the ring in the NIC's
1540 1.1 drochner * memory and accessing it through the shared memory region. We
1541 1.1 drochner * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1542 1.1 drochner * so we have to revert to the shared memory scheme if we detect
1543 1.1 drochner * a Tigon 1 chip.
1544 1.1 drochner */
1545 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1546 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON) {
1547 1.1 drochner sc->ti_rdata->ti_tx_ring_nic =
1548 1.1 drochner (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1549 1.1 drochner }
1550 1.1 drochner bzero((char *)sc->ti_rdata->ti_tx_ring,
1551 1.1 drochner TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1552 1.1 drochner rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1553 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON)
1554 1.1 drochner rcb->ti_flags = 0;
1555 1.1 drochner else
1556 1.1 drochner rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1557 1.1 drochner rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1558 1.1 drochner rcb->ti_max_len = TI_TX_RING_CNT;
1559 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON)
1560 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1561 1.1 drochner else
1562 1.1 drochner TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1563 1.1 drochner ((caddr_t)&sc->ti_rdata->ti_tx_ring
1564 1.1 drochner - (caddr_t)sc->ti_rdata);
1565 1.1 drochner TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1566 1.1 drochner sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1567 1.1 drochner - (caddr_t)sc->ti_rdata);
1568 1.1 drochner
1569 1.1 drochner /* Set up tuneables */
1570 1.12 bouyer if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1571 1.12 bouyer (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1572 1.1 drochner CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1573 1.1 drochner (sc->ti_rx_coal_ticks / 10));
1574 1.1 drochner else
1575 1.1 drochner CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1576 1.1 drochner CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1577 1.1 drochner CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1578 1.1 drochner CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1579 1.1 drochner CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1580 1.1 drochner CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1581 1.1 drochner
1582 1.1 drochner /* Turn interrupts on. */
1583 1.1 drochner CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1584 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1585 1.1 drochner
1586 1.1 drochner /* Start CPU. */
1587 1.1 drochner TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1588 1.1 drochner
1589 1.1 drochner return(0);
1590 1.1 drochner }
1591 1.1 drochner
1592 1.1 drochner /*
1593 1.6 bouyer * look for id in the device list, returning the first match
1594 1.6 bouyer */
1595 1.19 jdolecek static const struct ti_type *
1596 1.19 jdolecek ti_type_match(pa)
1597 1.6 bouyer struct pci_attach_args *pa;
1598 1.6 bouyer {
1599 1.19 jdolecek const struct ti_type *t;
1600 1.6 bouyer
1601 1.6 bouyer t = ti_devs;
1602 1.6 bouyer while(t->ti_name != NULL) {
1603 1.6 bouyer if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1604 1.6 bouyer (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1605 1.6 bouyer return (t);
1606 1.6 bouyer }
1607 1.6 bouyer t++;
1608 1.6 bouyer }
1609 1.6 bouyer
1610 1.6 bouyer return(NULL);
1611 1.6 bouyer }
1612 1.6 bouyer
1613 1.6 bouyer /*
1614 1.1 drochner * Probe for a Tigon chip. Check the PCI vendor and device IDs
1615 1.1 drochner * against our list and return its name if we find a match.
1616 1.1 drochner */
1617 1.1 drochner static int ti_probe(parent, match, aux)
1618 1.1 drochner struct device *parent;
1619 1.1 drochner struct cfdata *match;
1620 1.1 drochner void *aux;
1621 1.1 drochner {
1622 1.1 drochner struct pci_attach_args *pa = aux;
1623 1.19 jdolecek const struct ti_type *t;
1624 1.1 drochner
1625 1.6 bouyer t = ti_type_match(pa);
1626 1.1 drochner
1627 1.6 bouyer return((t == NULL) ? 0 : 1);
1628 1.1 drochner }
1629 1.1 drochner
1630 1.1 drochner static void ti_attach(parent, self, aux)
1631 1.1 drochner struct device *parent, *self;
1632 1.1 drochner void *aux;
1633 1.1 drochner {
1634 1.1 drochner u_int32_t command;
1635 1.1 drochner struct ifnet *ifp;
1636 1.1 drochner struct ti_softc *sc;
1637 1.1 drochner u_char eaddr[ETHER_ADDR_LEN];
1638 1.1 drochner struct pci_attach_args *pa = aux;
1639 1.1 drochner pci_chipset_tag_t pc = pa->pa_pc;
1640 1.1 drochner pci_intr_handle_t ih;
1641 1.1 drochner const char *intrstr = NULL;
1642 1.1 drochner bus_dma_segment_t dmaseg;
1643 1.6 bouyer int error, dmanseg, nolinear;
1644 1.19 jdolecek const struct ti_type *t;
1645 1.6 bouyer
1646 1.6 bouyer t = ti_type_match(pa);
1647 1.6 bouyer if (t == NULL) {
1648 1.6 bouyer printf("ti_attach: were did the card go ?\n");
1649 1.6 bouyer return;
1650 1.6 bouyer }
1651 1.1 drochner
1652 1.6 bouyer printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1653 1.1 drochner
1654 1.1 drochner sc = (struct ti_softc *)self;
1655 1.1 drochner
1656 1.1 drochner /*
1657 1.1 drochner * Map control/status registers.
1658 1.1 drochner */
1659 1.6 bouyer nolinear = 0;
1660 1.6 bouyer if (pci_mapreg_map(pa, 0x10,
1661 1.6 bouyer PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1662 1.6 bouyer BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1663 1.6 bouyer NULL, NULL)) {
1664 1.6 bouyer nolinear = 1;
1665 1.6 bouyer if (pci_mapreg_map(pa, 0x10,
1666 1.6 bouyer PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1667 1.6 bouyer 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1668 1.6 bouyer printf(": can't map memory space\n");
1669 1.6 bouyer return;
1670 1.6 bouyer }
1671 1.1 drochner }
1672 1.6 bouyer if (nolinear == 0)
1673 1.6 bouyer sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1674 1.6 bouyer else
1675 1.6 bouyer sc->ti_vhandle = NULL;
1676 1.1 drochner
1677 1.1 drochner command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1678 1.1 drochner command |= PCI_COMMAND_MASTER_ENABLE;
1679 1.1 drochner pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1680 1.1 drochner
1681 1.1 drochner /* Allocate interrupt */
1682 1.17 sommerfe if (pci_intr_map(pa, &ih)) {
1683 1.1 drochner printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1684 1.6 bouyer return;;
1685 1.1 drochner }
1686 1.1 drochner intrstr = pci_intr_string(pc, ih);
1687 1.1 drochner sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1688 1.1 drochner if (sc->sc_ih == NULL) {
1689 1.1 drochner printf("%s: couldn't establish interrupt",
1690 1.1 drochner sc->sc_dev.dv_xname);
1691 1.1 drochner if (intrstr != NULL)
1692 1.1 drochner printf(" at %s", intrstr);
1693 1.1 drochner printf("\n");
1694 1.6 bouyer return;;
1695 1.1 drochner }
1696 1.6 bouyer printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1697 1.6 bouyer /*
1698 1.6 bouyer * Add shutdown hook so that DMA is disabled prior to reboot. Not
1699 1.6 bouyer * doing do could allow DMA to corrupt kernel memory during the
1700 1.6 bouyer * reboot before the driver initializes.
1701 1.6 bouyer */
1702 1.6 bouyer (void) shutdownhook_establish(ti_shutdown, sc);
1703 1.1 drochner
1704 1.1 drochner if (ti_chipinit(sc)) {
1705 1.1 drochner printf("%s: chip initialization failed\n", self->dv_xname);
1706 1.6 bouyer goto fail2;
1707 1.6 bouyer }
1708 1.6 bouyer if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
1709 1.6 bouyer printf("%s: memory space not mapped linear\n", self->dv_xname);
1710 1.1 drochner }
1711 1.1 drochner
1712 1.1 drochner /* Zero out the NIC's on-board SRAM. */
1713 1.1 drochner ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1714 1.1 drochner
1715 1.1 drochner /* Init again -- zeroing memory may have clobbered some registers. */
1716 1.1 drochner if (ti_chipinit(sc)) {
1717 1.1 drochner printf("%s: chip initialization failed\n", self->dv_xname);
1718 1.6 bouyer goto fail2;
1719 1.1 drochner }
1720 1.1 drochner
1721 1.1 drochner /*
1722 1.1 drochner * Get station address from the EEPROM. Note: the manual states
1723 1.1 drochner * that the MAC address is at offset 0x8c, however the data is
1724 1.1 drochner * stored as two longwords (since that's how it's loaded into
1725 1.1 drochner * the NIC). This means the MAC address is actually preceeded
1726 1.1 drochner * by two zero bytes. We need to skip over those.
1727 1.1 drochner */
1728 1.1 drochner if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1729 1.1 drochner TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1730 1.1 drochner printf("%s: failed to read station address\n", self->dv_xname);
1731 1.6 bouyer goto fail2;
1732 1.1 drochner }
1733 1.1 drochner
1734 1.1 drochner /*
1735 1.1 drochner * A Tigon chip was detected. Inform the world.
1736 1.1 drochner */
1737 1.1 drochner printf("%s: Ethernet address: %s\n", self->dv_xname,
1738 1.1 drochner ether_sprintf(eaddr));
1739 1.1 drochner
1740 1.1 drochner sc->sc_dmat = pa->pa_dmat;
1741 1.1 drochner
1742 1.1 drochner /* Allocate the general information block and ring buffers. */
1743 1.1 drochner if ((error = bus_dmamem_alloc(sc->sc_dmat,
1744 1.13 thorpej sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1745 1.1 drochner BUS_DMA_NOWAIT)) != 0) {
1746 1.1 drochner printf("%s: can't allocate ring buffer, error = %d\n",
1747 1.1 drochner sc->sc_dev.dv_xname, error);
1748 1.6 bouyer goto fail2;
1749 1.1 drochner }
1750 1.1 drochner
1751 1.1 drochner if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1752 1.1 drochner sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1753 1.1 drochner BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1754 1.1 drochner printf("%s: can't map ring buffer, error = %d\n",
1755 1.1 drochner sc->sc_dev.dv_xname, error);
1756 1.6 bouyer goto fail2;
1757 1.1 drochner }
1758 1.1 drochner
1759 1.1 drochner if ((error = bus_dmamap_create(sc->sc_dmat,
1760 1.1 drochner sizeof(struct ti_ring_data), 1,
1761 1.1 drochner sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1762 1.1 drochner &sc->info_dmamap)) != 0) {
1763 1.1 drochner printf("%s: can't create ring buffer DMA map, error = %d\n",
1764 1.1 drochner sc->sc_dev.dv_xname, error);
1765 1.6 bouyer goto fail2;
1766 1.1 drochner }
1767 1.1 drochner
1768 1.1 drochner if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1769 1.1 drochner sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1770 1.1 drochner BUS_DMA_NOWAIT)) != 0) {
1771 1.1 drochner printf("%s: can't load ring buffer DMA map, error = %d\n",
1772 1.1 drochner sc->sc_dev.dv_xname, error);
1773 1.6 bouyer goto fail2;
1774 1.1 drochner }
1775 1.1 drochner
1776 1.1 drochner sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1777 1.1 drochner
1778 1.1 drochner bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1779 1.1 drochner
1780 1.1 drochner /* Try to allocate memory for jumbo buffers. */
1781 1.1 drochner if (ti_alloc_jumbo_mem(sc)) {
1782 1.1 drochner printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1783 1.6 bouyer goto fail2;
1784 1.1 drochner }
1785 1.1 drochner
1786 1.20 enami SIMPLEQ_INIT(&sc->ti_mc_listhead);
1787 1.20 enami
1788 1.15 bouyer /*
1789 1.15 bouyer * We really need a better way to tell a 1000baseTX card
1790 1.15 bouyer * from a 1000baseSX one, since in theory there could be
1791 1.15 bouyer * OEMed 1000baseTX cards from lame vendors who aren't
1792 1.15 bouyer * clever enough to change the PCI ID. For the moment
1793 1.15 bouyer * though, the AceNIC is the only copper card available.
1794 1.15 bouyer */
1795 1.15 bouyer if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1796 1.15 bouyer PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1797 1.15 bouyer (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1798 1.15 bouyer PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1799 1.15 bouyer sc->ti_copper = 1;
1800 1.15 bouyer else
1801 1.15 bouyer sc->ti_copper = 0;
1802 1.15 bouyer
1803 1.1 drochner /* Set default tuneable values. */
1804 1.1 drochner sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1805 1.1 drochner sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1806 1.1 drochner sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1807 1.1 drochner sc->ti_rx_max_coal_bds = 64;
1808 1.1 drochner sc->ti_tx_max_coal_bds = 128;
1809 1.1 drochner sc->ti_tx_buf_ratio = 21;
1810 1.1 drochner
1811 1.1 drochner /* Set up ifnet structure */
1812 1.1 drochner ifp = &sc->ethercom.ec_if;
1813 1.1 drochner ifp->if_softc = sc;
1814 1.1 drochner bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1815 1.1 drochner ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1816 1.1 drochner ifp->if_ioctl = ti_ioctl;
1817 1.1 drochner ifp->if_start = ti_start;
1818 1.1 drochner ifp->if_watchdog = ti_watchdog;
1819 1.16 thorpej IFQ_SET_READY(&ifp->if_snd);
1820 1.16 thorpej
1821 1.16 thorpej #if 0
1822 1.16 thorpej /*
1823 1.16 thorpej * XXX This is not really correct -- we don't necessarily
1824 1.16 thorpej * XXX want to queue up as many as we can transmit at the
1825 1.16 thorpej * XXX upper layer like that. Someone with a board should
1826 1.16 thorpej * XXX check to see how this affects performance.
1827 1.16 thorpej */
1828 1.1 drochner ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1829 1.16 thorpej #endif
1830 1.1 drochner
1831 1.12 bouyer /*
1832 1.12 bouyer * We can support 802.1Q VLAN-sized frames.
1833 1.12 bouyer */
1834 1.15 bouyer sc->ethercom.ec_capabilities |=
1835 1.15 bouyer ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1836 1.12 bouyer
1837 1.1 drochner /* Set up ifmedia support. */
1838 1.1 drochner ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1839 1.15 bouyer if (sc->ti_copper) {
1840 1.15 bouyer /*
1841 1.15 bouyer * Copper cards allow manual 10/100 mode selection,
1842 1.15 bouyer * but not manual 1000baseTX mode selection. Why?
1843 1.15 bouyer * Becuase currently there's no way to specify the
1844 1.15 bouyer * master/slave setting through the firmware interface,
1845 1.15 bouyer * so Alteon decided to just bag it and handle it
1846 1.15 bouyer * via autonegotiation.
1847 1.15 bouyer */
1848 1.15 bouyer ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1849 1.15 bouyer ifmedia_add(&sc->ifmedia,
1850 1.15 bouyer IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1851 1.15 bouyer ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1852 1.15 bouyer ifmedia_add(&sc->ifmedia,
1853 1.15 bouyer IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1854 1.15 bouyer ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1855 1.15 bouyer ifmedia_add(&sc->ifmedia,
1856 1.15 bouyer IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1857 1.15 bouyer } else {
1858 1.15 bouyer /* Fiber cards don't support 10/100 modes. */
1859 1.15 bouyer ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1860 1.15 bouyer ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1861 1.15 bouyer }
1862 1.1 drochner ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1863 1.1 drochner ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1864 1.1 drochner
1865 1.1 drochner /*
1866 1.1 drochner * Call MI attach routines.
1867 1.1 drochner */
1868 1.1 drochner if_attach(ifp);
1869 1.1 drochner ether_ifattach(ifp, eaddr);
1870 1.1 drochner
1871 1.6 bouyer return;
1872 1.6 bouyer fail2:
1873 1.6 bouyer pci_intr_disestablish(pc, sc->sc_ih);
1874 1.6 bouyer return;
1875 1.1 drochner }
1876 1.1 drochner
1877 1.1 drochner /*
1878 1.1 drochner * Frame reception handling. This is called if there's a frame
1879 1.1 drochner * on the receive return list.
1880 1.1 drochner *
1881 1.1 drochner * Note: we have to be able to handle three possibilities here:
1882 1.1 drochner * 1) the frame is from the mini receive ring (can only happen)
1883 1.1 drochner * on Tigon 2 boards)
1884 1.1 drochner * 2) the frame is from the jumbo recieve ring
1885 1.1 drochner * 3) the frame is from the standard receive ring
1886 1.1 drochner */
1887 1.1 drochner
1888 1.1 drochner static void ti_rxeof(sc)
1889 1.1 drochner struct ti_softc *sc;
1890 1.1 drochner {
1891 1.1 drochner struct ifnet *ifp;
1892 1.1 drochner struct ti_cmd_desc cmd;
1893 1.1 drochner
1894 1.1 drochner ifp = &sc->ethercom.ec_if;
1895 1.1 drochner
1896 1.1 drochner while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1897 1.1 drochner struct ti_rx_desc *cur_rx;
1898 1.1 drochner u_int32_t rxidx;
1899 1.1 drochner struct mbuf *m = NULL;
1900 1.1 drochner u_int16_t vlan_tag = 0;
1901 1.1 drochner int have_tag = 0;
1902 1.1 drochner #ifdef TI_CSUM_OFFLOAD
1903 1.1 drochner struct ip *ip;
1904 1.1 drochner #endif
1905 1.1 drochner bus_dmamap_t dmamap;
1906 1.1 drochner
1907 1.1 drochner cur_rx =
1908 1.1 drochner &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1909 1.1 drochner rxidx = cur_rx->ti_idx;
1910 1.1 drochner TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1911 1.1 drochner
1912 1.1 drochner if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1913 1.1 drochner have_tag = 1;
1914 1.1 drochner vlan_tag = cur_rx->ti_vlan_tag;
1915 1.1 drochner }
1916 1.1 drochner
1917 1.1 drochner if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1918 1.1 drochner TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1919 1.1 drochner m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1920 1.1 drochner sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1921 1.1 drochner if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1922 1.1 drochner ifp->if_ierrors++;
1923 1.1 drochner ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1924 1.1 drochner continue;
1925 1.1 drochner }
1926 1.1 drochner if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1927 1.1 drochner == ENOBUFS) {
1928 1.1 drochner ifp->if_ierrors++;
1929 1.1 drochner ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1930 1.1 drochner continue;
1931 1.1 drochner }
1932 1.1 drochner } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1933 1.1 drochner TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1934 1.1 drochner m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1935 1.1 drochner sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1936 1.1 drochner dmamap = sc->mini_dmamap[rxidx];
1937 1.1 drochner sc->mini_dmamap[rxidx] = 0;
1938 1.1 drochner if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1939 1.1 drochner ifp->if_ierrors++;
1940 1.1 drochner ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1941 1.1 drochner continue;
1942 1.1 drochner }
1943 1.1 drochner if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1944 1.1 drochner == ENOBUFS) {
1945 1.1 drochner ifp->if_ierrors++;
1946 1.1 drochner ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1947 1.1 drochner continue;
1948 1.1 drochner }
1949 1.1 drochner } else {
1950 1.1 drochner TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1951 1.1 drochner m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1952 1.1 drochner sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1953 1.1 drochner dmamap = sc->std_dmamap[rxidx];
1954 1.1 drochner sc->std_dmamap[rxidx] = 0;
1955 1.1 drochner if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1956 1.1 drochner ifp->if_ierrors++;
1957 1.1 drochner ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1958 1.1 drochner continue;
1959 1.1 drochner }
1960 1.1 drochner if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1961 1.1 drochner == ENOBUFS) {
1962 1.1 drochner ifp->if_ierrors++;
1963 1.1 drochner ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1964 1.1 drochner continue;
1965 1.1 drochner }
1966 1.1 drochner }
1967 1.1 drochner
1968 1.1 drochner m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1969 1.1 drochner ifp->if_ipackets++;
1970 1.1 drochner m->m_pkthdr.rcvif = ifp;
1971 1.1 drochner
1972 1.1 drochner #if NBPFILTER > 0
1973 1.1 drochner /*
1974 1.1 drochner * Handle BPF listeners. Let the BPF user see the packet, but
1975 1.1 drochner * don't pass it up to the ether_input() layer unless it's
1976 1.1 drochner * a broadcast packet, multicast packet, matches our ethernet
1977 1.1 drochner * address or the interface is in promiscuous mode.
1978 1.1 drochner */
1979 1.11 thorpej if (ifp->if_bpf)
1980 1.1 drochner bpf_mtap(ifp->if_bpf, m);
1981 1.1 drochner #endif
1982 1.1 drochner
1983 1.1 drochner #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
1984 1.1 drochner ip = mtod(m, struct ip *);
1985 1.1 drochner if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1986 1.1 drochner !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1987 1.1 drochner m->m_flags |= M_HWCKSUM;
1988 1.1 drochner #endif
1989 1.1 drochner
1990 1.1 drochner if (have_tag) {
1991 1.15 bouyer struct mbuf *n;
1992 1.15 bouyer n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1993 1.15 bouyer if (n) {
1994 1.15 bouyer *mtod(n, int *) = vlan_tag;
1995 1.15 bouyer n->m_len = sizeof(int);
1996 1.15 bouyer } else {
1997 1.15 bouyer printf("%s: no mbuf for tag\n", ifp->if_xname);
1998 1.15 bouyer m_freem(m);
1999 1.15 bouyer continue;
2000 1.15 bouyer }
2001 1.1 drochner have_tag = vlan_tag = 0;
2002 1.1 drochner }
2003 1.1 drochner (*ifp->if_input)(ifp, m);
2004 1.1 drochner }
2005 1.1 drochner
2006 1.1 drochner /* Only necessary on the Tigon 1. */
2007 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON)
2008 1.1 drochner CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2009 1.1 drochner sc->ti_rx_saved_considx);
2010 1.1 drochner
2011 1.1 drochner TI_UPDATE_STDPROD(sc, sc->ti_std);
2012 1.1 drochner TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2013 1.1 drochner TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2014 1.1 drochner
2015 1.1 drochner return;
2016 1.1 drochner }
2017 1.1 drochner
2018 1.1 drochner static void ti_txeof(sc)
2019 1.1 drochner struct ti_softc *sc;
2020 1.1 drochner {
2021 1.1 drochner struct ti_tx_desc *cur_tx = NULL;
2022 1.1 drochner struct ifnet *ifp;
2023 1.1 drochner
2024 1.1 drochner ifp = &sc->ethercom.ec_if;
2025 1.1 drochner
2026 1.1 drochner /*
2027 1.1 drochner * Go through our tx ring and free mbufs for those
2028 1.1 drochner * frames that have been sent.
2029 1.1 drochner */
2030 1.1 drochner while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2031 1.1 drochner u_int32_t idx = 0;
2032 1.1 drochner
2033 1.1 drochner idx = sc->ti_tx_saved_considx;
2034 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON) {
2035 1.1 drochner if (idx > 383)
2036 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2037 1.1 drochner TI_TX_RING_BASE + 6144);
2038 1.1 drochner else if (idx > 255)
2039 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2040 1.1 drochner TI_TX_RING_BASE + 4096);
2041 1.1 drochner else if (idx > 127)
2042 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2043 1.1 drochner TI_TX_RING_BASE + 2048);
2044 1.1 drochner else
2045 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2046 1.1 drochner TI_TX_RING_BASE);
2047 1.1 drochner cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2048 1.1 drochner } else
2049 1.1 drochner cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2050 1.1 drochner if (cur_tx->ti_flags & TI_BDFLAG_END)
2051 1.1 drochner ifp->if_opackets++;
2052 1.1 drochner if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2053 1.1 drochner m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2054 1.1 drochner sc->ti_cdata.ti_tx_chain[idx] = NULL;
2055 1.1 drochner
2056 1.1 drochner /* if (sc->txdma[idx] == 0) panic() */
2057 1.1 drochner SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2058 1.1 drochner link);
2059 1.1 drochner sc->txdma[idx] = 0;
2060 1.1 drochner }
2061 1.1 drochner sc->ti_txcnt--;
2062 1.1 drochner TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2063 1.1 drochner ifp->if_timer = 0;
2064 1.1 drochner }
2065 1.1 drochner
2066 1.1 drochner if (cur_tx != NULL)
2067 1.1 drochner ifp->if_flags &= ~IFF_OACTIVE;
2068 1.1 drochner
2069 1.1 drochner return;
2070 1.1 drochner }
2071 1.1 drochner
2072 1.1 drochner static int ti_intr(xsc)
2073 1.1 drochner void *xsc;
2074 1.1 drochner {
2075 1.1 drochner struct ti_softc *sc;
2076 1.1 drochner struct ifnet *ifp;
2077 1.1 drochner
2078 1.1 drochner sc = xsc;
2079 1.1 drochner ifp = &sc->ethercom.ec_if;
2080 1.1 drochner
2081 1.1 drochner #ifdef notdef
2082 1.1 drochner /* Avoid this for now -- checking this register is expensive. */
2083 1.1 drochner /* Make sure this is really our interrupt. */
2084 1.1 drochner if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2085 1.1 drochner return (0);
2086 1.1 drochner #endif
2087 1.1 drochner
2088 1.1 drochner /* Ack interrupt and stop others from occuring. */
2089 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2090 1.1 drochner
2091 1.1 drochner if (ifp->if_flags & IFF_RUNNING) {
2092 1.1 drochner /* Check RX return ring producer/consumer */
2093 1.1 drochner ti_rxeof(sc);
2094 1.1 drochner
2095 1.1 drochner /* Check TX ring producer/consumer */
2096 1.1 drochner ti_txeof(sc);
2097 1.1 drochner }
2098 1.1 drochner
2099 1.1 drochner ti_handle_events(sc);
2100 1.1 drochner
2101 1.1 drochner /* Re-enable interrupts. */
2102 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2103 1.1 drochner
2104 1.16 thorpej if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2105 1.16 thorpej IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2106 1.1 drochner ti_start(ifp);
2107 1.1 drochner
2108 1.1 drochner return (1);
2109 1.1 drochner }
2110 1.1 drochner
2111 1.1 drochner static void ti_stats_update(sc)
2112 1.1 drochner struct ti_softc *sc;
2113 1.1 drochner {
2114 1.1 drochner struct ifnet *ifp;
2115 1.1 drochner
2116 1.1 drochner ifp = &sc->ethercom.ec_if;
2117 1.1 drochner
2118 1.1 drochner ifp->if_collisions +=
2119 1.1 drochner (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2120 1.1 drochner sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2121 1.1 drochner sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2122 1.1 drochner sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2123 1.1 drochner ifp->if_collisions;
2124 1.1 drochner
2125 1.1 drochner return;
2126 1.1 drochner }
2127 1.1 drochner
2128 1.1 drochner /*
2129 1.1 drochner * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2130 1.1 drochner * pointers to descriptors.
2131 1.1 drochner */
2132 1.1 drochner static int ti_encap(sc, m_head, txidx)
2133 1.1 drochner struct ti_softc *sc;
2134 1.1 drochner struct mbuf *m_head;
2135 1.1 drochner u_int32_t *txidx;
2136 1.1 drochner {
2137 1.1 drochner struct ti_tx_desc *f = NULL;
2138 1.1 drochner u_int32_t frag, cur, cnt = 0;
2139 1.1 drochner struct txdmamap_pool_entry *dma;
2140 1.1 drochner bus_dmamap_t dmamap;
2141 1.1 drochner int error, i;
2142 1.15 bouyer struct mbuf *n;
2143 1.1 drochner
2144 1.1 drochner dma = SIMPLEQ_FIRST(&sc->txdma_list);
2145 1.6 bouyer if (dma == NULL) {
2146 1.6 bouyer return ENOMEM;
2147 1.6 bouyer }
2148 1.1 drochner dmamap = dma->dmamap;
2149 1.1 drochner
2150 1.1 drochner error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2151 1.1 drochner if (error) {
2152 1.1 drochner struct mbuf *m;
2153 1.1 drochner int i = 0;
2154 1.1 drochner for (m = m_head; m; m = m->m_next)
2155 1.1 drochner i++;
2156 1.1 drochner printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2157 1.1 drochner "error %d\n", m_head->m_pkthdr.len, i, error);
2158 1.1 drochner return (ENOMEM);
2159 1.1 drochner }
2160 1.1 drochner
2161 1.1 drochner cur = frag = *txidx;
2162 1.1 drochner
2163 1.1 drochner /*
2164 1.1 drochner * Start packing the mbufs in this chain into
2165 1.1 drochner * the fragment pointers. Stop when we run out
2166 1.1 drochner * of fragments or hit the end of the mbuf chain.
2167 1.1 drochner */
2168 1.1 drochner for (i = 0; i < dmamap->dm_nsegs; i++) {
2169 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON) {
2170 1.1 drochner if (frag > 383)
2171 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2172 1.1 drochner TI_TX_RING_BASE + 6144);
2173 1.1 drochner else if (frag > 255)
2174 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2175 1.1 drochner TI_TX_RING_BASE + 4096);
2176 1.1 drochner else if (frag > 127)
2177 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2178 1.1 drochner TI_TX_RING_BASE + 2048);
2179 1.1 drochner else
2180 1.1 drochner CSR_WRITE_4(sc, TI_WINBASE,
2181 1.1 drochner TI_TX_RING_BASE);
2182 1.1 drochner f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2183 1.1 drochner } else
2184 1.1 drochner f = &sc->ti_rdata->ti_tx_ring[frag];
2185 1.1 drochner if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2186 1.1 drochner break;
2187 1.1 drochner TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2188 1.1 drochner f->ti_len = dmamap->dm_segs[i].ds_len;
2189 1.1 drochner f->ti_flags = 0;
2190 1.15 bouyer n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2191 1.15 bouyer if (n) {
2192 1.1 drochner f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2193 1.15 bouyer f->ti_vlan_tag = *mtod(n, int *);
2194 1.1 drochner } else {
2195 1.1 drochner f->ti_vlan_tag = 0;
2196 1.1 drochner }
2197 1.1 drochner /*
2198 1.1 drochner * Sanity check: avoid coming within 16 descriptors
2199 1.1 drochner * of the end of the ring.
2200 1.1 drochner */
2201 1.1 drochner if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2202 1.1 drochner return(ENOBUFS);
2203 1.1 drochner cur = frag;
2204 1.1 drochner TI_INC(frag, TI_TX_RING_CNT);
2205 1.1 drochner cnt++;
2206 1.1 drochner }
2207 1.1 drochner
2208 1.1 drochner if (i < dmamap->dm_nsegs)
2209 1.1 drochner return(ENOBUFS);
2210 1.1 drochner
2211 1.1 drochner if (frag == sc->ti_tx_saved_considx)
2212 1.1 drochner return(ENOBUFS);
2213 1.1 drochner
2214 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON)
2215 1.1 drochner sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2216 1.1 drochner TI_BDFLAG_END;
2217 1.1 drochner else
2218 1.1 drochner sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2219 1.1 drochner sc->ti_cdata.ti_tx_chain[cur] = m_head;
2220 1.1 drochner SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2221 1.1 drochner sc->txdma[cur] = dma;
2222 1.1 drochner sc->ti_txcnt += cnt;
2223 1.1 drochner
2224 1.1 drochner *txidx = frag;
2225 1.1 drochner
2226 1.1 drochner return(0);
2227 1.1 drochner }
2228 1.1 drochner
2229 1.1 drochner /*
2230 1.1 drochner * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2231 1.1 drochner * to the mbuf data regions directly in the transmit descriptors.
2232 1.1 drochner */
2233 1.1 drochner static void ti_start(ifp)
2234 1.1 drochner struct ifnet *ifp;
2235 1.1 drochner {
2236 1.1 drochner struct ti_softc *sc;
2237 1.1 drochner struct mbuf *m_head = NULL;
2238 1.1 drochner u_int32_t prodidx = 0;
2239 1.1 drochner
2240 1.1 drochner sc = ifp->if_softc;
2241 1.1 drochner
2242 1.1 drochner prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2243 1.1 drochner
2244 1.16 thorpej while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2245 1.16 thorpej IFQ_POLL(&ifp->if_snd, m_head);
2246 1.1 drochner if (m_head == NULL)
2247 1.1 drochner break;
2248 1.1 drochner
2249 1.1 drochner /*
2250 1.1 drochner * Pack the data into the transmit ring. If we
2251 1.1 drochner * don't have room, set the OACTIVE flag and wait
2252 1.1 drochner * for the NIC to drain the ring.
2253 1.1 drochner */
2254 1.1 drochner if (ti_encap(sc, m_head, &prodidx)) {
2255 1.1 drochner ifp->if_flags |= IFF_OACTIVE;
2256 1.1 drochner break;
2257 1.1 drochner }
2258 1.16 thorpej
2259 1.16 thorpej IFQ_DEQUEUE(&ifp->if_snd, m_head);
2260 1.1 drochner
2261 1.1 drochner /*
2262 1.1 drochner * If there's a BPF listener, bounce a copy of this frame
2263 1.1 drochner * to him.
2264 1.1 drochner */
2265 1.1 drochner #if NBPFILTER > 0
2266 1.1 drochner if (ifp->if_bpf)
2267 1.1 drochner bpf_mtap(ifp->if_bpf, m_head);
2268 1.1 drochner #endif
2269 1.1 drochner }
2270 1.1 drochner
2271 1.1 drochner /* Transmit */
2272 1.1 drochner CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2273 1.1 drochner
2274 1.1 drochner /*
2275 1.1 drochner * Set a timeout in case the chip goes out to lunch.
2276 1.1 drochner */
2277 1.1 drochner ifp->if_timer = 5;
2278 1.1 drochner
2279 1.1 drochner return;
2280 1.1 drochner }
2281 1.1 drochner
2282 1.1 drochner static void ti_init(xsc)
2283 1.1 drochner void *xsc;
2284 1.1 drochner {
2285 1.1 drochner struct ti_softc *sc = xsc;
2286 1.1 drochner int s;
2287 1.1 drochner
2288 1.18 thorpej s = splnet();
2289 1.1 drochner
2290 1.1 drochner /* Cancel pending I/O and flush buffers. */
2291 1.1 drochner ti_stop(sc);
2292 1.1 drochner
2293 1.1 drochner /* Init the gen info block, ring control blocks and firmware. */
2294 1.1 drochner if (ti_gibinit(sc)) {
2295 1.1 drochner printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2296 1.1 drochner splx(s);
2297 1.1 drochner return;
2298 1.1 drochner }
2299 1.1 drochner
2300 1.1 drochner splx(s);
2301 1.1 drochner
2302 1.1 drochner return;
2303 1.1 drochner }
2304 1.1 drochner
2305 1.1 drochner static void ti_init2(sc)
2306 1.1 drochner struct ti_softc *sc;
2307 1.1 drochner {
2308 1.1 drochner struct ti_cmd_desc cmd;
2309 1.1 drochner struct ifnet *ifp;
2310 1.1 drochner u_int8_t *m;
2311 1.1 drochner struct ifmedia *ifm;
2312 1.1 drochner int tmp;
2313 1.1 drochner
2314 1.1 drochner ifp = &sc->ethercom.ec_if;
2315 1.1 drochner
2316 1.1 drochner /* Specify MTU and interface index. */
2317 1.1 drochner CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2318 1.12 bouyer if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) &&
2319 1.12 bouyer ifp->if_mtu < ETHERMTU + ETHER_VLAN_ENCAP_LEN)
2320 1.12 bouyer CSR_WRITE_4(sc, TI_GCR_IFMTU, ETHER_MAX_LEN +
2321 1.12 bouyer ETHER_VLAN_ENCAP_LEN);
2322 1.12 bouyer else
2323 1.12 bouyer CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2324 1.12 bouyer ETHER_HDR_LEN + ETHER_CRC_LEN);
2325 1.1 drochner TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2326 1.1 drochner
2327 1.1 drochner /* Load our MAC address. */
2328 1.1 drochner m = (u_int8_t *)LLADDR(ifp->if_sadl);
2329 1.1 drochner CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2330 1.1 drochner CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2331 1.1 drochner | (m[4] << 8) | m[5]);
2332 1.1 drochner TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2333 1.1 drochner
2334 1.1 drochner /* Enable or disable promiscuous mode as needed. */
2335 1.1 drochner if (ifp->if_flags & IFF_PROMISC) {
2336 1.1 drochner TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2337 1.1 drochner } else {
2338 1.1 drochner TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2339 1.1 drochner }
2340 1.1 drochner
2341 1.1 drochner /* Program multicast filter. */
2342 1.1 drochner ti_setmulti(sc);
2343 1.1 drochner
2344 1.1 drochner /*
2345 1.1 drochner * If this is a Tigon 1, we should tell the
2346 1.1 drochner * firmware to use software packet filtering.
2347 1.1 drochner */
2348 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON) {
2349 1.1 drochner TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2350 1.1 drochner }
2351 1.1 drochner
2352 1.1 drochner /* Init RX ring. */
2353 1.1 drochner ti_init_rx_ring_std(sc);
2354 1.1 drochner
2355 1.1 drochner /* Init jumbo RX ring. */
2356 1.12 bouyer if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2357 1.1 drochner ti_init_rx_ring_jumbo(sc);
2358 1.1 drochner
2359 1.1 drochner /*
2360 1.1 drochner * If this is a Tigon 2, we can also configure the
2361 1.1 drochner * mini ring.
2362 1.1 drochner */
2363 1.1 drochner if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2364 1.1 drochner ti_init_rx_ring_mini(sc);
2365 1.1 drochner
2366 1.1 drochner CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2367 1.1 drochner sc->ti_rx_saved_considx = 0;
2368 1.1 drochner
2369 1.1 drochner /* Init TX ring. */
2370 1.1 drochner ti_init_tx_ring(sc);
2371 1.1 drochner
2372 1.1 drochner /* Tell firmware we're alive. */
2373 1.1 drochner TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2374 1.1 drochner
2375 1.1 drochner /* Enable host interrupts. */
2376 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2377 1.1 drochner
2378 1.1 drochner ifp->if_flags |= IFF_RUNNING;
2379 1.1 drochner ifp->if_flags &= ~IFF_OACTIVE;
2380 1.1 drochner
2381 1.1 drochner /*
2382 1.1 drochner * Make sure to set media properly. We have to do this
2383 1.1 drochner * here since we have to issue commands in order to set
2384 1.1 drochner * the link negotiation and we can't issue commands until
2385 1.1 drochner * the firmware is running.
2386 1.1 drochner */
2387 1.1 drochner ifm = &sc->ifmedia;
2388 1.1 drochner tmp = ifm->ifm_media;
2389 1.1 drochner ifm->ifm_media = ifm->ifm_cur->ifm_media;
2390 1.1 drochner ti_ifmedia_upd(ifp);
2391 1.1 drochner ifm->ifm_media = tmp;
2392 1.1 drochner
2393 1.1 drochner return;
2394 1.1 drochner }
2395 1.1 drochner
2396 1.1 drochner /*
2397 1.1 drochner * Set media options.
2398 1.1 drochner */
2399 1.1 drochner static int ti_ifmedia_upd(ifp)
2400 1.1 drochner struct ifnet *ifp;
2401 1.1 drochner {
2402 1.1 drochner struct ti_softc *sc;
2403 1.1 drochner struct ifmedia *ifm;
2404 1.1 drochner struct ti_cmd_desc cmd;
2405 1.1 drochner
2406 1.1 drochner sc = ifp->if_softc;
2407 1.1 drochner ifm = &sc->ifmedia;
2408 1.1 drochner
2409 1.1 drochner if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2410 1.1 drochner return(EINVAL);
2411 1.1 drochner
2412 1.1 drochner switch(IFM_SUBTYPE(ifm->ifm_media)) {
2413 1.1 drochner case IFM_AUTO:
2414 1.1 drochner CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2415 1.1 drochner TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2416 1.1 drochner TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2417 1.1 drochner CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2418 1.1 drochner TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2419 1.1 drochner TI_LNK_AUTONEGENB|TI_LNK_ENB);
2420 1.1 drochner TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2421 1.1 drochner TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2422 1.1 drochner break;
2423 1.3 thorpej case IFM_1000_SX:
2424 1.15 bouyer case IFM_1000_TX:
2425 1.15 bouyer if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2426 1.15 bouyer CSR_WRITE_4(sc, TI_GCR_GLINK,
2427 1.15 bouyer TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2428 1.15 bouyer TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2429 1.15 bouyer } else {
2430 1.15 bouyer CSR_WRITE_4(sc, TI_GCR_GLINK,
2431 1.15 bouyer TI_GLNK_PREF|TI_GLNK_1000MB|
2432 1.15 bouyer TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2433 1.15 bouyer }
2434 1.1 drochner CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2435 1.1 drochner TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2436 1.1 drochner TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2437 1.1 drochner break;
2438 1.1 drochner case IFM_100_FX:
2439 1.1 drochner case IFM_10_FL:
2440 1.15 bouyer case IFM_100_TX:
2441 1.15 bouyer case IFM_10_T:
2442 1.1 drochner CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2443 1.1 drochner CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2444 1.15 bouyer if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2445 1.15 bouyer IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2446 1.1 drochner TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2447 1.1 drochner } else {
2448 1.1 drochner TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2449 1.1 drochner }
2450 1.1 drochner if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2451 1.1 drochner TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2452 1.1 drochner } else {
2453 1.1 drochner TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2454 1.1 drochner }
2455 1.1 drochner TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2456 1.1 drochner TI_CMD_CODE_NEGOTIATE_10_100, 0);
2457 1.1 drochner break;
2458 1.1 drochner }
2459 1.1 drochner
2460 1.5 thorpej sc->ethercom.ec_if.if_baudrate =
2461 1.5 thorpej ifmedia_baudrate(ifm->ifm_media);
2462 1.5 thorpej
2463 1.1 drochner return(0);
2464 1.1 drochner }
2465 1.1 drochner
2466 1.1 drochner /*
2467 1.1 drochner * Report current media status.
2468 1.1 drochner */
2469 1.1 drochner static void ti_ifmedia_sts(ifp, ifmr)
2470 1.1 drochner struct ifnet *ifp;
2471 1.1 drochner struct ifmediareq *ifmr;
2472 1.1 drochner {
2473 1.1 drochner struct ti_softc *sc;
2474 1.15 bouyer u_int32_t media = 0;
2475 1.1 drochner
2476 1.1 drochner sc = ifp->if_softc;
2477 1.1 drochner
2478 1.1 drochner ifmr->ifm_status = IFM_AVALID;
2479 1.1 drochner ifmr->ifm_active = IFM_ETHER;
2480 1.1 drochner
2481 1.1 drochner if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2482 1.1 drochner return;
2483 1.1 drochner
2484 1.1 drochner ifmr->ifm_status |= IFM_ACTIVE;
2485 1.1 drochner
2486 1.15 bouyer if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2487 1.15 bouyer media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2488 1.15 bouyer if (sc->ti_copper)
2489 1.15 bouyer ifmr->ifm_active |= IFM_1000_TX;
2490 1.15 bouyer else
2491 1.15 bouyer ifmr->ifm_active |= IFM_1000_SX;
2492 1.15 bouyer if (media & TI_GLNK_FULL_DUPLEX)
2493 1.15 bouyer ifmr->ifm_active |= IFM_FDX;
2494 1.15 bouyer else
2495 1.15 bouyer ifmr->ifm_active |= IFM_HDX;
2496 1.15 bouyer } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2497 1.1 drochner media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2498 1.15 bouyer if (sc->ti_copper) {
2499 1.15 bouyer if (media & TI_LNK_100MB)
2500 1.15 bouyer ifmr->ifm_active |= IFM_100_TX;
2501 1.15 bouyer if (media & TI_LNK_10MB)
2502 1.15 bouyer ifmr->ifm_active |= IFM_10_T;
2503 1.15 bouyer } else {
2504 1.15 bouyer if (media & TI_LNK_100MB)
2505 1.15 bouyer ifmr->ifm_active |= IFM_100_FX;
2506 1.15 bouyer if (media & TI_LNK_10MB)
2507 1.15 bouyer ifmr->ifm_active |= IFM_10_FL;
2508 1.15 bouyer }
2509 1.1 drochner if (media & TI_LNK_FULL_DUPLEX)
2510 1.1 drochner ifmr->ifm_active |= IFM_FDX;
2511 1.1 drochner if (media & TI_LNK_HALF_DUPLEX)
2512 1.1 drochner ifmr->ifm_active |= IFM_HDX;
2513 1.1 drochner }
2514 1.5 thorpej
2515 1.5 thorpej sc->ethercom.ec_if.if_baudrate =
2516 1.5 thorpej ifmedia_baudrate(sc->ifmedia.ifm_media);
2517 1.5 thorpej
2518 1.1 drochner return;
2519 1.1 drochner }
2520 1.1 drochner
2521 1.1 drochner static int
2522 1.1 drochner ti_ether_ioctl(ifp, cmd, data)
2523 1.1 drochner struct ifnet *ifp;
2524 1.1 drochner u_long cmd;
2525 1.1 drochner caddr_t data;
2526 1.1 drochner {
2527 1.1 drochner struct ifaddr *ifa = (struct ifaddr *) data;
2528 1.1 drochner struct ti_softc *sc = ifp->if_softc;
2529 1.1 drochner
2530 1.1 drochner switch (cmd) {
2531 1.1 drochner case SIOCSIFADDR:
2532 1.1 drochner ifp->if_flags |= IFF_UP;
2533 1.1 drochner
2534 1.1 drochner switch (ifa->ifa_addr->sa_family) {
2535 1.1 drochner #ifdef INET
2536 1.1 drochner case AF_INET:
2537 1.1 drochner ti_init(sc);
2538 1.1 drochner arp_ifinit(ifp, ifa);
2539 1.1 drochner break;
2540 1.1 drochner #endif
2541 1.1 drochner #ifdef NS
2542 1.1 drochner case AF_NS:
2543 1.1 drochner {
2544 1.8 augustss struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2545 1.1 drochner
2546 1.1 drochner if (ns_nullhost(*ina))
2547 1.1 drochner ina->x_host = *(union ns_host *)
2548 1.1 drochner LLADDR(ifp->if_sadl);
2549 1.1 drochner else
2550 1.1 drochner bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2551 1.1 drochner ifp->if_addrlen);
2552 1.1 drochner /* Set new address. */
2553 1.1 drochner ti_init(sc);
2554 1.1 drochner break;
2555 1.1 drochner }
2556 1.1 drochner #endif
2557 1.1 drochner default:
2558 1.1 drochner ti_init(sc);
2559 1.1 drochner break;
2560 1.1 drochner }
2561 1.1 drochner break;
2562 1.1 drochner
2563 1.1 drochner default:
2564 1.1 drochner return (EINVAL);
2565 1.1 drochner }
2566 1.1 drochner
2567 1.1 drochner return (0);
2568 1.1 drochner }
2569 1.1 drochner
2570 1.1 drochner static int ti_ioctl(ifp, command, data)
2571 1.1 drochner struct ifnet *ifp;
2572 1.1 drochner u_long command;
2573 1.1 drochner caddr_t data;
2574 1.1 drochner {
2575 1.1 drochner struct ti_softc *sc = ifp->if_softc;
2576 1.1 drochner struct ifreq *ifr = (struct ifreq *) data;
2577 1.1 drochner int s, error = 0;
2578 1.1 drochner struct ti_cmd_desc cmd;
2579 1.1 drochner
2580 1.18 thorpej s = splnet();
2581 1.1 drochner
2582 1.1 drochner switch(command) {
2583 1.1 drochner case SIOCSIFADDR:
2584 1.1 drochner case SIOCGIFADDR:
2585 1.1 drochner error = ti_ether_ioctl(ifp, command, data);
2586 1.1 drochner break;
2587 1.1 drochner case SIOCSIFMTU:
2588 1.1 drochner if (ifr->ifr_mtu > TI_JUMBO_MTU)
2589 1.1 drochner error = EINVAL;
2590 1.1 drochner else {
2591 1.1 drochner ifp->if_mtu = ifr->ifr_mtu;
2592 1.1 drochner ti_init(sc);
2593 1.1 drochner }
2594 1.1 drochner break;
2595 1.1 drochner case SIOCSIFFLAGS:
2596 1.1 drochner if (ifp->if_flags & IFF_UP) {
2597 1.1 drochner /*
2598 1.1 drochner * If only the state of the PROMISC flag changed,
2599 1.1 drochner * then just use the 'set promisc mode' command
2600 1.1 drochner * instead of reinitializing the entire NIC. Doing
2601 1.1 drochner * a full re-init means reloading the firmware and
2602 1.1 drochner * waiting for it to start up, which may take a
2603 1.1 drochner * second or two.
2604 1.1 drochner */
2605 1.1 drochner if (ifp->if_flags & IFF_RUNNING &&
2606 1.1 drochner ifp->if_flags & IFF_PROMISC &&
2607 1.1 drochner !(sc->ti_if_flags & IFF_PROMISC)) {
2608 1.1 drochner TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2609 1.1 drochner TI_CMD_CODE_PROMISC_ENB, 0);
2610 1.1 drochner } else if (ifp->if_flags & IFF_RUNNING &&
2611 1.1 drochner !(ifp->if_flags & IFF_PROMISC) &&
2612 1.1 drochner sc->ti_if_flags & IFF_PROMISC) {
2613 1.1 drochner TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2614 1.1 drochner TI_CMD_CODE_PROMISC_DIS, 0);
2615 1.1 drochner } else
2616 1.1 drochner ti_init(sc);
2617 1.1 drochner } else {
2618 1.1 drochner if (ifp->if_flags & IFF_RUNNING) {
2619 1.1 drochner ti_stop(sc);
2620 1.1 drochner }
2621 1.1 drochner }
2622 1.1 drochner sc->ti_if_flags = ifp->if_flags;
2623 1.1 drochner error = 0;
2624 1.1 drochner break;
2625 1.1 drochner case SIOCADDMULTI:
2626 1.1 drochner case SIOCDELMULTI:
2627 1.20 enami error = (command == SIOCADDMULTI) ?
2628 1.20 enami ether_addmulti(ifr, &sc->ethercom) :
2629 1.20 enami ether_delmulti(ifr, &sc->ethercom);
2630 1.20 enami if (error == ENETRESET) {
2631 1.20 enami if (ifp->if_flags & IFF_RUNNING)
2632 1.20 enami ti_setmulti(sc);
2633 1.1 drochner error = 0;
2634 1.1 drochner }
2635 1.1 drochner break;
2636 1.1 drochner case SIOCSIFMEDIA:
2637 1.1 drochner case SIOCGIFMEDIA:
2638 1.1 drochner error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2639 1.1 drochner break;
2640 1.1 drochner default:
2641 1.1 drochner error = EINVAL;
2642 1.1 drochner break;
2643 1.1 drochner }
2644 1.1 drochner
2645 1.1 drochner (void)splx(s);
2646 1.1 drochner
2647 1.1 drochner return(error);
2648 1.1 drochner }
2649 1.1 drochner
2650 1.1 drochner static void ti_watchdog(ifp)
2651 1.1 drochner struct ifnet *ifp;
2652 1.1 drochner {
2653 1.1 drochner struct ti_softc *sc;
2654 1.1 drochner
2655 1.1 drochner sc = ifp->if_softc;
2656 1.1 drochner
2657 1.1 drochner printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2658 1.1 drochner ti_stop(sc);
2659 1.1 drochner ti_init(sc);
2660 1.1 drochner
2661 1.1 drochner ifp->if_oerrors++;
2662 1.1 drochner
2663 1.1 drochner return;
2664 1.1 drochner }
2665 1.1 drochner
2666 1.1 drochner /*
2667 1.1 drochner * Stop the adapter and free any mbufs allocated to the
2668 1.1 drochner * RX and TX lists.
2669 1.1 drochner */
2670 1.1 drochner static void ti_stop(sc)
2671 1.1 drochner struct ti_softc *sc;
2672 1.1 drochner {
2673 1.1 drochner struct ifnet *ifp;
2674 1.1 drochner struct ti_cmd_desc cmd;
2675 1.1 drochner
2676 1.1 drochner ifp = &sc->ethercom.ec_if;
2677 1.1 drochner
2678 1.1 drochner /* Disable host interrupts. */
2679 1.1 drochner CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2680 1.1 drochner /*
2681 1.1 drochner * Tell firmware we're shutting down.
2682 1.1 drochner */
2683 1.1 drochner TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2684 1.1 drochner
2685 1.1 drochner /* Halt and reinitialize. */
2686 1.1 drochner ti_chipinit(sc);
2687 1.1 drochner ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2688 1.1 drochner ti_chipinit(sc);
2689 1.1 drochner
2690 1.1 drochner /* Free the RX lists. */
2691 1.1 drochner ti_free_rx_ring_std(sc);
2692 1.1 drochner
2693 1.1 drochner /* Free jumbo RX list. */
2694 1.1 drochner ti_free_rx_ring_jumbo(sc);
2695 1.1 drochner
2696 1.1 drochner /* Free mini RX list. */
2697 1.1 drochner ti_free_rx_ring_mini(sc);
2698 1.1 drochner
2699 1.1 drochner /* Free TX buffers. */
2700 1.1 drochner ti_free_tx_ring(sc);
2701 1.1 drochner
2702 1.1 drochner sc->ti_ev_prodidx.ti_idx = 0;
2703 1.1 drochner sc->ti_return_prodidx.ti_idx = 0;
2704 1.1 drochner sc->ti_tx_considx.ti_idx = 0;
2705 1.1 drochner sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2706 1.1 drochner
2707 1.1 drochner ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2708 1.1 drochner
2709 1.1 drochner return;
2710 1.1 drochner }
2711 1.1 drochner
2712 1.1 drochner /*
2713 1.1 drochner * Stop all chip I/O so that the kernel's probe routines don't
2714 1.1 drochner * get confused by errant DMAs when rebooting.
2715 1.1 drochner */
2716 1.6 bouyer static void ti_shutdown(v)
2717 1.6 bouyer void *v;
2718 1.1 drochner {
2719 1.6 bouyer struct ti_softc *sc = v;
2720 1.1 drochner
2721 1.1 drochner ti_chipinit(sc);
2722 1.1 drochner
2723 1.1 drochner return;
2724 1.1 drochner }
2725