if_ti.c revision 1.1 1 /* $NetBSD: if_ti.c,v 1.1 1999/09/01 11:47:46 drochner Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA260 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #if 0
85 #include "vlan.h"
86 #endif
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #if 0
111 #if NVLAN > 0
112 #include <net/if_types.h>
113 #include <net/if_vlan_var.h>
114 #endif
115 #endif
116
117 #ifdef INET
118 #include <netinet/in.h>
119 #include <netinet/if_inarp.h>
120 #endif
121
122 #if 0
123 #include <vm/vm.h> /* for vtophys */
124 #include <vm/pmap.h> /* for vtophys */
125 #include <machine/clock.h> /* for DELAY */
126 #endif
127 #include <machine/bus.h>
128 #if 0
129 #include <machine/resource.h>
130 #include <sys/bus.h>
131 #include <sys/rman.h>
132 #endif
133
134 #include <dev/pci/pcireg.h>
135 #include <dev/pci/pcivar.h>
136 #include <dev/pci/pcidevs.h>
137
138 #include <dev/pci/if_tireg.h>
139 #include <dev/pci/ti_fw.h>
140 #include <dev/pci/ti_fw2.h>
141
142 #ifdef M_HWCKSUM
143 /*#define TI_CSUM_OFFLOAD*/
144 #endif
145
146 #define bootverbose 1
147
148 /*
149 * Various supported device vendors/types and their names.
150 */
151
152 static struct ti_type ti_devs[] = {
153 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
154 "Alteon AceNIC Gigabit Ethernet" },
155 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
156 "3Com 3c985-SX Gigabit Ethernet" },
157 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
158 "Netgear GA620 Gigabit Ethernet" },
159 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
160 "Silicon Graphics Gigabit Ethernet" },
161 { 0, 0, NULL }
162 };
163
164 static int ti_probe __P((struct device *, struct cfdata *, void *));
165 static void ti_attach __P((struct device *, struct device *, void *));
166 #if 0
167 static int ti_detach __P((device_t));
168 #endif
169 static void ti_txeof __P((struct ti_softc *));
170 static void ti_rxeof __P((struct ti_softc *));
171
172 static void ti_stats_update __P((struct ti_softc *));
173 static int ti_encap __P((struct ti_softc *, struct mbuf *,
174 u_int32_t *));
175
176 static int ti_intr __P((void *));
177 static void ti_start __P((struct ifnet *));
178 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
179 static void ti_init __P((void *));
180 static void ti_init2 __P((struct ti_softc *));
181 static void ti_stop __P((struct ti_softc *));
182 static void ti_watchdog __P((struct ifnet *));
183 #if 0
184 static void ti_shutdown __P((device_t));
185 #endif
186 static int ti_ifmedia_upd __P((struct ifnet *));
187 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
188
189 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
190 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
191 int, u_int8_t *));
192 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
193
194 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
195 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
196 static void ti_setmulti __P((struct ti_softc *));
197
198 static void ti_mem __P((struct ti_softc *, u_int32_t,
199 u_int32_t, caddr_t));
200 static void ti_loadfw __P((struct ti_softc *));
201 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
202 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
203 caddr_t, int));
204 static void ti_handle_events __P((struct ti_softc *));
205 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
206 static void *ti_jalloc __P((struct ti_softc *));
207 static void ti_jfree __P((caddr_t, u_int, void *));
208 #if 0
209 static void ti_jref __P((caddr_t, u_int));
210 #endif
211 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
212 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
213 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
214 static int ti_init_rx_ring_std __P((struct ti_softc *));
215 static void ti_free_rx_ring_std __P((struct ti_softc *));
216 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
217 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
218 static int ti_init_rx_ring_mini __P((struct ti_softc *));
219 static void ti_free_rx_ring_mini __P((struct ti_softc *));
220 static void ti_free_tx_ring __P((struct ti_softc *));
221 static int ti_init_tx_ring __P((struct ti_softc *));
222
223 static int ti_64bitslot_war __P((struct ti_softc *));
224 static int ti_chipinit __P((struct ti_softc *));
225 static int ti_gibinit __P((struct ti_softc *));
226
227 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
228
229 struct cfattach ti_ca = {
230 sizeof(struct ti_softc), ti_probe, ti_attach
231 };
232
233 /*
234 * Send an instruction or address to the EEPROM, check for ACK.
235 */
236 static u_int32_t ti_eeprom_putbyte(sc, byte)
237 struct ti_softc *sc;
238 int byte;
239 {
240 register int i, ack = 0;
241
242 /*
243 * Make sure we're in TX mode.
244 */
245 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
246
247 /*
248 * Feed in each bit and stobe the clock.
249 */
250 for (i = 0x80; i; i >>= 1) {
251 if (byte & i) {
252 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
253 } else {
254 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
255 }
256 DELAY(1);
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 DELAY(1);
259 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260 }
261
262 /*
263 * Turn off TX mode.
264 */
265 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
266
267 /*
268 * Check for ack.
269 */
270 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
271 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
272 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
273
274 return(ack);
275 }
276
277 /*
278 * Read a byte of data stored in the EEPROM at address 'addr.'
279 * We have to send two address bytes since the EEPROM can hold
280 * more than 256 bytes of data.
281 */
282 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
283 struct ti_softc *sc;
284 int addr;
285 u_int8_t *dest;
286 {
287 register int i;
288 u_int8_t byte = 0;
289
290 EEPROM_START;
291
292 /*
293 * Send write control code to EEPROM.
294 */
295 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
296 printf("%s: failed to send write command, status: %x\n",
297 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 return(1);
299 }
300
301 /*
302 * Send first byte of address of byte we want to read.
303 */
304 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
305 printf("%s: failed to send address, status: %x\n",
306 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
307 return(1);
308 }
309 /*
310 * Send second byte address of byte we want to read.
311 */
312 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
313 printf("%s: failed to send address, status: %x\n",
314 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
315 return(1);
316 }
317
318 EEPROM_STOP;
319 EEPROM_START;
320 /*
321 * Send read control code to EEPROM.
322 */
323 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
324 printf("%s: failed to send read command, status: %x\n",
325 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
326 return(1);
327 }
328
329 /*
330 * Start reading bits from EEPROM.
331 */
332 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
333 for (i = 0x80; i; i >>= 1) {
334 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335 DELAY(1);
336 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
337 byte |= i;
338 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
339 DELAY(1);
340 }
341
342 EEPROM_STOP;
343
344 /*
345 * No ACK generated for read, so just return byte.
346 */
347
348 *dest = byte;
349
350 return(0);
351 }
352
353 /*
354 * Read a sequence of bytes from the EEPROM.
355 */
356 static int ti_read_eeprom(sc, dest, off, cnt)
357 struct ti_softc *sc;
358 caddr_t dest;
359 int off;
360 int cnt;
361 {
362 int err = 0, i;
363 u_int8_t byte = 0;
364
365 for (i = 0; i < cnt; i++) {
366 err = ti_eeprom_getbyte(sc, off + i, &byte);
367 if (err)
368 break;
369 *(dest + i) = byte;
370 }
371
372 return(err ? 1 : 0);
373 }
374
375 /*
376 * NIC memory access function. Can be used to either clear a section
377 * of NIC local memory or (if buf is non-NULL) copy data into it.
378 */
379 static void ti_mem(sc, addr, len, buf)
380 struct ti_softc *sc;
381 u_int32_t addr, len;
382 caddr_t buf;
383 {
384 int segptr, segsize, cnt;
385 caddr_t ti_winbase, ptr;
386
387 segptr = addr;
388 cnt = len;
389 ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
390 ptr = buf;
391
392 while(cnt) {
393 if (cnt < TI_WINLEN)
394 segsize = cnt;
395 else
396 segsize = TI_WINLEN - (segptr % TI_WINLEN);
397 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
398 if (buf == NULL)
399 bzero((char *)ti_winbase + (segptr &
400 (TI_WINLEN - 1)), segsize);
401 else {
402 bcopy((char *)ptr, (char *)ti_winbase +
403 (segptr & (TI_WINLEN - 1)), segsize);
404 ptr += segsize;
405 }
406 segptr += segsize;
407 cnt -= segsize;
408 }
409
410 return;
411 }
412
413 /*
414 * Load firmware image into the NIC. Check that the firmware revision
415 * is acceptable and see if we want the firmware for the Tigon 1 or
416 * Tigon 2.
417 */
418 static void ti_loadfw(sc)
419 struct ti_softc *sc;
420 {
421 switch(sc->ti_hwrev) {
422 case TI_HWREV_TIGON:
423 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
424 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
425 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
426 printf("%s: firmware revision mismatch; want "
427 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
428 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
429 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
430 tigonFwReleaseMinor, tigonFwReleaseFix);
431 return;
432 }
433 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
434 (caddr_t)tigonFwText);
435 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
436 (caddr_t)tigonFwData);
437 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
438 (caddr_t)tigonFwRodata);
439 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
440 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
441 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
442 break;
443 case TI_HWREV_TIGON_II:
444 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
445 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
446 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
447 printf("%s: firmware revision mismatch; want "
448 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
449 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
450 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
451 tigon2FwReleaseMinor, tigon2FwReleaseFix);
452 return;
453 }
454 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
455 (caddr_t)tigon2FwText);
456 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
457 (caddr_t)tigon2FwData);
458 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
459 (caddr_t)tigon2FwRodata);
460 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
461 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
462 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
463 break;
464 default:
465 printf("%s: can't load firmware: unknown hardware rev\n",
466 sc->sc_dev.dv_xname);
467 break;
468 }
469
470 return;
471 }
472
473 /*
474 * Send the NIC a command via the command ring.
475 */
476 static void ti_cmd(sc, cmd)
477 struct ti_softc *sc;
478 struct ti_cmd_desc *cmd;
479 {
480 u_int32_t index;
481
482 if (sc->ti_rdata->ti_cmd_ring == NULL)
483 return;
484
485 index = sc->ti_cmd_saved_prodidx;
486 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
487 TI_INC(index, TI_CMD_RING_CNT);
488 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
489 sc->ti_cmd_saved_prodidx = index;
490
491 return;
492 }
493
494 /*
495 * Send the NIC an extended command. The 'len' parameter specifies the
496 * number of command slots to include after the initial command.
497 */
498 static void ti_cmd_ext(sc, cmd, arg, len)
499 struct ti_softc *sc;
500 struct ti_cmd_desc *cmd;
501 caddr_t arg;
502 int len;
503 {
504 u_int32_t index;
505 register int i;
506
507 if (sc->ti_rdata->ti_cmd_ring == NULL)
508 return;
509
510 index = sc->ti_cmd_saved_prodidx;
511 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
512 TI_INC(index, TI_CMD_RING_CNT);
513 for (i = 0; i < len; i++) {
514 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
515 *(u_int32_t *)(&arg[i * 4]));
516 TI_INC(index, TI_CMD_RING_CNT);
517 }
518 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
519 sc->ti_cmd_saved_prodidx = index;
520
521 return;
522 }
523
524 /*
525 * Handle events that have triggered interrupts.
526 */
527 static void ti_handle_events(sc)
528 struct ti_softc *sc;
529 {
530 struct ti_event_desc *e;
531
532 if (sc->ti_rdata->ti_event_ring == NULL)
533 return;
534
535 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
536 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
537 switch(e->ti_event) {
538 case TI_EV_LINKSTAT_CHANGED:
539 sc->ti_linkstat = e->ti_code;
540 if (e->ti_code == TI_EV_CODE_LINK_UP)
541 printf("%s: 10/100 link up\n",
542 sc->sc_dev.dv_xname);
543 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
544 printf("%s: gigabit link up\n",
545 sc->sc_dev.dv_xname);
546 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
547 printf("%s: link down\n",
548 sc->sc_dev.dv_xname);
549 break;
550 case TI_EV_ERROR:
551 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
552 printf("%s: invalid command\n",
553 sc->sc_dev.dv_xname);
554 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
555 printf("%s: unknown command\n",
556 sc->sc_dev.dv_xname);
557 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
558 printf("%s: bad config data\n",
559 sc->sc_dev.dv_xname);
560 break;
561 case TI_EV_FIRMWARE_UP:
562 ti_init2(sc);
563 break;
564 case TI_EV_STATS_UPDATED:
565 ti_stats_update(sc);
566 break;
567 case TI_EV_RESET_JUMBO_RING:
568 case TI_EV_MCAST_UPDATED:
569 /* Who cares. */
570 break;
571 default:
572 printf("%s: unknown event: %d\n",
573 sc->sc_dev.dv_xname, e->ti_event);
574 break;
575 }
576 /* Advance the consumer index. */
577 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
578 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
579 }
580
581 return;
582 }
583
584 /*
585 * Memory management for the jumbo receive ring is a pain in the
586 * butt. We need to allocate at least 9018 bytes of space per frame,
587 * _and_ it has to be contiguous (unless you use the extended
588 * jumbo descriptor format). Using malloc() all the time won't
589 * work: malloc() allocates memory in powers of two, which means we
590 * would end up wasting a considerable amount of space by allocating
591 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
592 * to do our own memory management.
593 *
594 * The driver needs to allocate a contiguous chunk of memory at boot
595 * time. We then chop this up ourselves into 9K pieces and use them
596 * as external mbuf storage.
597 *
598 * One issue here is how much memory to allocate. The jumbo ring has
599 * 256 slots in it, but at 9K per slot than can consume over 2MB of
600 * RAM. This is a bit much, especially considering we also need
601 * RAM for the standard ring and mini ring (on the Tigon 2). To
602 * save space, we only actually allocate enough memory for 64 slots
603 * by default, which works out to between 500 and 600K. This can
604 * be tuned by changing a #define in if_tireg.h.
605 */
606
607 static int ti_alloc_jumbo_mem(sc)
608 struct ti_softc *sc;
609 {
610 caddr_t ptr;
611 register int i;
612 struct ti_jpool_entry *entry;
613 bus_dma_segment_t dmaseg;
614 int error, dmanseg;
615
616 /* Grab a big chunk o' storage. */
617 if ((error = bus_dmamem_alloc(sc->sc_dmat,
618 TI_JMEM, NBPG, 0, &dmaseg, 1, &dmanseg,
619 BUS_DMA_NOWAIT)) != 0) {
620 printf("%s: can't allocate jumbo buffer, error = %d\n",
621 sc->sc_dev.dv_xname, error);
622 return (error);
623 }
624
625 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
626 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
627 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
628 printf("%s: can't map jumbo buffer, error = %d\n",
629 sc->sc_dev.dv_xname, error);
630 return (error);
631 }
632
633 if ((error = bus_dmamap_create(sc->sc_dmat,
634 TI_JMEM, 1,
635 TI_JMEM, 0, BUS_DMA_NOWAIT,
636 &sc->jumbo_dmamap)) != 0) {
637 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
638 sc->sc_dev.dv_xname, error);
639 return (error);
640 }
641
642 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
643 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
644 BUS_DMA_NOWAIT)) != 0) {
645 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
646 sc->sc_dev.dv_xname, error);
647 return (error);
648 }
649 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
650
651 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
652 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
653
654 /*
655 * Now divide it up into 9K pieces and save the addresses
656 * in an array. Note that we play an evil trick here by using
657 * the first few bytes in the buffer to hold the address
658 * of the softc structure for this interface. This is because
659 * ti_jfree() needs it, but it is called by the mbuf management
660 * code which will not pass it to us explicitly.
661 */
662 ptr = sc->ti_cdata.ti_jumbo_buf;
663 for (i = 0; i < TI_JSLOTS; i++) {
664 u_int64_t **aptr;
665 aptr = (u_int64_t **)ptr;
666 aptr[0] = (u_int64_t *)sc;
667 ptr += sizeof(u_int64_t);
668 sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
669 sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
670 ptr += (TI_JLEN - sizeof(u_int64_t));
671 entry = malloc(sizeof(struct ti_jpool_entry),
672 M_DEVBUF, M_NOWAIT);
673 if (entry == NULL) {
674 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
675 sc->ti_cdata.ti_jumbo_buf = NULL;
676 printf("%s: no memory for jumbo "
677 "buffer queue!\n", sc->sc_dev.dv_xname);
678 return(ENOBUFS);
679 }
680 entry->slot = i;
681 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
682 jpool_entries);
683 }
684
685 return(0);
686 }
687
688 /*
689 * Allocate a jumbo buffer.
690 */
691 static void *ti_jalloc(sc)
692 struct ti_softc *sc;
693 {
694 struct ti_jpool_entry *entry;
695
696 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
697
698 if (entry == NULL) {
699 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
700 return(NULL);
701 }
702
703 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
704 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
705 sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
706 return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
707 }
708
709 #if 0
710 /*
711 * Adjust usage count on a jumbo buffer. In general this doesn't
712 * get used much because our jumbo buffers don't get passed around
713 * too much, but it's implemented for correctness.
714 */
715 static void ti_jref(buf, size)
716 caddr_t buf;
717 u_int size;
718 {
719 struct ti_softc *sc;
720 u_int64_t **aptr;
721 register int i;
722
723 /* Extract the softc struct pointer. */
724 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
725 sc = (struct ti_softc *)(aptr[0]);
726
727 if (sc == NULL)
728 panic("ti_jref: can't find softc pointer!");
729
730 if (size != TI_JUMBO_FRAMELEN)
731 panic("ti_jref: adjusting refcount of buf of wrong size!");
732
733 /* calculate the slot this buffer belongs to */
734
735 i = ((caddr_t)aptr
736 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
737
738 if ((i < 0) || (i >= TI_JSLOTS))
739 panic("ti_jref: asked to reference buffer "
740 "that we don't manage!");
741 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
742 panic("ti_jref: buffer already free!");
743 else
744 sc->ti_cdata.ti_jslots[i].ti_inuse++;
745
746 return;
747 }
748 #endif
749
750 /*
751 * Release a jumbo buffer.
752 */
753 static void ti_jfree(buf, size, arg)
754 caddr_t buf;
755 u_int size;
756 void *arg; /* XXX NetBSD: we should really use it */
757 {
758 struct ti_softc *sc;
759 u_int64_t **aptr;
760 int i;
761 struct ti_jpool_entry *entry;
762
763 /* Extract the softc struct pointer. */
764 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
765 sc = (struct ti_softc *)(aptr[0]);
766
767 if (sc == NULL)
768 panic("ti_jfree: can't find softc pointer!");
769
770 if (size != TI_JUMBO_FRAMELEN)
771 panic("ti_jfree: freeing buffer of wrong size!");
772
773 /* calculate the slot this buffer belongs to */
774
775 i = ((caddr_t)aptr
776 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
777
778 if ((i < 0) || (i >= TI_JSLOTS))
779 panic("ti_jfree: asked to free buffer that we don't manage!");
780 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
781 panic("ti_jfree: buffer already free!");
782 else {
783 sc->ti_cdata.ti_jslots[i].ti_inuse--;
784 if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
785 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
786 if (entry == NULL)
787 panic("ti_jfree: buffer not in use!");
788 entry->slot = i;
789 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
790 entry, jpool_entries);
791 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
792 entry, jpool_entries);
793 }
794 }
795
796 return;
797 }
798
799
800 /*
801 * Intialize a standard receive ring descriptor.
802 */
803 static int ti_newbuf_std(sc, i, m, dmamap)
804 struct ti_softc *sc;
805 int i;
806 struct mbuf *m;
807 bus_dmamap_t dmamap; /* required if (m != NULL) */
808 {
809 struct mbuf *m_new = NULL;
810 struct ti_rx_desc *r;
811 int error;
812
813 if (dmamap == NULL) {
814 /* if (m) panic() */
815
816 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
817 MCLBYTES, 0, BUS_DMA_NOWAIT,
818 &dmamap)) != 0) {
819 printf("%s: can't create recv map, error = %d\n",
820 sc->sc_dev.dv_xname, error);
821 return(ENOMEM);
822 }
823 }
824 sc->std_dmamap[i] = dmamap;
825
826 if (m == NULL) {
827 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
828 if (m_new == NULL) {
829 printf("%s: mbuf allocation failed "
830 "-- packet dropped!\n", sc->sc_dev.dv_xname);
831 return(ENOBUFS);
832 }
833
834 MCLGET(m_new, M_DONTWAIT);
835 if (!(m_new->m_flags & M_EXT)) {
836 printf("%s: cluster allocation failed "
837 "-- packet dropped!\n", sc->sc_dev.dv_xname);
838 m_freem(m_new);
839 return(ENOBUFS);
840 }
841 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
842 m_adj(m_new, ETHER_ALIGN);
843
844 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
845 mtod(m_new, caddr_t), m_new->m_len, NULL,
846 BUS_DMA_NOWAIT)) != 0) {
847 printf("%s: can't load recv map, error = %d\n",
848 sc->sc_dev.dv_xname, error);
849 return (ENOMEM);
850 }
851 } else {
852 m_new = m;
853 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
854 m_new->m_data = m_new->m_ext.ext_buf;
855 m_adj(m_new, ETHER_ALIGN);
856
857 /* reuse the dmamap */
858 }
859
860 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
861 r = &sc->ti_rdata->ti_rx_std_ring[i];
862 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
863 r->ti_type = TI_BDTYPE_RECV_BD;
864 #ifdef TI_CSUM_OFFLOAD
865 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
866 #else
867 r->ti_flags = 0;
868 #endif
869 r->ti_len = m_new->m_len; /* == ds_len */
870 r->ti_idx = i;
871
872 return(0);
873 }
874
875 /*
876 * Intialize a mini receive ring descriptor. This only applies to
877 * the Tigon 2.
878 */
879 static int ti_newbuf_mini(sc, i, m, dmamap)
880 struct ti_softc *sc;
881 int i;
882 struct mbuf *m;
883 bus_dmamap_t dmamap; /* required if (m != NULL) */
884 {
885 struct mbuf *m_new = NULL;
886 struct ti_rx_desc *r;
887 int error;
888
889 if (dmamap == NULL) {
890 /* if (m) panic() */
891
892 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
893 MHLEN, 0, BUS_DMA_NOWAIT,
894 &dmamap)) != 0) {
895 printf("%s: can't create recv map, error = %d\n",
896 sc->sc_dev.dv_xname, error);
897 return(ENOMEM);
898 }
899 }
900 sc->mini_dmamap[i] = dmamap;
901
902 if (m == NULL) {
903 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
904 if (m_new == NULL) {
905 printf("%s: mbuf allocation failed "
906 "-- packet dropped!\n", sc->sc_dev.dv_xname);
907 return(ENOBUFS);
908 }
909 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
910 m_adj(m_new, ETHER_ALIGN);
911
912 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
913 mtod(m_new, caddr_t), m_new->m_len, NULL,
914 BUS_DMA_NOWAIT)) != 0) {
915 printf("%s: can't load recv map, error = %d\n",
916 sc->sc_dev.dv_xname, error);
917 return (ENOMEM);
918 }
919 } else {
920 m_new = m;
921 m_new->m_data = m_new->m_pktdat;
922 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
923 m_adj(m_new, ETHER_ALIGN);
924
925 /* reuse the dmamap */
926 }
927
928 r = &sc->ti_rdata->ti_rx_mini_ring[i];
929 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
930 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
931 r->ti_type = TI_BDTYPE_RECV_BD;
932 r->ti_flags = TI_BDFLAG_MINI_RING;
933 #ifdef TI_CSUM_OFFLOAD
934 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
935 #endif
936 r->ti_len = m_new->m_len; /* == ds_len */
937 r->ti_idx = i;
938
939 return(0);
940 }
941
942 /*
943 * Initialize a jumbo receive ring descriptor. This allocates
944 * a jumbo buffer from the pool managed internally by the driver.
945 */
946 static int ti_newbuf_jumbo(sc, i, m)
947 struct ti_softc *sc;
948 int i;
949 struct mbuf *m;
950 {
951 struct mbuf *m_new = NULL;
952 struct ti_rx_desc *r;
953
954 if (m == NULL) {
955 caddr_t *buf = NULL;
956
957 /* Allocate the mbuf. */
958 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
959 if (m_new == NULL) {
960 printf("%s: mbuf allocation failed "
961 "-- packet dropped!\n", sc->sc_dev.dv_xname);
962 return(ENOBUFS);
963 }
964
965 /* Allocate the jumbo buffer */
966 buf = ti_jalloc(sc);
967 if (buf == NULL) {
968 m_freem(m_new);
969 printf("%s: jumbo allocation failed "
970 "-- packet dropped!\n", sc->sc_dev.dv_xname);
971 return(ENOBUFS);
972 }
973
974 /* Attach the buffer to the mbuf. */
975 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
976 m_new->m_flags |= M_EXT;
977 m_new->m_len = m_new->m_pkthdr.len =
978 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
979 m_new->m_ext.ext_free = ti_jfree;
980 m_new->m_ext.ext_arg = sc;
981 #if 0
982 m_new->m_ext.ext_ref = ti_jref;
983 #endif
984 MCLINITREFERENCE(m_new);
985 } else {
986 m_new = m;
987 m_new->m_data = m_new->m_ext.ext_buf;
988 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
989 }
990
991 m_adj(m_new, ETHER_ALIGN);
992 /* Set up the descriptor. */
993 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
994 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
995 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
996 ((caddr_t)mtod(m_new, caddr_t)
997 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
998 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
999 r->ti_flags = TI_BDFLAG_JUMBO_RING;
1000 #ifdef TI_CSUM_OFFLOAD
1001 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1002 #endif
1003 r->ti_len = m_new->m_len;
1004 r->ti_idx = i;
1005
1006 return(0);
1007 }
1008
1009 /*
1010 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1011 * that's 1MB or memory, which is a lot. For now, we fill only the first
1012 * 256 ring entries and hope that our CPU is fast enough to keep up with
1013 * the NIC.
1014 */
1015 static int ti_init_rx_ring_std(sc)
1016 struct ti_softc *sc;
1017 {
1018 register int i;
1019 struct ti_cmd_desc cmd;
1020
1021 for (i = 0; i < TI_SSLOTS; i++) {
1022 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1023 return(ENOBUFS);
1024 };
1025
1026 TI_UPDATE_STDPROD(sc, i - 1);
1027 sc->ti_std = i - 1;
1028
1029 return(0);
1030 }
1031
1032 static void ti_free_rx_ring_std(sc)
1033 struct ti_softc *sc;
1034 {
1035 register int i;
1036
1037 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1038 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1039 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1040 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1041
1042 /* if (sc->std_dmamap[i] == 0) panic() */
1043 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
1044 sc->std_dmamap[i] = 0;
1045 }
1046 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1047 sizeof(struct ti_rx_desc));
1048 }
1049
1050 return;
1051 }
1052
1053 static int ti_init_rx_ring_jumbo(sc)
1054 struct ti_softc *sc;
1055 {
1056 register int i;
1057 struct ti_cmd_desc cmd;
1058
1059 for (i = 0; i < (TI_JSLOTS - 20); i++) {
1060 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1061 return(ENOBUFS);
1062 };
1063
1064 TI_UPDATE_JUMBOPROD(sc, i - 1);
1065 sc->ti_jumbo = i - 1;
1066
1067 return(0);
1068 }
1069
1070 static void ti_free_rx_ring_jumbo(sc)
1071 struct ti_softc *sc;
1072 {
1073 register int i;
1074
1075 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1076 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1077 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1078 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1079 }
1080 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1081 sizeof(struct ti_rx_desc));
1082 }
1083
1084 return;
1085 }
1086
1087 static int ti_init_rx_ring_mini(sc)
1088 struct ti_softc *sc;
1089 {
1090 register int i;
1091
1092 for (i = 0; i < TI_MSLOTS; i++) {
1093 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1094 return(ENOBUFS);
1095 };
1096
1097 TI_UPDATE_MINIPROD(sc, i - 1);
1098 sc->ti_mini = i - 1;
1099
1100 return(0);
1101 }
1102
1103 static void ti_free_rx_ring_mini(sc)
1104 struct ti_softc *sc;
1105 {
1106 register int i;
1107
1108 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1109 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1110 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1111 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1112
1113 /* if (sc->mini_dmamap[i] == 0) panic() */
1114 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1115 sc->mini_dmamap[i] = 0;
1116 }
1117 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1118 sizeof(struct ti_rx_desc));
1119 }
1120
1121 return;
1122 }
1123
1124 static void ti_free_tx_ring(sc)
1125 struct ti_softc *sc;
1126 {
1127 register int i;
1128 struct txdmamap_pool_entry *dma;
1129
1130 if (sc->ti_rdata->ti_tx_ring == NULL)
1131 return;
1132
1133 for (i = 0; i < TI_TX_RING_CNT; i++) {
1134 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1135 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1136 sc->ti_cdata.ti_tx_chain[i] = NULL;
1137
1138 /* if (sc->txdma[i] == 0) panic() */
1139 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1140 link);
1141 sc->txdma[i] = 0;
1142 }
1143 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1144 sizeof(struct ti_tx_desc));
1145 }
1146
1147 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1148 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1149 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1150 free(dma, M_DEVBUF);
1151 }
1152
1153 return;
1154 }
1155
1156 static int ti_init_tx_ring(sc)
1157 struct ti_softc *sc;
1158 {
1159 int i, error;
1160 bus_dmamap_t dmamap;
1161 struct txdmamap_pool_entry *dma;
1162
1163 sc->ti_txcnt = 0;
1164 sc->ti_tx_saved_considx = 0;
1165 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1166
1167 SIMPLEQ_INIT(&sc->txdma_list);
1168 for (i = 0; i < TI_RSLOTS; i++) {
1169 /* I've seen mbufs with 30 fragments. */
1170 if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1171 40, TI_JUMBO_FRAMELEN, 0,
1172 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1173 printf("%s: can't create tx map, error = %d\n",
1174 sc->sc_dev.dv_xname, error);
1175 return(ENOMEM);
1176 }
1177 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1178 if (!dma) {
1179 printf("%s: can't alloc txdmamap_pool_entry\n",
1180 sc->sc_dev.dv_xname);
1181 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1182 return (ENOMEM);
1183 }
1184 dma->dmamap = dmamap;
1185 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1186 }
1187
1188 return(0);
1189 }
1190
1191 /*
1192 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1193 * but we have to support the old way too so that Tigon 1 cards will
1194 * work.
1195 */
1196 void ti_add_mcast(sc, addr)
1197 struct ti_softc *sc;
1198 struct ether_addr *addr;
1199 {
1200 struct ti_cmd_desc cmd;
1201 u_int16_t *m;
1202 u_int32_t ext[2] = {0, 0};
1203
1204 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1205
1206 switch(sc->ti_hwrev) {
1207 case TI_HWREV_TIGON:
1208 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1209 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1210 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1211 break;
1212 case TI_HWREV_TIGON_II:
1213 ext[0] = htons(m[0]);
1214 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1215 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1216 break;
1217 default:
1218 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1219 break;
1220 }
1221
1222 return;
1223 }
1224
1225 void ti_del_mcast(sc, addr)
1226 struct ti_softc *sc;
1227 struct ether_addr *addr;
1228 {
1229 struct ti_cmd_desc cmd;
1230 u_int16_t *m;
1231 u_int32_t ext[2] = {0, 0};
1232
1233 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1234
1235 switch(sc->ti_hwrev) {
1236 case TI_HWREV_TIGON:
1237 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1238 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1239 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1240 break;
1241 case TI_HWREV_TIGON_II:
1242 ext[0] = htons(m[0]);
1243 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1244 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1245 break;
1246 default:
1247 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1248 break;
1249 }
1250
1251 return;
1252 }
1253
1254 /*
1255 * Configure the Tigon's multicast address filter.
1256 *
1257 * The actual multicast table management is a bit of a pain, thanks to
1258 * slight brain damage on the part of both Alteon and us. With our
1259 * multicast code, we are only alerted when the multicast address table
1260 * changes and at that point we only have the current list of addresses:
1261 * we only know the current state, not the previous state, so we don't
1262 * actually know what addresses were removed or added. The firmware has
1263 * state, but we can't get our grubby mits on it, and there is no 'delete
1264 * all multicast addresses' command. Hence, we have to maintain our own
1265 * state so we know what addresses have been programmed into the NIC at
1266 * any given time.
1267 */
1268 static void ti_setmulti(sc)
1269 struct ti_softc *sc;
1270 {
1271 struct ifnet *ifp;
1272 struct ti_cmd_desc cmd;
1273 struct ti_mc_entry *mc;
1274 u_int32_t intrs;
1275 struct ether_multi *enm;
1276 struct ether_multistep step;
1277
1278 ifp = &sc->ethercom.ec_if;
1279
1280 if (ifp->if_flags & IFF_ALLMULTI) {
1281 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1282 return;
1283 } else {
1284 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1285 }
1286
1287 /* Disable interrupts. */
1288 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1289 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1290
1291 /* First, zot all the existing filters. */
1292 while (SIMPLEQ_FIRST(&sc->ti_mc_listhead) != NULL) {
1293 mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead);
1294 ti_del_mcast(sc, &mc->mc_addr);
1295 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1296 free(mc, M_DEVBUF);
1297 }
1298
1299 /* Now program new ones. */
1300 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1301 while (enm != NULL) {
1302 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1303 bcopy(enm->enm_addrlo,
1304 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1305 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1306 ti_add_mcast(sc, &mc->mc_addr);
1307 ETHER_NEXT_MULTI(step, enm);
1308 }
1309
1310 /* Re-enable interrupts. */
1311 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1312
1313 return;
1314 }
1315
1316 /*
1317 * Check to see if the BIOS has configured us for a 64 bit slot when
1318 * we aren't actually in one. If we detect this condition, we can work
1319 * around it on the Tigon 2 by setting a bit in the PCI state register,
1320 * but for the Tigon 1 we must give up and abort the interface attach.
1321 */
1322 static int ti_64bitslot_war(sc)
1323 struct ti_softc *sc;
1324 {
1325 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1326 CSR_WRITE_4(sc, 0x600, 0);
1327 CSR_WRITE_4(sc, 0x604, 0);
1328 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1329 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1330 if (sc->ti_hwrev == TI_HWREV_TIGON)
1331 return(EINVAL);
1332 else {
1333 TI_SETBIT(sc, TI_PCI_STATE,
1334 TI_PCISTATE_32BIT_BUS);
1335 return(0);
1336 }
1337 }
1338 }
1339
1340 return(0);
1341 }
1342
1343 /*
1344 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1345 * self-test results.
1346 */
1347 static int ti_chipinit(sc)
1348 struct ti_softc *sc;
1349 {
1350 u_int32_t cacheline;
1351 u_int32_t pci_writemax = 0;
1352
1353 /* Initialize link to down state. */
1354 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1355
1356 /* Set endianness before we access any non-PCI registers. */
1357 #if BYTE_ORDER == BIG_ENDIAN
1358 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1359 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1360 #else
1361 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1362 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1363 #endif
1364
1365 /* Check the ROM failed bit to see if self-tests passed. */
1366 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1367 printf("%s: board self-diagnostics failed!\n",
1368 sc->sc_dev.dv_xname);
1369 return(ENODEV);
1370 }
1371
1372 /* Halt the CPU. */
1373 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1374
1375 /* Figure out the hardware revision. */
1376 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1377 case TI_REV_TIGON_I:
1378 sc->ti_hwrev = TI_HWREV_TIGON;
1379 break;
1380 case TI_REV_TIGON_II:
1381 sc->ti_hwrev = TI_HWREV_TIGON_II;
1382 break;
1383 default:
1384 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1385 return(ENODEV);
1386 }
1387
1388 /* Do special setup for Tigon 2. */
1389 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1390 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1391 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1392 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1393 }
1394
1395 /* Set up the PCI state register. */
1396 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1397 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1398 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1399 }
1400
1401 /* Clear the read/write max DMA parameters. */
1402 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1403 TI_PCISTATE_READ_MAXDMA));
1404
1405 /* Get cache line size. */
1406 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1407
1408 /*
1409 * If the system has set enabled the PCI memory write
1410 * and invalidate command in the command register, set
1411 * the write max parameter accordingly. This is necessary
1412 * to use MWI with the Tigon 2.
1413 */
1414 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1415 & PCI_COMMAND_INVALIDATE_ENABLE) {
1416 switch(cacheline) {
1417 case 1:
1418 case 4:
1419 case 8:
1420 case 16:
1421 case 32:
1422 case 64:
1423 break;
1424 default:
1425 /* Disable PCI memory write and invalidate. */
1426 if (bootverbose)
1427 printf("%s: cache line size %d not "
1428 "supported; disabling PCI MWI\n",
1429 sc->sc_dev.dv_xname, cacheline);
1430 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1431 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1432 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1433 break;
1434 }
1435 }
1436
1437 #ifdef __brokenalpha__
1438 /*
1439 * From the Alteon sample driver:
1440 * Must insure that we do not cross an 8K (bytes) boundary
1441 * for DMA reads. Our highest limit is 1K bytes. This is a
1442 * restriction on some ALPHA platforms with early revision
1443 * 21174 PCI chipsets, such as the AlphaPC 164lx
1444 */
1445 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1446 #else
1447 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1448 #endif
1449
1450 /* This sets the min dma param all the way up (0xff). */
1451 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1452
1453 /* Configure DMA variables. */
1454 #if BYTE_ORDER == BIG_ENDIAN
1455 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1456 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1457 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1458 TI_OPMODE_DONT_FRAG_JUMBO);
1459 #else
1460 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1461 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1462 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1463 #endif
1464
1465 /*
1466 * Only allow 1 DMA channel to be active at a time.
1467 * I don't think this is a good idea, but without it
1468 * the firmware racks up lots of nicDmaReadRingFull
1469 * errors.
1470 */
1471 #ifndef TI_CSUM_OFFLOAD
1472 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1473 #endif
1474
1475 /* Recommended settings from Tigon manual. */
1476 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1477 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1478
1479 if (ti_64bitslot_war(sc)) {
1480 printf("%s: bios thinks we're in a 64 bit slot, "
1481 "but we aren't", sc->sc_dev.dv_xname);
1482 return(EINVAL);
1483 }
1484
1485 return(0);
1486 }
1487
1488 /*
1489 * Initialize the general information block and firmware, and
1490 * start the CPU(s) running.
1491 */
1492 static int ti_gibinit(sc)
1493 struct ti_softc *sc;
1494 {
1495 struct ti_rcb *rcb;
1496 int i;
1497 struct ifnet *ifp;
1498
1499 ifp = &sc->ethercom.ec_if;
1500
1501 /* Disable interrupts for now. */
1502 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1503
1504 /* Tell the chip where to find the general information block. */
1505 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1506 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1507 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1508
1509 /* Load the firmware into SRAM. */
1510 ti_loadfw(sc);
1511
1512 /* Set up the contents of the general info and ring control blocks. */
1513
1514 /* Set up the event ring and producer pointer. */
1515 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1516
1517 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1518 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1519 rcb->ti_flags = 0;
1520 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1521 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1522 - (caddr_t)sc->ti_rdata);
1523 sc->ti_ev_prodidx.ti_idx = 0;
1524 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1525 sc->ti_ev_saved_considx = 0;
1526
1527 /* Set up the command ring and producer mailbox. */
1528 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1529
1530 sc->ti_rdata->ti_cmd_ring =
1531 (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1532 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1533 rcb->ti_flags = 0;
1534 rcb->ti_max_len = 0;
1535 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1536 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1537 }
1538 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1539 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1540 sc->ti_cmd_saved_prodidx = 0;
1541
1542 /*
1543 * Assign the address of the stats refresh buffer.
1544 * We re-use the current stats buffer for this to
1545 * conserve memory.
1546 */
1547 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1548 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1549 - (caddr_t)sc->ti_rdata);
1550
1551 /* Set up the standard receive ring. */
1552 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1553 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1554 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1555 - (caddr_t)sc->ti_rdata);
1556 rcb->ti_max_len = TI_FRAMELEN;
1557 rcb->ti_flags = 0;
1558 #ifdef TI_CSUM_OFFLOAD
1559 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1560 #endif
1561 #if NVLAN > 0
1562 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1563 #endif
1564
1565 /* Set up the jumbo receive ring. */
1566 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1567 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1568 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1569 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1570 rcb->ti_flags = 0;
1571 #ifdef TI_CSUM_OFFLOAD
1572 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1573 #endif
1574 #if NVLAN > 0
1575 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1576 #endif
1577
1578 /*
1579 * Set up the mini ring. Only activated on the
1580 * Tigon 2 but the slot in the config block is
1581 * still there on the Tigon 1.
1582 */
1583 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1584 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1585 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1586 rcb->ti_max_len = MHLEN;
1587 if (sc->ti_hwrev == TI_HWREV_TIGON)
1588 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1589 else
1590 rcb->ti_flags = 0;
1591 #ifdef TI_CSUM_OFFLOAD
1592 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1593 #endif
1594 #if NVLAN > 0
1595 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1596 #endif
1597
1598 /*
1599 * Set up the receive return ring.
1600 */
1601 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1602 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1603 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1604 rcb->ti_flags = 0;
1605 rcb->ti_max_len = TI_RETURN_RING_CNT;
1606 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1607 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1608 - (caddr_t)sc->ti_rdata);
1609
1610 /*
1611 * Set up the tx ring. Note: for the Tigon 2, we have the option
1612 * of putting the transmit ring in the host's address space and
1613 * letting the chip DMA it instead of leaving the ring in the NIC's
1614 * memory and accessing it through the shared memory region. We
1615 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1616 * so we have to revert to the shared memory scheme if we detect
1617 * a Tigon 1 chip.
1618 */
1619 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1620 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1621 sc->ti_rdata->ti_tx_ring_nic =
1622 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1623 }
1624 bzero((char *)sc->ti_rdata->ti_tx_ring,
1625 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1626 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1627 if (sc->ti_hwrev == TI_HWREV_TIGON)
1628 rcb->ti_flags = 0;
1629 else
1630 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1631 #if NVLAN > 0
1632 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1633 #endif
1634 rcb->ti_max_len = TI_TX_RING_CNT;
1635 if (sc->ti_hwrev == TI_HWREV_TIGON)
1636 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1637 else
1638 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1639 ((caddr_t)&sc->ti_rdata->ti_tx_ring
1640 - (caddr_t)sc->ti_rdata);
1641 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1642 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1643 - (caddr_t)sc->ti_rdata);
1644
1645 /* Set up tuneables */
1646 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1647 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1648 (sc->ti_rx_coal_ticks / 10));
1649 else
1650 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1651 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1652 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1653 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1654 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1655 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1656
1657 /* Turn interrupts on. */
1658 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1659 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1660
1661 /* Start CPU. */
1662 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1663
1664 return(0);
1665 }
1666
1667 /*
1668 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1669 * against our list and return its name if we find a match.
1670 */
1671 static int ti_probe(parent, match, aux)
1672 struct device *parent;
1673 struct cfdata *match;
1674 void *aux;
1675 {
1676 struct pci_attach_args *pa = aux;
1677 struct ti_type *t;
1678
1679 t = ti_devs;
1680
1681 while(t->ti_name != NULL) {
1682 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1683 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1684 return(1);
1685 }
1686 t++;
1687 }
1688
1689 return(0);
1690 }
1691
1692 static void ti_attach(parent, self, aux)
1693 struct device *parent, *self;
1694 void *aux;
1695 {
1696 int s;
1697 u_int32_t command;
1698 struct ifnet *ifp;
1699 struct ti_softc *sc;
1700 u_char eaddr[ETHER_ADDR_LEN];
1701 struct pci_attach_args *pa = aux;
1702 pci_chipset_tag_t pc = pa->pa_pc;
1703 pci_intr_handle_t ih;
1704 const char *intrstr = NULL;
1705 bus_dma_segment_t dmaseg;
1706 int error, dmanseg;
1707
1708 s = splimp();
1709
1710 sc = (struct ti_softc *)self;
1711
1712 /*
1713 * Map control/status registers.
1714 */
1715 if (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
1716 &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1717 printf(": can't map i/o space\n");
1718 goto fail;
1719 }
1720 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1721
1722 printf("\n");
1723
1724 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1725 command |= PCI_COMMAND_MASTER_ENABLE;
1726 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1727
1728 /* Allocate interrupt */
1729 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
1730 pa->pa_intrline, &ih)) {
1731 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1732 goto fail;
1733 }
1734 intrstr = pci_intr_string(pc, ih);
1735 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1736 if (sc->sc_ih == NULL) {
1737 printf("%s: couldn't establish interrupt",
1738 sc->sc_dev.dv_xname);
1739 if (intrstr != NULL)
1740 printf(" at %s", intrstr);
1741 printf("\n");
1742 goto fail;
1743 }
1744
1745 if (ti_chipinit(sc)) {
1746 printf("%s: chip initialization failed\n", self->dv_xname);
1747 #if 0
1748 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1749 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1750 bus_release_resource(dev, SYS_RES_MEMORY,
1751 TI_PCI_LOMEM, sc->ti_res);
1752 #endif
1753 goto fail;
1754 }
1755
1756 /* Zero out the NIC's on-board SRAM. */
1757 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1758
1759 /* Init again -- zeroing memory may have clobbered some registers. */
1760 if (ti_chipinit(sc)) {
1761 printf("%s: chip initialization failed\n", self->dv_xname);
1762 #if 0
1763 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1764 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1765 bus_release_resource(dev, SYS_RES_MEMORY,
1766 TI_PCI_LOMEM, sc->ti_res);
1767 #endif
1768 goto fail;
1769 }
1770
1771 /*
1772 * Get station address from the EEPROM. Note: the manual states
1773 * that the MAC address is at offset 0x8c, however the data is
1774 * stored as two longwords (since that's how it's loaded into
1775 * the NIC). This means the MAC address is actually preceeded
1776 * by two zero bytes. We need to skip over those.
1777 */
1778 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1779 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1780 printf("%s: failed to read station address\n", self->dv_xname);
1781 #if 0
1782 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1783 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1784 bus_release_resource(dev, SYS_RES_MEMORY,
1785 TI_PCI_LOMEM, sc->ti_res);
1786 #endif
1787 goto fail;
1788 }
1789
1790 /*
1791 * A Tigon chip was detected. Inform the world.
1792 */
1793 printf("%s: Ethernet address: %s\n", self->dv_xname,
1794 ether_sprintf(eaddr));
1795
1796 sc->sc_dmat = pa->pa_dmat;
1797
1798 /* Allocate the general information block and ring buffers. */
1799 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1800 sizeof(struct ti_ring_data), NBPG, 0, &dmaseg, 1, &dmanseg,
1801 BUS_DMA_NOWAIT)) != 0) {
1802 printf("%s: can't allocate ring buffer, error = %d\n",
1803 sc->sc_dev.dv_xname, error);
1804 goto fail;
1805 }
1806
1807 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1808 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1809 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1810 printf("%s: can't map ring buffer, error = %d\n",
1811 sc->sc_dev.dv_xname, error);
1812 goto fail;
1813 }
1814
1815 if ((error = bus_dmamap_create(sc->sc_dmat,
1816 sizeof(struct ti_ring_data), 1,
1817 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1818 &sc->info_dmamap)) != 0) {
1819 printf("%s: can't create ring buffer DMA map, error = %d\n",
1820 sc->sc_dev.dv_xname, error);
1821 goto fail;
1822 }
1823
1824 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1825 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1826 BUS_DMA_NOWAIT)) != 0) {
1827 printf("%s: can't load ring buffer DMA map, error = %d\n",
1828 sc->sc_dev.dv_xname, error);
1829 goto fail;
1830 }
1831
1832 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1833
1834 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1835
1836 /* Try to allocate memory for jumbo buffers. */
1837 if (ti_alloc_jumbo_mem(sc)) {
1838 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1839 #if 0
1840 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1841 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1842 bus_release_resource(dev, SYS_RES_MEMORY,
1843 TI_PCI_LOMEM, sc->ti_res);
1844 free(sc->ti_rdata, M_DEVBUF);
1845 #endif
1846 goto fail;
1847 }
1848
1849 /* Set default tuneable values. */
1850 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1851 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1852 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1853 sc->ti_rx_max_coal_bds = 64;
1854 sc->ti_tx_max_coal_bds = 128;
1855 sc->ti_tx_buf_ratio = 21;
1856
1857 /* Set up ifnet structure */
1858 ifp = &sc->ethercom.ec_if;
1859 ifp->if_softc = sc;
1860 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1861 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1862 ifp->if_ioctl = ti_ioctl;
1863 #if 0
1864 ifp->if_output = ether_output;
1865 #endif
1866 ifp->if_start = ti_start;
1867 ifp->if_watchdog = ti_watchdog;
1868 ifp->if_baudrate = 10000000;
1869 #if 0
1870 ifp->if_init = ti_init;
1871 ifp->if_mtu = ETHERMTU;
1872 #endif
1873 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1874
1875 /* Set up ifmedia support. */
1876 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1877 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1878 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1879 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1880 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1881 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_FX, 0, NULL);
1882 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_FX|IFM_FDX, 0, NULL);
1883 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1884 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1885
1886 /*
1887 * Call MI attach routines.
1888 */
1889 if_attach(ifp);
1890 ether_ifattach(ifp, eaddr);
1891
1892 #if NBPFILTER > 0
1893 bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
1894 sizeof(struct ether_header));
1895 #endif
1896
1897 fail:
1898 splx(s);
1899 }
1900
1901 #if 0
1902 static int ti_detach(dev)
1903 device_t dev;
1904 {
1905 struct ti_softc *sc;
1906 struct ifnet *ifp;
1907 int s;
1908
1909 s = splimp();
1910
1911 sc = device_get_softc(dev);
1912 ifp = &sc->arpcom.ac_if;
1913
1914 if_detach(ifp);
1915 ti_stop(sc);
1916
1917 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1918 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1919 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1920
1921 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1922 free(sc->ti_rdata, M_DEVBUF);
1923 ifmedia_removeall(&sc->ifmedia);
1924
1925 splx(s);
1926
1927 return(0);
1928 }
1929 #endif
1930
1931 /*
1932 * Frame reception handling. This is called if there's a frame
1933 * on the receive return list.
1934 *
1935 * Note: we have to be able to handle three possibilities here:
1936 * 1) the frame is from the mini receive ring (can only happen)
1937 * on Tigon 2 boards)
1938 * 2) the frame is from the jumbo recieve ring
1939 * 3) the frame is from the standard receive ring
1940 */
1941
1942 static void ti_rxeof(sc)
1943 struct ti_softc *sc;
1944 {
1945 struct ifnet *ifp;
1946 struct ti_cmd_desc cmd;
1947
1948 ifp = &sc->ethercom.ec_if;
1949
1950 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1951 struct ti_rx_desc *cur_rx;
1952 u_int32_t rxidx;
1953 struct ether_header *eh;
1954 struct mbuf *m = NULL;
1955 #if NVLAN > 0
1956 u_int16_t vlan_tag = 0;
1957 int have_tag = 0;
1958 #endif
1959 #ifdef TI_CSUM_OFFLOAD
1960 struct ip *ip;
1961 #endif
1962 bus_dmamap_t dmamap;
1963
1964 cur_rx =
1965 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1966 rxidx = cur_rx->ti_idx;
1967 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1968
1969 #if NVLAN > 0
1970 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1971 have_tag = 1;
1972 vlan_tag = cur_rx->ti_vlan_tag;
1973 }
1974 #endif
1975
1976 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1977 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1978 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1979 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1980 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1981 ifp->if_ierrors++;
1982 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1983 continue;
1984 }
1985 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1986 == ENOBUFS) {
1987 ifp->if_ierrors++;
1988 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1989 continue;
1990 }
1991 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1992 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1993 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1994 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1995 dmamap = sc->mini_dmamap[rxidx];
1996 sc->mini_dmamap[rxidx] = 0;
1997 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1998 ifp->if_ierrors++;
1999 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2000 continue;
2001 }
2002 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
2003 == ENOBUFS) {
2004 ifp->if_ierrors++;
2005 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2006 continue;
2007 }
2008 } else {
2009 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2010 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2011 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2012 dmamap = sc->std_dmamap[rxidx];
2013 sc->std_dmamap[rxidx] = 0;
2014 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2015 ifp->if_ierrors++;
2016 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2017 continue;
2018 }
2019 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2020 == ENOBUFS) {
2021 ifp->if_ierrors++;
2022 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2023 continue;
2024 }
2025 }
2026
2027 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2028 ifp->if_ipackets++;
2029 eh = mtod(m, struct ether_header *);
2030 m->m_pkthdr.rcvif = ifp;
2031
2032 #if NBPFILTER > 0
2033 /*
2034 * Handle BPF listeners. Let the BPF user see the packet, but
2035 * don't pass it up to the ether_input() layer unless it's
2036 * a broadcast packet, multicast packet, matches our ethernet
2037 * address or the interface is in promiscuous mode.
2038 */
2039 if (ifp->if_bpf) {
2040 bpf_mtap(ifp->if_bpf, m);
2041 if (ifp->if_flags & IFF_PROMISC &&
2042 (bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
2043 ETHER_ADDR_LEN) &&
2044 (eh->ether_dhost[0] & 1) == 0)) {
2045 m_freem(m);
2046 continue;
2047 }
2048 }
2049 #endif
2050
2051 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
2052 ip = mtod(m, struct ip *);
2053 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
2054 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
2055 m->m_flags |= M_HWCKSUM;
2056 #endif
2057
2058 #if NVLAN > 0 /* XXX NetBSD: broken because m points to ether pkt */
2059 /*
2060 * If we received a packet with a vlan tag, pass it
2061 * to vlan_input() instead of ether_input().
2062 */
2063 if (have_tag) {
2064 vlan_input_tag(eh, m, vlan_tag);
2065 have_tag = vlan_tag = 0;
2066 continue;
2067 }
2068 #endif
2069 (*ifp->if_input)(ifp, m);
2070 }
2071
2072 /* Only necessary on the Tigon 1. */
2073 if (sc->ti_hwrev == TI_HWREV_TIGON)
2074 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2075 sc->ti_rx_saved_considx);
2076
2077 TI_UPDATE_STDPROD(sc, sc->ti_std);
2078 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2079 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2080
2081 return;
2082 }
2083
2084 static void ti_txeof(sc)
2085 struct ti_softc *sc;
2086 {
2087 struct ti_tx_desc *cur_tx = NULL;
2088 struct ifnet *ifp;
2089
2090 ifp = &sc->ethercom.ec_if;
2091
2092 /*
2093 * Go through our tx ring and free mbufs for those
2094 * frames that have been sent.
2095 */
2096 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2097 u_int32_t idx = 0;
2098
2099 idx = sc->ti_tx_saved_considx;
2100 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2101 if (idx > 383)
2102 CSR_WRITE_4(sc, TI_WINBASE,
2103 TI_TX_RING_BASE + 6144);
2104 else if (idx > 255)
2105 CSR_WRITE_4(sc, TI_WINBASE,
2106 TI_TX_RING_BASE + 4096);
2107 else if (idx > 127)
2108 CSR_WRITE_4(sc, TI_WINBASE,
2109 TI_TX_RING_BASE + 2048);
2110 else
2111 CSR_WRITE_4(sc, TI_WINBASE,
2112 TI_TX_RING_BASE);
2113 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2114 } else
2115 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2116 if (cur_tx->ti_flags & TI_BDFLAG_END)
2117 ifp->if_opackets++;
2118 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2119 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2120 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2121
2122 /* if (sc->txdma[idx] == 0) panic() */
2123 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2124 link);
2125 sc->txdma[idx] = 0;
2126 }
2127 sc->ti_txcnt--;
2128 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2129 ifp->if_timer = 0;
2130 }
2131
2132 if (cur_tx != NULL)
2133 ifp->if_flags &= ~IFF_OACTIVE;
2134
2135 return;
2136 }
2137
2138 static int ti_intr(xsc)
2139 void *xsc;
2140 {
2141 struct ti_softc *sc;
2142 struct ifnet *ifp;
2143
2144 sc = xsc;
2145 ifp = &sc->ethercom.ec_if;
2146
2147 #ifdef notdef
2148 /* Avoid this for now -- checking this register is expensive. */
2149 /* Make sure this is really our interrupt. */
2150 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2151 return (0);
2152 #endif
2153
2154 /* Ack interrupt and stop others from occuring. */
2155 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2156
2157 if (ifp->if_flags & IFF_RUNNING) {
2158 /* Check RX return ring producer/consumer */
2159 ti_rxeof(sc);
2160
2161 /* Check TX ring producer/consumer */
2162 ti_txeof(sc);
2163 }
2164
2165 ti_handle_events(sc);
2166
2167 /* Re-enable interrupts. */
2168 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2169
2170 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2171 ti_start(ifp);
2172
2173 return (1);
2174 }
2175
2176 static void ti_stats_update(sc)
2177 struct ti_softc *sc;
2178 {
2179 struct ifnet *ifp;
2180
2181 ifp = &sc->ethercom.ec_if;
2182
2183 ifp->if_collisions +=
2184 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2185 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2186 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2187 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2188 ifp->if_collisions;
2189
2190 return;
2191 }
2192
2193 /*
2194 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2195 * pointers to descriptors.
2196 */
2197 static int ti_encap(sc, m_head, txidx)
2198 struct ti_softc *sc;
2199 struct mbuf *m_head;
2200 u_int32_t *txidx;
2201 {
2202 struct ti_tx_desc *f = NULL;
2203 u_int32_t frag, cur, cnt = 0;
2204 struct txdmamap_pool_entry *dma;
2205 bus_dmamap_t dmamap;
2206 int error, i;
2207 #if NVLAN > 0
2208 struct ifvlan *ifv = NULL;
2209
2210 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2211 m_head->m_pkthdr.rcvif != NULL &&
2212 m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2213 ifv = m_head->m_pkthdr.rcvif->if_softc;
2214 #endif
2215
2216 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2217 dmamap = dma->dmamap;
2218
2219 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2220 if (error) {
2221 struct mbuf *m;
2222 int i = 0;
2223 for (m = m_head; m; m = m->m_next)
2224 i++;
2225 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2226 "error %d\n", m_head->m_pkthdr.len, i, error);
2227 return (ENOMEM);
2228 }
2229
2230 cur = frag = *txidx;
2231
2232 /*
2233 * Start packing the mbufs in this chain into
2234 * the fragment pointers. Stop when we run out
2235 * of fragments or hit the end of the mbuf chain.
2236 */
2237 for (i = 0; i < dmamap->dm_nsegs; i++) {
2238 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2239 if (frag > 383)
2240 CSR_WRITE_4(sc, TI_WINBASE,
2241 TI_TX_RING_BASE + 6144);
2242 else if (frag > 255)
2243 CSR_WRITE_4(sc, TI_WINBASE,
2244 TI_TX_RING_BASE + 4096);
2245 else if (frag > 127)
2246 CSR_WRITE_4(sc, TI_WINBASE,
2247 TI_TX_RING_BASE + 2048);
2248 else
2249 CSR_WRITE_4(sc, TI_WINBASE,
2250 TI_TX_RING_BASE);
2251 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2252 } else
2253 f = &sc->ti_rdata->ti_tx_ring[frag];
2254 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2255 break;
2256 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2257 f->ti_len = dmamap->dm_segs[i].ds_len;
2258 f->ti_flags = 0;
2259 #if NVLAN > 0
2260 if (ifv != NULL) {
2261 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2262 f->ti_vlan_tag = ifv->ifv_tag;
2263 } else {
2264 f->ti_vlan_tag = 0;
2265 }
2266 #endif
2267 /*
2268 * Sanity check: avoid coming within 16 descriptors
2269 * of the end of the ring.
2270 */
2271 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2272 return(ENOBUFS);
2273 cur = frag;
2274 TI_INC(frag, TI_TX_RING_CNT);
2275 cnt++;
2276 }
2277
2278 if (i < dmamap->dm_nsegs)
2279 return(ENOBUFS);
2280
2281 if (frag == sc->ti_tx_saved_considx)
2282 return(ENOBUFS);
2283
2284 if (sc->ti_hwrev == TI_HWREV_TIGON)
2285 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2286 TI_BDFLAG_END;
2287 else
2288 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2289 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2290 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2291 sc->txdma[cur] = dma;
2292 sc->ti_txcnt += cnt;
2293
2294 *txidx = frag;
2295
2296 return(0);
2297 }
2298
2299 /*
2300 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2301 * to the mbuf data regions directly in the transmit descriptors.
2302 */
2303 static void ti_start(ifp)
2304 struct ifnet *ifp;
2305 {
2306 struct ti_softc *sc;
2307 struct mbuf *m_head = NULL;
2308 u_int32_t prodidx = 0;
2309
2310 sc = ifp->if_softc;
2311
2312 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2313
2314 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2315 IF_DEQUEUE(&ifp->if_snd, m_head);
2316 if (m_head == NULL)
2317 break;
2318
2319 /*
2320 * Pack the data into the transmit ring. If we
2321 * don't have room, set the OACTIVE flag and wait
2322 * for the NIC to drain the ring.
2323 */
2324 if (ti_encap(sc, m_head, &prodidx)) {
2325 IF_PREPEND(&ifp->if_snd, m_head);
2326 ifp->if_flags |= IFF_OACTIVE;
2327 break;
2328 }
2329
2330 /*
2331 * If there's a BPF listener, bounce a copy of this frame
2332 * to him.
2333 */
2334 #if NBPFILTER > 0
2335 if (ifp->if_bpf)
2336 bpf_mtap(ifp->if_bpf, m_head);
2337 #endif
2338 }
2339
2340 /* Transmit */
2341 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2342
2343 /*
2344 * Set a timeout in case the chip goes out to lunch.
2345 */
2346 ifp->if_timer = 5;
2347
2348 return;
2349 }
2350
2351 static void ti_init(xsc)
2352 void *xsc;
2353 {
2354 struct ti_softc *sc = xsc;
2355 int s;
2356
2357 s = splimp();
2358
2359 /* Cancel pending I/O and flush buffers. */
2360 ti_stop(sc);
2361
2362 /* Init the gen info block, ring control blocks and firmware. */
2363 if (ti_gibinit(sc)) {
2364 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2365 splx(s);
2366 return;
2367 }
2368
2369 splx(s);
2370
2371 return;
2372 }
2373
2374 static void ti_init2(sc)
2375 struct ti_softc *sc;
2376 {
2377 struct ti_cmd_desc cmd;
2378 struct ifnet *ifp;
2379 u_int8_t *m;
2380 struct ifmedia *ifm;
2381 int tmp;
2382
2383 ifp = &sc->ethercom.ec_if;
2384
2385 /* Specify MTU and interface index. */
2386 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2387 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2388 ETHER_HDR_LEN + ETHER_CRC_LEN);
2389 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2390
2391 /* Load our MAC address. */
2392 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2393 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2394 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2395 | (m[4] << 8) | m[5]);
2396 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2397
2398 /* Enable or disable promiscuous mode as needed. */
2399 if (ifp->if_flags & IFF_PROMISC) {
2400 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2401 } else {
2402 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2403 }
2404
2405 /* Program multicast filter. */
2406 ti_setmulti(sc);
2407
2408 /*
2409 * If this is a Tigon 1, we should tell the
2410 * firmware to use software packet filtering.
2411 */
2412 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2413 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2414 }
2415
2416 /* Init RX ring. */
2417 ti_init_rx_ring_std(sc);
2418
2419 /* Init jumbo RX ring. */
2420 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2421 ti_init_rx_ring_jumbo(sc);
2422
2423 /*
2424 * If this is a Tigon 2, we can also configure the
2425 * mini ring.
2426 */
2427 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2428 ti_init_rx_ring_mini(sc);
2429
2430 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2431 sc->ti_rx_saved_considx = 0;
2432
2433 /* Init TX ring. */
2434 ti_init_tx_ring(sc);
2435
2436 /* Tell firmware we're alive. */
2437 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2438
2439 /* Enable host interrupts. */
2440 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2441
2442 ifp->if_flags |= IFF_RUNNING;
2443 ifp->if_flags &= ~IFF_OACTIVE;
2444
2445 /*
2446 * Make sure to set media properly. We have to do this
2447 * here since we have to issue commands in order to set
2448 * the link negotiation and we can't issue commands until
2449 * the firmware is running.
2450 */
2451 ifm = &sc->ifmedia;
2452 tmp = ifm->ifm_media;
2453 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2454 ti_ifmedia_upd(ifp);
2455 ifm->ifm_media = tmp;
2456
2457 return;
2458 }
2459
2460 /*
2461 * Set media options.
2462 */
2463 static int ti_ifmedia_upd(ifp)
2464 struct ifnet *ifp;
2465 {
2466 struct ti_softc *sc;
2467 struct ifmedia *ifm;
2468 struct ti_cmd_desc cmd;
2469
2470 sc = ifp->if_softc;
2471 ifm = &sc->ifmedia;
2472
2473 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2474 return(EINVAL);
2475
2476 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2477 case IFM_AUTO:
2478 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2479 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2480 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2481 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2482 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2483 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2484 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2485 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2486 break;
2487 case IFM_1000_FX:
2488 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2489 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2490 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2491 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2492 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2493 break;
2494 case IFM_100_FX:
2495 case IFM_10_FL:
2496 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2497 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2498 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2499 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2500 } else {
2501 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2502 }
2503 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2504 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2505 } else {
2506 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2507 }
2508 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2509 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2510 break;
2511 }
2512
2513 return(0);
2514 }
2515
2516 /*
2517 * Report current media status.
2518 */
2519 static void ti_ifmedia_sts(ifp, ifmr)
2520 struct ifnet *ifp;
2521 struct ifmediareq *ifmr;
2522 {
2523 struct ti_softc *sc;
2524
2525 sc = ifp->if_softc;
2526
2527 ifmr->ifm_status = IFM_AVALID;
2528 ifmr->ifm_active = IFM_ETHER;
2529
2530 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2531 return;
2532
2533 ifmr->ifm_status |= IFM_ACTIVE;
2534
2535 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2536 ifmr->ifm_active |= IFM_1000_FX|IFM_FDX;
2537 else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2538 u_int32_t media;
2539 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2540 if (media & TI_LNK_100MB)
2541 ifmr->ifm_active |= IFM_100_FX;
2542 if (media & TI_LNK_10MB)
2543 ifmr->ifm_active |= IFM_10_FL;
2544 if (media & TI_LNK_FULL_DUPLEX)
2545 ifmr->ifm_active |= IFM_FDX;
2546 if (media & TI_LNK_HALF_DUPLEX)
2547 ifmr->ifm_active |= IFM_HDX;
2548 }
2549
2550 return;
2551 }
2552
2553 static int
2554 ti_ether_ioctl(ifp, cmd, data)
2555 struct ifnet *ifp;
2556 u_long cmd;
2557 caddr_t data;
2558 {
2559 struct ifaddr *ifa = (struct ifaddr *) data;
2560 struct ti_softc *sc = ifp->if_softc;
2561
2562 switch (cmd) {
2563 case SIOCSIFADDR:
2564 ifp->if_flags |= IFF_UP;
2565
2566 switch (ifa->ifa_addr->sa_family) {
2567 #ifdef INET
2568 case AF_INET:
2569 ti_init(sc);
2570 arp_ifinit(ifp, ifa);
2571 break;
2572 #endif
2573 #ifdef NS
2574 case AF_NS:
2575 {
2576 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2577
2578 if (ns_nullhost(*ina))
2579 ina->x_host = *(union ns_host *)
2580 LLADDR(ifp->if_sadl);
2581 else
2582 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2583 ifp->if_addrlen);
2584 /* Set new address. */
2585 ti_init(sc);
2586 break;
2587 }
2588 #endif
2589 default:
2590 ti_init(sc);
2591 break;
2592 }
2593 break;
2594
2595 default:
2596 return (EINVAL);
2597 }
2598
2599 return (0);
2600 }
2601
2602 static int ti_ioctl(ifp, command, data)
2603 struct ifnet *ifp;
2604 u_long command;
2605 caddr_t data;
2606 {
2607 struct ti_softc *sc = ifp->if_softc;
2608 struct ifreq *ifr = (struct ifreq *) data;
2609 int s, error = 0;
2610 struct ti_cmd_desc cmd;
2611
2612 s = splimp();
2613
2614 switch(command) {
2615 case SIOCSIFADDR:
2616 case SIOCGIFADDR:
2617 error = ti_ether_ioctl(ifp, command, data);
2618 break;
2619 case SIOCSIFMTU:
2620 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2621 error = EINVAL;
2622 else {
2623 ifp->if_mtu = ifr->ifr_mtu;
2624 ti_init(sc);
2625 }
2626 break;
2627 case SIOCSIFFLAGS:
2628 if (ifp->if_flags & IFF_UP) {
2629 /*
2630 * If only the state of the PROMISC flag changed,
2631 * then just use the 'set promisc mode' command
2632 * instead of reinitializing the entire NIC. Doing
2633 * a full re-init means reloading the firmware and
2634 * waiting for it to start up, which may take a
2635 * second or two.
2636 */
2637 if (ifp->if_flags & IFF_RUNNING &&
2638 ifp->if_flags & IFF_PROMISC &&
2639 !(sc->ti_if_flags & IFF_PROMISC)) {
2640 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2641 TI_CMD_CODE_PROMISC_ENB, 0);
2642 } else if (ifp->if_flags & IFF_RUNNING &&
2643 !(ifp->if_flags & IFF_PROMISC) &&
2644 sc->ti_if_flags & IFF_PROMISC) {
2645 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2646 TI_CMD_CODE_PROMISC_DIS, 0);
2647 } else
2648 ti_init(sc);
2649 } else {
2650 if (ifp->if_flags & IFF_RUNNING) {
2651 ti_stop(sc);
2652 }
2653 }
2654 sc->ti_if_flags = ifp->if_flags;
2655 error = 0;
2656 break;
2657 case SIOCADDMULTI:
2658 case SIOCDELMULTI:
2659 if (ifp->if_flags & IFF_RUNNING) {
2660 ti_setmulti(sc);
2661 error = 0;
2662 }
2663 break;
2664 case SIOCSIFMEDIA:
2665 case SIOCGIFMEDIA:
2666 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2667 break;
2668 default:
2669 error = EINVAL;
2670 break;
2671 }
2672
2673 (void)splx(s);
2674
2675 return(error);
2676 }
2677
2678 static void ti_watchdog(ifp)
2679 struct ifnet *ifp;
2680 {
2681 struct ti_softc *sc;
2682
2683 sc = ifp->if_softc;
2684
2685 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2686 ti_stop(sc);
2687 ti_init(sc);
2688
2689 ifp->if_oerrors++;
2690
2691 return;
2692 }
2693
2694 /*
2695 * Stop the adapter and free any mbufs allocated to the
2696 * RX and TX lists.
2697 */
2698 static void ti_stop(sc)
2699 struct ti_softc *sc;
2700 {
2701 struct ifnet *ifp;
2702 struct ti_cmd_desc cmd;
2703
2704 ifp = &sc->ethercom.ec_if;
2705
2706 /* Disable host interrupts. */
2707 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2708 /*
2709 * Tell firmware we're shutting down.
2710 */
2711 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2712
2713 /* Halt and reinitialize. */
2714 ti_chipinit(sc);
2715 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2716 ti_chipinit(sc);
2717
2718 /* Free the RX lists. */
2719 ti_free_rx_ring_std(sc);
2720
2721 /* Free jumbo RX list. */
2722 ti_free_rx_ring_jumbo(sc);
2723
2724 /* Free mini RX list. */
2725 ti_free_rx_ring_mini(sc);
2726
2727 /* Free TX buffers. */
2728 ti_free_tx_ring(sc);
2729
2730 sc->ti_ev_prodidx.ti_idx = 0;
2731 sc->ti_return_prodidx.ti_idx = 0;
2732 sc->ti_tx_considx.ti_idx = 0;
2733 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2734
2735 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2736
2737 return;
2738 }
2739
2740 #if 0
2741 /*
2742 * Stop all chip I/O so that the kernel's probe routines don't
2743 * get confused by errant DMAs when rebooting.
2744 */
2745 static void ti_shutdown(dev)
2746 device_t dev;
2747 {
2748 struct ti_softc *sc;
2749
2750 sc = device_get_softc(dev);
2751
2752 ti_chipinit(sc);
2753
2754 return;
2755 }
2756 #endif
2757