if_ti.c revision 1.112 1 /* $NetBSD: if_ti.c,v 1.112 2019/07/09 08:46:59 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.112 2019/07/09 08:46:59 msaitoh Exp $");
85
86 #include "opt_inet.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104
105 #include <net/bpf.h>
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113
114
115 #include <sys/bus.h>
116
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120
121 #include <dev/pci/if_tireg.h>
122
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125
126 /*
127 * Various supported device vendors/types and their names.
128 */
129
130 static const struct ti_type ti_devs[] = {
131 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
132 "Alteon AceNIC 1000BASE-SX Ethernet" },
133 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
134 "Alteon AceNIC 1000BASE-T Ethernet" },
135 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
136 "3Com 3c985-SX Gigabit Ethernet" },
137 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
138 "Netgear GA620 1000BASE-SX Ethernet" },
139 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
140 "Netgear GA620 1000BASE-T Ethernet" },
141 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
142 "Silicon Graphics Gigabit Ethernet" },
143 { 0, 0, NULL }
144 };
145
146 static const struct ti_type *ti_type_match(struct pci_attach_args *);
147 static int ti_probe(device_t, cfdata_t, void *);
148 static void ti_attach(device_t, device_t, void *);
149 static bool ti_shutdown(device_t, int);
150 static void ti_txeof_tigon1(struct ti_softc *);
151 static void ti_txeof_tigon2(struct ti_softc *);
152 static void ti_rxeof(struct ti_softc *);
153
154 static void ti_stats_update(struct ti_softc *);
155 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
156 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);
157
158 static int ti_intr(void *);
159 static void ti_start(struct ifnet *);
160 static int ti_ioctl(struct ifnet *, u_long, void *);
161 static void ti_init(void *);
162 static void ti_init2(struct ti_softc *);
163 static void ti_stop(struct ti_softc *);
164 static void ti_watchdog(struct ifnet *);
165 static int ti_ifmedia_upd(struct ifnet *);
166 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
167
168 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
169 static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
170 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
171
172 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
173 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
174 static void ti_setmulti(struct ti_softc *);
175
176 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
177 static void ti_loadfw(struct ti_softc *);
178 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
179 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
180 static void ti_handle_events(struct ti_softc *);
181 static int ti_alloc_jumbo_mem(struct ti_softc *);
182 static void *ti_jalloc(struct ti_softc *);
183 static void ti_jfree(struct mbuf *, void *, size_t, void *);
184 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
185 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
186 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
187 static int ti_init_rx_ring_std(struct ti_softc *);
188 static void ti_free_rx_ring_std(struct ti_softc *);
189 static int ti_init_rx_ring_jumbo(struct ti_softc *);
190 static void ti_free_rx_ring_jumbo(struct ti_softc *);
191 static int ti_init_rx_ring_mini(struct ti_softc *);
192 static void ti_free_rx_ring_mini(struct ti_softc *);
193 static void ti_free_tx_ring(struct ti_softc *);
194 static int ti_init_tx_ring(struct ti_softc *);
195
196 static int ti_64bitslot_war(struct ti_softc *);
197 static int ti_chipinit(struct ti_softc *);
198 static int ti_gibinit(struct ti_softc *);
199
200 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
201
202 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
203 ti_probe, ti_attach, NULL, NULL);
204
205 /*
206 * Send an instruction or address to the EEPROM, check for ACK.
207 */
208 static uint32_t
209 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
210 {
211 int i, ack = 0;
212
213 /*
214 * Make sure we're in TX mode.
215 */
216 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
217
218 /*
219 * Feed in each bit and stobe the clock.
220 */
221 for (i = 0x80; i; i >>= 1) {
222 if (byte & i) {
223 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
224 } else {
225 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 }
227 DELAY(1);
228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
229 DELAY(1);
230 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 }
232
233 /*
234 * Turn off TX mode.
235 */
236 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
237
238 /*
239 * Check for ack.
240 */
241 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
243 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244
245 return (ack);
246 }
247
248 /*
249 * Read a byte of data stored in the EEPROM at address 'addr.'
250 * We have to send two address bytes since the EEPROM can hold
251 * more than 256 bytes of data.
252 */
253 static uint8_t
254 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
255 {
256 int i;
257 uint8_t byte = 0;
258
259 EEPROM_START();
260
261 /*
262 * Send write control code to EEPROM.
263 */
264 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
265 printf("%s: failed to send write command, status: %x\n",
266 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
267 return (1);
268 }
269
270 /*
271 * Send first byte of address of byte we want to read.
272 */
273 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
274 printf("%s: failed to send address, status: %x\n",
275 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
276 return (1);
277 }
278 /*
279 * Send second byte address of byte we want to read.
280 */
281 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
282 printf("%s: failed to send address, status: %x\n",
283 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
284 return (1);
285 }
286
287 EEPROM_STOP();
288 EEPROM_START();
289 /*
290 * Send read control code to EEPROM.
291 */
292 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
293 printf("%s: failed to send read command, status: %x\n",
294 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
295 return (1);
296 }
297
298 /*
299 * Start reading bits from EEPROM.
300 */
301 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
302 for (i = 0x80; i; i >>= 1) {
303 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
304 DELAY(1);
305 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
306 byte |= i;
307 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 DELAY(1);
309 }
310
311 EEPROM_STOP();
312
313 /*
314 * No ACK generated for read, so just return byte.
315 */
316
317 *dest = byte;
318
319 return (0);
320 }
321
322 /*
323 * Read a sequence of bytes from the EEPROM.
324 */
325 static int
326 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
327 {
328 char *dest = destv;
329 int err = 0, i;
330 uint8_t byte = 0;
331
332 for (i = 0; i < cnt; i++) {
333 err = ti_eeprom_getbyte(sc, off + i, &byte);
334 if (err)
335 break;
336 *(dest + i) = byte;
337 }
338
339 return (err ? 1 : 0);
340 }
341
342 /*
343 * NIC memory access function. Can be used to either clear a section
344 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
345 */
346 static void
347 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
348 {
349 int segptr, segsize, cnt;
350 const void *ptr;
351
352 segptr = addr;
353 cnt = len;
354 ptr = xbuf;
355
356 while (cnt) {
357 if (cnt < TI_WINLEN)
358 segsize = cnt;
359 else
360 segsize = TI_WINLEN - (segptr % TI_WINLEN);
361 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
362 if (xbuf == NULL) {
363 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
364 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
365 segsize / 4);
366 } else {
367 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
368 bus_space_write_region_stream_4(sc->ti_btag,
369 sc->ti_bhandle,
370 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
371 (const uint32_t *)ptr, segsize / 4);
372 #else
373 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
374 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
375 (const uint32_t *)ptr, segsize / 4);
376 #endif
377 ptr = (const char *)ptr + segsize;
378 }
379 segptr += segsize;
380 cnt -= segsize;
381 }
382
383 return;
384 }
385
386 /*
387 * Load firmware image into the NIC. Check that the firmware revision
388 * is acceptable and see if we want the firmware for the Tigon 1 or
389 * Tigon 2.
390 */
391 static void
392 ti_loadfw(struct ti_softc *sc)
393 {
394 switch (sc->ti_hwrev) {
395 case TI_HWREV_TIGON:
396 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
397 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
398 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
399 printf("%s: firmware revision mismatch; want "
400 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
401 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
402 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
403 tigonFwReleaseMinor, tigonFwReleaseFix);
404 return;
405 }
406 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
407 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
408 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
409 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
410 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
411 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
412 break;
413 case TI_HWREV_TIGON_II:
414 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
415 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
416 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
417 printf("%s: firmware revision mismatch; want "
418 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
419 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
420 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
421 tigon2FwReleaseMinor, tigon2FwReleaseFix);
422 return;
423 }
424 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
425 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
426 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
427 tigon2FwRodata);
428 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
429 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
430 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
431 break;
432 default:
433 printf("%s: can't load firmware: unknown hardware rev\n",
434 device_xname(sc->sc_dev));
435 break;
436 }
437
438 return;
439 }
440
441 /*
442 * Send the NIC a command via the command ring.
443 */
444 static void
445 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
446 {
447 uint32_t index;
448
449 index = sc->ti_cmd_saved_prodidx;
450 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
451 TI_INC(index, TI_CMD_RING_CNT);
452 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
453 sc->ti_cmd_saved_prodidx = index;
454 }
455
456 /*
457 * Send the NIC an extended command. The 'len' parameter specifies the
458 * number of command slots to include after the initial command.
459 */
460 static void
461 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
462 {
463 char *arg = argv;
464 uint32_t index;
465 int i;
466
467 index = sc->ti_cmd_saved_prodidx;
468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
469 TI_INC(index, TI_CMD_RING_CNT);
470 for (i = 0; i < len; i++) {
471 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
472 *(uint32_t *)(&arg[i * 4]));
473 TI_INC(index, TI_CMD_RING_CNT);
474 }
475 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
476 sc->ti_cmd_saved_prodidx = index;
477 }
478
479 /*
480 * Handle events that have triggered interrupts.
481 */
482 static void
483 ti_handle_events(struct ti_softc *sc)
484 {
485 struct ti_event_desc *e;
486
487 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
488 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
489 switch (TI_EVENT_EVENT(e)) {
490 case TI_EV_LINKSTAT_CHANGED:
491 sc->ti_linkstat = TI_EVENT_CODE(e);
492 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
493 printf("%s: 10/100 link up\n",
494 device_xname(sc->sc_dev));
495 else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
496 printf("%s: gigabit link up\n",
497 device_xname(sc->sc_dev));
498 else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
499 printf("%s: link down\n",
500 device_xname(sc->sc_dev));
501 break;
502 case TI_EV_ERROR:
503 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
504 printf("%s: invalid command\n",
505 device_xname(sc->sc_dev));
506 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
507 printf("%s: unknown command\n",
508 device_xname(sc->sc_dev));
509 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
510 printf("%s: bad config data\n",
511 device_xname(sc->sc_dev));
512 break;
513 case TI_EV_FIRMWARE_UP:
514 ti_init2(sc);
515 break;
516 case TI_EV_STATS_UPDATED:
517 ti_stats_update(sc);
518 break;
519 case TI_EV_RESET_JUMBO_RING:
520 case TI_EV_MCAST_UPDATED:
521 /* Who cares. */
522 break;
523 default:
524 printf("%s: unknown event: %d\n",
525 device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
526 break;
527 }
528 /* Advance the consumer index. */
529 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
530 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
531 }
532
533 return;
534 }
535
536 /*
537 * Memory management for the jumbo receive ring is a pain in the
538 * butt. We need to allocate at least 9018 bytes of space per frame,
539 * _and_ it has to be contiguous (unless you use the extended
540 * jumbo descriptor format). Using malloc() all the time won't
541 * work: malloc() allocates memory in powers of two, which means we
542 * would end up wasting a considerable amount of space by allocating
543 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
544 * to do our own memory management.
545 *
546 * The driver needs to allocate a contiguous chunk of memory at boot
547 * time. We then chop this up ourselves into 9K pieces and use them
548 * as external mbuf storage.
549 *
550 * One issue here is how much memory to allocate. The jumbo ring has
551 * 256 slots in it, but at 9K per slot than can consume over 2MB of
552 * RAM. This is a bit much, especially considering we also need
553 * RAM for the standard ring and mini ring (on the Tigon 2). To
554 * save space, we only actually allocate enough memory for 64 slots
555 * by default, which works out to between 500 and 600K. This can
556 * be tuned by changing a #define in if_tireg.h.
557 */
558
559 static int
560 ti_alloc_jumbo_mem(struct ti_softc *sc)
561 {
562 char *ptr;
563 int i;
564 struct ti_jpool_entry *entry;
565 bus_dma_segment_t dmaseg;
566 int error, dmanseg;
567
568 /* Grab a big chunk o' storage. */
569 if ((error = bus_dmamem_alloc(sc->sc_dmat,
570 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
571 BUS_DMA_NOWAIT)) != 0) {
572 aprint_error_dev(sc->sc_dev,
573 "can't allocate jumbo buffer, error = %d\n", error);
574 return (error);
575 }
576
577 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
578 TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
579 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
580 aprint_error_dev(sc->sc_dev,
581 "can't map jumbo buffer, error = %d\n", error);
582 return (error);
583 }
584
585 if ((error = bus_dmamap_create(sc->sc_dmat,
586 TI_JMEM, 1,
587 TI_JMEM, 0, BUS_DMA_NOWAIT,
588 &sc->jumbo_dmamap)) != 0) {
589 aprint_error_dev(sc->sc_dev,
590 "can't create jumbo buffer DMA map, error = %d\n", error);
591 return (error);
592 }
593
594 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
595 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
596 BUS_DMA_NOWAIT)) != 0) {
597 aprint_error_dev(sc->sc_dev,
598 "can't load jumbo buffer DMA map, error = %d\n", error);
599 return (error);
600 }
601 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
602
603 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
604 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
605
606 /*
607 * Now divide it up into 9K pieces and save the addresses
608 * in an array.
609 */
610 ptr = sc->ti_cdata.ti_jumbo_buf;
611 for (i = 0; i < TI_JSLOTS; i++) {
612 sc->ti_cdata.ti_jslots[i] = ptr;
613 ptr += TI_JLEN;
614 entry = malloc(sizeof(struct ti_jpool_entry),
615 M_DEVBUF, M_NOWAIT);
616 if (entry == NULL) {
617 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
618 sc->ti_cdata.ti_jumbo_buf = NULL;
619 printf("%s: no memory for jumbo "
620 "buffer queue!\n", device_xname(sc->sc_dev));
621 return (ENOBUFS);
622 }
623 entry->slot = i;
624 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
625 jpool_entries);
626 }
627
628 return (0);
629 }
630
631 /*
632 * Allocate a jumbo buffer.
633 */
634 static void *
635 ti_jalloc(struct ti_softc *sc)
636 {
637 struct ti_jpool_entry *entry;
638
639 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
640
641 if (entry == NULL) {
642 printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
643 return (NULL);
644 }
645
646 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
647 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
648
649 return (sc->ti_cdata.ti_jslots[entry->slot]);
650 }
651
652 /*
653 * Release a jumbo buffer.
654 */
655 static void
656 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
657 {
658 struct ti_softc *sc;
659 int i, s;
660 struct ti_jpool_entry *entry;
661
662 /* Extract the softc struct pointer. */
663 sc = (struct ti_softc *)arg;
664
665 if (sc == NULL)
666 panic("ti_jfree: didn't get softc pointer!");
667
668 /* calculate the slot this buffer belongs to */
669
670 i = ((char *)tbuf
671 - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
672
673 if ((i < 0) || (i >= TI_JSLOTS))
674 panic("ti_jfree: asked to free buffer that we don't manage!");
675
676 s = splvm();
677 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
678 if (entry == NULL)
679 panic("ti_jfree: buffer not in use!");
680 entry->slot = i;
681 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
682 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
683
684 if (__predict_true(m != NULL))
685 pool_cache_put(mb_cache, m);
686 splx(s);
687 }
688
689
690 /*
691 * Initialize a standard receive ring descriptor.
692 */
693 static int
694 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
695 {
696 struct mbuf *m_new = NULL;
697 struct ti_rx_desc *r;
698 int error;
699
700 if (dmamap == NULL) {
701 /* if (m) panic() */
702
703 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
704 MCLBYTES, 0, BUS_DMA_NOWAIT,
705 &dmamap)) != 0) {
706 aprint_error_dev(sc->sc_dev,
707 "can't create recv map, error = %d\n", error);
708 return (ENOMEM);
709 }
710 }
711 sc->std_dmamap[i] = dmamap;
712
713 if (m == NULL) {
714 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
715 if (m_new == NULL) {
716 aprint_error_dev(sc->sc_dev,
717 "mbuf allocation failed -- packet dropped!\n");
718 return (ENOBUFS);
719 }
720
721 MCLGET(m_new, M_DONTWAIT);
722 if (!(m_new->m_flags & M_EXT)) {
723 aprint_error_dev(sc->sc_dev,
724 "cluster allocation failed -- packet dropped!\n");
725 m_freem(m_new);
726 return (ENOBUFS);
727 }
728 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
729 m_adj(m_new, ETHER_ALIGN);
730
731 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
732 mtod(m_new, void *), m_new->m_len, NULL,
733 BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
734 aprint_error_dev(sc->sc_dev,
735 "can't load recv map, error = %d\n", error);
736 m_freem(m_new);
737 return (ENOMEM);
738 }
739 } else {
740 m_new = m;
741 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
742 m_new->m_data = m_new->m_ext.ext_buf;
743 m_adj(m_new, ETHER_ALIGN);
744
745 /* reuse the dmamap */
746 }
747
748 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
749 r = &sc->ti_rdata->ti_rx_std_ring[i];
750 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
751 r->ti_type = TI_BDTYPE_RECV_BD;
752 r->ti_flags = 0;
753 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
754 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
755 if (sc->ethercom.ec_if.if_capenable &
756 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
757 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
758 r->ti_len = m_new->m_len; /* == ds_len */
759 r->ti_idx = i;
760
761 return (0);
762 }
763
764 /*
765 * Intialize a mini receive ring descriptor. This only applies to
766 * the Tigon 2.
767 */
768 static int
769 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
770 {
771 struct mbuf *m_new = NULL;
772 struct ti_rx_desc *r;
773 int error;
774
775 if (dmamap == NULL) {
776 /* if (m) panic() */
777
778 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
779 MHLEN, 0, BUS_DMA_NOWAIT,
780 &dmamap)) != 0) {
781 aprint_error_dev(sc->sc_dev,
782 "can't create recv map, error = %d\n", error);
783 return (ENOMEM);
784 }
785 }
786 sc->mini_dmamap[i] = dmamap;
787
788 if (m == NULL) {
789 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
790 if (m_new == NULL) {
791 aprint_error_dev(sc->sc_dev,
792 "mbuf allocation failed -- packet dropped!\n");
793 return (ENOBUFS);
794 }
795 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
796 m_adj(m_new, ETHER_ALIGN);
797
798 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
799 mtod(m_new, void *), m_new->m_len, NULL,
800 BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
801 aprint_error_dev(sc->sc_dev,
802 "can't load recv map, error = %d\n", error);
803 m_freem(m_new);
804 return (ENOMEM);
805 }
806 } else {
807 m_new = m;
808 m_new->m_data = m_new->m_pktdat;
809 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
810 m_adj(m_new, ETHER_ALIGN);
811
812 /* reuse the dmamap */
813 }
814
815 r = &sc->ti_rdata->ti_rx_mini_ring[i];
816 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
817 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
818 r->ti_type = TI_BDTYPE_RECV_BD;
819 r->ti_flags = TI_BDFLAG_MINI_RING;
820 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
821 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
822 if (sc->ethercom.ec_if.if_capenable &
823 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
824 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
825 r->ti_len = m_new->m_len; /* == ds_len */
826 r->ti_idx = i;
827
828 return (0);
829 }
830
831 /*
832 * Initialize a jumbo receive ring descriptor. This allocates
833 * a jumbo buffer from the pool managed internally by the driver.
834 */
835 static int
836 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
837 {
838 struct mbuf *m_new = NULL;
839 struct ti_rx_desc *r;
840
841 if (m == NULL) {
842 void * tbuf = NULL;
843
844 /* Allocate the mbuf. */
845 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
846 if (m_new == NULL) {
847 aprint_error_dev(sc->sc_dev,
848 "mbuf allocation failed -- packet dropped!\n");
849 return (ENOBUFS);
850 }
851
852 /* Allocate the jumbo buffer */
853 tbuf = ti_jalloc(sc);
854 if (tbuf == NULL) {
855 m_freem(m_new);
856 aprint_error_dev(sc->sc_dev,
857 "jumbo allocation failed -- packet dropped!\n");
858 return (ENOBUFS);
859 }
860
861 /* Attach the buffer to the mbuf. */
862 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
863 M_DEVBUF, ti_jfree, sc);
864 m_new->m_flags |= M_EXT_RW;
865 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
866 } else {
867 m_new = m;
868 m_new->m_data = m_new->m_ext.ext_buf;
869 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
870 }
871
872 m_adj(m_new, ETHER_ALIGN);
873 /* Set up the descriptor. */
874 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
875 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
876 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
877 (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
878 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
879 r->ti_flags = TI_BDFLAG_JUMBO_RING;
880 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
881 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
882 if (sc->ethercom.ec_if.if_capenable &
883 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
884 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
885 r->ti_len = m_new->m_len;
886 r->ti_idx = i;
887
888 return (0);
889 }
890
891 /*
892 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
893 * that's 1MB or memory, which is a lot. For now, we fill only the first
894 * 256 ring entries and hope that our CPU is fast enough to keep up with
895 * the NIC.
896 */
897 static int
898 ti_init_rx_ring_std(struct ti_softc *sc)
899 {
900 int i;
901 struct ti_cmd_desc cmd;
902
903 for (i = 0; i < TI_SSLOTS; i++) {
904 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
905 return (ENOBUFS);
906 };
907
908 TI_UPDATE_STDPROD(sc, i - 1);
909 sc->ti_std = i - 1;
910
911 return (0);
912 }
913
914 static void
915 ti_free_rx_ring_std(struct ti_softc *sc)
916 {
917 int i;
918
919 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
920 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
921 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
922 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
923
924 /* if (sc->std_dmamap[i] == 0) panic() */
925 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
926 sc->std_dmamap[i] = 0;
927 }
928 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
929 sizeof(struct ti_rx_desc));
930 }
931
932 return;
933 }
934
935 static int
936 ti_init_rx_ring_jumbo(struct ti_softc *sc)
937 {
938 int i;
939 struct ti_cmd_desc cmd;
940
941 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
942 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
943 return (ENOBUFS);
944 };
945
946 TI_UPDATE_JUMBOPROD(sc, i - 1);
947 sc->ti_jumbo = i - 1;
948
949 return (0);
950 }
951
952 static void
953 ti_free_rx_ring_jumbo(struct ti_softc *sc)
954 {
955 int i;
956
957 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
958 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
959 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
960 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
961 }
962 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
963 sizeof(struct ti_rx_desc));
964 }
965
966 return;
967 }
968
969 static int
970 ti_init_rx_ring_mini(struct ti_softc *sc)
971 {
972 int i;
973
974 for (i = 0; i < TI_MSLOTS; i++) {
975 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
976 return (ENOBUFS);
977 };
978
979 TI_UPDATE_MINIPROD(sc, i - 1);
980 sc->ti_mini = i - 1;
981
982 return (0);
983 }
984
985 static void
986 ti_free_rx_ring_mini(struct ti_softc *sc)
987 {
988 int i;
989
990 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
991 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
992 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
993 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
994
995 /* if (sc->mini_dmamap[i] == 0) panic() */
996 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
997 sc->mini_dmamap[i] = 0;
998 }
999 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1000 sizeof(struct ti_rx_desc));
1001 }
1002
1003 return;
1004 }
1005
1006 static void
1007 ti_free_tx_ring(struct ti_softc *sc)
1008 {
1009 int i;
1010 struct txdmamap_pool_entry *dma;
1011
1012 for (i = 0; i < TI_TX_RING_CNT; i++) {
1013 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1014 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1015 sc->ti_cdata.ti_tx_chain[i] = NULL;
1016
1017 /* if (sc->txdma[i] == 0) panic() */
1018 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1019 link);
1020 sc->txdma[i] = 0;
1021 }
1022 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1023 sizeof(struct ti_tx_desc));
1024 }
1025
1026 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1027 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1028 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1029 free(dma, M_DEVBUF);
1030 }
1031
1032 return;
1033 }
1034
1035 static int
1036 ti_init_tx_ring(struct ti_softc *sc)
1037 {
1038 int i, error;
1039 bus_dmamap_t dmamap;
1040 struct txdmamap_pool_entry *dma;
1041
1042 sc->ti_txcnt = 0;
1043 sc->ti_tx_saved_considx = 0;
1044 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1045
1046 SIMPLEQ_INIT(&sc->txdma_list);
1047 for (i = 0; i < TI_RSLOTS; i++) {
1048 /* I've seen mbufs with 30 fragments. */
1049 if ((error = bus_dmamap_create(sc->sc_dmat,
1050 ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
1051 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1052 aprint_error_dev(sc->sc_dev,
1053 "can't create tx map, error = %d\n", error);
1054 return (ENOMEM);
1055 }
1056 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1057 if (!dma) {
1058 aprint_error_dev(sc->sc_dev,
1059 "can't alloc txdmamap_pool_entry\n");
1060 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1061 return (ENOMEM);
1062 }
1063 dma->dmamap = dmamap;
1064 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1065 }
1066
1067 return (0);
1068 }
1069
1070 /*
1071 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1072 * but we have to support the old way too so that Tigon 1 cards will
1073 * work.
1074 */
1075 static void
1076 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1077 {
1078 struct ti_cmd_desc cmd;
1079 uint16_t *m;
1080 uint32_t ext[2] = {0, 0};
1081
1082 m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1083
1084 switch (sc->ti_hwrev) {
1085 case TI_HWREV_TIGON:
1086 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1089 break;
1090 case TI_HWREV_TIGON_II:
1091 ext[0] = htons(m[0]);
1092 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1094 break;
1095 default:
1096 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1097 break;
1098 }
1099
1100 return;
1101 }
1102
1103 static void
1104 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1105 {
1106 struct ti_cmd_desc cmd;
1107 uint16_t *m;
1108 uint32_t ext[2] = {0, 0};
1109
1110 m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1111
1112 switch (sc->ti_hwrev) {
1113 case TI_HWREV_TIGON:
1114 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1115 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1116 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1117 break;
1118 case TI_HWREV_TIGON_II:
1119 ext[0] = htons(m[0]);
1120 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1121 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1122 break;
1123 default:
1124 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1125 break;
1126 }
1127
1128 return;
1129 }
1130
1131 /*
1132 * Configure the Tigon's multicast address filter.
1133 *
1134 * The actual multicast table management is a bit of a pain, thanks to
1135 * slight brain damage on the part of both Alteon and us. With our
1136 * multicast code, we are only alerted when the multicast address table
1137 * changes and at that point we only have the current list of addresses:
1138 * we only know the current state, not the previous state, so we don't
1139 * actually know what addresses were removed or added. The firmware has
1140 * state, but we can't get our grubby mits on it, and there is no 'delete
1141 * all multicast addresses' command. Hence, we have to maintain our own
1142 * state so we know what addresses have been programmed into the NIC at
1143 * any given time.
1144 */
1145 static void
1146 ti_setmulti(struct ti_softc *sc)
1147 {
1148 struct ethercom *ec = &sc->ethercom;
1149 struct ifnet *ifp = &ec->ec_if;
1150 struct ti_cmd_desc cmd;
1151 struct ti_mc_entry *mc;
1152 uint32_t intrs;
1153 struct ether_multi *enm;
1154 struct ether_multistep step;
1155
1156 /* Disable interrupts. */
1157 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1158 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1159
1160 /* First, zot all the existing filters. */
1161 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1162 ti_del_mcast(sc, &mc->mc_addr);
1163 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1164 free(mc, M_DEVBUF);
1165 }
1166
1167 /*
1168 * Remember all multicast addresses so that we can delete them
1169 * later. Punt if there is a range of addresses or memory shortage.
1170 */
1171 ETHER_LOCK(ec);
1172 ETHER_FIRST_MULTI(step, ec, enm);
1173 while (enm != NULL) {
1174 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1175 ETHER_ADDR_LEN) != 0) {
1176 ETHER_UNLOCK(ec);
1177 goto allmulti;
1178 }
1179 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1180 M_NOWAIT)) == NULL) {
1181 ETHER_UNLOCK(ec);
1182 goto allmulti;
1183 }
1184 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1185 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1186 ETHER_NEXT_MULTI(step, enm);
1187 }
1188 ETHER_UNLOCK(ec);
1189
1190 /* Accept only programmed multicast addresses */
1191 ifp->if_flags &= ~IFF_ALLMULTI;
1192 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1193
1194 /* Now program new ones. */
1195 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1196 ti_add_mcast(sc, &mc->mc_addr);
1197
1198 /* Re-enable interrupts. */
1199 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1200
1201 return;
1202
1203 allmulti:
1204 /* No need to keep individual multicast addresses */
1205 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1206 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1207 free(mc, M_DEVBUF);
1208 }
1209
1210 /* Accept all multicast addresses */
1211 ifp->if_flags |= IFF_ALLMULTI;
1212 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1213
1214 /* Re-enable interrupts. */
1215 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1216 }
1217
1218 /*
1219 * Check to see if the BIOS has configured us for a 64 bit slot when
1220 * we aren't actually in one. If we detect this condition, we can work
1221 * around it on the Tigon 2 by setting a bit in the PCI state register,
1222 * but for the Tigon 1 we must give up and abort the interface attach.
1223 */
1224 static int
1225 ti_64bitslot_war(struct ti_softc *sc)
1226 {
1227 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1228 CSR_WRITE_4(sc, 0x600, 0);
1229 CSR_WRITE_4(sc, 0x604, 0);
1230 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1231 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1232 if (sc->ti_hwrev == TI_HWREV_TIGON)
1233 return (EINVAL);
1234 else {
1235 TI_SETBIT(sc, TI_PCI_STATE,
1236 TI_PCISTATE_32BIT_BUS);
1237 return (0);
1238 }
1239 }
1240 }
1241
1242 return (0);
1243 }
1244
1245 /*
1246 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1247 * self-test results.
1248 */
1249 static int
1250 ti_chipinit(struct ti_softc *sc)
1251 {
1252 uint32_t cacheline;
1253 uint32_t pci_writemax = 0;
1254 uint32_t rev;
1255
1256 /* Initialize link to down state. */
1257 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1258
1259 /* Set endianness before we access any non-PCI registers. */
1260 #if BYTE_ORDER == BIG_ENDIAN
1261 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1262 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1263 #else
1264 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1265 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1266 #endif
1267
1268 /* Check the ROM failed bit to see if self-tests passed. */
1269 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1270 printf("%s: board self-diagnostics failed!\n",
1271 device_xname(sc->sc_dev));
1272 return (ENODEV);
1273 }
1274
1275 /* Halt the CPU. */
1276 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1277
1278 /* Figure out the hardware revision. */
1279 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1280 switch (rev) {
1281 case TI_REV_TIGON_I:
1282 sc->ti_hwrev = TI_HWREV_TIGON;
1283 break;
1284 case TI_REV_TIGON_II:
1285 sc->ti_hwrev = TI_HWREV_TIGON_II;
1286 break;
1287 default:
1288 printf("%s: unsupported chip revision 0x%x\n",
1289 device_xname(sc->sc_dev), rev);
1290 return (ENODEV);
1291 }
1292
1293 /* Do special setup for Tigon 2. */
1294 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1295 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1296 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1297 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1298 }
1299
1300 /* Set up the PCI state register. */
1301 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1302 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1303 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1304 }
1305
1306 /* Clear the read/write max DMA parameters. */
1307 TI_CLRBIT(sc, TI_PCI_STATE,
1308 (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));
1309
1310 /* Get cache line size. */
1311 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1312
1313 /*
1314 * If the system has set enabled the PCI memory write
1315 * and invalidate command in the command register, set
1316 * the write max parameter accordingly. This is necessary
1317 * to use MWI with the Tigon 2.
1318 */
1319 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1320 & PCI_COMMAND_INVALIDATE_ENABLE) {
1321 switch (cacheline) {
1322 case 1:
1323 case 4:
1324 case 8:
1325 case 16:
1326 case 32:
1327 case 64:
1328 break;
1329 default:
1330 /* Disable PCI memory write and invalidate. */
1331 if (bootverbose)
1332 printf("%s: cache line size %d not "
1333 "supported; disabling PCI MWI\n",
1334 device_xname(sc->sc_dev), cacheline);
1335 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1336 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1337 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1338 break;
1339 }
1340 }
1341
1342 #ifdef __brokenalpha__
1343 /*
1344 * From the Alteon sample driver:
1345 * Must insure that we do not cross an 8K (bytes) boundary
1346 * for DMA reads. Our highest limit is 1K bytes. This is a
1347 * restriction on some ALPHA platforms with early revision
1348 * 21174 PCI chipsets, such as the AlphaPC 164lx
1349 */
1350 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
1351 #else
1352 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1353 #endif
1354
1355 /* This sets the min dma param all the way up (0xff). */
1356 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1357
1358 /* Configure DMA variables. */
1359 #if BYTE_ORDER == BIG_ENDIAN
1360 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1361 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1362 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1363 TI_OPMODE_DONT_FRAG_JUMBO);
1364 #else
1365 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
1366 TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
1367 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
1368 #endif
1369
1370 /*
1371 * Only allow 1 DMA channel to be active at a time.
1372 * I don't think this is a good idea, but without it
1373 * the firmware racks up lots of nicDmaReadRingFull
1374 * errors.
1375 * Incompatible with hardware assisted checksums.
1376 */
1377 if ((sc->ethercom.ec_if.if_capenable &
1378 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1379 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1380 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1381 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1382
1383 /* Recommended settings from Tigon manual. */
1384 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1385 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1386
1387 if (ti_64bitslot_war(sc)) {
1388 printf("%s: bios thinks we're in a 64 bit slot, "
1389 "but we aren't", device_xname(sc->sc_dev));
1390 return (EINVAL);
1391 }
1392
1393 return (0);
1394 }
1395
1396 /*
1397 * Initialize the general information block and firmware, and
1398 * start the CPU(s) running.
1399 */
1400 static int
1401 ti_gibinit(struct ti_softc *sc)
1402 {
1403 struct ti_rcb *rcb;
1404 int i;
1405 struct ifnet *ifp;
1406
1407 ifp = &sc->ethercom.ec_if;
1408
1409 /* Disable interrupts for now. */
1410 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1411
1412 /* Tell the chip where to find the general information block. */
1413 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1414 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1415
1416 /* Load the firmware into SRAM. */
1417 ti_loadfw(sc);
1418
1419 /* Set up the contents of the general info and ring control blocks. */
1420
1421 /* Set up the event ring and producer pointer. */
1422 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1423
1424 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1425 rcb->ti_flags = 0;
1426 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1427 TI_CDEVPRODADDR(sc);
1428
1429 sc->ti_ev_prodidx.ti_idx = 0;
1430 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1431 sc->ti_ev_saved_considx = 0;
1432
1433 /* Set up the command ring and producer mailbox. */
1434 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1435
1436 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1437 rcb->ti_flags = 0;
1438 rcb->ti_max_len = 0;
1439 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1440 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1441 }
1442 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1443 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1444 sc->ti_cmd_saved_prodidx = 0;
1445
1446 /*
1447 * Assign the address of the stats refresh buffer.
1448 * We re-use the current stats buffer for this to
1449 * conserve memory.
1450 */
1451 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1452 TI_CDSTATSADDR(sc);
1453
1454 /* Set up the standard receive ring. */
1455 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1456 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1457 rcb->ti_max_len = ETHER_MAX_LEN;
1458 rcb->ti_flags = 0;
1459 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1460 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1461 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1462 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1463 if (VLAN_ATTACHED(&sc->ethercom))
1464 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1465
1466 /* Set up the jumbo receive ring. */
1467 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1468 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1469 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1470 rcb->ti_flags = 0;
1471 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1472 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1473 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1474 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1475 if (VLAN_ATTACHED(&sc->ethercom))
1476 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1477
1478 /*
1479 * Set up the mini ring. Only activated on the
1480 * Tigon 2 but the slot in the config block is
1481 * still there on the Tigon 1.
1482 */
1483 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1484 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1485 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1486 if (sc->ti_hwrev == TI_HWREV_TIGON)
1487 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1488 else
1489 rcb->ti_flags = 0;
1490 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1491 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1492 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1493 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1494 if (VLAN_ATTACHED(&sc->ethercom))
1495 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1496
1497 /*
1498 * Set up the receive return ring.
1499 */
1500 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1501 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1502 rcb->ti_flags = 0;
1503 rcb->ti_max_len = TI_RETURN_RING_CNT;
1504 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1505 TI_CDRTNPRODADDR(sc);
1506
1507 /*
1508 * Set up the tx ring. Note: for the Tigon 2, we have the option
1509 * of putting the transmit ring in the host's address space and
1510 * letting the chip DMA it instead of leaving the ring in the NIC's
1511 * memory and accessing it through the shared memory region. We
1512 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1513 * so we have to revert to the shared memory scheme if we detect
1514 * a Tigon 1 chip.
1515 */
1516 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1517 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1518 sc->ti_tx_ring_nic =
1519 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1520 }
1521 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1522 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1523 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1524 if (sc->ti_hwrev == TI_HWREV_TIGON)
1525 rcb->ti_flags = 0;
1526 else
1527 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1528 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1529 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1530 /*
1531 * When we get the packet, there is a pseudo-header seed already
1532 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1533 * compute the pseudo-header checksum again!
1534 */
1535 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
1536 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1537 TI_RCB_FLAG_NO_PHDR_CKSUM;
1538 if (VLAN_ATTACHED(&sc->ethercom))
1539 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1540 rcb->ti_max_len = TI_TX_RING_CNT;
1541 if (sc->ti_hwrev == TI_HWREV_TIGON)
1542 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1543 else
1544 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1545 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1546 TI_CDTXCONSADDR(sc);
1547
1548 /*
1549 * We're done frobbing the General Information Block. Sync
1550 * it. Note we take care of the first stats sync here, as
1551 * well.
1552 */
1553 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1554
1555 /* Set up tuneables */
1556 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1557 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1558 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1559 (sc->ti_rx_coal_ticks / 10));
1560 else
1561 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1562 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1563 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1564 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1565 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1566 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1567
1568 /* Turn interrupts on. */
1569 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1570 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1571
1572 /* Start CPU. */
1573 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));
1574
1575 return (0);
1576 }
1577
1578 /*
1579 * look for id in the device list, returning the first match
1580 */
1581 static const struct ti_type *
1582 ti_type_match(struct pci_attach_args *pa)
1583 {
1584 const struct ti_type *t;
1585
1586 t = ti_devs;
1587 while (t->ti_name != NULL) {
1588 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1589 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1590 return (t);
1591 }
1592 t++;
1593 }
1594
1595 return (NULL);
1596 }
1597
1598 /*
1599 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1600 * against our list and return its name if we find a match.
1601 */
1602 static int
1603 ti_probe(device_t parent, cfdata_t match, void *aux)
1604 {
1605 struct pci_attach_args *pa = aux;
1606 const struct ti_type *t;
1607
1608 t = ti_type_match(pa);
1609
1610 return ((t == NULL) ? 0 : 1);
1611 }
1612
1613 static void
1614 ti_attach(device_t parent, device_t self, void *aux)
1615 {
1616 uint32_t command;
1617 struct ifnet *ifp;
1618 struct ti_softc *sc;
1619 uint8_t eaddr[ETHER_ADDR_LEN];
1620 struct pci_attach_args *pa = aux;
1621 pci_chipset_tag_t pc = pa->pa_pc;
1622 pci_intr_handle_t ih;
1623 const char *intrstr = NULL;
1624 bus_dma_segment_t dmaseg;
1625 int error, dmanseg, nolinear;
1626 const struct ti_type *t;
1627 char intrbuf[PCI_INTRSTR_LEN];
1628
1629 t = ti_type_match(pa);
1630 if (t == NULL) {
1631 aprint_error("ti_attach: were did the card go ?\n");
1632 return;
1633 }
1634
1635 aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
1636 PCI_REVISION(pa->pa_class));
1637
1638 sc = device_private(self);
1639 sc->sc_dev = self;
1640
1641 /*
1642 * Map control/status registers.
1643 */
1644 nolinear = 0;
1645 if (pci_mapreg_map(pa, 0x10,
1646 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1647 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1648 NULL, NULL)) {
1649 nolinear = 1;
1650 if (pci_mapreg_map(pa, 0x10,
1651 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1652 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1653 aprint_error_dev(self, "can't map memory space\n");
1654 return;
1655 }
1656 }
1657 if (nolinear == 0)
1658 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1659 else
1660 sc->ti_vhandle = NULL;
1661
1662 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1663 command |= PCI_COMMAND_MASTER_ENABLE;
1664 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1665
1666 /* Allocate interrupt */
1667 if (pci_intr_map(pa, &ih)) {
1668 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1669 return;
1670 }
1671 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1672 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
1673 device_xname(self));
1674 if (sc->sc_ih == NULL) {
1675 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1676 if (intrstr != NULL)
1677 aprint_error(" at %s", intrstr);
1678 aprint_error("\n");
1679 return;
1680 }
1681 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1682
1683 if (ti_chipinit(sc)) {
1684 aprint_error_dev(self, "chip initialization failed\n");
1685 goto fail2;
1686 }
1687
1688 /*
1689 * Deal with some chip diffrences.
1690 */
1691 switch (sc->ti_hwrev) {
1692 case TI_HWREV_TIGON:
1693 sc->sc_tx_encap = ti_encap_tigon1;
1694 sc->sc_tx_eof = ti_txeof_tigon1;
1695 if (nolinear == 1)
1696 aprint_error_dev(self,
1697 "memory space not mapped linear\n");
1698 break;
1699
1700 case TI_HWREV_TIGON_II:
1701 sc->sc_tx_encap = ti_encap_tigon2;
1702 sc->sc_tx_eof = ti_txeof_tigon2;
1703 break;
1704
1705 default:
1706 aprint_error_dev(self, "Unknown chip version: %d\n",
1707 sc->ti_hwrev);
1708 goto fail2;
1709 }
1710
1711 /* Zero out the NIC's on-board SRAM. */
1712 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1713
1714 /* Init again -- zeroing memory may have clobbered some registers. */
1715 if (ti_chipinit(sc)) {
1716 aprint_error_dev(self, "chip initialization failed\n");
1717 goto fail2;
1718 }
1719
1720 /*
1721 * Get station address from the EEPROM. Note: the manual states
1722 * that the MAC address is at offset 0x8c, however the data is
1723 * stored as two longwords (since that's how it's loaded into
1724 * the NIC). This means the MAC address is actually preceded
1725 * by two zero bytes. We need to skip over those.
1726 */
1727 if (ti_read_eeprom(sc, (void *)&eaddr,
1728 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1729 aprint_error_dev(self, "failed to read station address\n");
1730 goto fail2;
1731 }
1732
1733 /*
1734 * A Tigon chip was detected. Inform the world.
1735 */
1736 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1737
1738 sc->sc_dmat = pa->pa_dmat;
1739
1740 /* Allocate the general information block and ring buffers. */
1741 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1742 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1743 BUS_DMA_NOWAIT)) != 0) {
1744 aprint_error_dev(self,
1745 "can't allocate ring buffer, error = %d\n", error);
1746 goto fail2;
1747 }
1748
1749 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1750 sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1751 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1752 aprint_error_dev(self,
1753 "can't map ring buffer, error = %d\n", error);
1754 goto fail2;
1755 }
1756
1757 if ((error = bus_dmamap_create(sc->sc_dmat,
1758 sizeof(struct ti_ring_data), 1,
1759 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1760 &sc->info_dmamap)) != 0) {
1761 aprint_error_dev(self,
1762 "can't create ring buffer DMA map, error = %d\n", error);
1763 goto fail2;
1764 }
1765
1766 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1767 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1768 BUS_DMA_NOWAIT)) != 0) {
1769 aprint_error_dev(self,
1770 "can't load ring buffer DMA map, error = %d\n", error);
1771 goto fail2;
1772 }
1773
1774 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1775
1776 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1777
1778 /* Try to allocate memory for jumbo buffers. */
1779 if (ti_alloc_jumbo_mem(sc)) {
1780 aprint_error_dev(self, "jumbo buffer allocation failed\n");
1781 goto fail2;
1782 }
1783
1784 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1785
1786 /*
1787 * We really need a better way to tell a 1000baseT card
1788 * from a 1000baseSX one, since in theory there could be
1789 * OEMed 1000baseT cards from lame vendors who aren't
1790 * clever enough to change the PCI ID. For the moment
1791 * though, the AceNIC is the only copper card available.
1792 */
1793 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1794 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1795 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1796 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1797 sc->ti_copper = 1;
1798 else
1799 sc->ti_copper = 0;
1800
1801 /* Set default tuneable values. */
1802 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1803 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1804 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1805 sc->ti_rx_max_coal_bds = 64;
1806 sc->ti_tx_max_coal_bds = 128;
1807 sc->ti_tx_buf_ratio = 21;
1808
1809 /* Set up ifnet structure */
1810 ifp = &sc->ethercom.ec_if;
1811 ifp->if_softc = sc;
1812 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1813 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1814 ifp->if_ioctl = ti_ioctl;
1815 ifp->if_start = ti_start;
1816 ifp->if_watchdog = ti_watchdog;
1817 IFQ_SET_READY(&ifp->if_snd);
1818
1819 #if 0
1820 /*
1821 * XXX This is not really correct -- we don't necessarily
1822 * XXX want to queue up as many as we can transmit at the
1823 * XXX upper layer like that. Someone with a board should
1824 * XXX check to see how this affects performance.
1825 */
1826 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1827 #endif
1828
1829 /*
1830 * We can support 802.1Q VLAN-sized frames.
1831 */
1832 sc->ethercom.ec_capabilities |=
1833 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1834 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1835
1836 /*
1837 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1838 */
1839 ifp->if_capabilities |=
1840 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1841 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1842 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1843
1844 /* Set up ifmedia support. */
1845 sc->ethercom.ec_ifmedia = &sc->ifmedia;
1846 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1847 if (sc->ti_copper) {
1848 /*
1849 * Copper cards allow manual 10/100 mode selection,
1850 * but not manual 1000baseT mode selection. Why?
1851 * Because currently there's no way to specify the
1852 * master/slave setting through the firmware interface,
1853 * so Alteon decided to just bag it and handle it
1854 * via autonegotiation.
1855 */
1856 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
1857 ifmedia_add(&sc->ifmedia,
1858 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1859 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
1860 ifmedia_add(&sc->ifmedia,
1861 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1862 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1863 ifmedia_add(&sc->ifmedia,
1864 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1865 } else {
1866 /* Fiber cards don't support 10/100 modes. */
1867 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
1868 ifmedia_add(&sc->ifmedia,
1869 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1870 }
1871 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1872 ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
1873
1874 /*
1875 * Call MI attach routines.
1876 */
1877 if_attach(ifp);
1878 if_deferred_start_init(ifp, NULL);
1879 ether_ifattach(ifp, eaddr);
1880
1881 /*
1882 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1883 * doing do could allow DMA to corrupt kernel memory during the
1884 * reboot before the driver initializes.
1885 */
1886 if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1887 pmf_class_network_register(self, ifp);
1888 else
1889 aprint_error_dev(self, "couldn't establish power handler\n");
1890
1891 return;
1892 fail2:
1893 pci_intr_disestablish(pc, sc->sc_ih);
1894 return;
1895 }
1896
1897 /*
1898 * Frame reception handling. This is called if there's a frame
1899 * on the receive return list.
1900 *
1901 * Note: we have to be able to handle three possibilities here:
1902 * 1) the frame is from the mini receive ring (can only happen)
1903 * on Tigon 2 boards)
1904 * 2) the frame is from the jumbo receive ring
1905 * 3) the frame is from the standard receive ring
1906 */
1907
1908 static void
1909 ti_rxeof(struct ti_softc *sc)
1910 {
1911 struct ifnet *ifp;
1912 struct ti_cmd_desc cmd;
1913
1914 ifp = &sc->ethercom.ec_if;
1915
1916 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1917 struct ti_rx_desc *cur_rx;
1918 uint32_t rxidx;
1919 struct mbuf *m = NULL;
1920 struct ether_header *eh;
1921 bus_dmamap_t dmamap;
1922
1923 cur_rx =
1924 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1925 rxidx = cur_rx->ti_idx;
1926 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1927
1928 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1929 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1930 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1931 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1932 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1933 ifp->if_ierrors++;
1934 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1935 continue;
1936 }
1937 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1938 == ENOBUFS) {
1939 ifp->if_ierrors++;
1940 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1941 continue;
1942 }
1943 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1944 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1945 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1946 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1947 dmamap = sc->mini_dmamap[rxidx];
1948 sc->mini_dmamap[rxidx] = 0;
1949 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1950 ifp->if_ierrors++;
1951 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1952 continue;
1953 }
1954 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1955 == ENOBUFS) {
1956 ifp->if_ierrors++;
1957 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1958 continue;
1959 }
1960 } else {
1961 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1962 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1963 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1964 dmamap = sc->std_dmamap[rxidx];
1965 sc->std_dmamap[rxidx] = 0;
1966 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1967 ifp->if_ierrors++;
1968 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1969 continue;
1970 }
1971 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1972 == ENOBUFS) {
1973 ifp->if_ierrors++;
1974 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1975 continue;
1976 }
1977 }
1978
1979 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1980 m_set_rcvif(m, ifp);
1981
1982 eh = mtod(m, struct ether_header *);
1983 switch (ntohs(eh->ether_type)) {
1984 #ifdef INET
1985 case ETHERTYPE_IP:
1986 {
1987 struct ip *ip = (struct ip *) (eh + 1);
1988
1989 /*
1990 * Note the Tigon firmware does not invert
1991 * the checksum for us, hence the XOR.
1992 */
1993 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1994 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1995 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1996 /*
1997 * ntohs() the constant so the compiler can
1998 * optimize...
1999 *
2000 * XXX Figure out a sane way to deal with
2001 * fragmented packets.
2002 */
2003 if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
2004 switch (ip->ip_p) {
2005 case IPPROTO_TCP:
2006 m->m_pkthdr.csum_data =
2007 cur_rx->ti_tcp_udp_cksum;
2008 m->m_pkthdr.csum_flags |=
2009 M_CSUM_TCPv4 | M_CSUM_DATA;
2010 break;
2011 case IPPROTO_UDP:
2012 m->m_pkthdr.csum_data =
2013 cur_rx->ti_tcp_udp_cksum;
2014 m->m_pkthdr.csum_flags |=
2015 M_CSUM_UDPv4 | M_CSUM_DATA;
2016 break;
2017 default:
2018 /* Nothing */;
2019 }
2020 }
2021 break;
2022 }
2023 #endif
2024 default:
2025 /* Nothing. */
2026 break;
2027 }
2028
2029 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2030 /* ti_vlan_tag also has the priority, trim it */
2031 vlan_set_tag(m, cur_rx->ti_vlan_tag & 0x0fff);
2032 }
2033
2034 if_percpuq_enqueue(ifp->if_percpuq, m);
2035 }
2036
2037 /* Only necessary on the Tigon 1. */
2038 if (sc->ti_hwrev == TI_HWREV_TIGON)
2039 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2040 sc->ti_rx_saved_considx);
2041
2042 TI_UPDATE_STDPROD(sc, sc->ti_std);
2043 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2044 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2045 }
2046
2047 static void
2048 ti_txeof_tigon1(struct ti_softc *sc)
2049 {
2050 struct ti_tx_desc *cur_tx = NULL;
2051 struct ifnet *ifp;
2052 struct txdmamap_pool_entry *dma;
2053
2054 ifp = &sc->ethercom.ec_if;
2055
2056 /*
2057 * Go through our tx ring and free mbufs for those
2058 * frames that have been sent.
2059 */
2060 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2061 uint32_t idx = 0;
2062
2063 idx = sc->ti_tx_saved_considx;
2064 if (idx > 383)
2065 CSR_WRITE_4(sc, TI_WINBASE,
2066 TI_TX_RING_BASE + 6144);
2067 else if (idx > 255)
2068 CSR_WRITE_4(sc, TI_WINBASE,
2069 TI_TX_RING_BASE + 4096);
2070 else if (idx > 127)
2071 CSR_WRITE_4(sc, TI_WINBASE,
2072 TI_TX_RING_BASE + 2048);
2073 else
2074 CSR_WRITE_4(sc, TI_WINBASE,
2075 TI_TX_RING_BASE);
2076 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2077 if (cur_tx->ti_flags & TI_BDFLAG_END)
2078 ifp->if_opackets++;
2079 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2080 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2081 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2082
2083 dma = sc->txdma[idx];
2084 KDASSERT(dma != NULL);
2085 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2086 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2087 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2088
2089 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2090 sc->txdma[idx] = NULL;
2091 }
2092 sc->ti_txcnt--;
2093 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2094 ifp->if_timer = 0;
2095 }
2096
2097 if (cur_tx != NULL)
2098 ifp->if_flags &= ~IFF_OACTIVE;
2099 }
2100
2101 static void
2102 ti_txeof_tigon2(struct ti_softc *sc)
2103 {
2104 struct ti_tx_desc *cur_tx = NULL;
2105 struct ifnet *ifp;
2106 struct txdmamap_pool_entry *dma;
2107 int firstidx, cnt;
2108
2109 ifp = &sc->ethercom.ec_if;
2110
2111 /*
2112 * Go through our tx ring and free mbufs for those
2113 * frames that have been sent.
2114 */
2115 firstidx = sc->ti_tx_saved_considx;
2116 cnt = 0;
2117 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2118 uint32_t idx = 0;
2119
2120 idx = sc->ti_tx_saved_considx;
2121 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2122 if (cur_tx->ti_flags & TI_BDFLAG_END)
2123 ifp->if_opackets++;
2124 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2125 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2126 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2127
2128 dma = sc->txdma[idx];
2129 KDASSERT(dma != NULL);
2130 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2131 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2132 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2133
2134 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2135 sc->txdma[idx] = NULL;
2136 }
2137 cnt++;
2138 sc->ti_txcnt--;
2139 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2140 ifp->if_timer = 0;
2141 }
2142
2143 if (cnt != 0)
2144 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2145
2146 if (cur_tx != NULL)
2147 ifp->if_flags &= ~IFF_OACTIVE;
2148 }
2149
2150 static int
2151 ti_intr(void *xsc)
2152 {
2153 struct ti_softc *sc;
2154 struct ifnet *ifp;
2155
2156 sc = xsc;
2157 ifp = &sc->ethercom.ec_if;
2158
2159 #ifdef notdef
2160 /* Avoid this for now -- checking this register is expensive. */
2161 /* Make sure this is really our interrupt. */
2162 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2163 return (0);
2164 #endif
2165
2166 /* Ack interrupt and stop others from occurring. */
2167 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2168
2169 if (ifp->if_flags & IFF_RUNNING) {
2170 /* Check RX return ring producer/consumer */
2171 ti_rxeof(sc);
2172
2173 /* Check TX ring producer/consumer */
2174 (*sc->sc_tx_eof)(sc);
2175 }
2176
2177 ti_handle_events(sc);
2178
2179 /* Re-enable interrupts. */
2180 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2181
2182 if ((ifp->if_flags & IFF_RUNNING) != 0)
2183 if_schedule_deferred_start(ifp);
2184
2185 return (1);
2186 }
2187
2188 static void
2189 ti_stats_update(struct ti_softc *sc)
2190 {
2191 struct ifnet *ifp;
2192
2193 ifp = &sc->ethercom.ec_if;
2194
2195 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2196
2197 ifp->if_collisions +=
2198 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2199 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2200 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2201 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2202 ifp->if_collisions;
2203
2204 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2205 }
2206
2207 /*
2208 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2209 * pointers to descriptors.
2210 */
2211 static int
2212 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2213 {
2214 struct ti_tx_desc *f = NULL;
2215 uint32_t frag, cur, cnt = 0;
2216 struct txdmamap_pool_entry *dma;
2217 bus_dmamap_t dmamap;
2218 int error, i;
2219 uint16_t csum_flags = 0;
2220
2221 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2222 if (dma == NULL) {
2223 return ENOMEM;
2224 }
2225 dmamap = dma->dmamap;
2226
2227 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2228 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2229 if (error) {
2230 struct mbuf *m;
2231 int j = 0;
2232 for (m = m_head; m; m = m->m_next)
2233 j++;
2234 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2235 "error %d\n", m_head->m_pkthdr.len, j, error);
2236 return (ENOMEM);
2237 }
2238
2239 cur = frag = *txidx;
2240
2241 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2242 /* IP header checksum field must be 0! */
2243 csum_flags |= TI_BDFLAG_IP_CKSUM;
2244 }
2245 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2246 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2247
2248 /* XXX fragmented packet checksum capability? */
2249
2250 /*
2251 * Start packing the mbufs in this chain into
2252 * the fragment pointers. Stop when we run out
2253 * of fragments or hit the end of the mbuf chain.
2254 */
2255 for (i = 0; i < dmamap->dm_nsegs; i++) {
2256 if (frag > 383)
2257 CSR_WRITE_4(sc, TI_WINBASE,
2258 TI_TX_RING_BASE + 6144);
2259 else if (frag > 255)
2260 CSR_WRITE_4(sc, TI_WINBASE,
2261 TI_TX_RING_BASE + 4096);
2262 else if (frag > 127)
2263 CSR_WRITE_4(sc, TI_WINBASE,
2264 TI_TX_RING_BASE + 2048);
2265 else
2266 CSR_WRITE_4(sc, TI_WINBASE,
2267 TI_TX_RING_BASE);
2268 f = &sc->ti_tx_ring_nic[frag % 128];
2269 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2270 break;
2271 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2272 f->ti_len = dmamap->dm_segs[i].ds_len;
2273 f->ti_flags = csum_flags;
2274 if (vlan_has_tag(m_head)) {
2275 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2276 f->ti_vlan_tag = vlan_get_tag(m_head);
2277 } else {
2278 f->ti_vlan_tag = 0;
2279 }
2280 /*
2281 * Sanity check: avoid coming within 16 descriptors
2282 * of the end of the ring.
2283 */
2284 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2285 return (ENOBUFS);
2286 cur = frag;
2287 TI_INC(frag, TI_TX_RING_CNT);
2288 cnt++;
2289 }
2290
2291 if (i < dmamap->dm_nsegs)
2292 return (ENOBUFS);
2293
2294 if (frag == sc->ti_tx_saved_considx)
2295 return (ENOBUFS);
2296
2297 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2298 TI_BDFLAG_END;
2299
2300 /* Sync the packet's DMA map. */
2301 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2302 BUS_DMASYNC_PREWRITE);
2303
2304 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2305 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2306 sc->txdma[cur] = dma;
2307 sc->ti_txcnt += cnt;
2308
2309 *txidx = frag;
2310
2311 return (0);
2312 }
2313
2314 static int
2315 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2316 {
2317 struct ti_tx_desc *f = NULL;
2318 uint32_t frag, firstfrag, cur, cnt = 0;
2319 struct txdmamap_pool_entry *dma;
2320 bus_dmamap_t dmamap;
2321 int error, i;
2322 uint16_t csum_flags = 0;
2323
2324 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2325 if (dma == NULL) {
2326 return ENOMEM;
2327 }
2328 dmamap = dma->dmamap;
2329
2330 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2331 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2332 if (error) {
2333 struct mbuf *m;
2334 int j = 0;
2335 for (m = m_head; m; m = m->m_next)
2336 j++;
2337 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2338 "error %d\n", m_head->m_pkthdr.len, j, error);
2339 return (ENOMEM);
2340 }
2341
2342 cur = firstfrag = frag = *txidx;
2343
2344 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2345 /* IP header checksum field must be 0! */
2346 csum_flags |= TI_BDFLAG_IP_CKSUM;
2347 }
2348 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2349 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2350
2351 /* XXX fragmented packet checksum capability? */
2352
2353 /*
2354 * Start packing the mbufs in this chain into
2355 * the fragment pointers. Stop when we run out
2356 * of fragments or hit the end of the mbuf chain.
2357 */
2358 for (i = 0; i < dmamap->dm_nsegs; i++) {
2359 f = &sc->ti_rdata->ti_tx_ring[frag];
2360 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2361 break;
2362 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2363 f->ti_len = dmamap->dm_segs[i].ds_len;
2364 f->ti_flags = csum_flags;
2365 if (vlan_has_tag(m_head)) {
2366 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2367 f->ti_vlan_tag = vlan_get_tag(m_head);
2368 } else {
2369 f->ti_vlan_tag = 0;
2370 }
2371 /*
2372 * Sanity check: avoid coming within 16 descriptors
2373 * of the end of the ring.
2374 */
2375 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2376 return (ENOBUFS);
2377 cur = frag;
2378 TI_INC(frag, TI_TX_RING_CNT);
2379 cnt++;
2380 }
2381
2382 if (i < dmamap->dm_nsegs)
2383 return (ENOBUFS);
2384
2385 if (frag == sc->ti_tx_saved_considx)
2386 return (ENOBUFS);
2387
2388 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2389
2390 /* Sync the packet's DMA map. */
2391 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2392 BUS_DMASYNC_PREWRITE);
2393
2394 /* Sync the descriptors we are using. */
2395 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2396
2397 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2398 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2399 sc->txdma[cur] = dma;
2400 sc->ti_txcnt += cnt;
2401
2402 *txidx = frag;
2403
2404 return (0);
2405 }
2406
2407 /*
2408 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2409 * to the mbuf data regions directly in the transmit descriptors.
2410 */
2411 static void
2412 ti_start(struct ifnet *ifp)
2413 {
2414 struct ti_softc *sc;
2415 struct mbuf *m_head = NULL;
2416 uint32_t prodidx = 0;
2417
2418 sc = ifp->if_softc;
2419
2420 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2421
2422 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2423 IFQ_POLL(&ifp->if_snd, m_head);
2424 if (m_head == NULL)
2425 break;
2426
2427 /*
2428 * Pack the data into the transmit ring. If we
2429 * don't have room, set the OACTIVE flag and wait
2430 * for the NIC to drain the ring.
2431 */
2432 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2433 ifp->if_flags |= IFF_OACTIVE;
2434 break;
2435 }
2436
2437 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2438
2439 /*
2440 * If there's a BPF listener, bounce a copy of this frame
2441 * to him.
2442 */
2443 bpf_mtap(ifp, m_head, BPF_D_OUT);
2444 }
2445
2446 /* Transmit */
2447 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2448
2449 /* Set a timeout in case the chip goes out to lunch. */
2450 ifp->if_timer = 5;
2451 }
2452
2453 static void
2454 ti_init(void *xsc)
2455 {
2456 struct ti_softc *sc = xsc;
2457 int s;
2458
2459 s = splnet();
2460
2461 /* Cancel pending I/O and flush buffers. */
2462 ti_stop(sc);
2463
2464 /* Init the gen info block, ring control blocks and firmware. */
2465 if (ti_gibinit(sc)) {
2466 aprint_error_dev(sc->sc_dev, "initialization failure\n");
2467 splx(s);
2468 return;
2469 }
2470
2471 splx(s);
2472 }
2473
2474 static void
2475 ti_init2(struct ti_softc *sc)
2476 {
2477 struct ti_cmd_desc cmd;
2478 struct ifnet *ifp;
2479 const uint8_t *m;
2480 struct ifmedia *ifm;
2481 int tmp;
2482
2483 ifp = &sc->ethercom.ec_if;
2484
2485 /* Specify MTU and interface index. */
2486 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2487
2488 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2489 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2490 tmp += ETHER_VLAN_ENCAP_LEN;
2491 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2492
2493 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2494
2495 /* Load our MAC address. */
2496 m = (const uint8_t *)CLLADDR(ifp->if_sadl);
2497 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2498 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2499 | (m[4] << 8) | m[5]);
2500 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2501
2502 /* Enable or disable promiscuous mode as needed. */
2503 if (ifp->if_flags & IFF_PROMISC) {
2504 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2505 } else {
2506 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2507 }
2508
2509 /* Program multicast filter. */
2510 ti_setmulti(sc);
2511
2512 /*
2513 * If this is a Tigon 1, we should tell the
2514 * firmware to use software packet filtering.
2515 */
2516 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2517 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2518 }
2519
2520 /* Init RX ring. */
2521 ti_init_rx_ring_std(sc);
2522
2523 /* Init jumbo RX ring. */
2524 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2525 ti_init_rx_ring_jumbo(sc);
2526
2527 /*
2528 * If this is a Tigon 2, we can also configure the
2529 * mini ring.
2530 */
2531 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2532 ti_init_rx_ring_mini(sc);
2533
2534 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2535 sc->ti_rx_saved_considx = 0;
2536
2537 /* Init TX ring. */
2538 ti_init_tx_ring(sc);
2539
2540 /* Tell firmware we're alive. */
2541 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2542
2543 /* Enable host interrupts. */
2544 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2545
2546 ifp->if_flags |= IFF_RUNNING;
2547 ifp->if_flags &= ~IFF_OACTIVE;
2548
2549 /*
2550 * Make sure to set media properly. We have to do this
2551 * here since we have to issue commands in order to set
2552 * the link negotiation and we can't issue commands until
2553 * the firmware is running.
2554 */
2555 ifm = &sc->ifmedia;
2556 tmp = ifm->ifm_media;
2557 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2558 ti_ifmedia_upd(ifp);
2559 ifm->ifm_media = tmp;
2560 }
2561
2562 /*
2563 * Set media options.
2564 */
2565 static int
2566 ti_ifmedia_upd(struct ifnet *ifp)
2567 {
2568 struct ti_softc *sc;
2569 struct ifmedia *ifm;
2570 struct ti_cmd_desc cmd;
2571
2572 sc = ifp->if_softc;
2573 ifm = &sc->ifmedia;
2574
2575 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2576 return (EINVAL);
2577
2578 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2579 case IFM_AUTO:
2580 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2581 TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2582 TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2583 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2584 TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2585 TI_LNK_AUTONEGENB | TI_LNK_ENB);
2586 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2587 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2588 break;
2589 case IFM_1000_SX:
2590 case IFM_1000_T:
2591 if ((ifm->ifm_media & IFM_FDX) != 0) {
2592 CSR_WRITE_4(sc, TI_GCR_GLINK,
2593 TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
2594 | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2595 } else {
2596 CSR_WRITE_4(sc, TI_GCR_GLINK,
2597 TI_GLNK_PREF | TI_GLNK_1000MB |
2598 TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2599 }
2600 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2601 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2602 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2603 break;
2604 case IFM_100_FX:
2605 case IFM_10_FL:
2606 case IFM_100_TX:
2607 case IFM_10_T:
2608 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2609 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2610 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2611 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2612 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2613 } else {
2614 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2615 }
2616 if ((ifm->ifm_media & IFM_FDX) != 0) {
2617 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2618 } else {
2619 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2620 }
2621 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2622 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2623 break;
2624 }
2625
2626 sc->ethercom.ec_if.if_baudrate =
2627 ifmedia_baudrate(ifm->ifm_media);
2628
2629 return (0);
2630 }
2631
2632 /*
2633 * Report current media status.
2634 */
2635 static void
2636 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2637 {
2638 struct ti_softc *sc;
2639 uint32_t media = 0;
2640
2641 sc = ifp->if_softc;
2642
2643 ifmr->ifm_status = IFM_AVALID;
2644 ifmr->ifm_active = IFM_ETHER;
2645
2646 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2647 return;
2648
2649 ifmr->ifm_status |= IFM_ACTIVE;
2650
2651 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2652 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2653 if (sc->ti_copper)
2654 ifmr->ifm_active |= IFM_1000_T;
2655 else
2656 ifmr->ifm_active |= IFM_1000_SX;
2657 if (media & TI_GLNK_FULL_DUPLEX)
2658 ifmr->ifm_active |= IFM_FDX;
2659 else
2660 ifmr->ifm_active |= IFM_HDX;
2661 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2662 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2663 if (sc->ti_copper) {
2664 if (media & TI_LNK_100MB)
2665 ifmr->ifm_active |= IFM_100_TX;
2666 if (media & TI_LNK_10MB)
2667 ifmr->ifm_active |= IFM_10_T;
2668 } else {
2669 if (media & TI_LNK_100MB)
2670 ifmr->ifm_active |= IFM_100_FX;
2671 if (media & TI_LNK_10MB)
2672 ifmr->ifm_active |= IFM_10_FL;
2673 }
2674 if (media & TI_LNK_FULL_DUPLEX)
2675 ifmr->ifm_active |= IFM_FDX;
2676 if (media & TI_LNK_HALF_DUPLEX)
2677 ifmr->ifm_active |= IFM_HDX;
2678 }
2679
2680 sc->ethercom.ec_if.if_baudrate =
2681 ifmedia_baudrate(sc->ifmedia.ifm_media);
2682 }
2683
2684 static int
2685 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2686 {
2687 struct ifaddr *ifa = (struct ifaddr *) data;
2688 struct ti_softc *sc = ifp->if_softc;
2689
2690 if ((ifp->if_flags & IFF_UP) == 0) {
2691 ifp->if_flags |= IFF_UP;
2692 ti_init(sc);
2693 }
2694
2695 switch (cmd) {
2696 case SIOCINITIFADDR:
2697
2698 switch (ifa->ifa_addr->sa_family) {
2699 #ifdef INET
2700 case AF_INET:
2701 arp_ifinit(ifp, ifa);
2702 break;
2703 #endif
2704 default:
2705 break;
2706 }
2707 break;
2708
2709 default:
2710 return (EINVAL);
2711 }
2712
2713 return (0);
2714 }
2715
2716 static int
2717 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2718 {
2719 struct ti_softc *sc = ifp->if_softc;
2720 struct ifreq *ifr = (struct ifreq *) data;
2721 int s, error = 0;
2722 struct ti_cmd_desc cmd;
2723
2724 s = splnet();
2725
2726 switch (command) {
2727 case SIOCINITIFADDR:
2728 error = ti_ether_ioctl(ifp, command, data);
2729 break;
2730 case SIOCSIFMTU:
2731 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2732 error = EINVAL;
2733 else if ((error = ifioctl_common(ifp, command, data))
2734 == ENETRESET) {
2735 ti_init(sc);
2736 error = 0;
2737 }
2738 break;
2739 case SIOCSIFFLAGS:
2740 if ((error = ifioctl_common(ifp, command, data)) != 0)
2741 break;
2742 if (ifp->if_flags & IFF_UP) {
2743 /*
2744 * If only the state of the PROMISC flag changed,
2745 * then just use the 'set promisc mode' command
2746 * instead of reinitializing the entire NIC. Doing
2747 * a full re-init means reloading the firmware and
2748 * waiting for it to start up, which may take a
2749 * second or two.
2750 */
2751 if (ifp->if_flags & IFF_RUNNING &&
2752 ifp->if_flags & IFF_PROMISC &&
2753 !(sc->ti_if_flags & IFF_PROMISC)) {
2754 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2755 TI_CMD_CODE_PROMISC_ENB, 0);
2756 } else if (ifp->if_flags & IFF_RUNNING &&
2757 !(ifp->if_flags & IFF_PROMISC) &&
2758 sc->ti_if_flags & IFF_PROMISC) {
2759 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2760 TI_CMD_CODE_PROMISC_DIS, 0);
2761 } else
2762 ti_init(sc);
2763 } else {
2764 if (ifp->if_flags & IFF_RUNNING) {
2765 ti_stop(sc);
2766 }
2767 }
2768 sc->ti_if_flags = ifp->if_flags;
2769 error = 0;
2770 break;
2771 default:
2772 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2773 break;
2774
2775 error = 0;
2776
2777 if (command == SIOCSIFCAP)
2778 ti_init(sc);
2779 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2780 ;
2781 else if (ifp->if_flags & IFF_RUNNING)
2782 ti_setmulti(sc);
2783 break;
2784 }
2785
2786 (void)splx(s);
2787
2788 return (error);
2789 }
2790
2791 static void
2792 ti_watchdog(struct ifnet *ifp)
2793 {
2794 struct ti_softc *sc;
2795
2796 sc = ifp->if_softc;
2797
2798 aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2799 ti_stop(sc);
2800 ti_init(sc);
2801
2802 ifp->if_oerrors++;
2803 }
2804
2805 /*
2806 * Stop the adapter and free any mbufs allocated to the
2807 * RX and TX lists.
2808 */
2809 static void
2810 ti_stop(struct ti_softc *sc)
2811 {
2812 struct ifnet *ifp;
2813 struct ti_cmd_desc cmd;
2814
2815 ifp = &sc->ethercom.ec_if;
2816
2817 /* Disable host interrupts. */
2818 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2819 /*
2820 * Tell firmware we're shutting down.
2821 */
2822 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2823
2824 /* Halt and reinitialize. */
2825 ti_chipinit(sc);
2826 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2827 ti_chipinit(sc);
2828
2829 /* Free the RX lists. */
2830 ti_free_rx_ring_std(sc);
2831
2832 /* Free jumbo RX list. */
2833 ti_free_rx_ring_jumbo(sc);
2834
2835 /* Free mini RX list. */
2836 ti_free_rx_ring_mini(sc);
2837
2838 /* Free TX buffers. */
2839 ti_free_tx_ring(sc);
2840
2841 sc->ti_ev_prodidx.ti_idx = 0;
2842 sc->ti_return_prodidx.ti_idx = 0;
2843 sc->ti_tx_considx.ti_idx = 0;
2844 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2845
2846 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2847 }
2848
2849 /*
2850 * Stop all chip I/O so that the kernel's probe routines don't
2851 * get confused by errant DMAs when rebooting.
2852 */
2853 static bool
2854 ti_shutdown(device_t self, int howto)
2855 {
2856 struct ti_softc *sc;
2857
2858 sc = device_private(self);
2859 ti_chipinit(sc);
2860
2861 return true;
2862 }
2863