if_ti.c revision 1.115 1 /* $NetBSD: if_ti.c,v 1.115 2020/02/29 18:49:53 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.115 2020/02/29 18:49:53 thorpej Exp $");
85
86 #include "opt_inet.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104
105 #include <net/bpf.h>
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113
114
115 #include <sys/bus.h>
116
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120
121 #include <dev/pci/if_tireg.h>
122
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125
126 #define TI_HOSTADDR(x, y) \
127 do { \
128 (x).ti_addr_lo = (uint32_t)(y); \
129 if (sizeof(bus_addr_t) == 8) \
130 (x).ti_addr_hi = \
131 (uint32_t)(((uint64_t)(y) >> 32)); \
132 else \
133 (x).ti_addr_hi = 0; \
134 } while (/*CONSTCOND*/0)
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match(struct pci_attach_args *);
157 static int ti_probe(device_t, cfdata_t, void *);
158 static void ti_attach(device_t, device_t, void *);
159 static bool ti_shutdown(device_t, int);
160 static void ti_txeof_tigon1(struct ti_softc *);
161 static void ti_txeof_tigon2(struct ti_softc *);
162 static void ti_rxeof(struct ti_softc *);
163
164 static void ti_stats_update(struct ti_softc *);
165 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
166 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);
167
168 static int ti_intr(void *);
169 static void ti_start(struct ifnet *);
170 static int ti_ioctl(struct ifnet *, u_long, void *);
171 static void ti_init(void *);
172 static void ti_init2(struct ti_softc *);
173 static void ti_stop(struct ti_softc *);
174 static void ti_watchdog(struct ifnet *);
175 static int ti_ifmedia_upd(struct ifnet *);
176 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
179 static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
180 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
181
182 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void ti_setmulti(struct ti_softc *);
185
186 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
187 static void ti_loadfw(struct ti_softc *);
188 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
190 static void ti_handle_events(struct ti_softc *);
191 static int ti_alloc_jumbo_mem(struct ti_softc *);
192 static void *ti_jalloc(struct ti_softc *);
193 static void ti_jfree(struct mbuf *, void *, size_t, void *);
194 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
195 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
196 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
197 static int ti_init_rx_ring_std(struct ti_softc *);
198 static void ti_free_rx_ring_std(struct ti_softc *);
199 static int ti_init_rx_ring_jumbo(struct ti_softc *);
200 static void ti_free_rx_ring_jumbo(struct ti_softc *);
201 static int ti_init_rx_ring_mini(struct ti_softc *);
202 static void ti_free_rx_ring_mini(struct ti_softc *);
203 static void ti_free_tx_ring(struct ti_softc *);
204 static int ti_init_tx_ring(struct ti_softc *);
205
206 static int ti_64bitslot_war(struct ti_softc *);
207 static int ti_chipinit(struct ti_softc *);
208 static int ti_gibinit(struct ti_softc *);
209
210 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
211
212 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
213 ti_probe, ti_attach, NULL, NULL);
214
215 /*
216 * Send an instruction or address to the EEPROM, check for ACK.
217 */
218 static uint32_t
219 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
220 {
221 int i, ack = 0;
222
223 /*
224 * Make sure we're in TX mode.
225 */
226 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
227
228 /*
229 * Feed in each bit and stobe the clock.
230 */
231 for (i = 0x80; i; i >>= 1) {
232 if (byte & i) {
233 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
234 } else {
235 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
236 }
237 DELAY(1);
238 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
239 DELAY(1);
240 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
241 }
242
243 /*
244 * Turn off TX mode.
245 */
246 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
247
248 /*
249 * Check for ack.
250 */
251 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
252 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
253 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254
255 return (ack);
256 }
257
258 /*
259 * Read a byte of data stored in the EEPROM at address 'addr.'
260 * We have to send two address bytes since the EEPROM can hold
261 * more than 256 bytes of data.
262 */
263 static uint8_t
264 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
265 {
266 int i;
267 uint8_t byte = 0;
268
269 EEPROM_START();
270
271 /*
272 * Send write control code to EEPROM.
273 */
274 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
275 printf("%s: failed to send write command, status: %x\n",
276 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
277 return (1);
278 }
279
280 /*
281 * Send first byte of address of byte we want to read.
282 */
283 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
284 printf("%s: failed to send address, status: %x\n",
285 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 return (1);
287 }
288 /*
289 * Send second byte address of byte we want to read.
290 */
291 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
292 printf("%s: failed to send address, status: %x\n",
293 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return (1);
295 }
296
297 EEPROM_STOP();
298 EEPROM_START();
299 /*
300 * Send read control code to EEPROM.
301 */
302 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
303 printf("%s: failed to send read command, status: %x\n",
304 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
305 return (1);
306 }
307
308 /*
309 * Start reading bits from EEPROM.
310 */
311 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
312 for (i = 0x80; i; i >>= 1) {
313 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
314 DELAY(1);
315 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
316 byte |= i;
317 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 DELAY(1);
319 }
320
321 EEPROM_STOP();
322
323 /*
324 * No ACK generated for read, so just return byte.
325 */
326
327 *dest = byte;
328
329 return (0);
330 }
331
332 /*
333 * Read a sequence of bytes from the EEPROM.
334 */
335 static int
336 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
337 {
338 char *dest = destv;
339 int err = 0, i;
340 uint8_t byte = 0;
341
342 for (i = 0; i < cnt; i++) {
343 err = ti_eeprom_getbyte(sc, off + i, &byte);
344 if (err)
345 break;
346 *(dest + i) = byte;
347 }
348
349 return (err ? 1 : 0);
350 }
351
352 /*
353 * NIC memory access function. Can be used to either clear a section
354 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
355 */
356 static void
357 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
358 {
359 int segptr, segsize, cnt;
360 const void *ptr;
361
362 segptr = addr;
363 cnt = len;
364 ptr = xbuf;
365
366 while (cnt) {
367 if (cnt < TI_WINLEN)
368 segsize = cnt;
369 else
370 segsize = TI_WINLEN - (segptr % TI_WINLEN);
371 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
372 if (xbuf == NULL) {
373 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
374 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
375 segsize / 4);
376 } else {
377 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
378 bus_space_write_region_stream_4(sc->ti_btag,
379 sc->ti_bhandle,
380 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
381 (const uint32_t *)ptr, segsize / 4);
382 #else
383 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
384 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
385 (const uint32_t *)ptr, segsize / 4);
386 #endif
387 ptr = (const char *)ptr + segsize;
388 }
389 segptr += segsize;
390 cnt -= segsize;
391 }
392
393 return;
394 }
395
396 /*
397 * Load firmware image into the NIC. Check that the firmware revision
398 * is acceptable and see if we want the firmware for the Tigon 1 or
399 * Tigon 2.
400 */
401 static void
402 ti_loadfw(struct ti_softc *sc)
403 {
404 switch (sc->ti_hwrev) {
405 case TI_HWREV_TIGON:
406 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
407 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
408 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
409 printf("%s: firmware revision mismatch; want "
410 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
411 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
412 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
413 tigonFwReleaseMinor, tigonFwReleaseFix);
414 return;
415 }
416 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
417 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
418 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
419 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
420 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
421 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
422 break;
423 case TI_HWREV_TIGON_II:
424 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
425 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
426 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
427 printf("%s: firmware revision mismatch; want "
428 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
429 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
430 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
431 tigon2FwReleaseMinor, tigon2FwReleaseFix);
432 return;
433 }
434 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
435 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
436 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
437 tigon2FwRodata);
438 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
439 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
440 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
441 break;
442 default:
443 printf("%s: can't load firmware: unknown hardware rev\n",
444 device_xname(sc->sc_dev));
445 break;
446 }
447
448 return;
449 }
450
451 /*
452 * Send the NIC a command via the command ring.
453 */
454 static void
455 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
456 {
457 uint32_t index;
458
459 index = sc->ti_cmd_saved_prodidx;
460 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
461 TI_INC(index, TI_CMD_RING_CNT);
462 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
463 sc->ti_cmd_saved_prodidx = index;
464 }
465
466 /*
467 * Send the NIC an extended command. The 'len' parameter specifies the
468 * number of command slots to include after the initial command.
469 */
470 static void
471 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
472 {
473 char *arg = argv;
474 uint32_t index;
475 int i;
476
477 index = sc->ti_cmd_saved_prodidx;
478 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
479 TI_INC(index, TI_CMD_RING_CNT);
480 for (i = 0; i < len; i++) {
481 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
482 *(uint32_t *)(&arg[i * 4]));
483 TI_INC(index, TI_CMD_RING_CNT);
484 }
485 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
486 sc->ti_cmd_saved_prodidx = index;
487 }
488
489 /*
490 * Handle events that have triggered interrupts.
491 */
492 static void
493 ti_handle_events(struct ti_softc *sc)
494 {
495 struct ti_event_desc *e;
496
497 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
498 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
499 switch (TI_EVENT_EVENT(e)) {
500 case TI_EV_LINKSTAT_CHANGED:
501 sc->ti_linkstat = TI_EVENT_CODE(e);
502 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
503 printf("%s: 10/100 link up\n",
504 device_xname(sc->sc_dev));
505 else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
506 printf("%s: gigabit link up\n",
507 device_xname(sc->sc_dev));
508 else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
509 printf("%s: link down\n",
510 device_xname(sc->sc_dev));
511 break;
512 case TI_EV_ERROR:
513 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
514 printf("%s: invalid command\n",
515 device_xname(sc->sc_dev));
516 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
517 printf("%s: unknown command\n",
518 device_xname(sc->sc_dev));
519 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
520 printf("%s: bad config data\n",
521 device_xname(sc->sc_dev));
522 break;
523 case TI_EV_FIRMWARE_UP:
524 ti_init2(sc);
525 break;
526 case TI_EV_STATS_UPDATED:
527 ti_stats_update(sc);
528 break;
529 case TI_EV_RESET_JUMBO_RING:
530 case TI_EV_MCAST_UPDATED:
531 /* Who cares. */
532 break;
533 default:
534 printf("%s: unknown event: %d\n",
535 device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
536 break;
537 }
538 /* Advance the consumer index. */
539 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
540 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
541 }
542
543 return;
544 }
545
546 /*
547 * Memory management for the jumbo receive ring is a pain in the
548 * butt. We need to allocate at least 9018 bytes of space per frame,
549 * _and_ it has to be contiguous (unless you use the extended
550 * jumbo descriptor format). Using malloc() all the time won't
551 * work: malloc() allocates memory in powers of two, which means we
552 * would end up wasting a considerable amount of space by allocating
553 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
554 * to do our own memory management.
555 *
556 * The driver needs to allocate a contiguous chunk of memory at boot
557 * time. We then chop this up ourselves into 9K pieces and use them
558 * as external mbuf storage.
559 *
560 * One issue here is how much memory to allocate. The jumbo ring has
561 * 256 slots in it, but at 9K per slot than can consume over 2MB of
562 * RAM. This is a bit much, especially considering we also need
563 * RAM for the standard ring and mini ring (on the Tigon 2). To
564 * save space, we only actually allocate enough memory for 64 slots
565 * by default, which works out to between 500 and 600K. This can
566 * be tuned by changing a #define in if_tireg.h.
567 */
568
569 static int
570 ti_alloc_jumbo_mem(struct ti_softc *sc)
571 {
572 char *ptr;
573 int i;
574 struct ti_jpool_entry *entry;
575 bus_dma_segment_t dmaseg;
576 int error, dmanseg;
577
578 /* Grab a big chunk o' storage. */
579 if ((error = bus_dmamem_alloc(sc->sc_dmat,
580 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
581 BUS_DMA_NOWAIT)) != 0) {
582 aprint_error_dev(sc->sc_dev,
583 "can't allocate jumbo buffer, error = %d\n", error);
584 return (error);
585 }
586
587 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
588 TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
589 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
590 aprint_error_dev(sc->sc_dev,
591 "can't map jumbo buffer, error = %d\n", error);
592 return (error);
593 }
594
595 if ((error = bus_dmamap_create(sc->sc_dmat,
596 TI_JMEM, 1,
597 TI_JMEM, 0, BUS_DMA_NOWAIT,
598 &sc->jumbo_dmamap)) != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "can't create jumbo buffer DMA map, error = %d\n", error);
601 return (error);
602 }
603
604 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
605 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
606 BUS_DMA_NOWAIT)) != 0) {
607 aprint_error_dev(sc->sc_dev,
608 "can't load jumbo buffer DMA map, error = %d\n", error);
609 return (error);
610 }
611 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
612
613 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
614 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
615
616 /*
617 * Now divide it up into 9K pieces and save the addresses
618 * in an array.
619 */
620 ptr = sc->ti_cdata.ti_jumbo_buf;
621 for (i = 0; i < TI_JSLOTS; i++) {
622 sc->ti_cdata.ti_jslots[i] = ptr;
623 ptr += TI_JLEN;
624 entry = malloc(sizeof(struct ti_jpool_entry),
625 M_DEVBUF, M_WAITOK);
626 entry->slot = i;
627 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
628 jpool_entries);
629 }
630
631 return (0);
632 }
633
634 /*
635 * Allocate a jumbo buffer.
636 */
637 static void *
638 ti_jalloc(struct ti_softc *sc)
639 {
640 struct ti_jpool_entry *entry;
641
642 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
643
644 if (entry == NULL) {
645 printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
646 return (NULL);
647 }
648
649 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
650 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
651
652 return (sc->ti_cdata.ti_jslots[entry->slot]);
653 }
654
655 /*
656 * Release a jumbo buffer.
657 */
658 static void
659 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
660 {
661 struct ti_softc *sc;
662 int i, s;
663 struct ti_jpool_entry *entry;
664
665 /* Extract the softc struct pointer. */
666 sc = (struct ti_softc *)arg;
667
668 if (sc == NULL)
669 panic("ti_jfree: didn't get softc pointer!");
670
671 /* calculate the slot this buffer belongs to */
672
673 i = ((char *)tbuf
674 - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
675
676 if ((i < 0) || (i >= TI_JSLOTS))
677 panic("ti_jfree: asked to free buffer that we don't manage!");
678
679 s = splvm();
680 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
681 if (entry == NULL)
682 panic("ti_jfree: buffer not in use!");
683 entry->slot = i;
684 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
685 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
686
687 if (__predict_true(m != NULL))
688 pool_cache_put(mb_cache, m);
689 splx(s);
690 }
691
692
693 /*
694 * Initialize a standard receive ring descriptor.
695 */
696 static int
697 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
698 {
699 struct mbuf *m_new = NULL;
700 struct ti_rx_desc *r;
701 int error;
702
703 if (dmamap == NULL) {
704 /* if (m) panic() */
705
706 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
707 MCLBYTES, 0, BUS_DMA_NOWAIT,
708 &dmamap)) != 0) {
709 aprint_error_dev(sc->sc_dev,
710 "can't create recv map, error = %d\n", error);
711 return (ENOMEM);
712 }
713 }
714 sc->std_dmamap[i] = dmamap;
715
716 if (m == NULL) {
717 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
718 if (m_new == NULL) {
719 aprint_error_dev(sc->sc_dev,
720 "mbuf allocation failed -- packet dropped!\n");
721 return (ENOBUFS);
722 }
723
724 MCLGET(m_new, M_DONTWAIT);
725 if (!(m_new->m_flags & M_EXT)) {
726 aprint_error_dev(sc->sc_dev,
727 "cluster allocation failed -- packet dropped!\n");
728 m_freem(m_new);
729 return (ENOBUFS);
730 }
731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
732 m_adj(m_new, ETHER_ALIGN);
733
734 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
735 mtod(m_new, void *), m_new->m_len, NULL,
736 BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
737 aprint_error_dev(sc->sc_dev,
738 "can't load recv map, error = %d\n", error);
739 m_freem(m_new);
740 return (ENOMEM);
741 }
742 } else {
743 m_new = m;
744 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
745 m_new->m_data = m_new->m_ext.ext_buf;
746 m_adj(m_new, ETHER_ALIGN);
747
748 /* reuse the dmamap */
749 }
750
751 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
752 r = &sc->ti_rdata->ti_rx_std_ring[i];
753 TI_HOSTADDR(r->ti_addr, dmamap->dm_segs[0].ds_addr);
754 r->ti_type = TI_BDTYPE_RECV_BD;
755 r->ti_flags = 0;
756 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
757 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
758 if (sc->ethercom.ec_if.if_capenable &
759 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
760 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
761 r->ti_len = m_new->m_len; /* == ds_len */
762 r->ti_idx = i;
763
764 return (0);
765 }
766
767 /*
768 * Intialize a mini receive ring descriptor. This only applies to
769 * the Tigon 2.
770 */
771 static int
772 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
773 {
774 struct mbuf *m_new = NULL;
775 struct ti_rx_desc *r;
776 int error;
777
778 if (dmamap == NULL) {
779 /* if (m) panic() */
780
781 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
782 MHLEN, 0, BUS_DMA_NOWAIT,
783 &dmamap)) != 0) {
784 aprint_error_dev(sc->sc_dev,
785 "can't create recv map, error = %d\n", error);
786 return (ENOMEM);
787 }
788 }
789 sc->mini_dmamap[i] = dmamap;
790
791 if (m == NULL) {
792 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
793 if (m_new == NULL) {
794 aprint_error_dev(sc->sc_dev,
795 "mbuf allocation failed -- packet dropped!\n");
796 return (ENOBUFS);
797 }
798 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
799 m_adj(m_new, ETHER_ALIGN);
800
801 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
802 mtod(m_new, void *), m_new->m_len, NULL,
803 BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
804 aprint_error_dev(sc->sc_dev,
805 "can't load recv map, error = %d\n", error);
806 m_freem(m_new);
807 return (ENOMEM);
808 }
809 } else {
810 m_new = m;
811 m_new->m_data = m_new->m_pktdat;
812 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
813 m_adj(m_new, ETHER_ALIGN);
814
815 /* reuse the dmamap */
816 }
817
818 r = &sc->ti_rdata->ti_rx_mini_ring[i];
819 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
820 TI_HOSTADDR(r->ti_addr, dmamap->dm_segs[0].ds_addr);
821 r->ti_type = TI_BDTYPE_RECV_BD;
822 r->ti_flags = TI_BDFLAG_MINI_RING;
823 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
824 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
825 if (sc->ethercom.ec_if.if_capenable &
826 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
827 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
828 r->ti_len = m_new->m_len; /* == ds_len */
829 r->ti_idx = i;
830
831 return (0);
832 }
833
834 /*
835 * Initialize a jumbo receive ring descriptor. This allocates
836 * a jumbo buffer from the pool managed internally by the driver.
837 */
838 static int
839 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
840 {
841 struct mbuf *m_new = NULL;
842 struct ti_rx_desc *r;
843
844 if (m == NULL) {
845 void * tbuf = NULL;
846
847 /* Allocate the mbuf. */
848 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
849 if (m_new == NULL) {
850 aprint_error_dev(sc->sc_dev,
851 "mbuf allocation failed -- packet dropped!\n");
852 return (ENOBUFS);
853 }
854
855 /* Allocate the jumbo buffer */
856 tbuf = ti_jalloc(sc);
857 if (tbuf == NULL) {
858 m_freem(m_new);
859 aprint_error_dev(sc->sc_dev,
860 "jumbo allocation failed -- packet dropped!\n");
861 return (ENOBUFS);
862 }
863
864 /* Attach the buffer to the mbuf. */
865 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
866 M_DEVBUF, ti_jfree, sc);
867 m_new->m_flags |= M_EXT_RW;
868 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
869 } else {
870 m_new = m;
871 m_new->m_data = m_new->m_ext.ext_buf;
872 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
873 }
874
875 m_adj(m_new, ETHER_ALIGN);
876 /* Set up the descriptor. */
877 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
878 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
879 TI_HOSTADDR(r->ti_addr, sc->jumbo_dmaaddr +
880 (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf));
881 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
882 r->ti_flags = TI_BDFLAG_JUMBO_RING;
883 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
884 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
885 if (sc->ethercom.ec_if.if_capenable &
886 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
887 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
888 r->ti_len = m_new->m_len;
889 r->ti_idx = i;
890
891 return (0);
892 }
893
894 /*
895 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
896 * that's 1MB or memory, which is a lot. For now, we fill only the first
897 * 256 ring entries and hope that our CPU is fast enough to keep up with
898 * the NIC.
899 */
900 static int
901 ti_init_rx_ring_std(struct ti_softc *sc)
902 {
903 int i;
904 struct ti_cmd_desc cmd;
905
906 for (i = 0; i < TI_SSLOTS; i++) {
907 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
908 return (ENOBUFS);
909 };
910
911 TI_UPDATE_STDPROD(sc, i - 1);
912 sc->ti_std = i - 1;
913
914 return (0);
915 }
916
917 static void
918 ti_free_rx_ring_std(struct ti_softc *sc)
919 {
920 int i;
921
922 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
923 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
924 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
925 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
926
927 /* if (sc->std_dmamap[i] == 0) panic() */
928 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
929 sc->std_dmamap[i] = 0;
930 }
931 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
932 sizeof(struct ti_rx_desc));
933 }
934
935 return;
936 }
937
938 static int
939 ti_init_rx_ring_jumbo(struct ti_softc *sc)
940 {
941 int i;
942 struct ti_cmd_desc cmd;
943
944 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
945 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
946 return (ENOBUFS);
947 };
948
949 TI_UPDATE_JUMBOPROD(sc, i - 1);
950 sc->ti_jumbo = i - 1;
951
952 return (0);
953 }
954
955 static void
956 ti_free_rx_ring_jumbo(struct ti_softc *sc)
957 {
958 int i;
959
960 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
961 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
962 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
963 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
964 }
965 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
966 sizeof(struct ti_rx_desc));
967 }
968
969 return;
970 }
971
972 static int
973 ti_init_rx_ring_mini(struct ti_softc *sc)
974 {
975 int i;
976
977 for (i = 0; i < TI_MSLOTS; i++) {
978 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
979 return (ENOBUFS);
980 };
981
982 TI_UPDATE_MINIPROD(sc, i - 1);
983 sc->ti_mini = i - 1;
984
985 return (0);
986 }
987
988 static void
989 ti_free_rx_ring_mini(struct ti_softc *sc)
990 {
991 int i;
992
993 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
994 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
995 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
996 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
997
998 /* if (sc->mini_dmamap[i] == 0) panic() */
999 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1000 sc->mini_dmamap[i] = 0;
1001 }
1002 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1003 sizeof(struct ti_rx_desc));
1004 }
1005
1006 return;
1007 }
1008
1009 static void
1010 ti_free_tx_ring(struct ti_softc *sc)
1011 {
1012 int i;
1013 struct txdmamap_pool_entry *dma;
1014
1015 for (i = 0; i < TI_TX_RING_CNT; i++) {
1016 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1017 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1018 sc->ti_cdata.ti_tx_chain[i] = NULL;
1019
1020 /* if (sc->txdma[i] == 0) panic() */
1021 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1022 link);
1023 sc->txdma[i] = 0;
1024 }
1025 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1026 sizeof(struct ti_tx_desc));
1027 }
1028
1029 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1030 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1031 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1032 free(dma, M_DEVBUF);
1033 }
1034
1035 return;
1036 }
1037
1038 static int
1039 ti_init_tx_ring(struct ti_softc *sc)
1040 {
1041 int i, error;
1042 bus_dmamap_t dmamap;
1043 struct txdmamap_pool_entry *dma;
1044
1045 sc->ti_txcnt = 0;
1046 sc->ti_tx_saved_considx = 0;
1047 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1048
1049 SIMPLEQ_INIT(&sc->txdma_list);
1050 for (i = 0; i < TI_RSLOTS; i++) {
1051 /* I've seen mbufs with 30 fragments. */
1052 if ((error = bus_dmamap_create(sc->sc_dmat,
1053 ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
1054 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1055 aprint_error_dev(sc->sc_dev,
1056 "can't create tx map, error = %d\n", error);
1057 return (ENOMEM);
1058 }
1059 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1060 if (!dma) {
1061 aprint_error_dev(sc->sc_dev,
1062 "can't alloc txdmamap_pool_entry\n");
1063 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1064 return (ENOMEM);
1065 }
1066 dma->dmamap = dmamap;
1067 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1068 }
1069
1070 return (0);
1071 }
1072
1073 /*
1074 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1075 * but we have to support the old way too so that Tigon 1 cards will
1076 * work.
1077 */
1078 static void
1079 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1080 {
1081 struct ti_cmd_desc cmd;
1082 uint16_t *m;
1083 uint32_t ext[2] = {0, 0};
1084
1085 m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1086
1087 switch (sc->ti_hwrev) {
1088 case TI_HWREV_TIGON:
1089 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1090 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1091 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1092 break;
1093 case TI_HWREV_TIGON_II:
1094 ext[0] = htons(m[0]);
1095 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1096 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1097 break;
1098 default:
1099 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1100 break;
1101 }
1102
1103 return;
1104 }
1105
1106 static void
1107 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1108 {
1109 struct ti_cmd_desc cmd;
1110 uint16_t *m;
1111 uint32_t ext[2] = {0, 0};
1112
1113 m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1114
1115 switch (sc->ti_hwrev) {
1116 case TI_HWREV_TIGON:
1117 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1118 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1119 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1120 break;
1121 case TI_HWREV_TIGON_II:
1122 ext[0] = htons(m[0]);
1123 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1124 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1125 break;
1126 default:
1127 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1128 break;
1129 }
1130
1131 return;
1132 }
1133
1134 /*
1135 * Configure the Tigon's multicast address filter.
1136 *
1137 * The actual multicast table management is a bit of a pain, thanks to
1138 * slight brain damage on the part of both Alteon and us. With our
1139 * multicast code, we are only alerted when the multicast address table
1140 * changes and at that point we only have the current list of addresses:
1141 * we only know the current state, not the previous state, so we don't
1142 * actually know what addresses were removed or added. The firmware has
1143 * state, but we can't get our grubby mits on it, and there is no 'delete
1144 * all multicast addresses' command. Hence, we have to maintain our own
1145 * state so we know what addresses have been programmed into the NIC at
1146 * any given time.
1147 */
1148 static void
1149 ti_setmulti(struct ti_softc *sc)
1150 {
1151 struct ethercom *ec = &sc->ethercom;
1152 struct ifnet *ifp = &ec->ec_if;
1153 struct ti_cmd_desc cmd;
1154 struct ti_mc_entry *mc;
1155 uint32_t intrs;
1156 struct ether_multi *enm;
1157 struct ether_multistep step;
1158
1159 /* Disable interrupts. */
1160 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1161 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1162
1163 /* First, zot all the existing filters. */
1164 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1165 ti_del_mcast(sc, &mc->mc_addr);
1166 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1167 free(mc, M_DEVBUF);
1168 }
1169
1170 /*
1171 * Remember all multicast addresses so that we can delete them
1172 * later. Punt if there is a range of addresses or memory shortage.
1173 */
1174 ETHER_LOCK(ec);
1175 ETHER_FIRST_MULTI(step, ec, enm);
1176 while (enm != NULL) {
1177 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1178 ETHER_ADDR_LEN) != 0) {
1179 ETHER_UNLOCK(ec);
1180 goto allmulti;
1181 }
1182 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1183 M_NOWAIT)) == NULL) {
1184 ETHER_UNLOCK(ec);
1185 goto allmulti;
1186 }
1187 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1188 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1189 ETHER_NEXT_MULTI(step, enm);
1190 }
1191 ETHER_UNLOCK(ec);
1192
1193 /* Accept only programmed multicast addresses */
1194 ifp->if_flags &= ~IFF_ALLMULTI;
1195 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1196
1197 /* Now program new ones. */
1198 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1199 ti_add_mcast(sc, &mc->mc_addr);
1200
1201 /* Re-enable interrupts. */
1202 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1203
1204 return;
1205
1206 allmulti:
1207 /* No need to keep individual multicast addresses */
1208 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1209 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1210 free(mc, M_DEVBUF);
1211 }
1212
1213 /* Accept all multicast addresses */
1214 ifp->if_flags |= IFF_ALLMULTI;
1215 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1216
1217 /* Re-enable interrupts. */
1218 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1219 }
1220
1221 /*
1222 * Check to see if the BIOS has configured us for a 64 bit slot when
1223 * we aren't actually in one. If we detect this condition, we can work
1224 * around it on the Tigon 2 by setting a bit in the PCI state register,
1225 * but for the Tigon 1 we must give up and abort the interface attach.
1226 */
1227 static int
1228 ti_64bitslot_war(struct ti_softc *sc)
1229 {
1230 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1231 CSR_WRITE_4(sc, 0x600, 0);
1232 CSR_WRITE_4(sc, 0x604, 0);
1233 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1234 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1235 if (sc->ti_hwrev == TI_HWREV_TIGON)
1236 return (EINVAL);
1237 else {
1238 TI_SETBIT(sc, TI_PCI_STATE,
1239 TI_PCISTATE_32BIT_BUS);
1240 return (0);
1241 }
1242 }
1243 }
1244
1245 return (0);
1246 }
1247
1248 /*
1249 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1250 * self-test results.
1251 */
1252 static int
1253 ti_chipinit(struct ti_softc *sc)
1254 {
1255 uint32_t cacheline;
1256 uint32_t pci_writemax = 0;
1257 uint32_t rev;
1258
1259 /* Initialize link to down state. */
1260 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1261
1262 /* Set endianness before we access any non-PCI registers. */
1263 #if BYTE_ORDER == BIG_ENDIAN
1264 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1265 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1266 #else
1267 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1268 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1269 #endif
1270
1271 /* Check the ROM failed bit to see if self-tests passed. */
1272 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1273 printf("%s: board self-diagnostics failed!\n",
1274 device_xname(sc->sc_dev));
1275 return (ENODEV);
1276 }
1277
1278 /* Halt the CPU. */
1279 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1280
1281 /* Figure out the hardware revision. */
1282 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1283 switch (rev) {
1284 case TI_REV_TIGON_I:
1285 sc->ti_hwrev = TI_HWREV_TIGON;
1286 break;
1287 case TI_REV_TIGON_II:
1288 sc->ti_hwrev = TI_HWREV_TIGON_II;
1289 break;
1290 default:
1291 printf("%s: unsupported chip revision 0x%x\n",
1292 device_xname(sc->sc_dev), rev);
1293 return (ENODEV);
1294 }
1295
1296 /* Do special setup for Tigon 2. */
1297 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1298 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1299 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1300 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1301 }
1302
1303 /* Set up the PCI state register. */
1304 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1305 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1306 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1307 }
1308
1309 /* Clear the read/write max DMA parameters. */
1310 TI_CLRBIT(sc, TI_PCI_STATE,
1311 (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));
1312
1313 /* Get cache line size. */
1314 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1315
1316 /*
1317 * If the system has set enabled the PCI memory write
1318 * and invalidate command in the command register, set
1319 * the write max parameter accordingly. This is necessary
1320 * to use MWI with the Tigon 2.
1321 */
1322 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1323 & PCI_COMMAND_INVALIDATE_ENABLE) {
1324 switch (cacheline) {
1325 case 1:
1326 case 4:
1327 case 8:
1328 case 16:
1329 case 32:
1330 case 64:
1331 break;
1332 default:
1333 /* Disable PCI memory write and invalidate. */
1334 if (bootverbose)
1335 printf("%s: cache line size %d not "
1336 "supported; disabling PCI MWI\n",
1337 device_xname(sc->sc_dev), cacheline);
1338 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1339 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1340 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1341 break;
1342 }
1343 }
1344
1345 #ifdef __brokenalpha__
1346 /*
1347 * From the Alteon sample driver:
1348 * Must insure that we do not cross an 8K (bytes) boundary
1349 * for DMA reads. Our highest limit is 1K bytes. This is a
1350 * restriction on some ALPHA platforms with early revision
1351 * 21174 PCI chipsets, such as the AlphaPC 164lx
1352 */
1353 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
1354 #else
1355 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1356 #endif
1357
1358 /* This sets the min dma param all the way up (0xff). */
1359 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1360
1361 /* Configure DMA variables. */
1362 #if BYTE_ORDER == BIG_ENDIAN
1363 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1364 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1365 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1366 TI_OPMODE_DONT_FRAG_JUMBO);
1367 #else
1368 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
1369 TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
1370 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
1371 #endif
1372
1373 /*
1374 * Only allow 1 DMA channel to be active at a time.
1375 * I don't think this is a good idea, but without it
1376 * the firmware racks up lots of nicDmaReadRingFull
1377 * errors.
1378 * Incompatible with hardware assisted checksums.
1379 */
1380 if ((sc->ethercom.ec_if.if_capenable &
1381 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1382 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1383 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1384 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1385
1386 /* Recommended settings from Tigon manual. */
1387 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1388 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1389
1390 if (ti_64bitslot_war(sc)) {
1391 printf("%s: bios thinks we're in a 64 bit slot, "
1392 "but we aren't", device_xname(sc->sc_dev));
1393 return (EINVAL);
1394 }
1395
1396 return (0);
1397 }
1398
1399 /*
1400 * Initialize the general information block and firmware, and
1401 * start the CPU(s) running.
1402 */
1403 static int
1404 ti_gibinit(struct ti_softc *sc)
1405 {
1406 struct ti_rcb *rcb;
1407 int i;
1408 struct ifnet *ifp;
1409
1410 ifp = &sc->ethercom.ec_if;
1411
1412 /* Disable interrupts for now. */
1413 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1414
1415 /* Tell the chip where to find the general information block. */
1416 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1417 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1418
1419 /* Load the firmware into SRAM. */
1420 ti_loadfw(sc);
1421
1422 /* Set up the contents of the general info and ring control blocks. */
1423
1424 /* Set up the event ring and producer pointer. */
1425 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1426
1427 TI_HOSTADDR(rcb->ti_hostaddr, TI_CDEVENTADDR(sc, 0));
1428 rcb->ti_flags = 0;
1429 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr,
1430 TI_CDEVPRODADDR(sc));
1431
1432 sc->ti_ev_prodidx.ti_idx = 0;
1433 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1434 sc->ti_ev_saved_considx = 0;
1435
1436 /* Set up the command ring and producer mailbox. */
1437 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1438
1439 TI_HOSTADDR(rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
1440 rcb->ti_flags = 0;
1441 rcb->ti_max_len = 0;
1442 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1443 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1444 }
1445 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1446 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1447 sc->ti_cmd_saved_prodidx = 0;
1448
1449 /*
1450 * Assign the address of the stats refresh buffer.
1451 * We re-use the current stats buffer for this to
1452 * conserve memory.
1453 */
1454 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr,
1455 TI_CDSTATSADDR(sc));
1456
1457 /* Set up the standard receive ring. */
1458 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1459 TI_HOSTADDR(rcb->ti_hostaddr, TI_CDRXSTDADDR(sc, 0));
1460 rcb->ti_max_len = ETHER_MAX_LEN;
1461 rcb->ti_flags = 0;
1462 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1463 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1464 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1465 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1466 if (VLAN_ATTACHED(&sc->ethercom))
1467 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1468
1469 /* Set up the jumbo receive ring. */
1470 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1471 TI_HOSTADDR(rcb->ti_hostaddr, TI_CDRXJUMBOADDR(sc, 0));
1472 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1473 rcb->ti_flags = 0;
1474 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1475 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1476 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1477 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1478 if (VLAN_ATTACHED(&sc->ethercom))
1479 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1480
1481 /*
1482 * Set up the mini ring. Only activated on the
1483 * Tigon 2 but the slot in the config block is
1484 * still there on the Tigon 1.
1485 */
1486 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1487 TI_HOSTADDR(rcb->ti_hostaddr, TI_CDRXMINIADDR(sc, 0));
1488 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1489 if (sc->ti_hwrev == TI_HWREV_TIGON)
1490 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1491 else
1492 rcb->ti_flags = 0;
1493 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1494 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1496 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 if (VLAN_ATTACHED(&sc->ethercom))
1498 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1499
1500 /*
1501 * Set up the receive return ring.
1502 */
1503 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1504 TI_HOSTADDR(rcb->ti_hostaddr, TI_CDRXRTNADDR(sc, 0));
1505 rcb->ti_flags = 0;
1506 rcb->ti_max_len = TI_RETURN_RING_CNT;
1507 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr,
1508 TI_CDRTNPRODADDR(sc));
1509
1510 /*
1511 * Set up the tx ring. Note: for the Tigon 2, we have the option
1512 * of putting the transmit ring in the host's address space and
1513 * letting the chip DMA it instead of leaving the ring in the NIC's
1514 * memory and accessing it through the shared memory region. We
1515 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1516 * so we have to revert to the shared memory scheme if we detect
1517 * a Tigon 1 chip.
1518 */
1519 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1520 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1521 sc->ti_tx_ring_nic =
1522 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1523 }
1524 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1525 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1526 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1527 if (sc->ti_hwrev == TI_HWREV_TIGON)
1528 rcb->ti_flags = 0;
1529 else
1530 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1531 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1532 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1533 /*
1534 * When we get the packet, there is a pseudo-header seed already
1535 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1536 * compute the pseudo-header checksum again!
1537 */
1538 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
1539 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1540 TI_RCB_FLAG_NO_PHDR_CKSUM;
1541 if (VLAN_ATTACHED(&sc->ethercom))
1542 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1543 rcb->ti_max_len = TI_TX_RING_CNT;
1544 if (sc->ti_hwrev == TI_HWREV_TIGON)
1545 TI_HOSTADDR(rcb->ti_hostaddr, TI_TX_RING_BASE);
1546 else
1547 TI_HOSTADDR(rcb->ti_hostaddr, TI_CDTXADDR(sc, 0));
1548 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr,
1549 TI_CDTXCONSADDR(sc));
1550
1551 /*
1552 * We're done frobbing the General Information Block. Sync
1553 * it. Note we take care of the first stats sync here, as
1554 * well.
1555 */
1556 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1557
1558 /* Set up tuneables */
1559 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1560 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1561 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1562 (sc->ti_rx_coal_ticks / 10));
1563 else
1564 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1565 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1566 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1567 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1568 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1569 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1570
1571 /* Turn interrupts on. */
1572 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1573 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1574
1575 /* Start CPU. */
1576 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));
1577
1578 return (0);
1579 }
1580
1581 /*
1582 * look for id in the device list, returning the first match
1583 */
1584 static const struct ti_type *
1585 ti_type_match(struct pci_attach_args *pa)
1586 {
1587 const struct ti_type *t;
1588
1589 t = ti_devs;
1590 while (t->ti_name != NULL) {
1591 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1592 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1593 return (t);
1594 }
1595 t++;
1596 }
1597
1598 return (NULL);
1599 }
1600
1601 /*
1602 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1603 * against our list and return its name if we find a match.
1604 */
1605 static int
1606 ti_probe(device_t parent, cfdata_t match, void *aux)
1607 {
1608 struct pci_attach_args *pa = aux;
1609 const struct ti_type *t;
1610
1611 t = ti_type_match(pa);
1612
1613 return ((t == NULL) ? 0 : 1);
1614 }
1615
1616 static void
1617 ti_attach(device_t parent, device_t self, void *aux)
1618 {
1619 uint32_t command;
1620 struct ifnet *ifp;
1621 struct ti_softc *sc;
1622 uint8_t eaddr[ETHER_ADDR_LEN];
1623 struct pci_attach_args *pa = aux;
1624 pci_chipset_tag_t pc = pa->pa_pc;
1625 pci_intr_handle_t ih;
1626 const char *intrstr = NULL;
1627 bus_dma_segment_t dmaseg;
1628 int error, dmanseg, nolinear;
1629 const struct ti_type *t;
1630 char intrbuf[PCI_INTRSTR_LEN];
1631
1632 t = ti_type_match(pa);
1633 if (t == NULL) {
1634 aprint_error("ti_attach: were did the card go ?\n");
1635 return;
1636 }
1637
1638 aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
1639 PCI_REVISION(pa->pa_class));
1640
1641 sc = device_private(self);
1642 sc->sc_dev = self;
1643
1644 /*
1645 * Map control/status registers.
1646 */
1647 nolinear = 0;
1648 if (pci_mapreg_map(pa, 0x10,
1649 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1650 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1651 NULL, NULL)) {
1652 nolinear = 1;
1653 if (pci_mapreg_map(pa, 0x10,
1654 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1655 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1656 aprint_error_dev(self, "can't map memory space\n");
1657 return;
1658 }
1659 }
1660 if (nolinear == 0)
1661 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1662 else
1663 sc->ti_vhandle = NULL;
1664
1665 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1666 command |= PCI_COMMAND_MASTER_ENABLE;
1667 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1668
1669 /* Allocate interrupt */
1670 if (pci_intr_map(pa, &ih)) {
1671 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1672 return;
1673 }
1674 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1675 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
1676 device_xname(self));
1677 if (sc->sc_ih == NULL) {
1678 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1679 if (intrstr != NULL)
1680 aprint_error(" at %s", intrstr);
1681 aprint_error("\n");
1682 return;
1683 }
1684 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1685
1686 if (ti_chipinit(sc)) {
1687 aprint_error_dev(self, "chip initialization failed\n");
1688 goto fail2;
1689 }
1690
1691 /*
1692 * Deal with some chip diffrences.
1693 */
1694 switch (sc->ti_hwrev) {
1695 case TI_HWREV_TIGON:
1696 sc->sc_tx_encap = ti_encap_tigon1;
1697 sc->sc_tx_eof = ti_txeof_tigon1;
1698 if (nolinear == 1)
1699 aprint_error_dev(self,
1700 "memory space not mapped linear\n");
1701 break;
1702
1703 case TI_HWREV_TIGON_II:
1704 sc->sc_tx_encap = ti_encap_tigon2;
1705 sc->sc_tx_eof = ti_txeof_tigon2;
1706 break;
1707
1708 default:
1709 aprint_error_dev(self, "Unknown chip version: %d\n",
1710 sc->ti_hwrev);
1711 goto fail2;
1712 }
1713
1714 /* Zero out the NIC's on-board SRAM. */
1715 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1716
1717 /* Init again -- zeroing memory may have clobbered some registers. */
1718 if (ti_chipinit(sc)) {
1719 aprint_error_dev(self, "chip initialization failed\n");
1720 goto fail2;
1721 }
1722
1723 /*
1724 * Get station address from the EEPROM. Note: the manual states
1725 * that the MAC address is at offset 0x8c, however the data is
1726 * stored as two longwords (since that's how it's loaded into
1727 * the NIC). This means the MAC address is actually preceded
1728 * by two zero bytes. We need to skip over those.
1729 */
1730 if (ti_read_eeprom(sc, (void *)&eaddr,
1731 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1732 aprint_error_dev(self, "failed to read station address\n");
1733 goto fail2;
1734 }
1735
1736 /*
1737 * A Tigon chip was detected. Inform the world.
1738 */
1739 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1740
1741 if (pci_dma64_available(pa))
1742 sc->sc_dmat = pa->pa_dmat64;
1743 else
1744 sc->sc_dmat = pa->pa_dmat;
1745
1746 /* Allocate the general information block and ring buffers. */
1747 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1748 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1749 BUS_DMA_NOWAIT)) != 0) {
1750 aprint_error_dev(self,
1751 "can't allocate ring buffer, error = %d\n", error);
1752 goto fail2;
1753 }
1754
1755 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1756 sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1757 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1758 aprint_error_dev(self,
1759 "can't map ring buffer, error = %d\n", error);
1760 goto fail2;
1761 }
1762
1763 if ((error = bus_dmamap_create(sc->sc_dmat,
1764 sizeof(struct ti_ring_data), 1,
1765 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1766 &sc->info_dmamap)) != 0) {
1767 aprint_error_dev(self,
1768 "can't create ring buffer DMA map, error = %d\n", error);
1769 goto fail2;
1770 }
1771
1772 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1773 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1774 BUS_DMA_NOWAIT)) != 0) {
1775 aprint_error_dev(self,
1776 "can't load ring buffer DMA map, error = %d\n", error);
1777 goto fail2;
1778 }
1779
1780 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1781
1782 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1783
1784 /* Try to allocate memory for jumbo buffers. */
1785 if (ti_alloc_jumbo_mem(sc)) {
1786 aprint_error_dev(self, "jumbo buffer allocation failed\n");
1787 goto fail2;
1788 }
1789
1790 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1791
1792 /*
1793 * We really need a better way to tell a 1000baseT card
1794 * from a 1000baseSX one, since in theory there could be
1795 * OEMed 1000baseT cards from lame vendors who aren't
1796 * clever enough to change the PCI ID. For the moment
1797 * though, the AceNIC is the only copper card available.
1798 */
1799 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1800 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1801 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1802 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1803 sc->ti_copper = 1;
1804 else
1805 sc->ti_copper = 0;
1806
1807 /* Set default tuneable values. */
1808 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1809 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1810 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1811 sc->ti_rx_max_coal_bds = 64;
1812 sc->ti_tx_max_coal_bds = 128;
1813 sc->ti_tx_buf_ratio = 21;
1814
1815 /* Set up ifnet structure */
1816 ifp = &sc->ethercom.ec_if;
1817 ifp->if_softc = sc;
1818 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1819 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1820 ifp->if_ioctl = ti_ioctl;
1821 ifp->if_start = ti_start;
1822 ifp->if_watchdog = ti_watchdog;
1823 IFQ_SET_READY(&ifp->if_snd);
1824
1825 #if 0
1826 /*
1827 * XXX This is not really correct -- we don't necessarily
1828 * XXX want to queue up as many as we can transmit at the
1829 * XXX upper layer like that. Someone with a board should
1830 * XXX check to see how this affects performance.
1831 */
1832 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1833 #endif
1834
1835 /*
1836 * We can support 802.1Q VLAN-sized frames.
1837 */
1838 sc->ethercom.ec_capabilities |=
1839 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1840 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1841
1842 /*
1843 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1844 */
1845 ifp->if_capabilities |=
1846 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1847 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1848 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1849
1850 /* Set up ifmedia support. */
1851 sc->ethercom.ec_ifmedia = &sc->ifmedia;
1852 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1853 if (sc->ti_copper) {
1854 /*
1855 * Copper cards allow manual 10/100 mode selection,
1856 * but not manual 1000baseT mode selection. Why?
1857 * Because currently there's no way to specify the
1858 * master/slave setting through the firmware interface,
1859 * so Alteon decided to just bag it and handle it
1860 * via autonegotiation.
1861 */
1862 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
1863 ifmedia_add(&sc->ifmedia,
1864 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1865 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
1866 ifmedia_add(&sc->ifmedia,
1867 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1868 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1869 ifmedia_add(&sc->ifmedia,
1870 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1871 } else {
1872 /* Fiber cards don't support 10/100 modes. */
1873 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
1874 ifmedia_add(&sc->ifmedia,
1875 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1876 }
1877 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1878 ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
1879
1880 /*
1881 * Call MI attach routines.
1882 */
1883 if_attach(ifp);
1884 if_deferred_start_init(ifp, NULL);
1885 ether_ifattach(ifp, eaddr);
1886
1887 /*
1888 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1889 * doing do could allow DMA to corrupt kernel memory during the
1890 * reboot before the driver initializes.
1891 */
1892 if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1893 pmf_class_network_register(self, ifp);
1894 else
1895 aprint_error_dev(self, "couldn't establish power handler\n");
1896
1897 return;
1898 fail2:
1899 pci_intr_disestablish(pc, sc->sc_ih);
1900 return;
1901 }
1902
1903 /*
1904 * Frame reception handling. This is called if there's a frame
1905 * on the receive return list.
1906 *
1907 * Note: we have to be able to handle three possibilities here:
1908 * 1) the frame is from the mini receive ring (can only happen)
1909 * on Tigon 2 boards)
1910 * 2) the frame is from the jumbo receive ring
1911 * 3) the frame is from the standard receive ring
1912 */
1913
1914 static void
1915 ti_rxeof(struct ti_softc *sc)
1916 {
1917 struct ifnet *ifp;
1918 struct ti_cmd_desc cmd;
1919
1920 ifp = &sc->ethercom.ec_if;
1921
1922 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1923 struct ti_rx_desc *cur_rx;
1924 uint32_t rxidx;
1925 struct mbuf *m = NULL;
1926 struct ether_header *eh;
1927 bus_dmamap_t dmamap;
1928
1929 cur_rx =
1930 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1931 rxidx = cur_rx->ti_idx;
1932 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1933
1934 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1935 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1936 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1937 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1938 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1939 if_statinc(ifp, if_ierrors);
1940 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1941 continue;
1942 }
1943 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1944 == ENOBUFS) {
1945 if_statinc(ifp, if_ierrors);
1946 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1947 continue;
1948 }
1949 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1950 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1951 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1952 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1953 dmamap = sc->mini_dmamap[rxidx];
1954 sc->mini_dmamap[rxidx] = 0;
1955 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1956 if_statinc(ifp, if_ierrors);
1957 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1958 continue;
1959 }
1960 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1961 == ENOBUFS) {
1962 if_statinc(ifp, if_ierrors);
1963 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1964 continue;
1965 }
1966 } else {
1967 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1968 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1969 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1970 dmamap = sc->std_dmamap[rxidx];
1971 sc->std_dmamap[rxidx] = 0;
1972 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1973 if_statinc(ifp, if_ierrors);
1974 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1975 continue;
1976 }
1977 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1978 == ENOBUFS) {
1979 if_statinc(ifp, if_ierrors);
1980 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1981 continue;
1982 }
1983 }
1984
1985 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1986 m_set_rcvif(m, ifp);
1987
1988 eh = mtod(m, struct ether_header *);
1989 switch (ntohs(eh->ether_type)) {
1990 #ifdef INET
1991 case ETHERTYPE_IP:
1992 {
1993 struct ip *ip = (struct ip *) (eh + 1);
1994
1995 /*
1996 * Note the Tigon firmware does not invert
1997 * the checksum for us, hence the XOR.
1998 */
1999 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2000 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2001 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2002 /*
2003 * ntohs() the constant so the compiler can
2004 * optimize...
2005 *
2006 * XXX Figure out a sane way to deal with
2007 * fragmented packets.
2008 */
2009 if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
2010 switch (ip->ip_p) {
2011 case IPPROTO_TCP:
2012 m->m_pkthdr.csum_data =
2013 cur_rx->ti_tcp_udp_cksum;
2014 m->m_pkthdr.csum_flags |=
2015 M_CSUM_TCPv4 | M_CSUM_DATA;
2016 break;
2017 case IPPROTO_UDP:
2018 m->m_pkthdr.csum_data =
2019 cur_rx->ti_tcp_udp_cksum;
2020 m->m_pkthdr.csum_flags |=
2021 M_CSUM_UDPv4 | M_CSUM_DATA;
2022 break;
2023 default:
2024 /* Nothing */;
2025 }
2026 }
2027 break;
2028 }
2029 #endif
2030 default:
2031 /* Nothing. */
2032 break;
2033 }
2034
2035 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2036 /* ti_vlan_tag also has the priority, trim it */
2037 vlan_set_tag(m, cur_rx->ti_vlan_tag & 0x0fff);
2038 }
2039
2040 if_percpuq_enqueue(ifp->if_percpuq, m);
2041 }
2042
2043 /* Only necessary on the Tigon 1. */
2044 if (sc->ti_hwrev == TI_HWREV_TIGON)
2045 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2046 sc->ti_rx_saved_considx);
2047
2048 TI_UPDATE_STDPROD(sc, sc->ti_std);
2049 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2050 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2051 }
2052
2053 static void
2054 ti_txeof_tigon1(struct ti_softc *sc)
2055 {
2056 struct ti_tx_desc *cur_tx = NULL;
2057 struct ifnet *ifp;
2058 struct txdmamap_pool_entry *dma;
2059
2060 ifp = &sc->ethercom.ec_if;
2061
2062 /*
2063 * Go through our tx ring and free mbufs for those
2064 * frames that have been sent.
2065 */
2066 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2067 uint32_t idx = 0;
2068
2069 idx = sc->ti_tx_saved_considx;
2070 if (idx > 383)
2071 CSR_WRITE_4(sc, TI_WINBASE,
2072 TI_TX_RING_BASE + 6144);
2073 else if (idx > 255)
2074 CSR_WRITE_4(sc, TI_WINBASE,
2075 TI_TX_RING_BASE + 4096);
2076 else if (idx > 127)
2077 CSR_WRITE_4(sc, TI_WINBASE,
2078 TI_TX_RING_BASE + 2048);
2079 else
2080 CSR_WRITE_4(sc, TI_WINBASE,
2081 TI_TX_RING_BASE);
2082 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2083 if (cur_tx->ti_flags & TI_BDFLAG_END)
2084 if_statinc(ifp, if_opackets);
2085 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2086 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2087 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2088
2089 dma = sc->txdma[idx];
2090 KDASSERT(dma != NULL);
2091 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2092 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2093 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2094
2095 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2096 sc->txdma[idx] = NULL;
2097 }
2098 sc->ti_txcnt--;
2099 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2100 ifp->if_timer = 0;
2101 }
2102
2103 if (cur_tx != NULL)
2104 ifp->if_flags &= ~IFF_OACTIVE;
2105 }
2106
2107 static void
2108 ti_txeof_tigon2(struct ti_softc *sc)
2109 {
2110 struct ti_tx_desc *cur_tx = NULL;
2111 struct ifnet *ifp;
2112 struct txdmamap_pool_entry *dma;
2113 int firstidx, cnt;
2114
2115 ifp = &sc->ethercom.ec_if;
2116
2117 /*
2118 * Go through our tx ring and free mbufs for those
2119 * frames that have been sent.
2120 */
2121 firstidx = sc->ti_tx_saved_considx;
2122 cnt = 0;
2123 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2124 uint32_t idx = 0;
2125
2126 idx = sc->ti_tx_saved_considx;
2127 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2128 if (cur_tx->ti_flags & TI_BDFLAG_END)
2129 if_statinc(ifp, if_opackets);
2130 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2131 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2132 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2133
2134 dma = sc->txdma[idx];
2135 KDASSERT(dma != NULL);
2136 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2137 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2138 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2139
2140 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2141 sc->txdma[idx] = NULL;
2142 }
2143 cnt++;
2144 sc->ti_txcnt--;
2145 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2146 ifp->if_timer = 0;
2147 }
2148
2149 if (cnt != 0)
2150 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2151
2152 if (cur_tx != NULL)
2153 ifp->if_flags &= ~IFF_OACTIVE;
2154 }
2155
2156 static int
2157 ti_intr(void *xsc)
2158 {
2159 struct ti_softc *sc;
2160 struct ifnet *ifp;
2161
2162 sc = xsc;
2163 ifp = &sc->ethercom.ec_if;
2164
2165 #ifdef notdef
2166 /* Avoid this for now -- checking this register is expensive. */
2167 /* Make sure this is really our interrupt. */
2168 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2169 return (0);
2170 #endif
2171
2172 /* Ack interrupt and stop others from occurring. */
2173 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2174
2175 if (ifp->if_flags & IFF_RUNNING) {
2176 /* Check RX return ring producer/consumer */
2177 ti_rxeof(sc);
2178
2179 /* Check TX ring producer/consumer */
2180 (*sc->sc_tx_eof)(sc);
2181 }
2182
2183 ti_handle_events(sc);
2184
2185 /* Re-enable interrupts. */
2186 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2187
2188 if ((ifp->if_flags & IFF_RUNNING) != 0)
2189 if_schedule_deferred_start(ifp);
2190
2191 return (1);
2192 }
2193
2194 static void
2195 ti_stats_update(struct ti_softc *sc)
2196 {
2197 struct ifnet *ifp = &sc->ethercom.ec_if;
2198
2199 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2200
2201 uint64_t collisions =
2202 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2203 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2204 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2205 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions);
2206 if_statadd(ifp, if_collisions, collisions - sc->ti_if_collisions);
2207 sc->ti_if_collisions = collisions;
2208
2209 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2210 }
2211
2212 /*
2213 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2214 * pointers to descriptors.
2215 */
2216 static int
2217 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2218 {
2219 struct ti_tx_desc *f = NULL;
2220 uint32_t frag, cur, cnt = 0;
2221 struct txdmamap_pool_entry *dma;
2222 bus_dmamap_t dmamap;
2223 int error, i;
2224 uint16_t csum_flags = 0;
2225
2226 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2227 if (dma == NULL) {
2228 return ENOMEM;
2229 }
2230 dmamap = dma->dmamap;
2231
2232 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2233 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2234 if (error) {
2235 struct mbuf *m;
2236 int j = 0;
2237 for (m = m_head; m; m = m->m_next)
2238 j++;
2239 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2240 "error %d\n", m_head->m_pkthdr.len, j, error);
2241 return (ENOMEM);
2242 }
2243
2244 cur = frag = *txidx;
2245
2246 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2247 /* IP header checksum field must be 0! */
2248 csum_flags |= TI_BDFLAG_IP_CKSUM;
2249 }
2250 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2251 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2252
2253 /* XXX fragmented packet checksum capability? */
2254
2255 /*
2256 * Start packing the mbufs in this chain into
2257 * the fragment pointers. Stop when we run out
2258 * of fragments or hit the end of the mbuf chain.
2259 */
2260 for (i = 0; i < dmamap->dm_nsegs; i++) {
2261 if (frag > 383)
2262 CSR_WRITE_4(sc, TI_WINBASE,
2263 TI_TX_RING_BASE + 6144);
2264 else if (frag > 255)
2265 CSR_WRITE_4(sc, TI_WINBASE,
2266 TI_TX_RING_BASE + 4096);
2267 else if (frag > 127)
2268 CSR_WRITE_4(sc, TI_WINBASE,
2269 TI_TX_RING_BASE + 2048);
2270 else
2271 CSR_WRITE_4(sc, TI_WINBASE,
2272 TI_TX_RING_BASE);
2273 f = &sc->ti_tx_ring_nic[frag % 128];
2274 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2275 break;
2276 TI_HOSTADDR(f->ti_addr, dmamap->dm_segs[i].ds_addr);
2277 f->ti_len = dmamap->dm_segs[i].ds_len;
2278 f->ti_flags = csum_flags;
2279 if (vlan_has_tag(m_head)) {
2280 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2281 f->ti_vlan_tag = vlan_get_tag(m_head);
2282 } else {
2283 f->ti_vlan_tag = 0;
2284 }
2285 /*
2286 * Sanity check: avoid coming within 16 descriptors
2287 * of the end of the ring.
2288 */
2289 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2290 return (ENOBUFS);
2291 cur = frag;
2292 TI_INC(frag, TI_TX_RING_CNT);
2293 cnt++;
2294 }
2295
2296 if (i < dmamap->dm_nsegs)
2297 return (ENOBUFS);
2298
2299 if (frag == sc->ti_tx_saved_considx)
2300 return (ENOBUFS);
2301
2302 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2303 TI_BDFLAG_END;
2304
2305 /* Sync the packet's DMA map. */
2306 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2307 BUS_DMASYNC_PREWRITE);
2308
2309 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2310 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2311 sc->txdma[cur] = dma;
2312 sc->ti_txcnt += cnt;
2313
2314 *txidx = frag;
2315
2316 return (0);
2317 }
2318
2319 static int
2320 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2321 {
2322 struct ti_tx_desc *f = NULL;
2323 uint32_t frag, firstfrag, cur, cnt = 0;
2324 struct txdmamap_pool_entry *dma;
2325 bus_dmamap_t dmamap;
2326 int error, i;
2327 uint16_t csum_flags = 0;
2328
2329 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2330 if (dma == NULL) {
2331 return ENOMEM;
2332 }
2333 dmamap = dma->dmamap;
2334
2335 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2336 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2337 if (error) {
2338 struct mbuf *m;
2339 int j = 0;
2340 for (m = m_head; m; m = m->m_next)
2341 j++;
2342 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2343 "error %d\n", m_head->m_pkthdr.len, j, error);
2344 return (ENOMEM);
2345 }
2346
2347 cur = firstfrag = frag = *txidx;
2348
2349 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2350 /* IP header checksum field must be 0! */
2351 csum_flags |= TI_BDFLAG_IP_CKSUM;
2352 }
2353 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2354 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2355
2356 /* XXX fragmented packet checksum capability? */
2357
2358 /*
2359 * Start packing the mbufs in this chain into
2360 * the fragment pointers. Stop when we run out
2361 * of fragments or hit the end of the mbuf chain.
2362 */
2363 for (i = 0; i < dmamap->dm_nsegs; i++) {
2364 f = &sc->ti_rdata->ti_tx_ring[frag];
2365 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2366 break;
2367 TI_HOSTADDR(f->ti_addr, dmamap->dm_segs[i].ds_addr);
2368 f->ti_len = dmamap->dm_segs[i].ds_len;
2369 f->ti_flags = csum_flags;
2370 if (vlan_has_tag(m_head)) {
2371 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2372 f->ti_vlan_tag = vlan_get_tag(m_head);
2373 } else {
2374 f->ti_vlan_tag = 0;
2375 }
2376 /*
2377 * Sanity check: avoid coming within 16 descriptors
2378 * of the end of the ring.
2379 */
2380 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2381 return (ENOBUFS);
2382 cur = frag;
2383 TI_INC(frag, TI_TX_RING_CNT);
2384 cnt++;
2385 }
2386
2387 if (i < dmamap->dm_nsegs)
2388 return (ENOBUFS);
2389
2390 if (frag == sc->ti_tx_saved_considx)
2391 return (ENOBUFS);
2392
2393 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2394
2395 /* Sync the packet's DMA map. */
2396 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2397 BUS_DMASYNC_PREWRITE);
2398
2399 /* Sync the descriptors we are using. */
2400 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2401
2402 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2403 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2404 sc->txdma[cur] = dma;
2405 sc->ti_txcnt += cnt;
2406
2407 *txidx = frag;
2408
2409 return (0);
2410 }
2411
2412 /*
2413 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2414 * to the mbuf data regions directly in the transmit descriptors.
2415 */
2416 static void
2417 ti_start(struct ifnet *ifp)
2418 {
2419 struct ti_softc *sc;
2420 struct mbuf *m_head = NULL;
2421 uint32_t prodidx = 0;
2422
2423 sc = ifp->if_softc;
2424
2425 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2426
2427 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2428 IFQ_POLL(&ifp->if_snd, m_head);
2429 if (m_head == NULL)
2430 break;
2431
2432 /*
2433 * Pack the data into the transmit ring. If we
2434 * don't have room, set the OACTIVE flag and wait
2435 * for the NIC to drain the ring.
2436 */
2437 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2438 ifp->if_flags |= IFF_OACTIVE;
2439 break;
2440 }
2441
2442 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2443
2444 /*
2445 * If there's a BPF listener, bounce a copy of this frame
2446 * to him.
2447 */
2448 bpf_mtap(ifp, m_head, BPF_D_OUT);
2449 }
2450
2451 /* Transmit */
2452 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2453
2454 /* Set a timeout in case the chip goes out to lunch. */
2455 ifp->if_timer = 5;
2456 }
2457
2458 static void
2459 ti_init(void *xsc)
2460 {
2461 struct ti_softc *sc = xsc;
2462 int s;
2463
2464 s = splnet();
2465
2466 /* Cancel pending I/O and flush buffers. */
2467 ti_stop(sc);
2468
2469 /* Init the gen info block, ring control blocks and firmware. */
2470 if (ti_gibinit(sc)) {
2471 aprint_error_dev(sc->sc_dev, "initialization failure\n");
2472 splx(s);
2473 return;
2474 }
2475
2476 splx(s);
2477 }
2478
2479 static void
2480 ti_init2(struct ti_softc *sc)
2481 {
2482 struct ti_cmd_desc cmd;
2483 struct ifnet *ifp;
2484 const uint8_t *m;
2485 struct ifmedia *ifm;
2486 int tmp;
2487
2488 ifp = &sc->ethercom.ec_if;
2489
2490 /* Specify MTU and interface index. */
2491 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2492
2493 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2494 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2495 tmp += ETHER_VLAN_ENCAP_LEN;
2496 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2497
2498 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2499
2500 /* Load our MAC address. */
2501 m = (const uint8_t *)CLLADDR(ifp->if_sadl);
2502 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2503 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2504 | (m[4] << 8) | m[5]);
2505 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2506
2507 /* Enable or disable promiscuous mode as needed. */
2508 if (ifp->if_flags & IFF_PROMISC) {
2509 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2510 } else {
2511 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2512 }
2513
2514 /* Program multicast filter. */
2515 ti_setmulti(sc);
2516
2517 /*
2518 * If this is a Tigon 1, we should tell the
2519 * firmware to use software packet filtering.
2520 */
2521 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2522 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2523 }
2524
2525 /* Init RX ring. */
2526 ti_init_rx_ring_std(sc);
2527
2528 /* Init jumbo RX ring. */
2529 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2530 ti_init_rx_ring_jumbo(sc);
2531
2532 /*
2533 * If this is a Tigon 2, we can also configure the
2534 * mini ring.
2535 */
2536 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2537 ti_init_rx_ring_mini(sc);
2538
2539 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2540 sc->ti_rx_saved_considx = 0;
2541
2542 /* Init TX ring. */
2543 ti_init_tx_ring(sc);
2544
2545 /* Tell firmware we're alive. */
2546 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2547
2548 /* Enable host interrupts. */
2549 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2550
2551 ifp->if_flags |= IFF_RUNNING;
2552 ifp->if_flags &= ~IFF_OACTIVE;
2553
2554 /*
2555 * Make sure to set media properly. We have to do this
2556 * here since we have to issue commands in order to set
2557 * the link negotiation and we can't issue commands until
2558 * the firmware is running.
2559 */
2560 ifm = &sc->ifmedia;
2561 tmp = ifm->ifm_media;
2562 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2563 ti_ifmedia_upd(ifp);
2564 ifm->ifm_media = tmp;
2565 }
2566
2567 /*
2568 * Set media options.
2569 */
2570 static int
2571 ti_ifmedia_upd(struct ifnet *ifp)
2572 {
2573 struct ti_softc *sc;
2574 struct ifmedia *ifm;
2575 struct ti_cmd_desc cmd;
2576
2577 sc = ifp->if_softc;
2578 ifm = &sc->ifmedia;
2579
2580 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2581 return (EINVAL);
2582
2583 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2584 case IFM_AUTO:
2585 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2586 TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2587 TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2588 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2589 TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2590 TI_LNK_AUTONEGENB | TI_LNK_ENB);
2591 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2592 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2593 break;
2594 case IFM_1000_SX:
2595 case IFM_1000_T:
2596 if ((ifm->ifm_media & IFM_FDX) != 0) {
2597 CSR_WRITE_4(sc, TI_GCR_GLINK,
2598 TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
2599 | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2600 } else {
2601 CSR_WRITE_4(sc, TI_GCR_GLINK,
2602 TI_GLNK_PREF | TI_GLNK_1000MB |
2603 TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2604 }
2605 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2606 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2607 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2608 break;
2609 case IFM_100_FX:
2610 case IFM_10_FL:
2611 case IFM_100_TX:
2612 case IFM_10_T:
2613 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2614 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2615 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2616 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2617 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2618 } else {
2619 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2620 }
2621 if ((ifm->ifm_media & IFM_FDX) != 0) {
2622 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2623 } else {
2624 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2625 }
2626 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2627 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2628 break;
2629 }
2630
2631 sc->ethercom.ec_if.if_baudrate =
2632 ifmedia_baudrate(ifm->ifm_media);
2633
2634 return (0);
2635 }
2636
2637 /*
2638 * Report current media status.
2639 */
2640 static void
2641 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2642 {
2643 struct ti_softc *sc;
2644 uint32_t media = 0;
2645
2646 sc = ifp->if_softc;
2647
2648 ifmr->ifm_status = IFM_AVALID;
2649 ifmr->ifm_active = IFM_ETHER;
2650
2651 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2652 return;
2653
2654 ifmr->ifm_status |= IFM_ACTIVE;
2655
2656 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2657 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2658 if (sc->ti_copper)
2659 ifmr->ifm_active |= IFM_1000_T;
2660 else
2661 ifmr->ifm_active |= IFM_1000_SX;
2662 if (media & TI_GLNK_FULL_DUPLEX)
2663 ifmr->ifm_active |= IFM_FDX;
2664 else
2665 ifmr->ifm_active |= IFM_HDX;
2666 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2667 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2668 if (sc->ti_copper) {
2669 if (media & TI_LNK_100MB)
2670 ifmr->ifm_active |= IFM_100_TX;
2671 if (media & TI_LNK_10MB)
2672 ifmr->ifm_active |= IFM_10_T;
2673 } else {
2674 if (media & TI_LNK_100MB)
2675 ifmr->ifm_active |= IFM_100_FX;
2676 if (media & TI_LNK_10MB)
2677 ifmr->ifm_active |= IFM_10_FL;
2678 }
2679 if (media & TI_LNK_FULL_DUPLEX)
2680 ifmr->ifm_active |= IFM_FDX;
2681 if (media & TI_LNK_HALF_DUPLEX)
2682 ifmr->ifm_active |= IFM_HDX;
2683 }
2684
2685 sc->ethercom.ec_if.if_baudrate =
2686 ifmedia_baudrate(sc->ifmedia.ifm_media);
2687 }
2688
2689 static int
2690 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2691 {
2692 struct ifaddr *ifa = (struct ifaddr *) data;
2693 struct ti_softc *sc = ifp->if_softc;
2694
2695 if ((ifp->if_flags & IFF_UP) == 0) {
2696 ifp->if_flags |= IFF_UP;
2697 ti_init(sc);
2698 }
2699
2700 switch (cmd) {
2701 case SIOCINITIFADDR:
2702
2703 switch (ifa->ifa_addr->sa_family) {
2704 #ifdef INET
2705 case AF_INET:
2706 arp_ifinit(ifp, ifa);
2707 break;
2708 #endif
2709 default:
2710 break;
2711 }
2712 break;
2713
2714 default:
2715 return (EINVAL);
2716 }
2717
2718 return (0);
2719 }
2720
2721 static int
2722 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2723 {
2724 struct ti_softc *sc = ifp->if_softc;
2725 struct ifreq *ifr = (struct ifreq *) data;
2726 int s, error = 0;
2727 struct ti_cmd_desc cmd;
2728
2729 s = splnet();
2730
2731 switch (command) {
2732 case SIOCINITIFADDR:
2733 error = ti_ether_ioctl(ifp, command, data);
2734 break;
2735 case SIOCSIFMTU:
2736 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2737 error = EINVAL;
2738 else if ((error = ifioctl_common(ifp, command, data))
2739 == ENETRESET) {
2740 ti_init(sc);
2741 error = 0;
2742 }
2743 break;
2744 case SIOCSIFFLAGS:
2745 if ((error = ifioctl_common(ifp, command, data)) != 0)
2746 break;
2747 if (ifp->if_flags & IFF_UP) {
2748 /*
2749 * If only the state of the PROMISC flag changed,
2750 * then just use the 'set promisc mode' command
2751 * instead of reinitializing the entire NIC. Doing
2752 * a full re-init means reloading the firmware and
2753 * waiting for it to start up, which may take a
2754 * second or two.
2755 */
2756 if (ifp->if_flags & IFF_RUNNING &&
2757 ifp->if_flags & IFF_PROMISC &&
2758 !(sc->ti_if_flags & IFF_PROMISC)) {
2759 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2760 TI_CMD_CODE_PROMISC_ENB, 0);
2761 } else if (ifp->if_flags & IFF_RUNNING &&
2762 !(ifp->if_flags & IFF_PROMISC) &&
2763 sc->ti_if_flags & IFF_PROMISC) {
2764 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2765 TI_CMD_CODE_PROMISC_DIS, 0);
2766 } else
2767 ti_init(sc);
2768 } else {
2769 if (ifp->if_flags & IFF_RUNNING) {
2770 ti_stop(sc);
2771 }
2772 }
2773 sc->ti_if_flags = ifp->if_flags;
2774 error = 0;
2775 break;
2776 default:
2777 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2778 break;
2779
2780 error = 0;
2781
2782 if (command == SIOCSIFCAP)
2783 ti_init(sc);
2784 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2785 ;
2786 else if (ifp->if_flags & IFF_RUNNING)
2787 ti_setmulti(sc);
2788 break;
2789 }
2790
2791 (void)splx(s);
2792
2793 return (error);
2794 }
2795
2796 static void
2797 ti_watchdog(struct ifnet *ifp)
2798 {
2799 struct ti_softc *sc;
2800
2801 sc = ifp->if_softc;
2802
2803 aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2804 ti_stop(sc);
2805 ti_init(sc);
2806
2807 if_statinc(ifp, if_oerrors);
2808 }
2809
2810 /*
2811 * Stop the adapter and free any mbufs allocated to the
2812 * RX and TX lists.
2813 */
2814 static void
2815 ti_stop(struct ti_softc *sc)
2816 {
2817 struct ifnet *ifp;
2818 struct ti_cmd_desc cmd;
2819
2820 ifp = &sc->ethercom.ec_if;
2821
2822 /* Disable host interrupts. */
2823 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2824 /*
2825 * Tell firmware we're shutting down.
2826 */
2827 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2828
2829 /* Halt and reinitialize. */
2830 ti_chipinit(sc);
2831 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2832 ti_chipinit(sc);
2833
2834 /* Free the RX lists. */
2835 ti_free_rx_ring_std(sc);
2836
2837 /* Free jumbo RX list. */
2838 ti_free_rx_ring_jumbo(sc);
2839
2840 /* Free mini RX list. */
2841 ti_free_rx_ring_mini(sc);
2842
2843 /* Free TX buffers. */
2844 ti_free_tx_ring(sc);
2845
2846 sc->ti_ev_prodidx.ti_idx = 0;
2847 sc->ti_return_prodidx.ti_idx = 0;
2848 sc->ti_tx_considx.ti_idx = 0;
2849 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2850
2851 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2852 }
2853
2854 /*
2855 * Stop all chip I/O so that the kernel's probe routines don't
2856 * get confused by errant DMAs when rebooting.
2857 */
2858 static bool
2859 ti_shutdown(device_t self, int howto)
2860 {
2861 struct ti_softc *sc;
2862
2863 sc = device_private(self);
2864 ti_chipinit(sc);
2865
2866 return true;
2867 }
2868