if_ti.c revision 1.124 1 /* $NetBSD: if_ti.c,v 1.124 2024/07/05 04:31:51 rin Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring descriptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.124 2024/07/05 04:31:51 rin Exp $");
85
86 #include "opt_inet.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104
105 #include <net/bpf.h>
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113
114
115 #include <sys/bus.h>
116
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120
121 #include <dev/pci/if_tireg.h>
122
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125
126 /*
127 * Various supported device vendors/types and their names.
128 */
129
130 static const struct ti_type ti_devs[] = {
131 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
132 "Alteon AceNIC 1000BASE-SX Ethernet" },
133 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
134 "Alteon AceNIC 1000BASE-T Ethernet" },
135 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
136 "3Com 3c985-SX Gigabit Ethernet" },
137 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
138 "Netgear GA620 1000BASE-SX Ethernet" },
139 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
140 "Netgear GA620 1000BASE-T Ethernet" },
141 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
142 "Silicon Graphics Gigabit Ethernet" },
143 { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_PN9000SX,
144 "Farallon PN9000SX Gigabit Ethernet" },
145 { 0, 0, NULL }
146 };
147
148 static const struct ti_type *ti_type_match(struct pci_attach_args *);
149 static int ti_probe(device_t, cfdata_t, void *);
150 static void ti_attach(device_t, device_t, void *);
151 static bool ti_shutdown(device_t, int);
152 static void ti_txeof_tigon1(struct ti_softc *);
153 static void ti_txeof_tigon2(struct ti_softc *);
154 static void ti_rxeof(struct ti_softc *);
155
156 static void ti_stats_update(struct ti_softc *);
157 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
158 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);
159
160 static int ti_intr(void *);
161 static void ti_start(struct ifnet *);
162 static int ti_ioctl(struct ifnet *, u_long, void *);
163 static void ti_init(void *);
164 static void ti_init2(struct ti_softc *);
165 static void ti_stop(struct ti_softc *);
166 static void ti_watchdog(struct ifnet *);
167 static int ti_ifmedia_upd(struct ifnet *);
168 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
169
170 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
171 static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
172 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
173
174 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
175 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
176 static void ti_setmulti(struct ti_softc *);
177
178 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
179 static void ti_loadfw(struct ti_softc *);
180 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
181 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
182 static void ti_handle_events(struct ti_softc *);
183 static int ti_alloc_jumbo_mem(struct ti_softc *);
184 static void *ti_jalloc(struct ti_softc *);
185 static void ti_jfree(struct mbuf *, void *, size_t, void *);
186 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
187 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
188 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
189 static int ti_init_rx_ring_std(struct ti_softc *);
190 static void ti_free_rx_ring_std(struct ti_softc *);
191 static int ti_init_rx_ring_jumbo(struct ti_softc *);
192 static void ti_free_rx_ring_jumbo(struct ti_softc *);
193 static int ti_init_rx_ring_mini(struct ti_softc *);
194 static void ti_free_rx_ring_mini(struct ti_softc *);
195 static void ti_free_tx_ring(struct ti_softc *);
196 static int ti_init_tx_ring(struct ti_softc *);
197
198 static int ti_64bitslot_war(struct ti_softc *);
199 static int ti_chipinit(struct ti_softc *);
200 static int ti_gibinit(struct ti_softc *);
201
202 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
203
204 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
205 ti_probe, ti_attach, NULL, NULL);
206
207 /*
208 * Send an instruction or address to the EEPROM, check for ACK.
209 */
210 static uint32_t
211 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
212 {
213 int i, ack = 0;
214
215 /*
216 * Make sure we're in TX mode.
217 */
218 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
219
220 /*
221 * Feed in each bit and strobe the clock.
222 */
223 for (i = 0x80; i; i >>= 1) {
224 if (byte & i) {
225 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 } else {
227 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
228 }
229 DELAY(1);
230 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 DELAY(1);
232 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
233 }
234
235 /*
236 * Turn off TX mode.
237 */
238 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
239
240 /*
241 * Check for ack.
242 */
243 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
245 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246
247 return (ack);
248 }
249
250 /*
251 * Read a byte of data stored in the EEPROM at address 'addr.'
252 * We have to send two address bytes since the EEPROM can hold
253 * more than 256 bytes of data.
254 */
255 static uint8_t
256 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
257 {
258 int i;
259 uint8_t byte = 0;
260
261 EEPROM_START();
262
263 /*
264 * Send write control code to EEPROM.
265 */
266 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
267 printf("%s: failed to send write command, status: %x\n",
268 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
269 return (1);
270 }
271
272 /*
273 * Send first byte of address of byte we want to read.
274 */
275 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
276 printf("%s: failed to send address, status: %x\n",
277 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
278 return (1);
279 }
280 /*
281 * Send second byte address of byte we want to read.
282 */
283 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
284 printf("%s: failed to send address, status: %x\n",
285 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 return (1);
287 }
288
289 EEPROM_STOP();
290 EEPROM_START();
291 /*
292 * Send read control code to EEPROM.
293 */
294 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
295 printf("%s: failed to send read command, status: %x\n",
296 device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 return (1);
298 }
299
300 /*
301 * Start reading bits from EEPROM.
302 */
303 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
304 for (i = 0x80; i; i >>= 1) {
305 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 DELAY(1);
307 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
308 byte |= i;
309 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310 DELAY(1);
311 }
312
313 EEPROM_STOP();
314
315 /*
316 * No ACK generated for read, so just return byte.
317 */
318
319 *dest = byte;
320
321 return (0);
322 }
323
324 /*
325 * Read a sequence of bytes from the EEPROM.
326 */
327 static int
328 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
329 {
330 char *dest = destv;
331 int err = 0, i;
332 uint8_t byte = 0;
333
334 for (i = 0; i < cnt; i++) {
335 err = ti_eeprom_getbyte(sc, off + i, &byte);
336 if (err)
337 break;
338 *(dest + i) = byte;
339 }
340
341 return (err ? 1 : 0);
342 }
343
344 /*
345 * NIC memory access function. Can be used to either clear a section
346 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
347 */
348 static void
349 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
350 {
351 int segptr, segsize, cnt;
352 const void *ptr;
353
354 segptr = addr;
355 cnt = len;
356 ptr = xbuf;
357
358 while (cnt) {
359 if (cnt < TI_WINLEN)
360 segsize = cnt;
361 else
362 segsize = TI_WINLEN - (segptr % TI_WINLEN);
363 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
364 if (xbuf == NULL) {
365 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
366 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
367 segsize / 4);
368 } else {
369 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
370 bus_space_write_region_stream_4(sc->ti_btag,
371 sc->ti_bhandle,
372 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
373 (const uint32_t *)ptr, segsize / 4);
374 #else
375 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
376 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
377 (const uint32_t *)ptr, segsize / 4);
378 #endif
379 ptr = (const char *)ptr + segsize;
380 }
381 segptr += segsize;
382 cnt -= segsize;
383 }
384
385 return;
386 }
387
388 /*
389 * Load firmware image into the NIC. Check that the firmware revision
390 * is acceptable and see if we want the firmware for the Tigon 1 or
391 * Tigon 2.
392 */
393 static void
394 ti_loadfw(struct ti_softc *sc)
395 {
396 switch (sc->ti_hwrev) {
397 case TI_HWREV_TIGON:
398 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
399 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
400 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
401 printf("%s: firmware revision mismatch; want "
402 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
403 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
404 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
405 tigonFwReleaseMinor, tigonFwReleaseFix);
406 return;
407 }
408 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
409 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
410 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
411 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
412 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
413 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
414 break;
415 case TI_HWREV_TIGON_II:
416 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
417 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
418 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
419 printf("%s: firmware revision mismatch; want "
420 "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
421 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
422 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
423 tigon2FwReleaseMinor, tigon2FwReleaseFix);
424 return;
425 }
426 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
427 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
428 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
429 tigon2FwRodata);
430 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
431 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
432 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
433 break;
434 default:
435 printf("%s: can't load firmware: unknown hardware rev\n",
436 device_xname(sc->sc_dev));
437 break;
438 }
439
440 return;
441 }
442
443 /*
444 * Send the NIC a command via the command ring.
445 */
446 static void
447 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
448 {
449 uint32_t index;
450
451 index = sc->ti_cmd_saved_prodidx;
452 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
453 TI_INC(index, TI_CMD_RING_CNT);
454 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
455 sc->ti_cmd_saved_prodidx = index;
456 }
457
458 /*
459 * Send the NIC an extended command. The 'len' parameter specifies the
460 * number of command slots to include after the initial command.
461 */
462 static void
463 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
464 {
465 char *arg = argv;
466 uint32_t index;
467 int i;
468
469 index = sc->ti_cmd_saved_prodidx;
470 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
471 TI_INC(index, TI_CMD_RING_CNT);
472 for (i = 0; i < len; i++) {
473 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
474 *(uint32_t *)(&arg[i * 4]));
475 TI_INC(index, TI_CMD_RING_CNT);
476 }
477 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
478 sc->ti_cmd_saved_prodidx = index;
479 }
480
481 /*
482 * Handle events that have triggered interrupts.
483 */
484 static void
485 ti_handle_events(struct ti_softc *sc)
486 {
487 struct ti_event_desc *e;
488
489 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
490 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
491 switch (TI_EVENT_EVENT(e)) {
492 case TI_EV_LINKSTAT_CHANGED:
493 sc->ti_linkstat = TI_EVENT_CODE(e);
494 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
495 printf("%s: 10/100 link up\n",
496 device_xname(sc->sc_dev));
497 else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
498 printf("%s: gigabit link up\n",
499 device_xname(sc->sc_dev));
500 else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
501 printf("%s: link down\n",
502 device_xname(sc->sc_dev));
503 break;
504 case TI_EV_ERROR:
505 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
506 printf("%s: invalid command\n",
507 device_xname(sc->sc_dev));
508 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
509 printf("%s: unknown command\n",
510 device_xname(sc->sc_dev));
511 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
512 printf("%s: bad config data\n",
513 device_xname(sc->sc_dev));
514 break;
515 case TI_EV_FIRMWARE_UP:
516 ti_init2(sc);
517 break;
518 case TI_EV_STATS_UPDATED:
519 ti_stats_update(sc);
520 break;
521 case TI_EV_RESET_JUMBO_RING:
522 case TI_EV_MCAST_UPDATED:
523 /* Who cares. */
524 break;
525 default:
526 printf("%s: unknown event: %d\n",
527 device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
528 break;
529 }
530 /* Advance the consumer index. */
531 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
532 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
533 }
534
535 return;
536 }
537
538 /*
539 * Memory management for the jumbo receive ring is a pain in the
540 * butt. We need to allocate at least 9018 bytes of space per frame,
541 * _and_ it has to be contiguous (unless you use the extended
542 * jumbo descriptor format). Using malloc() all the time won't
543 * work: malloc() allocates memory in powers of two, which means we
544 * would end up wasting a considerable amount of space by allocating
545 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
546 * to do our own memory management.
547 *
548 * The driver needs to allocate a contiguous chunk of memory at boot
549 * time. We then chop this up ourselves into 9K pieces and use them
550 * as external mbuf storage.
551 *
552 * One issue here is how much memory to allocate. The jumbo ring has
553 * 256 slots in it, but at 9K per slot than can consume over 2MB of
554 * RAM. This is a bit much, especially considering we also need
555 * RAM for the standard ring and mini ring (on the Tigon 2). To
556 * save space, we only actually allocate enough memory for 64 slots
557 * by default, which works out to between 500 and 600K. This can
558 * be tuned by changing a #define in if_tireg.h.
559 */
560
561 static int
562 ti_alloc_jumbo_mem(struct ti_softc *sc)
563 {
564 char *ptr;
565 int i;
566 struct ti_jpool_entry *entry;
567 bus_dma_segment_t dmaseg;
568 int error, dmanseg;
569
570 /* Grab a big chunk o' storage. */
571 if ((error = bus_dmamem_alloc(sc->sc_dmat,
572 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
573 BUS_DMA_NOWAIT)) != 0) {
574 aprint_error_dev(sc->sc_dev,
575 "can't allocate jumbo buffer, error = %d\n", error);
576 return (error);
577 }
578
579 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
580 TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
581 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
582 aprint_error_dev(sc->sc_dev,
583 "can't map jumbo buffer, error = %d\n", error);
584 return (error);
585 }
586
587 if ((error = bus_dmamap_create(sc->sc_dmat,
588 TI_JMEM, 1,
589 TI_JMEM, 0, BUS_DMA_NOWAIT,
590 &sc->jumbo_dmamap)) != 0) {
591 aprint_error_dev(sc->sc_dev,
592 "can't create jumbo buffer DMA map, error = %d\n", error);
593 return (error);
594 }
595
596 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
597 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
598 BUS_DMA_NOWAIT)) != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "can't load jumbo buffer DMA map, error = %d\n", error);
601 return (error);
602 }
603 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
604
605 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
606 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
607
608 /*
609 * Now divide it up into 9K pieces and save the addresses
610 * in an array.
611 */
612 ptr = sc->ti_cdata.ti_jumbo_buf;
613 for (i = 0; i < TI_JSLOTS; i++) {
614 sc->ti_cdata.ti_jslots[i] = ptr;
615 ptr += TI_JLEN;
616 entry = malloc(sizeof(struct ti_jpool_entry),
617 M_DEVBUF, M_WAITOK);
618 entry->slot = i;
619 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
620 jpool_entries);
621 }
622
623 return (0);
624 }
625
626 /*
627 * Allocate a jumbo buffer.
628 */
629 static void *
630 ti_jalloc(struct ti_softc *sc)
631 {
632 struct ti_jpool_entry *entry;
633
634 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
635
636 if (entry == NULL) {
637 printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
638 return (NULL);
639 }
640
641 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
642 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
643
644 return (sc->ti_cdata.ti_jslots[entry->slot]);
645 }
646
647 /*
648 * Release a jumbo buffer.
649 */
650 static void
651 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
652 {
653 struct ti_softc *sc;
654 int i, s;
655 struct ti_jpool_entry *entry;
656
657 /* Extract the softc struct pointer. */
658 sc = (struct ti_softc *)arg;
659
660 if (sc == NULL)
661 panic("ti_jfree: didn't get softc pointer!");
662
663 /* calculate the slot this buffer belongs to */
664
665 i = ((char *)tbuf
666 - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
667
668 if ((i < 0) || (i >= TI_JSLOTS))
669 panic("ti_jfree: asked to free buffer that we don't manage!");
670
671 s = splvm();
672 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
673 if (entry == NULL)
674 panic("ti_jfree: buffer not in use!");
675 entry->slot = i;
676 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
677 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
678
679 if (__predict_true(m != NULL))
680 pool_cache_put(mb_cache, m);
681 splx(s);
682 }
683
684
685 /*
686 * Initialize a standard receive ring descriptor.
687 */
688 static int
689 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
690 {
691 struct mbuf *m_new = NULL;
692 struct ti_rx_desc *r;
693 int error;
694
695 if (dmamap == NULL) {
696 /* if (m) panic() */
697
698 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
699 MCLBYTES, 0, BUS_DMA_NOWAIT,
700 &dmamap)) != 0) {
701 aprint_error_dev(sc->sc_dev,
702 "can't create recv map, error = %d\n", error);
703 return (ENOMEM);
704 }
705 }
706 sc->std_dmamap[i] = dmamap;
707
708 if (m == NULL) {
709 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
710 if (m_new == NULL) {
711 aprint_error_dev(sc->sc_dev,
712 "mbuf allocation failed -- packet dropped!\n");
713 return (ENOBUFS);
714 }
715
716 MCLGET(m_new, M_DONTWAIT);
717 if (!(m_new->m_flags & M_EXT)) {
718 aprint_error_dev(sc->sc_dev,
719 "cluster allocation failed -- packet dropped!\n");
720 m_freem(m_new);
721 return (ENOBUFS);
722 }
723 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
724 m_adj(m_new, ETHER_ALIGN);
725
726 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
727 mtod(m_new, void *), m_new->m_len, NULL,
728 BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
729 aprint_error_dev(sc->sc_dev,
730 "can't load recv map, error = %d\n", error);
731 m_freem(m_new);
732 return (ENOMEM);
733 }
734 } else {
735 m_new = m;
736 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
737 m_new->m_data = m_new->m_ext.ext_buf;
738 m_adj(m_new, ETHER_ALIGN);
739
740 /* reuse the dmamap */
741 }
742
743 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
744 r = &sc->ti_rdata->ti_rx_std_ring[i];
745 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
746 r->ti_type = TI_BDTYPE_RECV_BD;
747 r->ti_flags = 0;
748 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
749 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
750 if (sc->ethercom.ec_if.if_capenable &
751 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
752 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
753 r->ti_len = m_new->m_len; /* == ds_len */
754 r->ti_idx = i;
755
756 return (0);
757 }
758
759 /*
760 * Initialize a mini receive ring descriptor. This only applies to
761 * the Tigon 2.
762 */
763 static int
764 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
765 {
766 struct mbuf *m_new = NULL;
767 struct ti_rx_desc *r;
768 int error;
769
770 if (dmamap == NULL) {
771 /* if (m) panic() */
772
773 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
774 MHLEN, 0, BUS_DMA_NOWAIT,
775 &dmamap)) != 0) {
776 aprint_error_dev(sc->sc_dev,
777 "can't create recv map, error = %d\n", error);
778 return (ENOMEM);
779 }
780 }
781 sc->mini_dmamap[i] = dmamap;
782
783 if (m == NULL) {
784 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
785 if (m_new == NULL) {
786 aprint_error_dev(sc->sc_dev,
787 "mbuf allocation failed -- packet dropped!\n");
788 return (ENOBUFS);
789 }
790 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
791 m_adj(m_new, ETHER_ALIGN);
792
793 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
794 mtod(m_new, void *), m_new->m_len, NULL,
795 BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
796 aprint_error_dev(sc->sc_dev,
797 "can't load recv map, error = %d\n", error);
798 m_freem(m_new);
799 return (ENOMEM);
800 }
801 } else {
802 m_new = m;
803 m_new->m_data = m_new->m_pktdat;
804 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
805 m_adj(m_new, ETHER_ALIGN);
806
807 /* reuse the dmamap */
808 }
809
810 r = &sc->ti_rdata->ti_rx_mini_ring[i];
811 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
812 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
813 r->ti_type = TI_BDTYPE_RECV_BD;
814 r->ti_flags = TI_BDFLAG_MINI_RING;
815 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
816 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
817 if (sc->ethercom.ec_if.if_capenable &
818 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
819 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
820 r->ti_len = m_new->m_len; /* == ds_len */
821 r->ti_idx = i;
822
823 return (0);
824 }
825
826 /*
827 * Initialize a jumbo receive ring descriptor. This allocates
828 * a jumbo buffer from the pool managed internally by the driver.
829 */
830 static int
831 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
832 {
833 struct mbuf *m_new = NULL;
834 struct ti_rx_desc *r;
835
836 if (m == NULL) {
837 void * tbuf = NULL;
838
839 /* Allocate the mbuf. */
840 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
841 if (m_new == NULL) {
842 aprint_error_dev(sc->sc_dev,
843 "mbuf allocation failed -- packet dropped!\n");
844 return (ENOBUFS);
845 }
846
847 /* Allocate the jumbo buffer */
848 tbuf = ti_jalloc(sc);
849 if (tbuf == NULL) {
850 m_freem(m_new);
851 aprint_error_dev(sc->sc_dev,
852 "jumbo allocation failed -- packet dropped!\n");
853 return (ENOBUFS);
854 }
855
856 /* Attach the buffer to the mbuf. */
857 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
858 M_DEVBUF, ti_jfree, sc);
859 m_new->m_flags |= M_EXT_RW;
860 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
861 } else {
862 m_new = m;
863 m_new->m_data = m_new->m_ext.ext_buf;
864 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
865 }
866
867 m_adj(m_new, ETHER_ALIGN);
868 /* Set up the descriptor. */
869 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
870 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
871 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
872 (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
873 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
874 r->ti_flags = TI_BDFLAG_JUMBO_RING;
875 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
876 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
877 if (sc->ethercom.ec_if.if_capenable &
878 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
879 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
880 r->ti_len = m_new->m_len;
881 r->ti_idx = i;
882
883 return (0);
884 }
885
886 /*
887 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
888 * that's 1MB or memory, which is a lot. For now, we fill only the first
889 * 256 ring entries and hope that our CPU is fast enough to keep up with
890 * the NIC.
891 */
892 static int
893 ti_init_rx_ring_std(struct ti_softc *sc)
894 {
895 int i;
896 struct ti_cmd_desc cmd;
897
898 for (i = 0; i < TI_SSLOTS; i++) {
899 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
900 return (ENOBUFS);
901 }
902
903 TI_UPDATE_STDPROD(sc, i - 1);
904 sc->ti_std = i - 1;
905
906 return (0);
907 }
908
909 static void
910 ti_free_rx_ring_std(struct ti_softc *sc)
911 {
912 int i;
913
914 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
915 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
916 /* if (sc->std_dmamap[i] == 0) panic() */
917 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
918 sc->std_dmamap[i] = 0;
919
920 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
921 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
922 }
923 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
924 sizeof(struct ti_rx_desc));
925 }
926
927 return;
928 }
929
930 static int
931 ti_init_rx_ring_jumbo(struct ti_softc *sc)
932 {
933 int i;
934 struct ti_cmd_desc cmd;
935
936 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
937 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
938 return (ENOBUFS);
939 }
940
941 TI_UPDATE_JUMBOPROD(sc, i - 1);
942 sc->ti_jumbo = i - 1;
943
944 return (0);
945 }
946
947 static void
948 ti_free_rx_ring_jumbo(struct ti_softc *sc)
949 {
950 int i;
951
952 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
953 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
954 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
955 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
956 sizeof(struct ti_rx_desc));
957 }
958
959 return;
960 }
961
962 static int
963 ti_init_rx_ring_mini(struct ti_softc *sc)
964 {
965 int i;
966
967 for (i = 0; i < TI_MSLOTS; i++) {
968 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
969 return (ENOBUFS);
970 }
971
972 TI_UPDATE_MINIPROD(sc, i - 1);
973 sc->ti_mini = i - 1;
974
975 return (0);
976 }
977
978 static void
979 ti_free_rx_ring_mini(struct ti_softc *sc)
980 {
981 int i;
982
983 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
984 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
985 /* if (sc->mini_dmamap[i] == 0) panic() */
986 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
987 sc->mini_dmamap[i] = 0;
988
989 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
990 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
991 }
992 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
993 sizeof(struct ti_rx_desc));
994 }
995
996 return;
997 }
998
999 static void
1000 ti_free_tx_ring(struct ti_softc *sc)
1001 {
1002 int i;
1003 struct txdmamap_pool_entry *dma;
1004
1005 for (i = 0; i < TI_TX_RING_CNT; i++) {
1006 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1007 dma = sc->txdma[i];
1008 KDASSERT(dma != NULL);
1009 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
1010 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1011 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
1012
1013 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1014 link);
1015 sc->txdma[i] = NULL;
1016
1017 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1018 sc->ti_cdata.ti_tx_chain[i] = NULL;
1019 }
1020 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1021 sizeof(struct ti_tx_desc));
1022 }
1023
1024 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1025 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1026 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1027 free(dma, M_DEVBUF);
1028 }
1029
1030 return;
1031 }
1032
1033 static int
1034 ti_init_tx_ring(struct ti_softc *sc)
1035 {
1036 int i, error;
1037 bus_dmamap_t dmamap;
1038 struct txdmamap_pool_entry *dma;
1039
1040 sc->ti_txcnt = 0;
1041 sc->ti_tx_saved_considx = 0;
1042 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1043
1044 SIMPLEQ_INIT(&sc->txdma_list);
1045 for (i = 0; i < TI_RSLOTS; i++) {
1046 /* I've seen mbufs with 30 fragments. */
1047 if ((error = bus_dmamap_create(sc->sc_dmat,
1048 ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
1049 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1050 aprint_error_dev(sc->sc_dev,
1051 "can't create tx map, error = %d\n", error);
1052 return (ENOMEM);
1053 }
1054 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1055 if (!dma) {
1056 aprint_error_dev(sc->sc_dev,
1057 "can't alloc txdmamap_pool_entry\n");
1058 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1059 return (ENOMEM);
1060 }
1061 dma->dmamap = dmamap;
1062 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1063 }
1064
1065 return (0);
1066 }
1067
1068 /*
1069 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1070 * but we have to support the old way too so that Tigon 1 cards will
1071 * work.
1072 */
1073 static void
1074 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1075 {
1076 struct ti_cmd_desc cmd;
1077 uint16_t *m;
1078 uint32_t ext[2] = {0, 0};
1079
1080 m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1081
1082 switch (sc->ti_hwrev) {
1083 case TI_HWREV_TIGON:
1084 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1085 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1086 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1087 break;
1088 case TI_HWREV_TIGON_II:
1089 ext[0] = htons(m[0]);
1090 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1091 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1092 break;
1093 default:
1094 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1095 break;
1096 }
1097
1098 return;
1099 }
1100
1101 static void
1102 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1103 {
1104 struct ti_cmd_desc cmd;
1105 uint16_t *m;
1106 uint32_t ext[2] = {0, 0};
1107
1108 m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
1109
1110 switch (sc->ti_hwrev) {
1111 case TI_HWREV_TIGON:
1112 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1113 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1114 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1115 break;
1116 case TI_HWREV_TIGON_II:
1117 ext[0] = htons(m[0]);
1118 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1119 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1120 break;
1121 default:
1122 printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1123 break;
1124 }
1125
1126 return;
1127 }
1128
1129 /*
1130 * Configure the Tigon's multicast address filter.
1131 *
1132 * The actual multicast table management is a bit of a pain, thanks to
1133 * slight brain damage on the part of both Alteon and us. With our
1134 * multicast code, we are only alerted when the multicast address table
1135 * changes and at that point we only have the current list of addresses:
1136 * we only know the current state, not the previous state, so we don't
1137 * actually know what addresses were removed or added. The firmware has
1138 * state, but we can't get our grubby mits on it, and there is no 'delete
1139 * all multicast addresses' command. Hence, we have to maintain our own
1140 * state so we know what addresses have been programmed into the NIC at
1141 * any given time.
1142 */
1143 static void
1144 ti_setmulti(struct ti_softc *sc)
1145 {
1146 struct ethercom *ec = &sc->ethercom;
1147 struct ifnet *ifp = &ec->ec_if;
1148 struct ti_cmd_desc cmd;
1149 struct ti_mc_entry *mc;
1150 uint32_t intrs;
1151 struct ether_multi *enm;
1152 struct ether_multistep step;
1153
1154 /* Disable interrupts. */
1155 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1156 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1157
1158 /* First, zot all the existing filters. */
1159 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1160 ti_del_mcast(sc, &mc->mc_addr);
1161 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1162 free(mc, M_DEVBUF);
1163 }
1164
1165 /*
1166 * Remember all multicast addresses so that we can delete them
1167 * later. Punt if there is a range of addresses or memory shortage.
1168 */
1169 ETHER_LOCK(ec);
1170 ETHER_FIRST_MULTI(step, ec, enm);
1171 while (enm != NULL) {
1172 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1173 ETHER_ADDR_LEN) != 0) {
1174 ETHER_UNLOCK(ec);
1175 goto allmulti;
1176 }
1177 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1178 M_NOWAIT)) == NULL) {
1179 ETHER_UNLOCK(ec);
1180 goto allmulti;
1181 }
1182 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1183 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1184 ETHER_NEXT_MULTI(step, enm);
1185 }
1186 ETHER_UNLOCK(ec);
1187
1188 /* Accept only programmed multicast addresses */
1189 ifp->if_flags &= ~IFF_ALLMULTI;
1190 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1191
1192 /* Now program new ones. */
1193 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1194 ti_add_mcast(sc, &mc->mc_addr);
1195
1196 /* Re-enable interrupts. */
1197 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1198
1199 return;
1200
1201 allmulti:
1202 /* No need to keep individual multicast addresses */
1203 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1204 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1205 free(mc, M_DEVBUF);
1206 }
1207
1208 /* Accept all multicast addresses */
1209 ifp->if_flags |= IFF_ALLMULTI;
1210 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1211
1212 /* Re-enable interrupts. */
1213 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1214 }
1215
1216 /*
1217 * Check to see if the BIOS has configured us for a 64 bit slot when
1218 * we aren't actually in one. If we detect this condition, we can work
1219 * around it on the Tigon 2 by setting a bit in the PCI state register,
1220 * but for the Tigon 1 we must give up and abort the interface attach.
1221 */
1222 static int
1223 ti_64bitslot_war(struct ti_softc *sc)
1224 {
1225 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1226 CSR_WRITE_4(sc, 0x600, 0);
1227 CSR_WRITE_4(sc, 0x604, 0);
1228 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1229 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1230 if (sc->ti_hwrev == TI_HWREV_TIGON)
1231 return (EINVAL);
1232 else {
1233 TI_SETBIT(sc, TI_PCI_STATE,
1234 TI_PCISTATE_32BIT_BUS);
1235 return (0);
1236 }
1237 }
1238 }
1239
1240 return (0);
1241 }
1242
1243 /*
1244 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1245 * self-test results.
1246 */
1247 static int
1248 ti_chipinit(struct ti_softc *sc)
1249 {
1250 uint32_t cacheline;
1251 uint32_t pci_writemax = 0;
1252 uint32_t rev;
1253
1254 /* Initialize link to down state. */
1255 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1256
1257 /* Set endianness before we access any non-PCI registers. */
1258 #if BYTE_ORDER == BIG_ENDIAN
1259 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1260 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1261 #else
1262 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1263 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1264 #endif
1265
1266 /* Check the ROM failed bit to see if self-tests passed. */
1267 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1268 printf("%s: board self-diagnostics failed!\n",
1269 device_xname(sc->sc_dev));
1270 return (ENODEV);
1271 }
1272
1273 /* Halt the CPU. */
1274 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1275
1276 /* Figure out the hardware revision. */
1277 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1278 switch (rev) {
1279 case TI_REV_TIGON_I:
1280 sc->ti_hwrev = TI_HWREV_TIGON;
1281 break;
1282 case TI_REV_TIGON_II:
1283 sc->ti_hwrev = TI_HWREV_TIGON_II;
1284 break;
1285 default:
1286 printf("%s: unsupported chip revision 0x%x\n",
1287 device_xname(sc->sc_dev), rev);
1288 return (ENODEV);
1289 }
1290
1291 /* Do special setup for Tigon 2. */
1292 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1293 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1294 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1295 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1296 }
1297
1298 /* Set up the PCI state register. */
1299 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
1300 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1301 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1302 }
1303
1304 /* Clear the read/write max DMA parameters. */
1305 TI_CLRBIT(sc, TI_PCI_STATE,
1306 (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));
1307
1308 /* Get cache line size. */
1309 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1310
1311 /*
1312 * If the system has set enabled the PCI memory write
1313 * and invalidate command in the command register, set
1314 * the write max parameter accordingly. This is necessary
1315 * to use MWI with the Tigon 2.
1316 */
1317 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1318 & PCI_COMMAND_INVALIDATE_ENABLE) {
1319 switch (cacheline) {
1320 case 1:
1321 case 4:
1322 case 8:
1323 case 16:
1324 case 32:
1325 case 64:
1326 break;
1327 default:
1328 /* Disable PCI memory write and invalidate. */
1329 if (bootverbose)
1330 printf("%s: cache line size %d not "
1331 "supported; disabling PCI MWI\n",
1332 device_xname(sc->sc_dev), cacheline);
1333 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1334 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1335 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1336 break;
1337 }
1338 }
1339
1340 #ifdef __brokenalpha__
1341 /*
1342 * From the Alteon sample driver:
1343 * Must insure that we do not cross an 8K (bytes) boundary
1344 * for DMA reads. Our highest limit is 1K bytes. This is a
1345 * restriction on some ALPHA platforms with early revision
1346 * 21174 PCI chipsets, such as the AlphaPC 164lx
1347 */
1348 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
1349 #else
1350 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1351 #endif
1352
1353 /* This sets the min dma param all the way up (0xff). */
1354 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1355
1356 /* Configure DMA variables. */
1357 #if BYTE_ORDER == BIG_ENDIAN
1358 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1359 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1360 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1361 TI_OPMODE_DONT_FRAG_JUMBO);
1362 #else
1363 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
1364 TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
1365 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
1366 #endif
1367
1368 /*
1369 * Only allow 1 DMA channel to be active at a time.
1370 * I don't think this is a good idea, but without it
1371 * the firmware racks up lots of nicDmaReadRingFull
1372 * errors.
1373 * Incompatible with hardware assisted checksums.
1374 */
1375 if ((sc->ethercom.ec_if.if_capenable &
1376 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1377 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1378 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1379 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1380
1381 /* Recommended settings from Tigon manual. */
1382 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1383 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1384
1385 if (ti_64bitslot_war(sc)) {
1386 printf("%s: bios thinks we're in a 64 bit slot, "
1387 "but we aren't", device_xname(sc->sc_dev));
1388 return (EINVAL);
1389 }
1390
1391 return (0);
1392 }
1393
1394 /*
1395 * Initialize the general information block and firmware, and
1396 * start the CPU(s) running.
1397 */
1398 static int
1399 ti_gibinit(struct ti_softc *sc)
1400 {
1401 struct ti_rcb *rcb;
1402 int i;
1403 struct ifnet *ifp;
1404
1405 ifp = &sc->ethercom.ec_if;
1406
1407 /* Disable interrupts for now. */
1408 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1409
1410 /* Tell the chip where to find the general information block. */
1411 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1412 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1413
1414 /* Load the firmware into SRAM. */
1415 ti_loadfw(sc);
1416
1417 /* Set up the contents of the general info and ring control blocks. */
1418
1419 /* Set up the event ring and producer pointer. */
1420 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1421
1422 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1423 rcb->ti_flags = 0;
1424 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1425 TI_CDEVPRODADDR(sc);
1426
1427 sc->ti_ev_prodidx.ti_idx = 0;
1428 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1429 sc->ti_ev_saved_considx = 0;
1430
1431 /* Set up the command ring and producer mailbox. */
1432 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1433
1434 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1435 rcb->ti_flags = 0;
1436 rcb->ti_max_len = 0;
1437 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1438 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1439 }
1440 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1441 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1442 sc->ti_cmd_saved_prodidx = 0;
1443
1444 /*
1445 * Assign the address of the stats refresh buffer.
1446 * We re-use the current stats buffer for this to
1447 * conserve memory.
1448 */
1449 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1450 TI_CDSTATSADDR(sc);
1451
1452 /* Set up the standard receive ring. */
1453 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1454 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1455 rcb->ti_max_len = ETHER_MAX_LEN;
1456 rcb->ti_flags = 0;
1457 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1458 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1459 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1460 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1461 if (VLAN_ATTACHED(&sc->ethercom))
1462 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1463
1464 /* Set up the jumbo receive ring. */
1465 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1466 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1467 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1468 rcb->ti_flags = 0;
1469 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1470 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1471 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1472 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1473 if (VLAN_ATTACHED(&sc->ethercom))
1474 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1475
1476 /*
1477 * Set up the mini ring. Only activated on the
1478 * Tigon 2 but the slot in the config block is
1479 * still there on the Tigon 1.
1480 */
1481 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1482 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1483 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1484 if (sc->ti_hwrev == TI_HWREV_TIGON)
1485 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1486 else
1487 rcb->ti_flags = 0;
1488 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1489 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1490 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1491 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1492 if (VLAN_ATTACHED(&sc->ethercom))
1493 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1494
1495 /*
1496 * Set up the receive return ring.
1497 */
1498 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1499 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1500 rcb->ti_flags = 0;
1501 rcb->ti_max_len = TI_RETURN_RING_CNT;
1502 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1503 TI_CDRTNPRODADDR(sc);
1504
1505 /*
1506 * Set up the tx ring. Note: for the Tigon 2, we have the option
1507 * of putting the transmit ring in the host's address space and
1508 * letting the chip DMA it instead of leaving the ring in the NIC's
1509 * memory and accessing it through the shared memory region. We
1510 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1511 * so we have to revert to the shared memory scheme if we detect
1512 * a Tigon 1 chip.
1513 */
1514 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1515 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1516 sc->ti_tx_ring_nic =
1517 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1518 }
1519 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1520 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1521 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1522 if (sc->ti_hwrev == TI_HWREV_TIGON)
1523 rcb->ti_flags = 0;
1524 else
1525 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1526 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1527 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1528 /*
1529 * When we get the packet, there is a pseudo-header seed already
1530 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1531 * compute the pseudo-header checksum again!
1532 */
1533 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
1534 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1535 TI_RCB_FLAG_NO_PHDR_CKSUM;
1536 if (VLAN_ATTACHED(&sc->ethercom))
1537 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1538 rcb->ti_max_len = TI_TX_RING_CNT;
1539 if (sc->ti_hwrev == TI_HWREV_TIGON)
1540 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1541 else
1542 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1543 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1544 TI_CDTXCONSADDR(sc);
1545
1546 /*
1547 * We're done frobbing the General Information Block. Sync
1548 * it. Note we take care of the first stats sync here, as
1549 * well.
1550 */
1551 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1552
1553 /* Set up tuneables */
1554 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1555 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1556 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1557 (sc->ti_rx_coal_ticks / 10));
1558 else
1559 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1560 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1561 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1562 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1563 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1564 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1565
1566 /* Turn interrupts on. */
1567 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1568 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1569
1570 /* Start CPU. */
1571 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));
1572
1573 return (0);
1574 }
1575
1576 /*
1577 * look for id in the device list, returning the first match
1578 */
1579 static const struct ti_type *
1580 ti_type_match(struct pci_attach_args *pa)
1581 {
1582 const struct ti_type *t;
1583
1584 t = ti_devs;
1585 while (t->ti_name != NULL) {
1586 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1587 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1588 return (t);
1589 }
1590 t++;
1591 }
1592
1593 return (NULL);
1594 }
1595
1596 /*
1597 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1598 * against our list and return its name if we find a match.
1599 */
1600 static int
1601 ti_probe(device_t parent, cfdata_t match, void *aux)
1602 {
1603 struct pci_attach_args *pa = aux;
1604 const struct ti_type *t;
1605
1606 t = ti_type_match(pa);
1607
1608 return ((t == NULL) ? 0 : 1);
1609 }
1610
1611 static void
1612 ti_attach(device_t parent, device_t self, void *aux)
1613 {
1614 uint32_t command;
1615 struct ifnet *ifp;
1616 struct ti_softc *sc;
1617 uint8_t eaddr[ETHER_ADDR_LEN];
1618 struct pci_attach_args *pa = aux;
1619 pci_chipset_tag_t pc = pa->pa_pc;
1620 pci_intr_handle_t ih;
1621 const char *intrstr = NULL;
1622 bus_dma_segment_t dmaseg;
1623 int error, dmanseg, nolinear;
1624 const struct ti_type *t;
1625 char intrbuf[PCI_INTRSTR_LEN];
1626
1627 t = ti_type_match(pa);
1628 if (t == NULL) {
1629 aprint_error("ti_attach: were did the card go ?\n");
1630 return;
1631 }
1632
1633 aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
1634 PCI_REVISION(pa->pa_class));
1635
1636 sc = device_private(self);
1637 sc->sc_dev = self;
1638
1639 /*
1640 * Map control/status registers.
1641 */
1642 nolinear = 0;
1643 if (pci_mapreg_map(pa, 0x10,
1644 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1645 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1646 NULL, NULL)) {
1647 nolinear = 1;
1648 if (pci_mapreg_map(pa, 0x10,
1649 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1650 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1651 aprint_error_dev(self, "can't map memory space\n");
1652 return;
1653 }
1654 }
1655 if (nolinear == 0)
1656 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1657 else
1658 sc->ti_vhandle = NULL;
1659
1660 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1661 command |= PCI_COMMAND_MASTER_ENABLE;
1662 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1663
1664 /* Allocate interrupt */
1665 if (pci_intr_map(pa, &ih)) {
1666 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1667 return;
1668 }
1669 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1670 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
1671 device_xname(self));
1672 if (sc->sc_ih == NULL) {
1673 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1674 if (intrstr != NULL)
1675 aprint_error(" at %s", intrstr);
1676 aprint_error("\n");
1677 return;
1678 }
1679 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1680
1681 if (ti_chipinit(sc)) {
1682 aprint_error_dev(self, "chip initialization failed\n");
1683 goto fail2;
1684 }
1685
1686 /*
1687 * Deal with some chip diffrences.
1688 */
1689 switch (sc->ti_hwrev) {
1690 case TI_HWREV_TIGON:
1691 sc->sc_tx_encap = ti_encap_tigon1;
1692 sc->sc_tx_eof = ti_txeof_tigon1;
1693 if (nolinear == 1)
1694 aprint_error_dev(self,
1695 "memory space not mapped linear\n");
1696 break;
1697
1698 case TI_HWREV_TIGON_II:
1699 sc->sc_tx_encap = ti_encap_tigon2;
1700 sc->sc_tx_eof = ti_txeof_tigon2;
1701 break;
1702
1703 default:
1704 aprint_error_dev(self, "Unknown chip version: %d\n",
1705 sc->ti_hwrev);
1706 goto fail2;
1707 }
1708
1709 /* Zero out the NIC's on-board SRAM. */
1710 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1711
1712 /* Init again -- zeroing memory may have clobbered some registers. */
1713 if (ti_chipinit(sc)) {
1714 aprint_error_dev(self, "chip initialization failed\n");
1715 goto fail2;
1716 }
1717
1718 /*
1719 * Get station address from the EEPROM. Note: the manual states
1720 * that the MAC address is at offset 0x8c, however the data is
1721 * stored as two longwords (since that's how it's loaded into
1722 * the NIC). This means the MAC address is actually preceded
1723 * by two zero bytes. We need to skip over those.
1724 */
1725 if (ti_read_eeprom(sc, (void *)&eaddr,
1726 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1727 aprint_error_dev(self, "failed to read station address\n");
1728 goto fail2;
1729 }
1730
1731 /*
1732 * A Tigon chip was detected. Inform the world.
1733 */
1734 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1735
1736 sc->sc_dmat = pa->pa_dmat;
1737
1738 /* Allocate the general information block and ring buffers. */
1739 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1740 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1741 BUS_DMA_NOWAIT)) != 0) {
1742 aprint_error_dev(self,
1743 "can't allocate ring buffer, error = %d\n", error);
1744 goto fail2;
1745 }
1746
1747 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1748 sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1749 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1750 aprint_error_dev(self,
1751 "can't map ring buffer, error = %d\n", error);
1752 goto fail2;
1753 }
1754
1755 if ((error = bus_dmamap_create(sc->sc_dmat,
1756 sizeof(struct ti_ring_data), 1,
1757 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1758 &sc->info_dmamap)) != 0) {
1759 aprint_error_dev(self,
1760 "can't create ring buffer DMA map, error = %d\n", error);
1761 goto fail2;
1762 }
1763
1764 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1765 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1766 BUS_DMA_NOWAIT)) != 0) {
1767 aprint_error_dev(self,
1768 "can't load ring buffer DMA map, error = %d\n", error);
1769 goto fail2;
1770 }
1771
1772 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1773
1774 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1775
1776 /* Try to allocate memory for jumbo buffers. */
1777 if (ti_alloc_jumbo_mem(sc)) {
1778 aprint_error_dev(self, "jumbo buffer allocation failed\n");
1779 goto fail2;
1780 }
1781
1782 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1783
1784 /*
1785 * We really need a better way to tell a 1000baseT card
1786 * from a 1000baseSX one, since in theory there could be
1787 * OEMed 1000baseT cards from lame vendors who aren't
1788 * clever enough to change the PCI ID. For the moment
1789 * though, the AceNIC is the only copper card available.
1790 */
1791 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1792 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1793 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1794 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1795 sc->ti_copper = 1;
1796 else
1797 sc->ti_copper = 0;
1798
1799 /* Set default tuneable values. */
1800 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1801 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1802 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1803 sc->ti_rx_max_coal_bds = 64;
1804 sc->ti_tx_max_coal_bds = 128;
1805 sc->ti_tx_buf_ratio = 21;
1806
1807 /* Set up ifnet structure */
1808 ifp = &sc->ethercom.ec_if;
1809 ifp->if_softc = sc;
1810 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1811 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1812 ifp->if_ioctl = ti_ioctl;
1813 ifp->if_start = ti_start;
1814 ifp->if_watchdog = ti_watchdog;
1815 IFQ_SET_READY(&ifp->if_snd);
1816
1817 #if 0
1818 /*
1819 * XXX This is not really correct -- we don't necessarily
1820 * XXX want to queue up as many as we can transmit at the
1821 * XXX upper layer like that. Someone with a board should
1822 * XXX check to see how this affects performance.
1823 */
1824 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1825 #endif
1826
1827 /*
1828 * We can support 802.1Q VLAN-sized frames.
1829 */
1830 sc->ethercom.ec_capabilities |=
1831 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1832 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1833
1834 /*
1835 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1836 */
1837 ifp->if_capabilities |=
1838 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1839 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1840 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1841
1842 /* Set up ifmedia support. */
1843 sc->ethercom.ec_ifmedia = &sc->ifmedia;
1844 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1845 if (sc->ti_copper) {
1846 /*
1847 * Copper cards allow manual 10/100 mode selection,
1848 * but not manual 1000baseT mode selection. Why?
1849 * Because currently there's no way to specify the
1850 * master/slave setting through the firmware interface,
1851 * so Alteon decided to just bag it and handle it
1852 * via autonegotiation.
1853 */
1854 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
1855 ifmedia_add(&sc->ifmedia,
1856 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1857 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
1858 ifmedia_add(&sc->ifmedia,
1859 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1860 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1861 ifmedia_add(&sc->ifmedia,
1862 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1863 } else {
1864 /* Fiber cards don't support 10/100 modes. */
1865 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
1866 ifmedia_add(&sc->ifmedia,
1867 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1868 }
1869 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1870 ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
1871
1872 /*
1873 * Call MI attach routines.
1874 */
1875 if_attach(ifp);
1876 if_deferred_start_init(ifp, NULL);
1877 ether_ifattach(ifp, eaddr);
1878
1879 /*
1880 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1881 * doing do could allow DMA to corrupt kernel memory during the
1882 * reboot before the driver initializes.
1883 */
1884 if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1885 pmf_class_network_register(self, ifp);
1886 else
1887 aprint_error_dev(self, "couldn't establish power handler\n");
1888
1889 return;
1890 fail2:
1891 pci_intr_disestablish(pc, sc->sc_ih);
1892 return;
1893 }
1894
1895 /*
1896 * Frame reception handling. This is called if there's a frame
1897 * on the receive return list.
1898 *
1899 * Note: we have to be able to handle three possibilities here:
1900 * 1) the frame is from the mini receive ring (can only happen)
1901 * on Tigon 2 boards)
1902 * 2) the frame is from the jumbo receive ring
1903 * 3) the frame is from the standard receive ring
1904 */
1905
1906 static void
1907 ti_rxeof(struct ti_softc *sc)
1908 {
1909 struct ifnet *ifp;
1910 struct ti_cmd_desc cmd;
1911
1912 ifp = &sc->ethercom.ec_if;
1913
1914 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1915 struct ti_rx_desc *cur_rx;
1916 uint32_t rxidx;
1917 struct mbuf *m = NULL;
1918 struct ether_header *eh;
1919 bus_dmamap_t dmamap;
1920
1921 cur_rx =
1922 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1923 rxidx = cur_rx->ti_idx;
1924 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1925
1926 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1927 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1928 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1929 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1930 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1931 if_statinc(ifp, if_ierrors);
1932 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1933 continue;
1934 }
1935 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1936 == ENOBUFS) {
1937 if_statinc(ifp, if_ierrors);
1938 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1939 continue;
1940 }
1941 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1942 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1943 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1944 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1945 dmamap = sc->mini_dmamap[rxidx];
1946 sc->mini_dmamap[rxidx] = 0;
1947 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1948 if_statinc(ifp, if_ierrors);
1949 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1950 continue;
1951 }
1952 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1953 == ENOBUFS) {
1954 if_statinc(ifp, if_ierrors);
1955 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1956 continue;
1957 }
1958 } else {
1959 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1960 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1961 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1962 dmamap = sc->std_dmamap[rxidx];
1963 sc->std_dmamap[rxidx] = 0;
1964 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1965 if_statinc(ifp, if_ierrors);
1966 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1967 continue;
1968 }
1969 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1970 == ENOBUFS) {
1971 if_statinc(ifp, if_ierrors);
1972 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1973 continue;
1974 }
1975 }
1976
1977 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1978 m_set_rcvif(m, ifp);
1979
1980 eh = mtod(m, struct ether_header *);
1981 switch (ntohs(eh->ether_type)) {
1982 #ifdef INET
1983 case ETHERTYPE_IP:
1984 {
1985 struct ip *ip = (struct ip *) (eh + 1);
1986
1987 /*
1988 * Note the Tigon firmware does not invert
1989 * the checksum for us, hence the XOR.
1990 */
1991 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1992 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1993 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1994 /*
1995 * ntohs() the constant so the compiler can
1996 * optimize...
1997 *
1998 * XXX Figure out a sane way to deal with
1999 * fragmented packets.
2000 */
2001 if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
2002 switch (ip->ip_p) {
2003 case IPPROTO_TCP:
2004 m->m_pkthdr.csum_data =
2005 cur_rx->ti_tcp_udp_cksum;
2006 m->m_pkthdr.csum_flags |=
2007 M_CSUM_TCPv4 | M_CSUM_DATA;
2008 break;
2009 case IPPROTO_UDP:
2010 m->m_pkthdr.csum_data =
2011 cur_rx->ti_tcp_udp_cksum;
2012 m->m_pkthdr.csum_flags |=
2013 M_CSUM_UDPv4 | M_CSUM_DATA;
2014 break;
2015 default:
2016 /* Nothing */;
2017 }
2018 }
2019 break;
2020 }
2021 #endif
2022 default:
2023 /* Nothing. */
2024 break;
2025 }
2026
2027 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG)
2028 vlan_set_tag(m, cur_rx->ti_vlan_tag);
2029
2030 if_percpuq_enqueue(ifp->if_percpuq, m);
2031 }
2032
2033 /* Only necessary on the Tigon 1. */
2034 if (sc->ti_hwrev == TI_HWREV_TIGON)
2035 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2036 sc->ti_rx_saved_considx);
2037
2038 TI_UPDATE_STDPROD(sc, sc->ti_std);
2039 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2040 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2041 }
2042
2043 static void
2044 ti_txeof_tigon1(struct ti_softc *sc)
2045 {
2046 struct ti_tx_desc *cur_tx = NULL;
2047 struct ifnet *ifp;
2048 struct txdmamap_pool_entry *dma;
2049
2050 ifp = &sc->ethercom.ec_if;
2051
2052 /*
2053 * Go through our tx ring and free mbufs for those
2054 * frames that have been sent.
2055 */
2056 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2057 uint32_t idx = 0;
2058
2059 idx = sc->ti_tx_saved_considx;
2060 if (idx > 383)
2061 CSR_WRITE_4(sc, TI_WINBASE,
2062 TI_TX_RING_BASE + 6144);
2063 else if (idx > 255)
2064 CSR_WRITE_4(sc, TI_WINBASE,
2065 TI_TX_RING_BASE + 4096);
2066 else if (idx > 127)
2067 CSR_WRITE_4(sc, TI_WINBASE,
2068 TI_TX_RING_BASE + 2048);
2069 else
2070 CSR_WRITE_4(sc, TI_WINBASE,
2071 TI_TX_RING_BASE);
2072 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2073 if (cur_tx->ti_flags & TI_BDFLAG_END)
2074 if_statinc(ifp, if_opackets);
2075 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2076 dma = sc->txdma[idx];
2077 KDASSERT(dma != NULL);
2078 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2079 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2080 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2081
2082 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2083 sc->txdma[idx] = NULL;
2084
2085 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2086 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2087 }
2088 sc->ti_txcnt--;
2089 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2090 ifp->if_timer = 0;
2091 }
2092
2093 if (cur_tx != NULL)
2094 ifp->if_flags &= ~IFF_OACTIVE;
2095 }
2096
2097 static void
2098 ti_txeof_tigon2(struct ti_softc *sc)
2099 {
2100 struct ti_tx_desc *cur_tx = NULL;
2101 struct ifnet *ifp;
2102 struct txdmamap_pool_entry *dma;
2103 int firstidx, cnt;
2104
2105 ifp = &sc->ethercom.ec_if;
2106
2107 /*
2108 * Go through our tx ring and free mbufs for those
2109 * frames that have been sent.
2110 */
2111 firstidx = sc->ti_tx_saved_considx;
2112 cnt = 0;
2113 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2114 uint32_t idx = 0;
2115
2116 idx = sc->ti_tx_saved_considx;
2117 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2118 if (cur_tx->ti_flags & TI_BDFLAG_END)
2119 if_statinc(ifp, if_opackets);
2120 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2121 dma = sc->txdma[idx];
2122 KDASSERT(dma != NULL);
2123 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2124 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2125 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2126
2127 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2128 sc->txdma[idx] = NULL;
2129
2130 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2131 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2132 }
2133 cnt++;
2134 sc->ti_txcnt--;
2135 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2136 ifp->if_timer = 0;
2137 }
2138
2139 if (cnt != 0)
2140 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2141
2142 if (cur_tx != NULL)
2143 ifp->if_flags &= ~IFF_OACTIVE;
2144 }
2145
2146 static int
2147 ti_intr(void *xsc)
2148 {
2149 struct ti_softc *sc;
2150 struct ifnet *ifp;
2151
2152 sc = xsc;
2153 ifp = &sc->ethercom.ec_if;
2154
2155 #ifdef notdef
2156 /* Avoid this for now -- checking this register is expensive. */
2157 /* Make sure this is really our interrupt. */
2158 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2159 return (0);
2160 #endif
2161
2162 /* Ack interrupt and stop others from occurring. */
2163 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2164
2165 if (ifp->if_flags & IFF_RUNNING) {
2166 /* Check RX return ring producer/consumer */
2167 ti_rxeof(sc);
2168
2169 /* Check TX ring producer/consumer */
2170 (*sc->sc_tx_eof)(sc);
2171 }
2172
2173 ti_handle_events(sc);
2174
2175 /* Re-enable interrupts. */
2176 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2177
2178 if ((ifp->if_flags & IFF_RUNNING) != 0)
2179 if_schedule_deferred_start(ifp);
2180
2181 return (1);
2182 }
2183
2184 static void
2185 ti_stats_update(struct ti_softc *sc)
2186 {
2187 struct ifnet *ifp = &sc->ethercom.ec_if;
2188
2189 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2190
2191 uint64_t collisions =
2192 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2193 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2194 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2195 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions);
2196 if_statadd(ifp, if_collisions, collisions - sc->ti_if_collisions);
2197 sc->ti_if_collisions = collisions;
2198
2199 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2200 }
2201
2202 /*
2203 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2204 * pointers to descriptors.
2205 */
2206 static int
2207 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2208 {
2209 struct ti_tx_desc *f = NULL;
2210 uint32_t frag, cur, cnt = 0;
2211 struct txdmamap_pool_entry *dma;
2212 bus_dmamap_t dmamap;
2213 int error, i;
2214 uint16_t csum_flags = 0;
2215
2216 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2217 if (dma == NULL) {
2218 return ENOMEM;
2219 }
2220 dmamap = dma->dmamap;
2221
2222 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2223 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2224 if (error) {
2225 struct mbuf *m;
2226 int j = 0;
2227 for (m = m_head; m; m = m->m_next)
2228 j++;
2229 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2230 "error %d\n", m_head->m_pkthdr.len, j, error);
2231 return (ENOMEM);
2232 }
2233
2234 cur = frag = *txidx;
2235
2236 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2237 /* IP header checksum field must be 0! */
2238 csum_flags |= TI_BDFLAG_IP_CKSUM;
2239 }
2240 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2241 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2242
2243 /* XXX fragmented packet checksum capability? */
2244
2245 /*
2246 * Start packing the mbufs in this chain into
2247 * the fragment pointers. Stop when we run out
2248 * of fragments or hit the end of the mbuf chain.
2249 */
2250 for (i = 0; i < dmamap->dm_nsegs; i++) {
2251 if (frag > 383)
2252 CSR_WRITE_4(sc, TI_WINBASE,
2253 TI_TX_RING_BASE + 6144);
2254 else if (frag > 255)
2255 CSR_WRITE_4(sc, TI_WINBASE,
2256 TI_TX_RING_BASE + 4096);
2257 else if (frag > 127)
2258 CSR_WRITE_4(sc, TI_WINBASE,
2259 TI_TX_RING_BASE + 2048);
2260 else
2261 CSR_WRITE_4(sc, TI_WINBASE,
2262 TI_TX_RING_BASE);
2263 f = &sc->ti_tx_ring_nic[frag % 128];
2264 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2265 break;
2266 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2267 f->ti_len = dmamap->dm_segs[i].ds_len;
2268 f->ti_flags = csum_flags;
2269 if (vlan_has_tag(m_head)) {
2270 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2271 f->ti_vlan_tag = vlan_get_tag(m_head);
2272 } else {
2273 f->ti_vlan_tag = 0;
2274 }
2275 /*
2276 * Sanity check: avoid coming within 16 descriptors
2277 * of the end of the ring.
2278 */
2279 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2280 return (ENOBUFS);
2281 cur = frag;
2282 TI_INC(frag, TI_TX_RING_CNT);
2283 cnt++;
2284 }
2285
2286 if (i < dmamap->dm_nsegs)
2287 return (ENOBUFS);
2288
2289 if (frag == sc->ti_tx_saved_considx)
2290 return (ENOBUFS);
2291
2292 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2293 TI_BDFLAG_END;
2294
2295 /* Sync the packet's DMA map. */
2296 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2297 BUS_DMASYNC_PREWRITE);
2298
2299 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2300 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2301 sc->txdma[cur] = dma;
2302 sc->ti_txcnt += cnt;
2303
2304 *txidx = frag;
2305
2306 return (0);
2307 }
2308
2309 static int
2310 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2311 {
2312 struct ti_tx_desc *f = NULL;
2313 uint32_t frag, firstfrag, cur, cnt = 0;
2314 struct txdmamap_pool_entry *dma;
2315 bus_dmamap_t dmamap;
2316 int error, i;
2317 uint16_t csum_flags = 0;
2318
2319 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2320 if (dma == NULL) {
2321 return ENOMEM;
2322 }
2323 dmamap = dma->dmamap;
2324
2325 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2326 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2327 if (error) {
2328 struct mbuf *m;
2329 int j = 0;
2330 for (m = m_head; m; m = m->m_next)
2331 j++;
2332 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2333 "error %d\n", m_head->m_pkthdr.len, j, error);
2334 return (ENOMEM);
2335 }
2336
2337 cur = firstfrag = frag = *txidx;
2338
2339 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2340 /* IP header checksum field must be 0! */
2341 csum_flags |= TI_BDFLAG_IP_CKSUM;
2342 }
2343 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
2344 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2345
2346 /* XXX fragmented packet checksum capability? */
2347
2348 /*
2349 * Start packing the mbufs in this chain into
2350 * the fragment pointers. Stop when we run out
2351 * of fragments or hit the end of the mbuf chain.
2352 */
2353 for (i = 0; i < dmamap->dm_nsegs; i++) {
2354 f = &sc->ti_rdata->ti_tx_ring[frag];
2355 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2356 break;
2357 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2358 f->ti_len = dmamap->dm_segs[i].ds_len;
2359 f->ti_flags = csum_flags;
2360 if (vlan_has_tag(m_head)) {
2361 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2362 f->ti_vlan_tag = vlan_get_tag(m_head);
2363 } else {
2364 f->ti_vlan_tag = 0;
2365 }
2366 /*
2367 * Sanity check: avoid coming within 16 descriptors
2368 * of the end of the ring.
2369 */
2370 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2371 return (ENOBUFS);
2372 cur = frag;
2373 TI_INC(frag, TI_TX_RING_CNT);
2374 cnt++;
2375 }
2376
2377 if (i < dmamap->dm_nsegs)
2378 return (ENOBUFS);
2379
2380 if (frag == sc->ti_tx_saved_considx)
2381 return (ENOBUFS);
2382
2383 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2384
2385 /* Sync the packet's DMA map. */
2386 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2387 BUS_DMASYNC_PREWRITE);
2388
2389 /* Sync the descriptors we are using. */
2390 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2391
2392 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2393 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2394 sc->txdma[cur] = dma;
2395 sc->ti_txcnt += cnt;
2396
2397 *txidx = frag;
2398
2399 return (0);
2400 }
2401
2402 /*
2403 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2404 * to the mbuf data regions directly in the transmit descriptors.
2405 */
2406 static void
2407 ti_start(struct ifnet *ifp)
2408 {
2409 struct ti_softc *sc;
2410 struct mbuf *m_head = NULL;
2411 uint32_t prodidx = 0;
2412
2413 sc = ifp->if_softc;
2414
2415 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2416
2417 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2418 IFQ_POLL(&ifp->if_snd, m_head);
2419 if (m_head == NULL)
2420 break;
2421
2422 /*
2423 * Pack the data into the transmit ring. If we
2424 * don't have room, set the OACTIVE flag and wait
2425 * for the NIC to drain the ring.
2426 */
2427 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2428 ifp->if_flags |= IFF_OACTIVE;
2429 break;
2430 }
2431
2432 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2433
2434 /*
2435 * If there's a BPF listener, bounce a copy of this frame
2436 * to him.
2437 */
2438 bpf_mtap(ifp, m_head, BPF_D_OUT);
2439 }
2440
2441 /* Transmit */
2442 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2443
2444 /* Set a timeout in case the chip goes out to lunch. */
2445 ifp->if_timer = 5;
2446 }
2447
2448 static void
2449 ti_init(void *xsc)
2450 {
2451 struct ti_softc *sc = xsc;
2452 int s;
2453
2454 s = splnet();
2455
2456 /* Cancel pending I/O and flush buffers. */
2457 ti_stop(sc);
2458
2459 /* Init the gen info block, ring control blocks and firmware. */
2460 if (ti_gibinit(sc)) {
2461 aprint_error_dev(sc->sc_dev, "initialization failure\n");
2462 splx(s);
2463 return;
2464 }
2465
2466 splx(s);
2467 }
2468
2469 static void
2470 ti_init2(struct ti_softc *sc)
2471 {
2472 struct ti_cmd_desc cmd;
2473 struct ifnet *ifp;
2474 const uint8_t *m;
2475 struct ifmedia *ifm;
2476 int tmp;
2477
2478 ifp = &sc->ethercom.ec_if;
2479
2480 /* Specify MTU and interface index. */
2481 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2482
2483 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2484 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2485 tmp += ETHER_VLAN_ENCAP_LEN;
2486 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2487
2488 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2489
2490 /* Load our MAC address. */
2491 m = (const uint8_t *)CLLADDR(ifp->if_sadl);
2492 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2493 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2494 | (m[4] << 8) | m[5]);
2495 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2496
2497 /* Enable or disable promiscuous mode as needed. */
2498 if (ifp->if_flags & IFF_PROMISC) {
2499 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2500 } else {
2501 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2502 }
2503
2504 /* Program multicast filter. */
2505 ti_setmulti(sc);
2506
2507 /*
2508 * If this is a Tigon 1, we should tell the
2509 * firmware to use software packet filtering.
2510 */
2511 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2512 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2513 }
2514
2515 /* Init RX ring. */
2516 ti_init_rx_ring_std(sc);
2517
2518 /* Init jumbo RX ring. */
2519 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2520 ti_init_rx_ring_jumbo(sc);
2521
2522 /*
2523 * If this is a Tigon 2, we can also configure the
2524 * mini ring.
2525 */
2526 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2527 ti_init_rx_ring_mini(sc);
2528
2529 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2530 sc->ti_rx_saved_considx = 0;
2531
2532 /* Init TX ring. */
2533 ti_init_tx_ring(sc);
2534
2535 /* Tell firmware we're alive. */
2536 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2537
2538 /* Enable host interrupts. */
2539 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2540
2541 ifp->if_flags |= IFF_RUNNING;
2542 ifp->if_flags &= ~IFF_OACTIVE;
2543
2544 /*
2545 * Make sure to set media properly. We have to do this
2546 * here since we have to issue commands in order to set
2547 * the link negotiation and we can't issue commands until
2548 * the firmware is running.
2549 */
2550 ifm = &sc->ifmedia;
2551 tmp = ifm->ifm_media;
2552 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2553 ti_ifmedia_upd(ifp);
2554 ifm->ifm_media = tmp;
2555 }
2556
2557 /*
2558 * Set media options.
2559 */
2560 static int
2561 ti_ifmedia_upd(struct ifnet *ifp)
2562 {
2563 struct ti_softc *sc;
2564 struct ifmedia *ifm;
2565 struct ti_cmd_desc cmd;
2566
2567 sc = ifp->if_softc;
2568 ifm = &sc->ifmedia;
2569
2570 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2571 return (EINVAL);
2572
2573 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2574 case IFM_AUTO:
2575 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2576 TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2577 TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2578 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2579 TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2580 TI_LNK_AUTONEGENB | TI_LNK_ENB);
2581 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2582 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2583 break;
2584 case IFM_1000_SX:
2585 case IFM_1000_T:
2586 if ((ifm->ifm_media & IFM_FDX) != 0) {
2587 CSR_WRITE_4(sc, TI_GCR_GLINK,
2588 TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
2589 | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2590 } else {
2591 CSR_WRITE_4(sc, TI_GCR_GLINK,
2592 TI_GLNK_PREF | TI_GLNK_1000MB |
2593 TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2594 }
2595 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2596 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2597 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2598 break;
2599 case IFM_100_FX:
2600 case IFM_10_FL:
2601 case IFM_100_TX:
2602 case IFM_10_T:
2603 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2604 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2605 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2606 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2607 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2608 } else {
2609 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2610 }
2611 if ((ifm->ifm_media & IFM_FDX) != 0) {
2612 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2613 } else {
2614 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2615 }
2616 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2617 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2618 break;
2619 }
2620
2621 sc->ethercom.ec_if.if_baudrate =
2622 ifmedia_baudrate(ifm->ifm_media);
2623
2624 return (0);
2625 }
2626
2627 /*
2628 * Report current media status.
2629 */
2630 static void
2631 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2632 {
2633 struct ti_softc *sc;
2634 uint32_t media = 0;
2635
2636 sc = ifp->if_softc;
2637
2638 ifmr->ifm_status = IFM_AVALID;
2639 ifmr->ifm_active = IFM_ETHER;
2640
2641 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2642 return;
2643
2644 ifmr->ifm_status |= IFM_ACTIVE;
2645
2646 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2647 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2648 if (sc->ti_copper)
2649 ifmr->ifm_active |= IFM_1000_T;
2650 else
2651 ifmr->ifm_active |= IFM_1000_SX;
2652 if (media & TI_GLNK_FULL_DUPLEX)
2653 ifmr->ifm_active |= IFM_FDX;
2654 else
2655 ifmr->ifm_active |= IFM_HDX;
2656 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2657 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2658 if (sc->ti_copper) {
2659 if (media & TI_LNK_100MB)
2660 ifmr->ifm_active |= IFM_100_TX;
2661 if (media & TI_LNK_10MB)
2662 ifmr->ifm_active |= IFM_10_T;
2663 } else {
2664 if (media & TI_LNK_100MB)
2665 ifmr->ifm_active |= IFM_100_FX;
2666 if (media & TI_LNK_10MB)
2667 ifmr->ifm_active |= IFM_10_FL;
2668 }
2669 if (media & TI_LNK_FULL_DUPLEX)
2670 ifmr->ifm_active |= IFM_FDX;
2671 if (media & TI_LNK_HALF_DUPLEX)
2672 ifmr->ifm_active |= IFM_HDX;
2673 }
2674
2675 sc->ethercom.ec_if.if_baudrate =
2676 ifmedia_baudrate(sc->ifmedia.ifm_media);
2677 }
2678
2679 static int
2680 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2681 {
2682 struct ifaddr *ifa = (struct ifaddr *)data;
2683 struct ti_softc *sc = ifp->if_softc;
2684
2685 if ((ifp->if_flags & IFF_UP) == 0) {
2686 ifp->if_flags |= IFF_UP;
2687 ti_init(sc);
2688 }
2689
2690 switch (cmd) {
2691 case SIOCINITIFADDR:
2692
2693 switch (ifa->ifa_addr->sa_family) {
2694 #ifdef INET
2695 case AF_INET:
2696 arp_ifinit(ifp, ifa);
2697 break;
2698 #endif
2699 default:
2700 break;
2701 }
2702 break;
2703
2704 default:
2705 return (EINVAL);
2706 }
2707
2708 return (0);
2709 }
2710
2711 static int
2712 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2713 {
2714 struct ti_softc *sc = ifp->if_softc;
2715 struct ifreq *ifr = (struct ifreq *)data;
2716 int s, error = 0;
2717 struct ti_cmd_desc cmd;
2718
2719 s = splnet();
2720
2721 switch (command) {
2722 case SIOCINITIFADDR:
2723 error = ti_ether_ioctl(ifp, command, data);
2724 break;
2725 case SIOCSIFMTU:
2726 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2727 error = EINVAL;
2728 else if ((error = ifioctl_common(ifp, command, data))
2729 == ENETRESET) {
2730 ti_init(sc);
2731 error = 0;
2732 }
2733 break;
2734 case SIOCSIFFLAGS:
2735 if ((error = ifioctl_common(ifp, command, data)) != 0)
2736 break;
2737 if (ifp->if_flags & IFF_UP) {
2738 /*
2739 * If only the state of the PROMISC flag changed,
2740 * then just use the 'set promisc mode' command
2741 * instead of reinitializing the entire NIC. Doing
2742 * a full re-init means reloading the firmware and
2743 * waiting for it to start up, which may take a
2744 * second or two.
2745 */
2746 if (ifp->if_flags & IFF_RUNNING &&
2747 ifp->if_flags & IFF_PROMISC &&
2748 !(sc->ti_if_flags & IFF_PROMISC)) {
2749 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2750 TI_CMD_CODE_PROMISC_ENB, 0);
2751 } else if (ifp->if_flags & IFF_RUNNING &&
2752 !(ifp->if_flags & IFF_PROMISC) &&
2753 sc->ti_if_flags & IFF_PROMISC) {
2754 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2755 TI_CMD_CODE_PROMISC_DIS, 0);
2756 } else
2757 ti_init(sc);
2758 } else {
2759 if (ifp->if_flags & IFF_RUNNING) {
2760 ti_stop(sc);
2761 }
2762 }
2763 sc->ti_if_flags = ifp->if_flags;
2764 error = 0;
2765 break;
2766 default:
2767 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2768 break;
2769
2770 error = 0;
2771
2772 if (command == SIOCSIFCAP)
2773 ti_init(sc);
2774 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2775 ;
2776 else if (ifp->if_flags & IFF_RUNNING)
2777 ti_setmulti(sc);
2778 break;
2779 }
2780
2781 (void)splx(s);
2782
2783 return (error);
2784 }
2785
2786 static void
2787 ti_watchdog(struct ifnet *ifp)
2788 {
2789 struct ti_softc *sc;
2790
2791 sc = ifp->if_softc;
2792
2793 aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2794 ti_stop(sc);
2795 ti_init(sc);
2796
2797 if_statinc(ifp, if_oerrors);
2798 }
2799
2800 /*
2801 * Stop the adapter and free any mbufs allocated to the
2802 * RX and TX lists.
2803 */
2804 static void
2805 ti_stop(struct ti_softc *sc)
2806 {
2807 struct ifnet *ifp;
2808 struct ti_cmd_desc cmd;
2809
2810 ifp = &sc->ethercom.ec_if;
2811
2812 /* Disable host interrupts. */
2813 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2814 /*
2815 * Tell firmware we're shutting down.
2816 */
2817 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2818
2819 /* Halt and reinitialize. */
2820 ti_chipinit(sc);
2821 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2822 ti_chipinit(sc);
2823
2824 /* Free the RX lists. */
2825 ti_free_rx_ring_std(sc);
2826
2827 /* Free jumbo RX list. */
2828 ti_free_rx_ring_jumbo(sc);
2829
2830 /* Free mini RX list. */
2831 ti_free_rx_ring_mini(sc);
2832
2833 /* Free TX buffers. */
2834 ti_free_tx_ring(sc);
2835
2836 sc->ti_ev_prodidx.ti_idx = 0;
2837 sc->ti_return_prodidx.ti_idx = 0;
2838 sc->ti_tx_considx.ti_idx = 0;
2839 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2840
2841 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2842 }
2843
2844 /*
2845 * Stop all chip I/O so that the kernel's probe routines don't
2846 * get confused by errant DMAs when rebooting.
2847 */
2848 static bool
2849 ti_shutdown(device_t self, int howto)
2850 {
2851 struct ti_softc *sc;
2852
2853 sc = device_private(self);
2854 ti_chipinit(sc);
2855
2856 return true;
2857 }
2858