Home | History | Annotate | Line # | Download | only in pci
if_ti.c revision 1.13
      1 /* $NetBSD: if_ti.c,v 1.13 2000/11/14 18:42:57 thorpej Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997, 1998, 1999
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
     35  */
     36 
     37 /*
     38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
     39  * Manuals, sample driver and firmware source kits are available
     40  * from http://www.alteon.com/support/openkits.
     41  *
     42  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     43  * Electrical Engineering Department
     44  * Columbia University, New York City
     45  */
     46 
     47 /*
     48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
     49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
     50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
     51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
     52  * filtering and jumbo (9014 byte) frames. The hardware is largely
     53  * controlled by firmware, which must be loaded into the NIC during
     54  * initialization.
     55  *
     56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
     57  * revision, which supports new features such as extended commands,
     58  * extended jumbo receive ring desciptors and a mini receive ring.
     59  *
     60  * Alteon Networks is to be commended for releasing such a vast amount
     61  * of development material for the Tigon NIC without requiring an NDA
     62  * (although they really should have done it a long time ago). With
     63  * any luck, the other vendors will finally wise up and follow Alteon's
     64  * stellar example.
     65  *
     66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
     67  * this driver by #including it as a C header file. This bloats the
     68  * driver somewhat, but it's the easiest method considering that the
     69  * driver code and firmware code need to be kept in sync. The source
     70  * for the firmware is not provided with the FreeBSD distribution since
     71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
     72  *
     73  * The following people deserve special thanks:
     74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
     75  *   for testing
     76  * - Raymond Lee of Netgear, for providing a pair of Netgear
     77  *   GA620 Tigon 2 boards for testing
     78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
     79  *   convincing me to write this driver.
     80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
     81  */
     82 
     83 #include "bpfilter.h"
     84 #include "opt_inet.h"
     85 #include "opt_ns.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/sockio.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/socket.h>
     94 #include <sys/queue.h>
     95 #include <sys/device.h>
     96 #include <sys/reboot.h>
     97 
     98 #include <uvm/uvm_extern.h>
     99 
    100 #include <net/if.h>
    101 #include <net/if_arp.h>
    102 #include <net/if_ether.h>
    103 #include <net/if_dl.h>
    104 #include <net/if_media.h>
    105 
    106 #if NBPFILTER > 0
    107 #include <net/bpf.h>
    108 #endif
    109 
    110 #ifdef INET
    111 #include <netinet/in.h>
    112 #include <netinet/if_inarp.h>
    113 #endif
    114 
    115 #ifdef NS
    116 #include <netns/ns.h>
    117 #include <netns/ns_if.h>
    118 #endif
    119 
    120 #include <machine/bus.h>
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_tireg.h>
    127 #include <dev/pci/ti_fw.h>
    128 #include <dev/pci/ti_fw2.h>
    129 
    130 #ifdef M_HWCKSUM
    131 /*#define TI_CSUM_OFFLOAD*/
    132 #endif
    133 
    134 /*
    135  * Various supported device vendors/types and their names.
    136  */
    137 
    138 static struct ti_type ti_devs[] = {
    139 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
    140 		"Alteon AceNIC Gigabit Ethernet" },
    141 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
    142 		"3Com 3c985-SX Gigabit Ethernet" },
    143 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
    144 		"Netgear GA620 Gigabit Ethernet" },
    145 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
    146 		"Silicon Graphics Gigabit Ethernet" },
    147 	{ 0, 0, NULL }
    148 };
    149 
    150 static struct ti_type *ti_type_match __P((struct pci_attach_args *));
    151 static int ti_probe	__P((struct device *, struct cfdata *, void *));
    152 static void ti_attach	__P((struct device *, struct device *, void *));
    153 static void ti_shutdown __P((void *));
    154 static void ti_txeof		__P((struct ti_softc *));
    155 static void ti_rxeof		__P((struct ti_softc *));
    156 
    157 static void ti_stats_update	__P((struct ti_softc *));
    158 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
    159 					u_int32_t *));
    160 
    161 static int ti_intr		__P((void *));
    162 static void ti_start		__P((struct ifnet *));
    163 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
    164 static void ti_init		__P((void *));
    165 static void ti_init2		__P((struct ti_softc *));
    166 static void ti_stop		__P((struct ti_softc *));
    167 static void ti_watchdog		__P((struct ifnet *));
    168 static int ti_ifmedia_upd	__P((struct ifnet *));
    169 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    170 
    171 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
    172 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
    173 						int, u_int8_t *));
    174 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
    175 
    176 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
    177 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
    178 static void ti_setmulti		__P((struct ti_softc *));
    179 
    180 static void ti_mem		__P((struct ti_softc *, u_int32_t,
    181 					u_int32_t, caddr_t));
    182 static void ti_loadfw		__P((struct ti_softc *));
    183 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
    184 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
    185 					caddr_t, int));
    186 static void ti_handle_events	__P((struct ti_softc *));
    187 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
    188 static void *ti_jalloc		__P((struct ti_softc *));
    189 static void ti_jfree		__P((caddr_t, u_int, void *));
    190 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
    191 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
    192 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
    193 static int ti_init_rx_ring_std	__P((struct ti_softc *));
    194 static void ti_free_rx_ring_std	__P((struct ti_softc *));
    195 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
    196 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
    197 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
    198 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
    199 static void ti_free_tx_ring	__P((struct ti_softc *));
    200 static int ti_init_tx_ring	__P((struct ti_softc *));
    201 
    202 static int ti_64bitslot_war	__P((struct ti_softc *));
    203 static int ti_chipinit		__P((struct ti_softc *));
    204 static int ti_gibinit		__P((struct ti_softc *));
    205 
    206 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
    207 
    208 struct cfattach ti_ca = {
    209 	sizeof(struct ti_softc), ti_probe, ti_attach
    210 };
    211 
    212 /*
    213  * Send an instruction or address to the EEPROM, check for ACK.
    214  */
    215 static u_int32_t ti_eeprom_putbyte(sc, byte)
    216 	struct ti_softc		*sc;
    217 	int			byte;
    218 {
    219 	int		i, ack = 0;
    220 
    221 	/*
    222 	 * Make sure we're in TX mode.
    223 	 */
    224 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    225 
    226 	/*
    227 	 * Feed in each bit and stobe the clock.
    228 	 */
    229 	for (i = 0x80; i; i >>= 1) {
    230 		if (byte & i) {
    231 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    232 		} else {
    233 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    234 		}
    235 		DELAY(1);
    236 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    237 		DELAY(1);
    238 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    239 	}
    240 
    241 	/*
    242 	 * Turn off TX mode.
    243 	 */
    244 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    245 
    246 	/*
    247 	 * Check for ack.
    248 	 */
    249 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    250 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
    251 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    252 
    253 	return(ack);
    254 }
    255 
    256 /*
    257  * Read a byte of data stored in the EEPROM at address 'addr.'
    258  * We have to send two address bytes since the EEPROM can hold
    259  * more than 256 bytes of data.
    260  */
    261 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
    262 	struct ti_softc		*sc;
    263 	int			addr;
    264 	u_int8_t		*dest;
    265 {
    266 	int		i;
    267 	u_int8_t		byte = 0;
    268 
    269 	EEPROM_START;
    270 
    271 	/*
    272 	 * Send write control code to EEPROM.
    273 	 */
    274 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
    275 		printf("%s: failed to send write command, status: %x\n",
    276 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    277 		return(1);
    278 	}
    279 
    280 	/*
    281 	 * Send first byte of address of byte we want to read.
    282 	 */
    283 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
    284 		printf("%s: failed to send address, status: %x\n",
    285 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    286 		return(1);
    287 	}
    288 	/*
    289 	 * Send second byte address of byte we want to read.
    290 	 */
    291 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
    292 		printf("%s: failed to send address, status: %x\n",
    293 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    294 		return(1);
    295 	}
    296 
    297 	EEPROM_STOP;
    298 	EEPROM_START;
    299 	/*
    300 	 * Send read control code to EEPROM.
    301 	 */
    302 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
    303 		printf("%s: failed to send read command, status: %x\n",
    304 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    305 		return(1);
    306 	}
    307 
    308 	/*
    309 	 * Start reading bits from EEPROM.
    310 	 */
    311 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    312 	for (i = 0x80; i; i >>= 1) {
    313 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    314 		DELAY(1);
    315 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
    316 			byte |= i;
    317 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    318 		DELAY(1);
    319 	}
    320 
    321 	EEPROM_STOP;
    322 
    323 	/*
    324 	 * No ACK generated for read, so just return byte.
    325 	 */
    326 
    327 	*dest = byte;
    328 
    329 	return(0);
    330 }
    331 
    332 /*
    333  * Read a sequence of bytes from the EEPROM.
    334  */
    335 static int ti_read_eeprom(sc, dest, off, cnt)
    336 	struct ti_softc		*sc;
    337 	caddr_t			dest;
    338 	int			off;
    339 	int			cnt;
    340 {
    341 	int			err = 0, i;
    342 	u_int8_t		byte = 0;
    343 
    344 	for (i = 0; i < cnt; i++) {
    345 		err = ti_eeprom_getbyte(sc, off + i, &byte);
    346 		if (err)
    347 			break;
    348 		*(dest + i) = byte;
    349 	}
    350 
    351 	return(err ? 1 : 0);
    352 }
    353 
    354 /*
    355  * NIC memory access function. Can be used to either clear a section
    356  * of NIC local memory or (if buf is non-NULL) copy data into it.
    357  */
    358 static void ti_mem(sc, addr, len, buf)
    359 	struct ti_softc		*sc;
    360 	u_int32_t		addr, len;
    361 	caddr_t			buf;
    362 {
    363 	int			segptr, segsize, cnt;
    364 	caddr_t			ptr;
    365 
    366 	segptr = addr;
    367 	cnt = len;
    368 	ptr = buf;
    369 
    370 	while(cnt) {
    371 		if (cnt < TI_WINLEN)
    372 			segsize = cnt;
    373 		else
    374 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
    375 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
    376 		if (buf == NULL) {
    377 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
    378 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
    379 			    segsize / 4);
    380 		} else {
    381 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
    382 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    383 			    (u_int32_t *)ptr, segsize / 4);
    384 			ptr += segsize;
    385 		}
    386 		segptr += segsize;
    387 		cnt -= segsize;
    388 	}
    389 
    390 	return;
    391 }
    392 
    393 /*
    394  * Load firmware image into the NIC. Check that the firmware revision
    395  * is acceptable and see if we want the firmware for the Tigon 1 or
    396  * Tigon 2.
    397  */
    398 static void ti_loadfw(sc)
    399 	struct ti_softc		*sc;
    400 {
    401 	switch(sc->ti_hwrev) {
    402 	case TI_HWREV_TIGON:
    403 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
    404 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
    405 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
    406 			printf("%s: firmware revision mismatch; want "
    407 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
    408 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    409 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
    410 			    tigonFwReleaseMinor, tigonFwReleaseFix);
    411 			return;
    412 		}
    413 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
    414 		    (caddr_t)tigonFwText);
    415 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
    416 		    (caddr_t)tigonFwData);
    417 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
    418 		    (caddr_t)tigonFwRodata);
    419 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
    420 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
    421 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
    422 		break;
    423 	case TI_HWREV_TIGON_II:
    424 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
    425 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
    426 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
    427 			printf("%s: firmware revision mismatch; want "
    428 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
    429 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    430 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
    431 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
    432 			return;
    433 		}
    434 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
    435 		    (caddr_t)tigon2FwText);
    436 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
    437 		    (caddr_t)tigon2FwData);
    438 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
    439 		    (caddr_t)tigon2FwRodata);
    440 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
    441 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
    442 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
    443 		break;
    444 	default:
    445 		printf("%s: can't load firmware: unknown hardware rev\n",
    446 		    sc->sc_dev.dv_xname);
    447 		break;
    448 	}
    449 
    450 	return;
    451 }
    452 
    453 /*
    454  * Send the NIC a command via the command ring.
    455  */
    456 static void ti_cmd(sc, cmd)
    457 	struct ti_softc		*sc;
    458 	struct ti_cmd_desc	*cmd;
    459 {
    460 	u_int32_t		index;
    461 
    462 	index = sc->ti_cmd_saved_prodidx;
    463 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    464 	TI_INC(index, TI_CMD_RING_CNT);
    465 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    466 	sc->ti_cmd_saved_prodidx = index;
    467 
    468 	return;
    469 }
    470 
    471 /*
    472  * Send the NIC an extended command. The 'len' parameter specifies the
    473  * number of command slots to include after the initial command.
    474  */
    475 static void ti_cmd_ext(sc, cmd, arg, len)
    476 	struct ti_softc		*sc;
    477 	struct ti_cmd_desc	*cmd;
    478 	caddr_t			arg;
    479 	int			len;
    480 {
    481 	u_int32_t		index;
    482 	int		i;
    483 
    484 	index = sc->ti_cmd_saved_prodidx;
    485 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    486 	TI_INC(index, TI_CMD_RING_CNT);
    487 	for (i = 0; i < len; i++) {
    488 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
    489 		    *(u_int32_t *)(&arg[i * 4]));
    490 		TI_INC(index, TI_CMD_RING_CNT);
    491 	}
    492 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    493 	sc->ti_cmd_saved_prodidx = index;
    494 
    495 	return;
    496 }
    497 
    498 /*
    499  * Handle events that have triggered interrupts.
    500  */
    501 static void ti_handle_events(sc)
    502 	struct ti_softc		*sc;
    503 {
    504 	struct ti_event_desc	*e;
    505 
    506 	if (sc->ti_rdata->ti_event_ring == NULL)
    507 		return;
    508 
    509 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
    510 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
    511 		switch(e->ti_event) {
    512 		case TI_EV_LINKSTAT_CHANGED:
    513 			sc->ti_linkstat = e->ti_code;
    514 			if (e->ti_code == TI_EV_CODE_LINK_UP)
    515 				printf("%s: 10/100 link up\n",
    516 				       sc->sc_dev.dv_xname);
    517 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
    518 				printf("%s: gigabit link up\n",
    519 				       sc->sc_dev.dv_xname);
    520 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
    521 				printf("%s: link down\n",
    522 				       sc->sc_dev.dv_xname);
    523 			break;
    524 		case TI_EV_ERROR:
    525 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
    526 				printf("%s: invalid command\n",
    527 				       sc->sc_dev.dv_xname);
    528 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
    529 				printf("%s: unknown command\n",
    530 				       sc->sc_dev.dv_xname);
    531 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
    532 				printf("%s: bad config data\n",
    533 				       sc->sc_dev.dv_xname);
    534 			break;
    535 		case TI_EV_FIRMWARE_UP:
    536 			ti_init2(sc);
    537 			break;
    538 		case TI_EV_STATS_UPDATED:
    539 			ti_stats_update(sc);
    540 			break;
    541 		case TI_EV_RESET_JUMBO_RING:
    542 		case TI_EV_MCAST_UPDATED:
    543 			/* Who cares. */
    544 			break;
    545 		default:
    546 			printf("%s: unknown event: %d\n",
    547 			    sc->sc_dev.dv_xname, e->ti_event);
    548 			break;
    549 		}
    550 		/* Advance the consumer index. */
    551 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
    552 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
    553 	}
    554 
    555 	return;
    556 }
    557 
    558 /*
    559  * Memory management for the jumbo receive ring is a pain in the
    560  * butt. We need to allocate at least 9018 bytes of space per frame,
    561  * _and_ it has to be contiguous (unless you use the extended
    562  * jumbo descriptor format). Using malloc() all the time won't
    563  * work: malloc() allocates memory in powers of two, which means we
    564  * would end up wasting a considerable amount of space by allocating
    565  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
    566  * to do our own memory management.
    567  *
    568  * The driver needs to allocate a contiguous chunk of memory at boot
    569  * time. We then chop this up ourselves into 9K pieces and use them
    570  * as external mbuf storage.
    571  *
    572  * One issue here is how much memory to allocate. The jumbo ring has
    573  * 256 slots in it, but at 9K per slot than can consume over 2MB of
    574  * RAM. This is a bit much, especially considering we also need
    575  * RAM for the standard ring and mini ring (on the Tigon 2). To
    576  * save space, we only actually allocate enough memory for 64 slots
    577  * by default, which works out to between 500 and 600K. This can
    578  * be tuned by changing a #define in if_tireg.h.
    579  */
    580 
    581 static int ti_alloc_jumbo_mem(sc)
    582 	struct ti_softc		*sc;
    583 {
    584 	caddr_t			ptr;
    585 	int		i;
    586 	struct ti_jpool_entry   *entry;
    587 	bus_dma_segment_t dmaseg;
    588 	int error, dmanseg;
    589 
    590 	/* Grab a big chunk o' storage. */
    591 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    592 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
    593 	    BUS_DMA_NOWAIT)) != 0) {
    594 		printf("%s: can't allocate jumbo buffer, error = %d\n",
    595 		       sc->sc_dev.dv_xname, error);
    596 		return (error);
    597 	}
    598 
    599 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
    600 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
    601 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    602 		printf("%s: can't map jumbo buffer, error = %d\n",
    603 		       sc->sc_dev.dv_xname, error);
    604 		return (error);
    605 	}
    606 
    607 	if ((error = bus_dmamap_create(sc->sc_dmat,
    608 	    TI_JMEM, 1,
    609 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
    610 	    &sc->jumbo_dmamap)) != 0) {
    611 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
    612 		       sc->sc_dev.dv_xname, error);
    613 		return (error);
    614 	}
    615 
    616 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
    617 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
    618 	    BUS_DMA_NOWAIT)) != 0) {
    619 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
    620 		       sc->sc_dev.dv_xname, error);
    621 		return (error);
    622 	}
    623 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
    624 
    625 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
    626 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
    627 
    628 	/*
    629 	 * Now divide it up into 9K pieces and save the addresses
    630 	 * in an array. Note that we play an evil trick here by using
    631 	 * the first few bytes in the buffer to hold the address
    632 	 * of the softc structure for this interface. This is because
    633 	 * ti_jfree() needs it, but it is called by the mbuf management
    634 	 * code which will not pass it to us explicitly.
    635 	 */
    636 	ptr = sc->ti_cdata.ti_jumbo_buf;
    637 	for (i = 0; i < TI_JSLOTS; i++) {
    638 		u_int64_t		**aptr;
    639 		aptr = (u_int64_t **)ptr;
    640 		aptr[0] = (u_int64_t *)sc;
    641 		ptr += sizeof(u_int64_t);
    642 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
    643 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
    644 		ptr += (TI_JLEN - sizeof(u_int64_t));
    645 		entry = malloc(sizeof(struct ti_jpool_entry),
    646 			       M_DEVBUF, M_NOWAIT);
    647 		if (entry == NULL) {
    648 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
    649 			sc->ti_cdata.ti_jumbo_buf = NULL;
    650 			printf("%s: no memory for jumbo "
    651 			    "buffer queue!\n", sc->sc_dev.dv_xname);
    652 			return(ENOBUFS);
    653 		}
    654 		entry->slot = i;
    655 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
    656 				    jpool_entries);
    657 	}
    658 
    659 	return(0);
    660 }
    661 
    662 /*
    663  * Allocate a jumbo buffer.
    664  */
    665 static void *ti_jalloc(sc)
    666 	struct ti_softc		*sc;
    667 {
    668 	struct ti_jpool_entry   *entry;
    669 
    670 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
    671 
    672 	if (entry == NULL) {
    673 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
    674 		return(NULL);
    675 	}
    676 
    677 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
    678 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
    679 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
    680 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
    681 }
    682 
    683 /*
    684  * Release a jumbo buffer.
    685  */
    686 static void ti_jfree(buf, size, arg)
    687 	caddr_t			buf;
    688 	u_int			size;
    689 	void *arg; /* XXX NetBSD: we should really use it */
    690 {
    691 	struct ti_softc		*sc;
    692 	u_int64_t		**aptr;
    693 	int		        i;
    694 	struct ti_jpool_entry   *entry;
    695 
    696 	/* Extract the softc struct pointer. */
    697 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
    698 	sc = (struct ti_softc *)(aptr[0]);
    699 
    700 	if (sc == NULL)
    701 		panic("ti_jfree: can't find softc pointer!");
    702 
    703 	if (size != TI_JUMBO_FRAMELEN)
    704 		panic("ti_jfree: freeing buffer of wrong size!");
    705 
    706 	/* calculate the slot this buffer belongs to */
    707 
    708 	i = ((caddr_t)aptr
    709 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
    710 
    711 	if ((i < 0) || (i >= TI_JSLOTS))
    712 		panic("ti_jfree: asked to free buffer that we don't manage!");
    713 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
    714 		panic("ti_jfree: buffer already free!");
    715 	else {
    716 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
    717 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
    718 			entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
    719 			if (entry == NULL)
    720 				panic("ti_jfree: buffer not in use!");
    721 			entry->slot = i;
    722 			SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
    723 					    entry, jpool_entries);
    724 			SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
    725 					     entry, jpool_entries);
    726 		}
    727 	}
    728 
    729 	return;
    730 }
    731 
    732 
    733 /*
    734  * Intialize a standard receive ring descriptor.
    735  */
    736 static int ti_newbuf_std(sc, i, m, dmamap)
    737 	struct ti_softc		*sc;
    738 	int			i;
    739 	struct mbuf		*m;
    740 	bus_dmamap_t dmamap; /* required if (m != NULL) */
    741 {
    742 	struct mbuf		*m_new = NULL;
    743 	struct ti_rx_desc	*r;
    744 	int error;
    745 
    746 	if (dmamap == NULL) {
    747 		/* if (m) panic() */
    748 
    749 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    750 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
    751 					       &dmamap)) != 0) {
    752 			printf("%s: can't create recv map, error = %d\n",
    753 			       sc->sc_dev.dv_xname, error);
    754 			return(ENOMEM);
    755 		}
    756 	}
    757 	sc->std_dmamap[i] = dmamap;
    758 
    759 	if (m == NULL) {
    760 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    761 		if (m_new == NULL) {
    762 			printf("%s: mbuf allocation failed "
    763 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    764 			return(ENOBUFS);
    765 		}
    766 
    767 		MCLGET(m_new, M_DONTWAIT);
    768 		if (!(m_new->m_flags & M_EXT)) {
    769 			printf("%s: cluster allocation failed "
    770 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    771 			m_freem(m_new);
    772 			return(ENOBUFS);
    773 		}
    774 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    775 		m_adj(m_new, ETHER_ALIGN);
    776 
    777 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    778 				mtod(m_new, caddr_t), m_new->m_len, NULL,
    779 				BUS_DMA_NOWAIT)) != 0) {
    780 			printf("%s: can't load recv map, error = %d\n",
    781 			       sc->sc_dev.dv_xname, error);
    782 			return (ENOMEM);
    783 		}
    784 	} else {
    785 		m_new = m;
    786 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    787 		m_new->m_data = m_new->m_ext.ext_buf;
    788 		m_adj(m_new, ETHER_ALIGN);
    789 
    790 		/* reuse the dmamap */
    791 	}
    792 
    793 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
    794 	r = &sc->ti_rdata->ti_rx_std_ring[i];
    795 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    796 	r->ti_type = TI_BDTYPE_RECV_BD;
    797 #ifdef TI_CSUM_OFFLOAD
    798 	r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
    799 #else
    800 	r->ti_flags = 0;
    801 #endif
    802 	r->ti_len = m_new->m_len; /* == ds_len */
    803 	r->ti_idx = i;
    804 
    805 	return(0);
    806 }
    807 
    808 /*
    809  * Intialize a mini receive ring descriptor. This only applies to
    810  * the Tigon 2.
    811  */
    812 static int ti_newbuf_mini(sc, i, m, dmamap)
    813 	struct ti_softc		*sc;
    814 	int			i;
    815 	struct mbuf		*m;
    816 	bus_dmamap_t dmamap; /* required if (m != NULL) */
    817 {
    818 	struct mbuf		*m_new = NULL;
    819 	struct ti_rx_desc	*r;
    820 	int error;
    821 
    822 	if (dmamap == NULL) {
    823 		/* if (m) panic() */
    824 
    825 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
    826 					       MHLEN, 0, BUS_DMA_NOWAIT,
    827 					       &dmamap)) != 0) {
    828 			printf("%s: can't create recv map, error = %d\n",
    829 			       sc->sc_dev.dv_xname, error);
    830 			return(ENOMEM);
    831 		}
    832 	}
    833 	sc->mini_dmamap[i] = dmamap;
    834 
    835 	if (m == NULL) {
    836 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    837 		if (m_new == NULL) {
    838 			printf("%s: mbuf allocation failed "
    839 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    840 			return(ENOBUFS);
    841 		}
    842 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    843 		m_adj(m_new, ETHER_ALIGN);
    844 
    845 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    846 				mtod(m_new, caddr_t), m_new->m_len, NULL,
    847 				BUS_DMA_NOWAIT)) != 0) {
    848 			printf("%s: can't load recv map, error = %d\n",
    849 			       sc->sc_dev.dv_xname, error);
    850 			return (ENOMEM);
    851 		}
    852 	} else {
    853 		m_new = m;
    854 		m_new->m_data = m_new->m_pktdat;
    855 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    856 		m_adj(m_new, ETHER_ALIGN);
    857 
    858 		/* reuse the dmamap */
    859 	}
    860 
    861 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
    862 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
    863 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    864 	r->ti_type = TI_BDTYPE_RECV_BD;
    865 	r->ti_flags = TI_BDFLAG_MINI_RING;
    866 #ifdef TI_CSUM_OFFLOAD
    867 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
    868 #endif
    869 	r->ti_len = m_new->m_len; /* == ds_len */
    870 	r->ti_idx = i;
    871 
    872 	return(0);
    873 }
    874 
    875 /*
    876  * Initialize a jumbo receive ring descriptor. This allocates
    877  * a jumbo buffer from the pool managed internally by the driver.
    878  */
    879 static int ti_newbuf_jumbo(sc, i, m)
    880 	struct ti_softc		*sc;
    881 	int			i;
    882 	struct mbuf		*m;
    883 {
    884 	struct mbuf		*m_new = NULL;
    885 	struct ti_rx_desc	*r;
    886 
    887 	if (m == NULL) {
    888 		caddr_t			*buf = NULL;
    889 
    890 		/* Allocate the mbuf. */
    891 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    892 		if (m_new == NULL) {
    893 			printf("%s: mbuf allocation failed "
    894 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    895 			return(ENOBUFS);
    896 		}
    897 
    898 		/* Allocate the jumbo buffer */
    899 		buf = ti_jalloc(sc);
    900 		if (buf == NULL) {
    901 			m_freem(m_new);
    902 			printf("%s: jumbo allocation failed "
    903 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    904 			return(ENOBUFS);
    905 		}
    906 
    907 		/* Attach the buffer to the mbuf. */
    908 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
    909 		m_new->m_flags |= M_EXT;
    910 		m_new->m_len = m_new->m_pkthdr.len =
    911 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
    912 		m_new->m_ext.ext_free = ti_jfree;
    913 		m_new->m_ext.ext_arg = sc;
    914 		MCLINITREFERENCE(m_new);
    915 	} else {
    916 		m_new = m;
    917 		m_new->m_data = m_new->m_ext.ext_buf;
    918 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
    919 	}
    920 
    921 	m_adj(m_new, ETHER_ALIGN);
    922 	/* Set up the descriptor. */
    923 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
    924 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
    925 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
    926 		((caddr_t)mtod(m_new, caddr_t)
    927 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
    928 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
    929 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
    930 #ifdef TI_CSUM_OFFLOAD
    931 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
    932 #endif
    933 	r->ti_len = m_new->m_len;
    934 	r->ti_idx = i;
    935 
    936 	return(0);
    937 }
    938 
    939 /*
    940  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    941  * that's 1MB or memory, which is a lot. For now, we fill only the first
    942  * 256 ring entries and hope that our CPU is fast enough to keep up with
    943  * the NIC.
    944  */
    945 static int ti_init_rx_ring_std(sc)
    946 	struct ti_softc		*sc;
    947 {
    948 	int		i;
    949 	struct ti_cmd_desc	cmd;
    950 
    951 	for (i = 0; i < TI_SSLOTS; i++) {
    952 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    953 			return(ENOBUFS);
    954 	};
    955 
    956 	TI_UPDATE_STDPROD(sc, i - 1);
    957 	sc->ti_std = i - 1;
    958 
    959 	return(0);
    960 }
    961 
    962 static void ti_free_rx_ring_std(sc)
    963 	struct ti_softc		*sc;
    964 {
    965 	int		i;
    966 
    967 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
    968 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
    969 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
    970 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
    971 
    972 			/* if (sc->std_dmamap[i] == 0) panic() */
    973 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
    974 			sc->std_dmamap[i] = 0;
    975 		}
    976 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
    977 		    sizeof(struct ti_rx_desc));
    978 	}
    979 
    980 	return;
    981 }
    982 
    983 static int ti_init_rx_ring_jumbo(sc)
    984 	struct ti_softc		*sc;
    985 {
    986 	int		i;
    987 	struct ti_cmd_desc	cmd;
    988 
    989 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
    990 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    991 			return(ENOBUFS);
    992 	};
    993 
    994 	TI_UPDATE_JUMBOPROD(sc, i - 1);
    995 	sc->ti_jumbo = i - 1;
    996 
    997 	return(0);
    998 }
    999 
   1000 static void ti_free_rx_ring_jumbo(sc)
   1001 	struct ti_softc		*sc;
   1002 {
   1003 	int		i;
   1004 
   1005 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
   1006 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
   1007 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
   1008 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
   1009 		}
   1010 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
   1011 		    sizeof(struct ti_rx_desc));
   1012 	}
   1013 
   1014 	return;
   1015 }
   1016 
   1017 static int ti_init_rx_ring_mini(sc)
   1018 	struct ti_softc		*sc;
   1019 {
   1020 	int		i;
   1021 
   1022 	for (i = 0; i < TI_MSLOTS; i++) {
   1023 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
   1024 			return(ENOBUFS);
   1025 	};
   1026 
   1027 	TI_UPDATE_MINIPROD(sc, i - 1);
   1028 	sc->ti_mini = i - 1;
   1029 
   1030 	return(0);
   1031 }
   1032 
   1033 static void ti_free_rx_ring_mini(sc)
   1034 	struct ti_softc		*sc;
   1035 {
   1036 	int		i;
   1037 
   1038 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
   1039 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
   1040 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
   1041 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
   1042 
   1043 			/* if (sc->mini_dmamap[i] == 0) panic() */
   1044 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
   1045 			sc->mini_dmamap[i] = 0;
   1046 		}
   1047 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
   1048 		    sizeof(struct ti_rx_desc));
   1049 	}
   1050 
   1051 	return;
   1052 }
   1053 
   1054 static void ti_free_tx_ring(sc)
   1055 	struct ti_softc		*sc;
   1056 {
   1057 	int		i;
   1058 	struct txdmamap_pool_entry *dma;
   1059 
   1060 	if (sc->ti_rdata->ti_tx_ring == NULL)
   1061 		return;
   1062 
   1063 	for (i = 0; i < TI_TX_RING_CNT; i++) {
   1064 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
   1065 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
   1066 			sc->ti_cdata.ti_tx_chain[i] = NULL;
   1067 
   1068 			/* if (sc->txdma[i] == 0) panic() */
   1069 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1070 					    link);
   1071 			sc->txdma[i] = 0;
   1072 		}
   1073 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
   1074 		    sizeof(struct ti_tx_desc));
   1075 	}
   1076 
   1077 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
   1078 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
   1079 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
   1080 		free(dma, M_DEVBUF);
   1081 	}
   1082 
   1083 	return;
   1084 }
   1085 
   1086 static int ti_init_tx_ring(sc)
   1087 	struct ti_softc		*sc;
   1088 {
   1089 	int i, error;
   1090 	bus_dmamap_t dmamap;
   1091 	struct txdmamap_pool_entry *dma;
   1092 
   1093 	sc->ti_txcnt = 0;
   1094 	sc->ti_tx_saved_considx = 0;
   1095 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
   1096 
   1097 	SIMPLEQ_INIT(&sc->txdma_list);
   1098 	for (i = 0; i < TI_RSLOTS; i++) {
   1099 		/* I've seen mbufs with 30 fragments. */
   1100 		if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
   1101 					       40, TI_JUMBO_FRAMELEN, 0,
   1102 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
   1103 			printf("%s: can't create tx map, error = %d\n",
   1104 			       sc->sc_dev.dv_xname, error);
   1105 			return(ENOMEM);
   1106 		}
   1107 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1108 		if (!dma) {
   1109 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1110 			       sc->sc_dev.dv_xname);
   1111 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
   1112 			return (ENOMEM);
   1113 		}
   1114 		dma->dmamap = dmamap;
   1115 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   1116 	}
   1117 
   1118 	return(0);
   1119 }
   1120 
   1121 /*
   1122  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
   1123  * but we have to support the old way too so that Tigon 1 cards will
   1124  * work.
   1125  */
   1126 void ti_add_mcast(sc, addr)
   1127 	struct ti_softc		*sc;
   1128 	struct ether_addr	*addr;
   1129 {
   1130 	struct ti_cmd_desc	cmd;
   1131 	u_int16_t		*m;
   1132 	u_int32_t		ext[2] = {0, 0};
   1133 
   1134 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1135 
   1136 	switch(sc->ti_hwrev) {
   1137 	case TI_HWREV_TIGON:
   1138 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1139 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1140 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
   1141 		break;
   1142 	case TI_HWREV_TIGON_II:
   1143 		ext[0] = htons(m[0]);
   1144 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1145 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
   1146 		break;
   1147 	default:
   1148 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
   1149 		break;
   1150 	}
   1151 
   1152 	return;
   1153 }
   1154 
   1155 void ti_del_mcast(sc, addr)
   1156 	struct ti_softc		*sc;
   1157 	struct ether_addr	*addr;
   1158 {
   1159 	struct ti_cmd_desc	cmd;
   1160 	u_int16_t		*m;
   1161 	u_int32_t		ext[2] = {0, 0};
   1162 
   1163 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1164 
   1165 	switch(sc->ti_hwrev) {
   1166 	case TI_HWREV_TIGON:
   1167 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1168 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1169 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
   1170 		break;
   1171 	case TI_HWREV_TIGON_II:
   1172 		ext[0] = htons(m[0]);
   1173 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1174 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
   1175 		break;
   1176 	default:
   1177 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
   1178 		break;
   1179 	}
   1180 
   1181 	return;
   1182 }
   1183 
   1184 /*
   1185  * Configure the Tigon's multicast address filter.
   1186  *
   1187  * The actual multicast table management is a bit of a pain, thanks to
   1188  * slight brain damage on the part of both Alteon and us. With our
   1189  * multicast code, we are only alerted when the multicast address table
   1190  * changes and at that point we only have the current list of addresses:
   1191  * we only know the current state, not the previous state, so we don't
   1192  * actually know what addresses were removed or added. The firmware has
   1193  * state, but we can't get our grubby mits on it, and there is no 'delete
   1194  * all multicast addresses' command. Hence, we have to maintain our own
   1195  * state so we know what addresses have been programmed into the NIC at
   1196  * any given time.
   1197  */
   1198 static void ti_setmulti(sc)
   1199 	struct ti_softc		*sc;
   1200 {
   1201 	struct ifnet		*ifp;
   1202 	struct ti_cmd_desc	cmd;
   1203 	struct ti_mc_entry	*mc;
   1204 	u_int32_t		intrs;
   1205 	struct ether_multi *enm;
   1206 	struct ether_multistep step;
   1207 
   1208 	ifp = &sc->ethercom.ec_if;
   1209 
   1210 	if (ifp->if_flags & IFF_ALLMULTI) {
   1211 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
   1212 		return;
   1213 	} else {
   1214 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
   1215 	}
   1216 
   1217 	/* Disable interrupts. */
   1218 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
   1219 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1220 
   1221 	/* First, zot all the existing filters. */
   1222 	while (SIMPLEQ_FIRST(&sc->ti_mc_listhead) != NULL) {
   1223 		mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead);
   1224 		ti_del_mcast(sc, &mc->mc_addr);
   1225 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
   1226 		free(mc, M_DEVBUF);
   1227 	}
   1228 
   1229 	/* Now program new ones. */
   1230 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
   1231 	while (enm != NULL) {
   1232 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
   1233 		bcopy(enm->enm_addrlo,
   1234 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
   1235 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
   1236 		ti_add_mcast(sc, &mc->mc_addr);
   1237 		ETHER_NEXT_MULTI(step, enm);
   1238 	}
   1239 
   1240 	/* Re-enable interrupts. */
   1241 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1242 
   1243 	return;
   1244 }
   1245 
   1246 /*
   1247  * Check to see if the BIOS has configured us for a 64 bit slot when
   1248  * we aren't actually in one. If we detect this condition, we can work
   1249  * around it on the Tigon 2 by setting a bit in the PCI state register,
   1250  * but for the Tigon 1 we must give up and abort the interface attach.
   1251  */
   1252 static int ti_64bitslot_war(sc)
   1253 	struct ti_softc		*sc;
   1254 {
   1255 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
   1256 		CSR_WRITE_4(sc, 0x600, 0);
   1257 		CSR_WRITE_4(sc, 0x604, 0);
   1258 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
   1259 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
   1260 			if (sc->ti_hwrev == TI_HWREV_TIGON)
   1261 				return(EINVAL);
   1262 			else {
   1263 				TI_SETBIT(sc, TI_PCI_STATE,
   1264 				    TI_PCISTATE_32BIT_BUS);
   1265 				return(0);
   1266 			}
   1267 		}
   1268 	}
   1269 
   1270 	return(0);
   1271 }
   1272 
   1273 /*
   1274  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1275  * self-test results.
   1276  */
   1277 static int ti_chipinit(sc)
   1278 	struct ti_softc		*sc;
   1279 {
   1280 	u_int32_t		cacheline;
   1281 	u_int32_t		pci_writemax = 0;
   1282 
   1283 	/* Initialize link to down state. */
   1284 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
   1285 
   1286 	/* Set endianness before we access any non-PCI registers. */
   1287 #if BYTE_ORDER == BIG_ENDIAN
   1288 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1289 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
   1290 #else
   1291 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1292 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
   1293 #endif
   1294 
   1295 	/* Check the ROM failed bit to see if self-tests passed. */
   1296 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
   1297 		printf("%s: board self-diagnostics failed!\n",
   1298 		       sc->sc_dev.dv_xname);
   1299 		return(ENODEV);
   1300 	}
   1301 
   1302 	/* Halt the CPU. */
   1303 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
   1304 
   1305 	/* Figure out the hardware revision. */
   1306 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
   1307 	case TI_REV_TIGON_I:
   1308 		sc->ti_hwrev = TI_HWREV_TIGON;
   1309 		break;
   1310 	case TI_REV_TIGON_II:
   1311 		sc->ti_hwrev = TI_HWREV_TIGON_II;
   1312 		break;
   1313 	default:
   1314 		printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
   1315 		return(ENODEV);
   1316 	}
   1317 
   1318 	/* Do special setup for Tigon 2. */
   1319 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1320 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
   1321 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
   1322 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
   1323 	}
   1324 
   1325 	/* Set up the PCI state register. */
   1326 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
   1327 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1328 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
   1329 	}
   1330 
   1331 	/* Clear the read/write max DMA parameters. */
   1332 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
   1333 	    TI_PCISTATE_READ_MAXDMA));
   1334 
   1335 	/* Get cache line size. */
   1336 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
   1337 
   1338 	/*
   1339 	 * If the system has set enabled the PCI memory write
   1340 	 * and invalidate command in the command register, set
   1341 	 * the write max parameter accordingly. This is necessary
   1342 	 * to use MWI with the Tigon 2.
   1343 	 */
   1344 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1345 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
   1346 		switch(cacheline) {
   1347 		case 1:
   1348 		case 4:
   1349 		case 8:
   1350 		case 16:
   1351 		case 32:
   1352 		case 64:
   1353 			break;
   1354 		default:
   1355 		/* Disable PCI memory write and invalidate. */
   1356 			if (bootverbose)
   1357 				printf("%s: cache line size %d not "
   1358 				    "supported; disabling PCI MWI\n",
   1359 				    sc->sc_dev.dv_xname, cacheline);
   1360 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
   1361 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1362 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
   1363 			break;
   1364 		}
   1365 	}
   1366 
   1367 #ifdef __brokenalpha__
   1368 	/*
   1369 	 * From the Alteon sample driver:
   1370 	 * Must insure that we do not cross an 8K (bytes) boundary
   1371 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1372 	 * restriction on some ALPHA platforms with early revision
   1373 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1374 	 */
   1375 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
   1376 #else
   1377 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
   1378 #endif
   1379 
   1380 	/* This sets the min dma param all the way up (0xff). */
   1381 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
   1382 
   1383 	/* Configure DMA variables. */
   1384 #if BYTE_ORDER == BIG_ENDIAN
   1385 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
   1386 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
   1387 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
   1388 	    TI_OPMODE_DONT_FRAG_JUMBO);
   1389 #else
   1390 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
   1391 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
   1392 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
   1393 #endif
   1394 
   1395 	/*
   1396 	 * Only allow 1 DMA channel to be active at a time.
   1397 	 * I don't think this is a good idea, but without it
   1398 	 * the firmware racks up lots of nicDmaReadRingFull
   1399 	 * errors.
   1400 	 */
   1401 #ifndef TI_CSUM_OFFLOAD
   1402 	TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
   1403 #endif
   1404 
   1405 	/* Recommended settings from Tigon manual. */
   1406 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
   1407 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
   1408 
   1409 	if (ti_64bitslot_war(sc)) {
   1410 		printf("%s: bios thinks we're in a 64 bit slot, "
   1411 		    "but we aren't", sc->sc_dev.dv_xname);
   1412 		return(EINVAL);
   1413 	}
   1414 
   1415 	return(0);
   1416 }
   1417 
   1418 /*
   1419  * Initialize the general information block and firmware, and
   1420  * start the CPU(s) running.
   1421  */
   1422 static int ti_gibinit(sc)
   1423 	struct ti_softc		*sc;
   1424 {
   1425 	struct ti_rcb		*rcb;
   1426 	int			i;
   1427 	struct ifnet		*ifp;
   1428 
   1429 	ifp = &sc->ethercom.ec_if;
   1430 
   1431 	/* Disable interrupts for now. */
   1432 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1433 
   1434 	/* Tell the chip where to find the general information block. */
   1435 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
   1436 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
   1437 		    ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
   1438 
   1439 	/* Load the firmware into SRAM. */
   1440 	ti_loadfw(sc);
   1441 
   1442 	/* Set up the contents of the general info and ring control blocks. */
   1443 
   1444 	/* Set up the event ring and producer pointer. */
   1445 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
   1446 
   1447 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
   1448 		((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
   1449 	rcb->ti_flags = 0;
   1450 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
   1451 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
   1452 				- (caddr_t)sc->ti_rdata);
   1453 	sc->ti_ev_prodidx.ti_idx = 0;
   1454 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
   1455 	sc->ti_ev_saved_considx = 0;
   1456 
   1457 	/* Set up the command ring and producer mailbox. */
   1458 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
   1459 
   1460 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
   1461 	rcb->ti_flags = 0;
   1462 	rcb->ti_max_len = 0;
   1463 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
   1464 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
   1465 	}
   1466 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
   1467 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
   1468 	sc->ti_cmd_saved_prodidx = 0;
   1469 
   1470 	/*
   1471 	 * Assign the address of the stats refresh buffer.
   1472 	 * We re-use the current stats buffer for this to
   1473 	 * conserve memory.
   1474 	 */
   1475 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
   1476 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
   1477 		    - (caddr_t)sc->ti_rdata);
   1478 
   1479 	/* Set up the standard receive ring. */
   1480 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
   1481 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
   1482 		((caddr_t)&sc->ti_rdata->ti_rx_std_ring
   1483 		 - (caddr_t)sc->ti_rdata);
   1484 	rcb->ti_max_len = TI_FRAMELEN;
   1485 	rcb->ti_flags = 0;
   1486 #ifdef TI_CSUM_OFFLOAD
   1487 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
   1488 #endif
   1489 #if NVLAN > 0
   1490 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1491 #endif
   1492 
   1493 	/* Set up the jumbo receive ring. */
   1494 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
   1495 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
   1496 	    ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
   1497 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
   1498 	rcb->ti_flags = 0;
   1499 #ifdef TI_CSUM_OFFLOAD
   1500 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
   1501 #endif
   1502 #if NVLAN > 0
   1503 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1504 #endif
   1505 
   1506 	/*
   1507 	 * Set up the mini ring. Only activated on the
   1508 	 * Tigon 2 but the slot in the config block is
   1509 	 * still there on the Tigon 1.
   1510 	 */
   1511 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
   1512 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
   1513 	    ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
   1514 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
   1515 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1516 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
   1517 	else
   1518 		rcb->ti_flags = 0;
   1519 #ifdef TI_CSUM_OFFLOAD
   1520 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
   1521 #endif
   1522 #if NVLAN > 0
   1523 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1524 #endif
   1525 
   1526 	/*
   1527 	 * Set up the receive return ring.
   1528 	 */
   1529 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
   1530 	TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
   1531 	    ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
   1532 	rcb->ti_flags = 0;
   1533 	rcb->ti_max_len = TI_RETURN_RING_CNT;
   1534 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
   1535 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
   1536 		    - (caddr_t)sc->ti_rdata);
   1537 
   1538 	/*
   1539 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
   1540 	 * of putting the transmit ring in the host's address space and
   1541 	 * letting the chip DMA it instead of leaving the ring in the NIC's
   1542 	 * memory and accessing it through the shared memory region. We
   1543 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
   1544 	 * so we have to revert to the shared memory scheme if we detect
   1545 	 * a Tigon 1 chip.
   1546 	 */
   1547 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
   1548 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   1549 		sc->ti_rdata->ti_tx_ring_nic =
   1550 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
   1551 	}
   1552 	bzero((char *)sc->ti_rdata->ti_tx_ring,
   1553 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
   1554 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
   1555 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1556 		rcb->ti_flags = 0;
   1557 	else
   1558 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
   1559 #if NVLAN > 0
   1560 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1561 #endif
   1562 	rcb->ti_max_len = TI_TX_RING_CNT;
   1563 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1564 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
   1565 	else
   1566 		TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
   1567 		    ((caddr_t)&sc->ti_rdata->ti_tx_ring
   1568 		     - (caddr_t)sc->ti_rdata);
   1569 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
   1570 	    sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
   1571 		    - (caddr_t)sc->ti_rdata);
   1572 
   1573 	/* Set up tuneables */
   1574 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
   1575 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   1576 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
   1577 		    (sc->ti_rx_coal_ticks / 10));
   1578 	else
   1579 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
   1580 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
   1581 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
   1582 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
   1583 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
   1584 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
   1585 
   1586 	/* Turn interrupts on. */
   1587 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
   1588 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   1589 
   1590 	/* Start CPU. */
   1591 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
   1592 
   1593 	return(0);
   1594 }
   1595 
   1596 /*
   1597  * look for id in the device list, returning the first match
   1598  */
   1599 static struct ti_type * ti_type_match(pa)
   1600 	struct pci_attach_args *pa;
   1601 {
   1602 	struct ti_type          *t;
   1603 
   1604 	t = ti_devs;
   1605 	while(t->ti_name != NULL) {
   1606 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
   1607 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
   1608 			return (t);
   1609 		}
   1610 		t++;
   1611 	}
   1612 
   1613 	return(NULL);
   1614 }
   1615 
   1616 /*
   1617  * Probe for a Tigon chip. Check the PCI vendor and device IDs
   1618  * against our list and return its name if we find a match.
   1619  */
   1620 static int ti_probe(parent, match, aux)
   1621 	struct device *parent;
   1622 	struct cfdata *match;
   1623 	void *aux;
   1624 {
   1625 	struct pci_attach_args *pa = aux;
   1626 	struct ti_type		*t;
   1627 
   1628 	t = ti_type_match(pa);
   1629 
   1630 	return((t == NULL) ? 0 : 1);
   1631 }
   1632 
   1633 static void ti_attach(parent, self, aux)
   1634 	struct device *parent, *self;
   1635 	void *aux;
   1636 {
   1637 	u_int32_t		command;
   1638 	struct ifnet		*ifp;
   1639 	struct ti_softc		*sc;
   1640 	u_char eaddr[ETHER_ADDR_LEN];
   1641 	struct pci_attach_args *pa = aux;
   1642 	pci_chipset_tag_t pc = pa->pa_pc;
   1643 	pci_intr_handle_t ih;
   1644 	const char *intrstr = NULL;
   1645 	bus_dma_segment_t dmaseg;
   1646 	int error, dmanseg, nolinear;
   1647 	struct ti_type		*t;
   1648 
   1649 	t = ti_type_match(pa);
   1650 	if (t == NULL) {
   1651 		printf("ti_attach: were did the card go ?\n");
   1652 		return;
   1653 	}
   1654 
   1655 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
   1656 
   1657 	sc = (struct ti_softc *)self;
   1658 
   1659 	/*
   1660 	 * Map control/status registers.
   1661 	 */
   1662 	nolinear = 0;
   1663 	if (pci_mapreg_map(pa, 0x10,
   1664 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1665 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
   1666 	    NULL, NULL)) {
   1667 		nolinear = 1;
   1668 		if (pci_mapreg_map(pa, 0x10,
   1669 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1670 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
   1671 			printf(": can't map memory space\n");
   1672 			return;
   1673 		}
   1674 	}
   1675 	if (nolinear == 0)
   1676 		sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
   1677 	else
   1678 		sc->ti_vhandle = NULL;
   1679 
   1680 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1681 	command |= PCI_COMMAND_MASTER_ENABLE;
   1682 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1683 
   1684 	/* Allocate interrupt */
   1685 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
   1686 	    pa->pa_intrline, &ih)) {
   1687 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
   1688 		return;;
   1689 	}
   1690 	intrstr = pci_intr_string(pc, ih);
   1691 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
   1692 	if (sc->sc_ih == NULL) {
   1693 		printf("%s: couldn't establish interrupt",
   1694 		    sc->sc_dev.dv_xname);
   1695 		if (intrstr != NULL)
   1696 			printf(" at %s", intrstr);
   1697 		printf("\n");
   1698 		return;;
   1699 	}
   1700 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1701 	/*
   1702 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
   1703 	 * doing do could allow DMA to corrupt kernel memory during the
   1704 	 * reboot before the driver initializes.
   1705 	 */
   1706 	(void) shutdownhook_establish(ti_shutdown, sc);
   1707 
   1708 	if (ti_chipinit(sc)) {
   1709 		printf("%s: chip initialization failed\n", self->dv_xname);
   1710 		goto fail2;
   1711 	}
   1712 	if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
   1713 		printf("%s: memory space not mapped linear\n", self->dv_xname);
   1714 	}
   1715 
   1716 	/* Zero out the NIC's on-board SRAM. */
   1717 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
   1718 
   1719 	/* Init again -- zeroing memory may have clobbered some registers. */
   1720 	if (ti_chipinit(sc)) {
   1721 		printf("%s: chip initialization failed\n", self->dv_xname);
   1722 		goto fail2;
   1723 	}
   1724 
   1725 	/*
   1726 	 * Get station address from the EEPROM. Note: the manual states
   1727 	 * that the MAC address is at offset 0x8c, however the data is
   1728 	 * stored as two longwords (since that's how it's loaded into
   1729 	 * the NIC). This means the MAC address is actually preceeded
   1730 	 * by two zero bytes. We need to skip over those.
   1731 	 */
   1732 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
   1733 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1734 		printf("%s: failed to read station address\n", self->dv_xname);
   1735 		goto fail2;
   1736 	}
   1737 
   1738 	/*
   1739 	 * A Tigon chip was detected. Inform the world.
   1740 	 */
   1741 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   1742 				ether_sprintf(eaddr));
   1743 
   1744 	sc->sc_dmat = pa->pa_dmat;
   1745 
   1746 	/* Allocate the general information block and ring buffers. */
   1747 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1748 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
   1749 	    BUS_DMA_NOWAIT)) != 0) {
   1750 		printf("%s: can't allocate ring buffer, error = %d\n",
   1751 		       sc->sc_dev.dv_xname, error);
   1752 		goto fail2;
   1753 	}
   1754 
   1755 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
   1756 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
   1757 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
   1758 		printf("%s: can't map ring buffer, error = %d\n",
   1759 		       sc->sc_dev.dv_xname, error);
   1760 		goto fail2;
   1761 	}
   1762 
   1763 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1764 	    sizeof(struct ti_ring_data), 1,
   1765 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
   1766 	    &sc->info_dmamap)) != 0) {
   1767 		printf("%s: can't create ring buffer DMA map, error = %d\n",
   1768 		       sc->sc_dev.dv_xname, error);
   1769 		goto fail2;
   1770 	}
   1771 
   1772 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
   1773 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
   1774 	    BUS_DMA_NOWAIT)) != 0) {
   1775 		printf("%s: can't load ring buffer DMA map, error = %d\n",
   1776 		       sc->sc_dev.dv_xname, error);
   1777 		goto fail2;
   1778 	}
   1779 
   1780 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
   1781 
   1782 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
   1783 
   1784 	/* Try to allocate memory for jumbo buffers. */
   1785 	if (ti_alloc_jumbo_mem(sc)) {
   1786 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
   1787 		goto fail2;
   1788 	}
   1789 
   1790 	/* Set default tuneable values. */
   1791 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
   1792 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
   1793 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
   1794 	sc->ti_rx_max_coal_bds = 64;
   1795 	sc->ti_tx_max_coal_bds = 128;
   1796 	sc->ti_tx_buf_ratio = 21;
   1797 
   1798 	/* Set up ifnet structure */
   1799 	ifp = &sc->ethercom.ec_if;
   1800 	ifp->if_softc = sc;
   1801 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1802 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1803 	ifp->if_ioctl = ti_ioctl;
   1804 	ifp->if_start = ti_start;
   1805 	ifp->if_watchdog = ti_watchdog;
   1806 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
   1807 
   1808 	/*
   1809 	 * We can support 802.1Q VLAN-sized frames.
   1810 	 */
   1811 	sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1812 
   1813 	/* Set up ifmedia support. */
   1814 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
   1815 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
   1816 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
   1817 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
   1818 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
   1819 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   1820 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
   1821 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   1822 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
   1823 
   1824 	/*
   1825 	 * Call MI attach routines.
   1826 	 */
   1827 	if_attach(ifp);
   1828 	ether_ifattach(ifp, eaddr);
   1829 
   1830 #if NBPFILTER > 0
   1831 	bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
   1832 		  sizeof(struct ether_header));
   1833 #endif
   1834 
   1835 	return;
   1836 fail2:
   1837 	pci_intr_disestablish(pc, sc->sc_ih);
   1838 	return;
   1839 }
   1840 
   1841 /*
   1842  * Frame reception handling. This is called if there's a frame
   1843  * on the receive return list.
   1844  *
   1845  * Note: we have to be able to handle three possibilities here:
   1846  * 1) the frame is from the mini receive ring (can only happen)
   1847  *    on Tigon 2 boards)
   1848  * 2) the frame is from the jumbo recieve ring
   1849  * 3) the frame is from the standard receive ring
   1850  */
   1851 
   1852 static void ti_rxeof(sc)
   1853 	struct ti_softc		*sc;
   1854 {
   1855 	struct ifnet		*ifp;
   1856 	struct ti_cmd_desc	cmd;
   1857 
   1858 	ifp = &sc->ethercom.ec_if;
   1859 
   1860 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
   1861 		struct ti_rx_desc	*cur_rx;
   1862 		u_int32_t		rxidx;
   1863 		struct mbuf		*m = NULL;
   1864 #if NVLAN > 0
   1865 		u_int16_t		vlan_tag = 0;
   1866 		int			have_tag = 0;
   1867 #endif
   1868 #ifdef TI_CSUM_OFFLOAD
   1869 		struct ip		*ip;
   1870 #endif
   1871 		bus_dmamap_t dmamap;
   1872 
   1873 		cur_rx =
   1874 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
   1875 		rxidx = cur_rx->ti_idx;
   1876 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
   1877 
   1878 #if NVLAN > 0
   1879 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
   1880 			have_tag = 1;
   1881 			vlan_tag = cur_rx->ti_vlan_tag;
   1882 		}
   1883 #endif
   1884 
   1885 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
   1886 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
   1887 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
   1888 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
   1889 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1890 				ifp->if_ierrors++;
   1891 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1892 				continue;
   1893 			}
   1894 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
   1895 			    == ENOBUFS) {
   1896 				ifp->if_ierrors++;
   1897 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1898 				continue;
   1899 			}
   1900 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
   1901 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
   1902 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
   1903 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
   1904 			dmamap = sc->mini_dmamap[rxidx];
   1905 			sc->mini_dmamap[rxidx] = 0;
   1906 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1907 				ifp->if_ierrors++;
   1908 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1909 				continue;
   1910 			}
   1911 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
   1912 			    == ENOBUFS) {
   1913 				ifp->if_ierrors++;
   1914 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1915 				continue;
   1916 			}
   1917 		} else {
   1918 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
   1919 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
   1920 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
   1921 			dmamap = sc->std_dmamap[rxidx];
   1922 			sc->std_dmamap[rxidx] = 0;
   1923 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1924 				ifp->if_ierrors++;
   1925 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1926 				continue;
   1927 			}
   1928 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
   1929 			    == ENOBUFS) {
   1930 				ifp->if_ierrors++;
   1931 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1932 				continue;
   1933 			}
   1934 		}
   1935 
   1936 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
   1937 		ifp->if_ipackets++;
   1938 		m->m_pkthdr.rcvif = ifp;
   1939 
   1940 #if NBPFILTER > 0
   1941 		/*
   1942 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
   1943 	 	 * don't pass it up to the ether_input() layer unless it's
   1944 	 	 * a broadcast packet, multicast packet, matches our ethernet
   1945 	 	 * address or the interface is in promiscuous mode.
   1946 	 	 */
   1947 		if (ifp->if_bpf)
   1948 			bpf_mtap(ifp->if_bpf, m);
   1949 #endif
   1950 
   1951 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
   1952 		ip = mtod(m, struct ip *);
   1953 		if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
   1954 		    !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
   1955 			m->m_flags |= M_HWCKSUM;
   1956 #endif
   1957 
   1958 #if NVLAN > 0 /* XXX NetBSD: broken because m points to ether pkt */
   1959 		/*
   1960 		 * If we received a packet with a vlan tag, pass it
   1961 		 * to vlan_input() instead of ether_input().
   1962 		 */
   1963 		if (have_tag) {
   1964 			vlan_input_tag(eh, m, vlan_tag);
   1965 			have_tag = vlan_tag = 0;
   1966 			continue;
   1967 		}
   1968 #endif
   1969 		(*ifp->if_input)(ifp, m);
   1970 	}
   1971 
   1972 	/* Only necessary on the Tigon 1. */
   1973 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1974 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
   1975 		    sc->ti_rx_saved_considx);
   1976 
   1977 	TI_UPDATE_STDPROD(sc, sc->ti_std);
   1978 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
   1979 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
   1980 
   1981 	return;
   1982 }
   1983 
   1984 static void ti_txeof(sc)
   1985 	struct ti_softc		*sc;
   1986 {
   1987 	struct ti_tx_desc	*cur_tx = NULL;
   1988 	struct ifnet		*ifp;
   1989 
   1990 	ifp = &sc->ethercom.ec_if;
   1991 
   1992 	/*
   1993 	 * Go through our tx ring and free mbufs for those
   1994 	 * frames that have been sent.
   1995 	 */
   1996 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   1997 		u_int32_t		idx = 0;
   1998 
   1999 		idx = sc->ti_tx_saved_considx;
   2000 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2001 			if (idx > 383)
   2002 				CSR_WRITE_4(sc, TI_WINBASE,
   2003 				    TI_TX_RING_BASE + 6144);
   2004 			else if (idx > 255)
   2005 				CSR_WRITE_4(sc, TI_WINBASE,
   2006 				    TI_TX_RING_BASE + 4096);
   2007 			else if (idx > 127)
   2008 				CSR_WRITE_4(sc, TI_WINBASE,
   2009 				    TI_TX_RING_BASE + 2048);
   2010 			else
   2011 				CSR_WRITE_4(sc, TI_WINBASE,
   2012 				    TI_TX_RING_BASE);
   2013 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
   2014 		} else
   2015 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
   2016 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2017 			ifp->if_opackets++;
   2018 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2019 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2020 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2021 
   2022 			/* if (sc->txdma[idx] == 0) panic() */
   2023 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
   2024 					    link);
   2025 			sc->txdma[idx] = 0;
   2026 		}
   2027 		sc->ti_txcnt--;
   2028 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2029 		ifp->if_timer = 0;
   2030 	}
   2031 
   2032 	if (cur_tx != NULL)
   2033 		ifp->if_flags &= ~IFF_OACTIVE;
   2034 
   2035 	return;
   2036 }
   2037 
   2038 static int ti_intr(xsc)
   2039 	void			*xsc;
   2040 {
   2041 	struct ti_softc		*sc;
   2042 	struct ifnet		*ifp;
   2043 
   2044 	sc = xsc;
   2045 	ifp = &sc->ethercom.ec_if;
   2046 
   2047 #ifdef notdef
   2048 	/* Avoid this for now -- checking this register is expensive. */
   2049 	/* Make sure this is really our interrupt. */
   2050 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
   2051 		return (0);
   2052 #endif
   2053 
   2054 	/* Ack interrupt and stop others from occuring. */
   2055 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2056 
   2057 	if (ifp->if_flags & IFF_RUNNING) {
   2058 		/* Check RX return ring producer/consumer */
   2059 		ti_rxeof(sc);
   2060 
   2061 		/* Check TX ring producer/consumer */
   2062 		ti_txeof(sc);
   2063 	}
   2064 
   2065 	ti_handle_events(sc);
   2066 
   2067 	/* Re-enable interrupts. */
   2068 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2069 
   2070 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
   2071 		ti_start(ifp);
   2072 
   2073 	return (1);
   2074 }
   2075 
   2076 static void ti_stats_update(sc)
   2077 	struct ti_softc		*sc;
   2078 {
   2079 	struct ifnet		*ifp;
   2080 
   2081 	ifp = &sc->ethercom.ec_if;
   2082 
   2083 	ifp->if_collisions +=
   2084 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
   2085 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
   2086 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
   2087 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
   2088 	   ifp->if_collisions;
   2089 
   2090 	return;
   2091 }
   2092 
   2093 /*
   2094  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2095  * pointers to descriptors.
   2096  */
   2097 static int ti_encap(sc, m_head, txidx)
   2098 	struct ti_softc		*sc;
   2099 	struct mbuf		*m_head;
   2100 	u_int32_t		*txidx;
   2101 {
   2102 	struct ti_tx_desc	*f = NULL;
   2103 	u_int32_t		frag, cur, cnt = 0;
   2104 	struct txdmamap_pool_entry *dma;
   2105 	bus_dmamap_t dmamap;
   2106 	int error, i;
   2107 #if NVLAN > 0
   2108 	struct ifvlan		*ifv = NULL;
   2109 
   2110 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
   2111 	    m_head->m_pkthdr.rcvif != NULL &&
   2112 	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
   2113 		ifv = m_head->m_pkthdr.rcvif->if_softc;
   2114 #endif
   2115 
   2116 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2117 	if (dma == NULL) {
   2118 		return ENOMEM;
   2119 	}
   2120 	dmamap = dma->dmamap;
   2121 
   2122 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
   2123 	if (error) {
   2124 		struct mbuf *m;
   2125 		int i = 0;
   2126 		for (m = m_head; m; m = m->m_next)
   2127 			i++;
   2128 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2129 		       "error %d\n", m_head->m_pkthdr.len, i, error);
   2130 		return (ENOMEM);
   2131 	}
   2132 
   2133 	cur = frag = *txidx;
   2134 
   2135 	/*
   2136  	 * Start packing the mbufs in this chain into
   2137 	 * the fragment pointers. Stop when we run out
   2138  	 * of fragments or hit the end of the mbuf chain.
   2139 	 */
   2140 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2141 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2142 				if (frag > 383)
   2143 					CSR_WRITE_4(sc, TI_WINBASE,
   2144 					    TI_TX_RING_BASE + 6144);
   2145 				else if (frag > 255)
   2146 					CSR_WRITE_4(sc, TI_WINBASE,
   2147 					    TI_TX_RING_BASE + 4096);
   2148 				else if (frag > 127)
   2149 					CSR_WRITE_4(sc, TI_WINBASE,
   2150 					    TI_TX_RING_BASE + 2048);
   2151 				else
   2152 					CSR_WRITE_4(sc, TI_WINBASE,
   2153 					    TI_TX_RING_BASE);
   2154 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
   2155 			} else
   2156 				f = &sc->ti_rdata->ti_tx_ring[frag];
   2157 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2158 				break;
   2159 			TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2160 			f->ti_len = dmamap->dm_segs[i].ds_len;
   2161 			f->ti_flags = 0;
   2162 #if NVLAN > 0
   2163 			if (ifv != NULL) {
   2164 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2165 				f->ti_vlan_tag = ifv->ifv_tag;
   2166 			} else {
   2167 				f->ti_vlan_tag = 0;
   2168 			}
   2169 #endif
   2170 			/*
   2171 			 * Sanity check: avoid coming within 16 descriptors
   2172 			 * of the end of the ring.
   2173 			 */
   2174 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2175 				return(ENOBUFS);
   2176 			cur = frag;
   2177 			TI_INC(frag, TI_TX_RING_CNT);
   2178 			cnt++;
   2179 	}
   2180 
   2181 	if (i < dmamap->dm_nsegs)
   2182 		return(ENOBUFS);
   2183 
   2184 	if (frag == sc->ti_tx_saved_considx)
   2185 		return(ENOBUFS);
   2186 
   2187 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   2188 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
   2189 		    TI_BDFLAG_END;
   2190 	else
   2191 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
   2192 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2193 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
   2194 	sc->txdma[cur] = dma;
   2195 	sc->ti_txcnt += cnt;
   2196 
   2197 	*txidx = frag;
   2198 
   2199 	return(0);
   2200 }
   2201 
   2202 /*
   2203  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2204  * to the mbuf data regions directly in the transmit descriptors.
   2205  */
   2206 static void ti_start(ifp)
   2207 	struct ifnet		*ifp;
   2208 {
   2209 	struct ti_softc		*sc;
   2210 	struct mbuf		*m_head = NULL;
   2211 	u_int32_t		prodidx = 0;
   2212 
   2213 	sc = ifp->if_softc;
   2214 
   2215 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
   2216 
   2217 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
   2218 		IF_DEQUEUE(&ifp->if_snd, m_head);
   2219 		if (m_head == NULL)
   2220 			break;
   2221 
   2222 		/*
   2223 		 * Pack the data into the transmit ring. If we
   2224 		 * don't have room, set the OACTIVE flag and wait
   2225 		 * for the NIC to drain the ring.
   2226 		 */
   2227 		if (ti_encap(sc, m_head, &prodidx)) {
   2228 			IF_PREPEND(&ifp->if_snd, m_head);
   2229 			ifp->if_flags |= IFF_OACTIVE;
   2230 			break;
   2231 		}
   2232 
   2233 		/*
   2234 		 * If there's a BPF listener, bounce a copy of this frame
   2235 		 * to him.
   2236 		 */
   2237 #if NBPFILTER > 0
   2238 		if (ifp->if_bpf)
   2239 			bpf_mtap(ifp->if_bpf, m_head);
   2240 #endif
   2241 	}
   2242 
   2243 	/* Transmit */
   2244 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
   2245 
   2246 	/*
   2247 	 * Set a timeout in case the chip goes out to lunch.
   2248 	 */
   2249 	ifp->if_timer = 5;
   2250 
   2251 	return;
   2252 }
   2253 
   2254 static void ti_init(xsc)
   2255 	void			*xsc;
   2256 {
   2257 	struct ti_softc		*sc = xsc;
   2258         int			s;
   2259 
   2260 	s = splimp();
   2261 
   2262 	/* Cancel pending I/O and flush buffers. */
   2263 	ti_stop(sc);
   2264 
   2265 	/* Init the gen info block, ring control blocks and firmware. */
   2266 	if (ti_gibinit(sc)) {
   2267 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
   2268 		splx(s);
   2269 		return;
   2270 	}
   2271 
   2272 	splx(s);
   2273 
   2274 	return;
   2275 }
   2276 
   2277 static void ti_init2(sc)
   2278 	struct ti_softc		*sc;
   2279 {
   2280 	struct ti_cmd_desc	cmd;
   2281 	struct ifnet		*ifp;
   2282 	u_int8_t		*m;
   2283 	struct ifmedia		*ifm;
   2284 	int			tmp;
   2285 
   2286 	ifp = &sc->ethercom.ec_if;
   2287 
   2288 	/* Specify MTU and interface index. */
   2289 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
   2290 	if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) &&
   2291 	    ifp->if_mtu < ETHERMTU + ETHER_VLAN_ENCAP_LEN)
   2292 		CSR_WRITE_4(sc, TI_GCR_IFMTU, ETHER_MAX_LEN +
   2293 		    ETHER_VLAN_ENCAP_LEN);
   2294 	else
   2295 		CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
   2296 		    ETHER_HDR_LEN + ETHER_CRC_LEN);
   2297 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
   2298 
   2299 	/* Load our MAC address. */
   2300 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
   2301 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
   2302 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
   2303 		    | (m[4] << 8) | m[5]);
   2304 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
   2305 
   2306 	/* Enable or disable promiscuous mode as needed. */
   2307 	if (ifp->if_flags & IFF_PROMISC) {
   2308 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
   2309 	} else {
   2310 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
   2311 	}
   2312 
   2313 	/* Program multicast filter. */
   2314 	ti_setmulti(sc);
   2315 
   2316 	/*
   2317 	 * If this is a Tigon 1, we should tell the
   2318 	 * firmware to use software packet filtering.
   2319 	 */
   2320 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2321 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
   2322 	}
   2323 
   2324 	/* Init RX ring. */
   2325 	ti_init_rx_ring_std(sc);
   2326 
   2327 	/* Init jumbo RX ring. */
   2328 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
   2329 		ti_init_rx_ring_jumbo(sc);
   2330 
   2331 	/*
   2332 	 * If this is a Tigon 2, we can also configure the
   2333 	 * mini ring.
   2334 	 */
   2335 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
   2336 		ti_init_rx_ring_mini(sc);
   2337 
   2338 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
   2339 	sc->ti_rx_saved_considx = 0;
   2340 
   2341 	/* Init TX ring. */
   2342 	ti_init_tx_ring(sc);
   2343 
   2344 	/* Tell firmware we're alive. */
   2345 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
   2346 
   2347 	/* Enable host interrupts. */
   2348 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2349 
   2350 	ifp->if_flags |= IFF_RUNNING;
   2351 	ifp->if_flags &= ~IFF_OACTIVE;
   2352 
   2353 	/*
   2354 	 * Make sure to set media properly. We have to do this
   2355 	 * here since we have to issue commands in order to set
   2356 	 * the link negotiation and we can't issue commands until
   2357 	 * the firmware is running.
   2358 	 */
   2359 	ifm = &sc->ifmedia;
   2360 	tmp = ifm->ifm_media;
   2361 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
   2362 	ti_ifmedia_upd(ifp);
   2363 	ifm->ifm_media = tmp;
   2364 
   2365 	return;
   2366 }
   2367 
   2368 /*
   2369  * Set media options.
   2370  */
   2371 static int ti_ifmedia_upd(ifp)
   2372 	struct ifnet		*ifp;
   2373 {
   2374 	struct ti_softc		*sc;
   2375 	struct ifmedia		*ifm;
   2376 	struct ti_cmd_desc	cmd;
   2377 
   2378 	sc = ifp->if_softc;
   2379 	ifm = &sc->ifmedia;
   2380 
   2381 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2382 		return(EINVAL);
   2383 
   2384 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2385 	case IFM_AUTO:
   2386 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
   2387 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
   2388 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
   2389 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
   2390 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
   2391 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
   2392 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2393 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
   2394 		break;
   2395 	case IFM_1000_SX:
   2396 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
   2397 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2398 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
   2399 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2400 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
   2401 		break;
   2402 	case IFM_100_FX:
   2403 	case IFM_10_FL:
   2404 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
   2405 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
   2406 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
   2407 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
   2408 		} else {
   2409 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
   2410 		}
   2411 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2412 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
   2413 		} else {
   2414 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
   2415 		}
   2416 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2417 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
   2418 		break;
   2419 	}
   2420 
   2421 	sc->ethercom.ec_if.if_baudrate =
   2422 	    ifmedia_baudrate(ifm->ifm_media);
   2423 
   2424 	return(0);
   2425 }
   2426 
   2427 /*
   2428  * Report current media status.
   2429  */
   2430 static void ti_ifmedia_sts(ifp, ifmr)
   2431 	struct ifnet		*ifp;
   2432 	struct ifmediareq	*ifmr;
   2433 {
   2434 	struct ti_softc		*sc;
   2435 
   2436 	sc = ifp->if_softc;
   2437 
   2438 	ifmr->ifm_status = IFM_AVALID;
   2439 	ifmr->ifm_active = IFM_ETHER;
   2440 
   2441 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
   2442 		return;
   2443 
   2444 	ifmr->ifm_status |= IFM_ACTIVE;
   2445 
   2446 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
   2447 		ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
   2448 	else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
   2449 		u_int32_t		media;
   2450 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
   2451 		if (media & TI_LNK_100MB)
   2452 			ifmr->ifm_active |= IFM_100_FX;
   2453 		if (media & TI_LNK_10MB)
   2454 			ifmr->ifm_active |= IFM_10_FL;
   2455 		if (media & TI_LNK_FULL_DUPLEX)
   2456 			ifmr->ifm_active |= IFM_FDX;
   2457 		if (media & TI_LNK_HALF_DUPLEX)
   2458 			ifmr->ifm_active |= IFM_HDX;
   2459 	}
   2460 
   2461 	sc->ethercom.ec_if.if_baudrate =
   2462 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
   2463 
   2464 	return;
   2465 }
   2466 
   2467 static int
   2468 ti_ether_ioctl(ifp, cmd, data)
   2469 	struct ifnet *ifp;
   2470 	u_long cmd;
   2471 	caddr_t data;
   2472 {
   2473 	struct ifaddr *ifa = (struct ifaddr *) data;
   2474 	struct ti_softc *sc = ifp->if_softc;
   2475 
   2476 	switch (cmd) {
   2477 	case SIOCSIFADDR:
   2478 		ifp->if_flags |= IFF_UP;
   2479 
   2480 		switch (ifa->ifa_addr->sa_family) {
   2481 #ifdef INET
   2482 		case AF_INET:
   2483 			ti_init(sc);
   2484 			arp_ifinit(ifp, ifa);
   2485 			break;
   2486 #endif
   2487 #ifdef NS
   2488 		case AF_NS:
   2489 		    {
   2490 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   2491 
   2492 			 if (ns_nullhost(*ina))
   2493 				ina->x_host = *(union ns_host *)
   2494 				    LLADDR(ifp->if_sadl);
   2495 			 else
   2496 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   2497 				    ifp->if_addrlen);
   2498 			 /* Set new address. */
   2499 			 ti_init(sc);
   2500 			 break;
   2501 		    }
   2502 #endif
   2503 		default:
   2504 			ti_init(sc);
   2505 			break;
   2506 		}
   2507 		break;
   2508 
   2509 	default:
   2510 		return (EINVAL);
   2511 	}
   2512 
   2513 	return (0);
   2514 }
   2515 
   2516 static int ti_ioctl(ifp, command, data)
   2517 	struct ifnet		*ifp;
   2518 	u_long			command;
   2519 	caddr_t			data;
   2520 {
   2521 	struct ti_softc		*sc = ifp->if_softc;
   2522 	struct ifreq		*ifr = (struct ifreq *) data;
   2523 	int			s, error = 0;
   2524 	struct ti_cmd_desc	cmd;
   2525 
   2526 	s = splimp();
   2527 
   2528 	switch(command) {
   2529 	case SIOCSIFADDR:
   2530 	case SIOCGIFADDR:
   2531 		error = ti_ether_ioctl(ifp, command, data);
   2532 		break;
   2533 	case SIOCSIFMTU:
   2534 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
   2535 			error = EINVAL;
   2536 		else {
   2537 			ifp->if_mtu = ifr->ifr_mtu;
   2538 			ti_init(sc);
   2539 		}
   2540 		break;
   2541 	case SIOCSIFFLAGS:
   2542 		if (ifp->if_flags & IFF_UP) {
   2543 			/*
   2544 			 * If only the state of the PROMISC flag changed,
   2545 			 * then just use the 'set promisc mode' command
   2546 			 * instead of reinitializing the entire NIC. Doing
   2547 			 * a full re-init means reloading the firmware and
   2548 			 * waiting for it to start up, which may take a
   2549 			 * second or two.
   2550 			 */
   2551 			if (ifp->if_flags & IFF_RUNNING &&
   2552 			    ifp->if_flags & IFF_PROMISC &&
   2553 			    !(sc->ti_if_flags & IFF_PROMISC)) {
   2554 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2555 				    TI_CMD_CODE_PROMISC_ENB, 0);
   2556 			} else if (ifp->if_flags & IFF_RUNNING &&
   2557 			    !(ifp->if_flags & IFF_PROMISC) &&
   2558 			    sc->ti_if_flags & IFF_PROMISC) {
   2559 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2560 				    TI_CMD_CODE_PROMISC_DIS, 0);
   2561 			} else
   2562 				ti_init(sc);
   2563 		} else {
   2564 			if (ifp->if_flags & IFF_RUNNING) {
   2565 				ti_stop(sc);
   2566 			}
   2567 		}
   2568 		sc->ti_if_flags = ifp->if_flags;
   2569 		error = 0;
   2570 		break;
   2571 	case SIOCADDMULTI:
   2572 	case SIOCDELMULTI:
   2573 		if (command == SIOCADDMULTI)
   2574 			ether_addmulti(ifr, &sc->ethercom);
   2575 		else
   2576 			ether_delmulti(ifr, &sc->ethercom);
   2577 		if (ifp->if_flags & IFF_RUNNING) {
   2578 			ti_setmulti(sc);
   2579 			error = 0;
   2580 		}
   2581 		break;
   2582 	case SIOCSIFMEDIA:
   2583 	case SIOCGIFMEDIA:
   2584 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
   2585 		break;
   2586 	default:
   2587 		error = EINVAL;
   2588 		break;
   2589 	}
   2590 
   2591 	(void)splx(s);
   2592 
   2593 	return(error);
   2594 }
   2595 
   2596 static void ti_watchdog(ifp)
   2597 	struct ifnet		*ifp;
   2598 {
   2599 	struct ti_softc		*sc;
   2600 
   2601 	sc = ifp->if_softc;
   2602 
   2603 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
   2604 	ti_stop(sc);
   2605 	ti_init(sc);
   2606 
   2607 	ifp->if_oerrors++;
   2608 
   2609 	return;
   2610 }
   2611 
   2612 /*
   2613  * Stop the adapter and free any mbufs allocated to the
   2614  * RX and TX lists.
   2615  */
   2616 static void ti_stop(sc)
   2617 	struct ti_softc		*sc;
   2618 {
   2619 	struct ifnet		*ifp;
   2620 	struct ti_cmd_desc	cmd;
   2621 
   2622 	ifp = &sc->ethercom.ec_if;
   2623 
   2624 	/* Disable host interrupts. */
   2625 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2626 	/*
   2627 	 * Tell firmware we're shutting down.
   2628 	 */
   2629 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
   2630 
   2631 	/* Halt and reinitialize. */
   2632 	ti_chipinit(sc);
   2633 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
   2634 	ti_chipinit(sc);
   2635 
   2636 	/* Free the RX lists. */
   2637 	ti_free_rx_ring_std(sc);
   2638 
   2639 	/* Free jumbo RX list. */
   2640 	ti_free_rx_ring_jumbo(sc);
   2641 
   2642 	/* Free mini RX list. */
   2643 	ti_free_rx_ring_mini(sc);
   2644 
   2645 	/* Free TX buffers. */
   2646 	ti_free_tx_ring(sc);
   2647 
   2648 	sc->ti_ev_prodidx.ti_idx = 0;
   2649 	sc->ti_return_prodidx.ti_idx = 0;
   2650 	sc->ti_tx_considx.ti_idx = 0;
   2651 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
   2652 
   2653 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2654 
   2655 	return;
   2656 }
   2657 
   2658 /*
   2659  * Stop all chip I/O so that the kernel's probe routines don't
   2660  * get confused by errant DMAs when rebooting.
   2661  */
   2662 static void ti_shutdown(v)
   2663 	void *v;
   2664 {
   2665 	struct ti_softc		*sc = v;
   2666 
   2667 	ti_chipinit(sc);
   2668 
   2669 	return;
   2670 }
   2671