if_ti.c revision 1.17 1 /* $NetBSD: if_ti.c,v 1.17 2000/12/28 22:59:13 sommerfeld Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #endif
114
115 #ifdef NS
116 #include <netns/ns.h>
117 #include <netns/ns_if.h>
118 #endif
119
120 #include <machine/bus.h>
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_tireg.h>
127 #include <dev/pci/ti_fw.h>
128 #include <dev/pci/ti_fw2.h>
129
130 #ifdef M_HWCKSUM
131 /*#define TI_CSUM_OFFLOAD*/
132 #endif
133
134 /*
135 * Various supported device vendors/types and their names.
136 */
137
138 static struct ti_type ti_devs[] = {
139 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
140 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
142 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
143 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
144 "3Com 3c985-SX Gigabit Ethernet" },
145 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
146 "Netgear GA620 1000baseSX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
148 "Netgear GA620 1000baseT Gigabit Ethernet" },
149 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
150 "Silicon Graphics Gigabit Ethernet" },
151 { 0, 0, NULL }
152 };
153
154 static struct ti_type *ti_type_match __P((struct pci_attach_args *));
155 static int ti_probe __P((struct device *, struct cfdata *, void *));
156 static void ti_attach __P((struct device *, struct device *, void *));
157 static void ti_shutdown __P((void *));
158 static void ti_txeof __P((struct ti_softc *));
159 static void ti_rxeof __P((struct ti_softc *));
160
161 static void ti_stats_update __P((struct ti_softc *));
162 static int ti_encap __P((struct ti_softc *, struct mbuf *,
163 u_int32_t *));
164
165 static int ti_intr __P((void *));
166 static void ti_start __P((struct ifnet *));
167 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
168 static void ti_init __P((void *));
169 static void ti_init2 __P((struct ti_softc *));
170 static void ti_stop __P((struct ti_softc *));
171 static void ti_watchdog __P((struct ifnet *));
172 static int ti_ifmedia_upd __P((struct ifnet *));
173 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
174
175 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
176 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
177 int, u_int8_t *));
178 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
179
180 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
181 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
182 static void ti_setmulti __P((struct ti_softc *));
183
184 static void ti_mem __P((struct ti_softc *, u_int32_t,
185 u_int32_t, caddr_t));
186 static void ti_loadfw __P((struct ti_softc *));
187 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
188 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
189 caddr_t, int));
190 static void ti_handle_events __P((struct ti_softc *));
191 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
192 static void *ti_jalloc __P((struct ti_softc *));
193 static void ti_jfree __P((caddr_t, u_int, void *));
194 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
195 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
196 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
197 static int ti_init_rx_ring_std __P((struct ti_softc *));
198 static void ti_free_rx_ring_std __P((struct ti_softc *));
199 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
200 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
201 static int ti_init_rx_ring_mini __P((struct ti_softc *));
202 static void ti_free_rx_ring_mini __P((struct ti_softc *));
203 static void ti_free_tx_ring __P((struct ti_softc *));
204 static int ti_init_tx_ring __P((struct ti_softc *));
205
206 static int ti_64bitslot_war __P((struct ti_softc *));
207 static int ti_chipinit __P((struct ti_softc *));
208 static int ti_gibinit __P((struct ti_softc *));
209
210 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
211
212 struct cfattach ti_ca = {
213 sizeof(struct ti_softc), ti_probe, ti_attach
214 };
215
216 /*
217 * Send an instruction or address to the EEPROM, check for ACK.
218 */
219 static u_int32_t ti_eeprom_putbyte(sc, byte)
220 struct ti_softc *sc;
221 int byte;
222 {
223 int i, ack = 0;
224
225 /*
226 * Make sure we're in TX mode.
227 */
228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
229
230 /*
231 * Feed in each bit and stobe the clock.
232 */
233 for (i = 0x80; i; i >>= 1) {
234 if (byte & i) {
235 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
236 } else {
237 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
238 }
239 DELAY(1);
240 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
241 DELAY(1);
242 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
243 }
244
245 /*
246 * Turn off TX mode.
247 */
248 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
249
250 /*
251 * Check for ack.
252 */
253 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
255 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256
257 return(ack);
258 }
259
260 /*
261 * Read a byte of data stored in the EEPROM at address 'addr.'
262 * We have to send two address bytes since the EEPROM can hold
263 * more than 256 bytes of data.
264 */
265 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
266 struct ti_softc *sc;
267 int addr;
268 u_int8_t *dest;
269 {
270 int i;
271 u_int8_t byte = 0;
272
273 EEPROM_START;
274
275 /*
276 * Send write control code to EEPROM.
277 */
278 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
279 printf("%s: failed to send write command, status: %x\n",
280 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
281 return(1);
282 }
283
284 /*
285 * Send first byte of address of byte we want to read.
286 */
287 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
288 printf("%s: failed to send address, status: %x\n",
289 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
290 return(1);
291 }
292 /*
293 * Send second byte address of byte we want to read.
294 */
295 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
296 printf("%s: failed to send address, status: %x\n",
297 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 return(1);
299 }
300
301 EEPROM_STOP;
302 EEPROM_START;
303 /*
304 * Send read control code to EEPROM.
305 */
306 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
307 printf("%s: failed to send read command, status: %x\n",
308 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
309 return(1);
310 }
311
312 /*
313 * Start reading bits from EEPROM.
314 */
315 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
316 for (i = 0x80; i; i >>= 1) {
317 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 DELAY(1);
319 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
320 byte |= i;
321 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 DELAY(1);
323 }
324
325 EEPROM_STOP;
326
327 /*
328 * No ACK generated for read, so just return byte.
329 */
330
331 *dest = byte;
332
333 return(0);
334 }
335
336 /*
337 * Read a sequence of bytes from the EEPROM.
338 */
339 static int ti_read_eeprom(sc, dest, off, cnt)
340 struct ti_softc *sc;
341 caddr_t dest;
342 int off;
343 int cnt;
344 {
345 int err = 0, i;
346 u_int8_t byte = 0;
347
348 for (i = 0; i < cnt; i++) {
349 err = ti_eeprom_getbyte(sc, off + i, &byte);
350 if (err)
351 break;
352 *(dest + i) = byte;
353 }
354
355 return(err ? 1 : 0);
356 }
357
358 /*
359 * NIC memory access function. Can be used to either clear a section
360 * of NIC local memory or (if buf is non-NULL) copy data into it.
361 */
362 static void ti_mem(sc, addr, len, buf)
363 struct ti_softc *sc;
364 u_int32_t addr, len;
365 caddr_t buf;
366 {
367 int segptr, segsize, cnt;
368 caddr_t ptr;
369
370 segptr = addr;
371 cnt = len;
372 ptr = buf;
373
374 while(cnt) {
375 if (cnt < TI_WINLEN)
376 segsize = cnt;
377 else
378 segsize = TI_WINLEN - (segptr % TI_WINLEN);
379 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
380 if (buf == NULL) {
381 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
382 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
383 segsize / 4);
384 } else {
385 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
387 (u_int32_t *)ptr, segsize / 4);
388 ptr += segsize;
389 }
390 segptr += segsize;
391 cnt -= segsize;
392 }
393
394 return;
395 }
396
397 /*
398 * Load firmware image into the NIC. Check that the firmware revision
399 * is acceptable and see if we want the firmware for the Tigon 1 or
400 * Tigon 2.
401 */
402 static void ti_loadfw(sc)
403 struct ti_softc *sc;
404 {
405 switch(sc->ti_hwrev) {
406 case TI_HWREV_TIGON:
407 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
408 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
409 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
410 printf("%s: firmware revision mismatch; want "
411 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
412 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
413 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
414 tigonFwReleaseMinor, tigonFwReleaseFix);
415 return;
416 }
417 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
418 (caddr_t)tigonFwText);
419 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
420 (caddr_t)tigonFwData);
421 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
422 (caddr_t)tigonFwRodata);
423 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
424 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
425 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
426 break;
427 case TI_HWREV_TIGON_II:
428 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
429 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
430 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
431 printf("%s: firmware revision mismatch; want "
432 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
433 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
434 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
435 tigon2FwReleaseMinor, tigon2FwReleaseFix);
436 return;
437 }
438 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
439 (caddr_t)tigon2FwText);
440 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
441 (caddr_t)tigon2FwData);
442 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
443 (caddr_t)tigon2FwRodata);
444 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
445 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
446 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
447 break;
448 default:
449 printf("%s: can't load firmware: unknown hardware rev\n",
450 sc->sc_dev.dv_xname);
451 break;
452 }
453
454 return;
455 }
456
457 /*
458 * Send the NIC a command via the command ring.
459 */
460 static void ti_cmd(sc, cmd)
461 struct ti_softc *sc;
462 struct ti_cmd_desc *cmd;
463 {
464 u_int32_t index;
465
466 index = sc->ti_cmd_saved_prodidx;
467 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
468 TI_INC(index, TI_CMD_RING_CNT);
469 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
470 sc->ti_cmd_saved_prodidx = index;
471
472 return;
473 }
474
475 /*
476 * Send the NIC an extended command. The 'len' parameter specifies the
477 * number of command slots to include after the initial command.
478 */
479 static void ti_cmd_ext(sc, cmd, arg, len)
480 struct ti_softc *sc;
481 struct ti_cmd_desc *cmd;
482 caddr_t arg;
483 int len;
484 {
485 u_int32_t index;
486 int i;
487
488 index = sc->ti_cmd_saved_prodidx;
489 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
490 TI_INC(index, TI_CMD_RING_CNT);
491 for (i = 0; i < len; i++) {
492 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
493 *(u_int32_t *)(&arg[i * 4]));
494 TI_INC(index, TI_CMD_RING_CNT);
495 }
496 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
497 sc->ti_cmd_saved_prodidx = index;
498
499 return;
500 }
501
502 /*
503 * Handle events that have triggered interrupts.
504 */
505 static void ti_handle_events(sc)
506 struct ti_softc *sc;
507 {
508 struct ti_event_desc *e;
509
510 if (sc->ti_rdata->ti_event_ring == NULL)
511 return;
512
513 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
514 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
515 switch(e->ti_event) {
516 case TI_EV_LINKSTAT_CHANGED:
517 sc->ti_linkstat = e->ti_code;
518 if (e->ti_code == TI_EV_CODE_LINK_UP)
519 printf("%s: 10/100 link up\n",
520 sc->sc_dev.dv_xname);
521 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
522 printf("%s: gigabit link up\n",
523 sc->sc_dev.dv_xname);
524 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
525 printf("%s: link down\n",
526 sc->sc_dev.dv_xname);
527 break;
528 case TI_EV_ERROR:
529 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
530 printf("%s: invalid command\n",
531 sc->sc_dev.dv_xname);
532 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
533 printf("%s: unknown command\n",
534 sc->sc_dev.dv_xname);
535 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
536 printf("%s: bad config data\n",
537 sc->sc_dev.dv_xname);
538 break;
539 case TI_EV_FIRMWARE_UP:
540 ti_init2(sc);
541 break;
542 case TI_EV_STATS_UPDATED:
543 ti_stats_update(sc);
544 break;
545 case TI_EV_RESET_JUMBO_RING:
546 case TI_EV_MCAST_UPDATED:
547 /* Who cares. */
548 break;
549 default:
550 printf("%s: unknown event: %d\n",
551 sc->sc_dev.dv_xname, e->ti_event);
552 break;
553 }
554 /* Advance the consumer index. */
555 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
556 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
557 }
558
559 return;
560 }
561
562 /*
563 * Memory management for the jumbo receive ring is a pain in the
564 * butt. We need to allocate at least 9018 bytes of space per frame,
565 * _and_ it has to be contiguous (unless you use the extended
566 * jumbo descriptor format). Using malloc() all the time won't
567 * work: malloc() allocates memory in powers of two, which means we
568 * would end up wasting a considerable amount of space by allocating
569 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
570 * to do our own memory management.
571 *
572 * The driver needs to allocate a contiguous chunk of memory at boot
573 * time. We then chop this up ourselves into 9K pieces and use them
574 * as external mbuf storage.
575 *
576 * One issue here is how much memory to allocate. The jumbo ring has
577 * 256 slots in it, but at 9K per slot than can consume over 2MB of
578 * RAM. This is a bit much, especially considering we also need
579 * RAM for the standard ring and mini ring (on the Tigon 2). To
580 * save space, we only actually allocate enough memory for 64 slots
581 * by default, which works out to between 500 and 600K. This can
582 * be tuned by changing a #define in if_tireg.h.
583 */
584
585 static int ti_alloc_jumbo_mem(sc)
586 struct ti_softc *sc;
587 {
588 caddr_t ptr;
589 int i;
590 struct ti_jpool_entry *entry;
591 bus_dma_segment_t dmaseg;
592 int error, dmanseg;
593
594 /* Grab a big chunk o' storage. */
595 if ((error = bus_dmamem_alloc(sc->sc_dmat,
596 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
597 BUS_DMA_NOWAIT)) != 0) {
598 printf("%s: can't allocate jumbo buffer, error = %d\n",
599 sc->sc_dev.dv_xname, error);
600 return (error);
601 }
602
603 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
604 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
605 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
606 printf("%s: can't map jumbo buffer, error = %d\n",
607 sc->sc_dev.dv_xname, error);
608 return (error);
609 }
610
611 if ((error = bus_dmamap_create(sc->sc_dmat,
612 TI_JMEM, 1,
613 TI_JMEM, 0, BUS_DMA_NOWAIT,
614 &sc->jumbo_dmamap)) != 0) {
615 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
616 sc->sc_dev.dv_xname, error);
617 return (error);
618 }
619
620 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
621 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
622 BUS_DMA_NOWAIT)) != 0) {
623 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
624 sc->sc_dev.dv_xname, error);
625 return (error);
626 }
627 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
628
629 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
630 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
631
632 /*
633 * Now divide it up into 9K pieces and save the addresses
634 * in an array.
635 */
636 ptr = sc->ti_cdata.ti_jumbo_buf;
637 for (i = 0; i < TI_JSLOTS; i++) {
638 sc->ti_cdata.ti_jslots[i] = ptr;
639 ptr += TI_JLEN;
640 entry = malloc(sizeof(struct ti_jpool_entry),
641 M_DEVBUF, M_NOWAIT);
642 if (entry == NULL) {
643 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
644 sc->ti_cdata.ti_jumbo_buf = NULL;
645 printf("%s: no memory for jumbo "
646 "buffer queue!\n", sc->sc_dev.dv_xname);
647 return(ENOBUFS);
648 }
649 entry->slot = i;
650 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
651 jpool_entries);
652 }
653
654 return(0);
655 }
656
657 /*
658 * Allocate a jumbo buffer.
659 */
660 static void *ti_jalloc(sc)
661 struct ti_softc *sc;
662 {
663 struct ti_jpool_entry *entry;
664
665 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
666
667 if (entry == NULL) {
668 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
669 return(NULL);
670 }
671
672 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
673 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
674 return(sc->ti_cdata.ti_jslots[entry->slot]);
675 }
676
677 /*
678 * Release a jumbo buffer.
679 */
680 static void ti_jfree(buf, size, arg)
681 caddr_t buf;
682 u_int size;
683 void *arg;
684 {
685 struct ti_softc *sc;
686 int i;
687 struct ti_jpool_entry *entry;
688
689 /* Extract the softc struct pointer. */
690 sc = (struct ti_softc *)arg;
691
692 if (sc == NULL)
693 panic("ti_jfree: didn't get softc pointer!");
694
695 /* calculate the slot this buffer belongs to */
696
697 i = ((caddr_t)buf
698 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
699
700 if ((i < 0) || (i >= TI_JSLOTS))
701 panic("ti_jfree: asked to free buffer that we don't manage!");
702 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
703 if (entry == NULL)
704 panic("ti_jfree: buffer not in use!");
705 entry->slot = i;
706 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
707 entry, jpool_entries);
708 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
709 entry, jpool_entries);
710
711 return;
712 }
713
714
715 /*
716 * Intialize a standard receive ring descriptor.
717 */
718 static int ti_newbuf_std(sc, i, m, dmamap)
719 struct ti_softc *sc;
720 int i;
721 struct mbuf *m;
722 bus_dmamap_t dmamap; /* required if (m != NULL) */
723 {
724 struct mbuf *m_new = NULL;
725 struct ti_rx_desc *r;
726 int error;
727
728 if (dmamap == NULL) {
729 /* if (m) panic() */
730
731 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
732 MCLBYTES, 0, BUS_DMA_NOWAIT,
733 &dmamap)) != 0) {
734 printf("%s: can't create recv map, error = %d\n",
735 sc->sc_dev.dv_xname, error);
736 return(ENOMEM);
737 }
738 }
739 sc->std_dmamap[i] = dmamap;
740
741 if (m == NULL) {
742 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 if (m_new == NULL) {
744 printf("%s: mbuf allocation failed "
745 "-- packet dropped!\n", sc->sc_dev.dv_xname);
746 return(ENOBUFS);
747 }
748
749 MCLGET(m_new, M_DONTWAIT);
750 if (!(m_new->m_flags & M_EXT)) {
751 printf("%s: cluster allocation failed "
752 "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 m_freem(m_new);
754 return(ENOBUFS);
755 }
756 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
757 m_adj(m_new, ETHER_ALIGN);
758
759 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
760 mtod(m_new, caddr_t), m_new->m_len, NULL,
761 BUS_DMA_NOWAIT)) != 0) {
762 printf("%s: can't load recv map, error = %d\n",
763 sc->sc_dev.dv_xname, error);
764 return (ENOMEM);
765 }
766 } else {
767 m_new = m;
768 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
769 m_new->m_data = m_new->m_ext.ext_buf;
770 m_adj(m_new, ETHER_ALIGN);
771
772 /* reuse the dmamap */
773 }
774
775 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
776 r = &sc->ti_rdata->ti_rx_std_ring[i];
777 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
778 r->ti_type = TI_BDTYPE_RECV_BD;
779 #ifdef TI_CSUM_OFFLOAD
780 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
781 #else
782 r->ti_flags = 0;
783 #endif
784 r->ti_len = m_new->m_len; /* == ds_len */
785 r->ti_idx = i;
786
787 return(0);
788 }
789
790 /*
791 * Intialize a mini receive ring descriptor. This only applies to
792 * the Tigon 2.
793 */
794 static int ti_newbuf_mini(sc, i, m, dmamap)
795 struct ti_softc *sc;
796 int i;
797 struct mbuf *m;
798 bus_dmamap_t dmamap; /* required if (m != NULL) */
799 {
800 struct mbuf *m_new = NULL;
801 struct ti_rx_desc *r;
802 int error;
803
804 if (dmamap == NULL) {
805 /* if (m) panic() */
806
807 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
808 MHLEN, 0, BUS_DMA_NOWAIT,
809 &dmamap)) != 0) {
810 printf("%s: can't create recv map, error = %d\n",
811 sc->sc_dev.dv_xname, error);
812 return(ENOMEM);
813 }
814 }
815 sc->mini_dmamap[i] = dmamap;
816
817 if (m == NULL) {
818 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
819 if (m_new == NULL) {
820 printf("%s: mbuf allocation failed "
821 "-- packet dropped!\n", sc->sc_dev.dv_xname);
822 return(ENOBUFS);
823 }
824 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
825 m_adj(m_new, ETHER_ALIGN);
826
827 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
828 mtod(m_new, caddr_t), m_new->m_len, NULL,
829 BUS_DMA_NOWAIT)) != 0) {
830 printf("%s: can't load recv map, error = %d\n",
831 sc->sc_dev.dv_xname, error);
832 return (ENOMEM);
833 }
834 } else {
835 m_new = m;
836 m_new->m_data = m_new->m_pktdat;
837 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
838 m_adj(m_new, ETHER_ALIGN);
839
840 /* reuse the dmamap */
841 }
842
843 r = &sc->ti_rdata->ti_rx_mini_ring[i];
844 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
845 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
846 r->ti_type = TI_BDTYPE_RECV_BD;
847 r->ti_flags = TI_BDFLAG_MINI_RING;
848 #ifdef TI_CSUM_OFFLOAD
849 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
850 #endif
851 r->ti_len = m_new->m_len; /* == ds_len */
852 r->ti_idx = i;
853
854 return(0);
855 }
856
857 /*
858 * Initialize a jumbo receive ring descriptor. This allocates
859 * a jumbo buffer from the pool managed internally by the driver.
860 */
861 static int ti_newbuf_jumbo(sc, i, m)
862 struct ti_softc *sc;
863 int i;
864 struct mbuf *m;
865 {
866 struct mbuf *m_new = NULL;
867 struct ti_rx_desc *r;
868
869 if (m == NULL) {
870 caddr_t *buf = NULL;
871
872 /* Allocate the mbuf. */
873 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
874 if (m_new == NULL) {
875 printf("%s: mbuf allocation failed "
876 "-- packet dropped!\n", sc->sc_dev.dv_xname);
877 return(ENOBUFS);
878 }
879
880 /* Allocate the jumbo buffer */
881 buf = ti_jalloc(sc);
882 if (buf == NULL) {
883 m_freem(m_new);
884 printf("%s: jumbo allocation failed "
885 "-- packet dropped!\n", sc->sc_dev.dv_xname);
886 return(ENOBUFS);
887 }
888
889 /* Attach the buffer to the mbuf. */
890 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
891 m_new->m_flags |= M_EXT;
892 m_new->m_len = m_new->m_pkthdr.len =
893 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
894 m_new->m_ext.ext_free = ti_jfree;
895 m_new->m_ext.ext_arg = sc;
896 MCLINITREFERENCE(m_new);
897 } else {
898 m_new = m;
899 m_new->m_data = m_new->m_ext.ext_buf;
900 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
901 }
902
903 m_adj(m_new, ETHER_ALIGN);
904 /* Set up the descriptor. */
905 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
906 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
907 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
908 ((caddr_t)mtod(m_new, caddr_t)
909 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
910 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
911 r->ti_flags = TI_BDFLAG_JUMBO_RING;
912 #ifdef TI_CSUM_OFFLOAD
913 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
914 #endif
915 r->ti_len = m_new->m_len;
916 r->ti_idx = i;
917
918 return(0);
919 }
920
921 /*
922 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
923 * that's 1MB or memory, which is a lot. For now, we fill only the first
924 * 256 ring entries and hope that our CPU is fast enough to keep up with
925 * the NIC.
926 */
927 static int ti_init_rx_ring_std(sc)
928 struct ti_softc *sc;
929 {
930 int i;
931 struct ti_cmd_desc cmd;
932
933 for (i = 0; i < TI_SSLOTS; i++) {
934 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
935 return(ENOBUFS);
936 };
937
938 TI_UPDATE_STDPROD(sc, i - 1);
939 sc->ti_std = i - 1;
940
941 return(0);
942 }
943
944 static void ti_free_rx_ring_std(sc)
945 struct ti_softc *sc;
946 {
947 int i;
948
949 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
950 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
951 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
952 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
953
954 /* if (sc->std_dmamap[i] == 0) panic() */
955 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
956 sc->std_dmamap[i] = 0;
957 }
958 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
959 sizeof(struct ti_rx_desc));
960 }
961
962 return;
963 }
964
965 static int ti_init_rx_ring_jumbo(sc)
966 struct ti_softc *sc;
967 {
968 int i;
969 struct ti_cmd_desc cmd;
970
971 for (i = 0; i < (TI_JSLOTS - 20); i++) {
972 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
973 return(ENOBUFS);
974 };
975
976 TI_UPDATE_JUMBOPROD(sc, i - 1);
977 sc->ti_jumbo = i - 1;
978
979 return(0);
980 }
981
982 static void ti_free_rx_ring_jumbo(sc)
983 struct ti_softc *sc;
984 {
985 int i;
986
987 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
988 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
989 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
990 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
991 }
992 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
993 sizeof(struct ti_rx_desc));
994 }
995
996 return;
997 }
998
999 static int ti_init_rx_ring_mini(sc)
1000 struct ti_softc *sc;
1001 {
1002 int i;
1003
1004 for (i = 0; i < TI_MSLOTS; i++) {
1005 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1006 return(ENOBUFS);
1007 };
1008
1009 TI_UPDATE_MINIPROD(sc, i - 1);
1010 sc->ti_mini = i - 1;
1011
1012 return(0);
1013 }
1014
1015 static void ti_free_rx_ring_mini(sc)
1016 struct ti_softc *sc;
1017 {
1018 int i;
1019
1020 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1022 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1023 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1024
1025 /* if (sc->mini_dmamap[i] == 0) panic() */
1026 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1027 sc->mini_dmamap[i] = 0;
1028 }
1029 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1030 sizeof(struct ti_rx_desc));
1031 }
1032
1033 return;
1034 }
1035
1036 static void ti_free_tx_ring(sc)
1037 struct ti_softc *sc;
1038 {
1039 int i;
1040 struct txdmamap_pool_entry *dma;
1041
1042 if (sc->ti_rdata->ti_tx_ring == NULL)
1043 return;
1044
1045 for (i = 0; i < TI_TX_RING_CNT; i++) {
1046 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1047 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1048 sc->ti_cdata.ti_tx_chain[i] = NULL;
1049
1050 /* if (sc->txdma[i] == 0) panic() */
1051 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1052 link);
1053 sc->txdma[i] = 0;
1054 }
1055 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1056 sizeof(struct ti_tx_desc));
1057 }
1058
1059 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1060 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1061 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1062 free(dma, M_DEVBUF);
1063 }
1064
1065 return;
1066 }
1067
1068 static int ti_init_tx_ring(sc)
1069 struct ti_softc *sc;
1070 {
1071 int i, error;
1072 bus_dmamap_t dmamap;
1073 struct txdmamap_pool_entry *dma;
1074
1075 sc->ti_txcnt = 0;
1076 sc->ti_tx_saved_considx = 0;
1077 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1078
1079 SIMPLEQ_INIT(&sc->txdma_list);
1080 for (i = 0; i < TI_RSLOTS; i++) {
1081 /* I've seen mbufs with 30 fragments. */
1082 if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1083 40, TI_JUMBO_FRAMELEN, 0,
1084 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1085 printf("%s: can't create tx map, error = %d\n",
1086 sc->sc_dev.dv_xname, error);
1087 return(ENOMEM);
1088 }
1089 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1090 if (!dma) {
1091 printf("%s: can't alloc txdmamap_pool_entry\n",
1092 sc->sc_dev.dv_xname);
1093 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1094 return (ENOMEM);
1095 }
1096 dma->dmamap = dmamap;
1097 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1098 }
1099
1100 return(0);
1101 }
1102
1103 /*
1104 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1105 * but we have to support the old way too so that Tigon 1 cards will
1106 * work.
1107 */
1108 void ti_add_mcast(sc, addr)
1109 struct ti_softc *sc;
1110 struct ether_addr *addr;
1111 {
1112 struct ti_cmd_desc cmd;
1113 u_int16_t *m;
1114 u_int32_t ext[2] = {0, 0};
1115
1116 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1117
1118 switch(sc->ti_hwrev) {
1119 case TI_HWREV_TIGON:
1120 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1121 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1122 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1123 break;
1124 case TI_HWREV_TIGON_II:
1125 ext[0] = htons(m[0]);
1126 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1127 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1128 break;
1129 default:
1130 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1131 break;
1132 }
1133
1134 return;
1135 }
1136
1137 void ti_del_mcast(sc, addr)
1138 struct ti_softc *sc;
1139 struct ether_addr *addr;
1140 {
1141 struct ti_cmd_desc cmd;
1142 u_int16_t *m;
1143 u_int32_t ext[2] = {0, 0};
1144
1145 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1146
1147 switch(sc->ti_hwrev) {
1148 case TI_HWREV_TIGON:
1149 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1150 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1151 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1152 break;
1153 case TI_HWREV_TIGON_II:
1154 ext[0] = htons(m[0]);
1155 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1156 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1157 break;
1158 default:
1159 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1160 break;
1161 }
1162
1163 return;
1164 }
1165
1166 /*
1167 * Configure the Tigon's multicast address filter.
1168 *
1169 * The actual multicast table management is a bit of a pain, thanks to
1170 * slight brain damage on the part of both Alteon and us. With our
1171 * multicast code, we are only alerted when the multicast address table
1172 * changes and at that point we only have the current list of addresses:
1173 * we only know the current state, not the previous state, so we don't
1174 * actually know what addresses were removed or added. The firmware has
1175 * state, but we can't get our grubby mits on it, and there is no 'delete
1176 * all multicast addresses' command. Hence, we have to maintain our own
1177 * state so we know what addresses have been programmed into the NIC at
1178 * any given time.
1179 */
1180 static void ti_setmulti(sc)
1181 struct ti_softc *sc;
1182 {
1183 struct ifnet *ifp;
1184 struct ti_cmd_desc cmd;
1185 struct ti_mc_entry *mc;
1186 u_int32_t intrs;
1187 struct ether_multi *enm;
1188 struct ether_multistep step;
1189
1190 ifp = &sc->ethercom.ec_if;
1191
1192 if (ifp->if_flags & IFF_ALLMULTI) {
1193 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1194 return;
1195 } else {
1196 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1197 }
1198
1199 /* Disable interrupts. */
1200 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1201 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1202
1203 /* First, zot all the existing filters. */
1204 while (SIMPLEQ_FIRST(&sc->ti_mc_listhead) != NULL) {
1205 mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead);
1206 ti_del_mcast(sc, &mc->mc_addr);
1207 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1208 free(mc, M_DEVBUF);
1209 }
1210
1211 /* Now program new ones. */
1212 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1213 while (enm != NULL) {
1214 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1215 bcopy(enm->enm_addrlo,
1216 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1217 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1218 ti_add_mcast(sc, &mc->mc_addr);
1219 ETHER_NEXT_MULTI(step, enm);
1220 }
1221
1222 /* Re-enable interrupts. */
1223 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1224
1225 return;
1226 }
1227
1228 /*
1229 * Check to see if the BIOS has configured us for a 64 bit slot when
1230 * we aren't actually in one. If we detect this condition, we can work
1231 * around it on the Tigon 2 by setting a bit in the PCI state register,
1232 * but for the Tigon 1 we must give up and abort the interface attach.
1233 */
1234 static int ti_64bitslot_war(sc)
1235 struct ti_softc *sc;
1236 {
1237 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1238 CSR_WRITE_4(sc, 0x600, 0);
1239 CSR_WRITE_4(sc, 0x604, 0);
1240 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1241 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1242 if (sc->ti_hwrev == TI_HWREV_TIGON)
1243 return(EINVAL);
1244 else {
1245 TI_SETBIT(sc, TI_PCI_STATE,
1246 TI_PCISTATE_32BIT_BUS);
1247 return(0);
1248 }
1249 }
1250 }
1251
1252 return(0);
1253 }
1254
1255 /*
1256 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1257 * self-test results.
1258 */
1259 static int ti_chipinit(sc)
1260 struct ti_softc *sc;
1261 {
1262 u_int32_t cacheline;
1263 u_int32_t pci_writemax = 0;
1264
1265 /* Initialize link to down state. */
1266 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1267
1268 /* Set endianness before we access any non-PCI registers. */
1269 #if BYTE_ORDER == BIG_ENDIAN
1270 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1271 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1272 #else
1273 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1274 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1275 #endif
1276
1277 /* Check the ROM failed bit to see if self-tests passed. */
1278 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1279 printf("%s: board self-diagnostics failed!\n",
1280 sc->sc_dev.dv_xname);
1281 return(ENODEV);
1282 }
1283
1284 /* Halt the CPU. */
1285 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1286
1287 /* Figure out the hardware revision. */
1288 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1289 case TI_REV_TIGON_I:
1290 sc->ti_hwrev = TI_HWREV_TIGON;
1291 break;
1292 case TI_REV_TIGON_II:
1293 sc->ti_hwrev = TI_HWREV_TIGON_II;
1294 break;
1295 default:
1296 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1297 return(ENODEV);
1298 }
1299
1300 /* Do special setup for Tigon 2. */
1301 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1302 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1303 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1304 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1305 }
1306
1307 /* Set up the PCI state register. */
1308 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1309 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1310 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1311 }
1312
1313 /* Clear the read/write max DMA parameters. */
1314 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1315 TI_PCISTATE_READ_MAXDMA));
1316
1317 /* Get cache line size. */
1318 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1319
1320 /*
1321 * If the system has set enabled the PCI memory write
1322 * and invalidate command in the command register, set
1323 * the write max parameter accordingly. This is necessary
1324 * to use MWI with the Tigon 2.
1325 */
1326 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1327 & PCI_COMMAND_INVALIDATE_ENABLE) {
1328 switch(cacheline) {
1329 case 1:
1330 case 4:
1331 case 8:
1332 case 16:
1333 case 32:
1334 case 64:
1335 break;
1336 default:
1337 /* Disable PCI memory write and invalidate. */
1338 if (bootverbose)
1339 printf("%s: cache line size %d not "
1340 "supported; disabling PCI MWI\n",
1341 sc->sc_dev.dv_xname, cacheline);
1342 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1343 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1344 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1345 break;
1346 }
1347 }
1348
1349 #ifdef __brokenalpha__
1350 /*
1351 * From the Alteon sample driver:
1352 * Must insure that we do not cross an 8K (bytes) boundary
1353 * for DMA reads. Our highest limit is 1K bytes. This is a
1354 * restriction on some ALPHA platforms with early revision
1355 * 21174 PCI chipsets, such as the AlphaPC 164lx
1356 */
1357 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1358 #else
1359 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1360 #endif
1361
1362 /* This sets the min dma param all the way up (0xff). */
1363 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1364
1365 /* Configure DMA variables. */
1366 #if BYTE_ORDER == BIG_ENDIAN
1367 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1368 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1369 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1370 TI_OPMODE_DONT_FRAG_JUMBO);
1371 #else
1372 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1373 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1374 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1375 #endif
1376
1377 /*
1378 * Only allow 1 DMA channel to be active at a time.
1379 * I don't think this is a good idea, but without it
1380 * the firmware racks up lots of nicDmaReadRingFull
1381 * errors.
1382 */
1383 #ifndef TI_CSUM_OFFLOAD
1384 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1385 #endif
1386
1387 /* Recommended settings from Tigon manual. */
1388 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1389 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1390
1391 if (ti_64bitslot_war(sc)) {
1392 printf("%s: bios thinks we're in a 64 bit slot, "
1393 "but we aren't", sc->sc_dev.dv_xname);
1394 return(EINVAL);
1395 }
1396
1397 return(0);
1398 }
1399
1400 /*
1401 * Initialize the general information block and firmware, and
1402 * start the CPU(s) running.
1403 */
1404 static int ti_gibinit(sc)
1405 struct ti_softc *sc;
1406 {
1407 struct ti_rcb *rcb;
1408 int i;
1409 struct ifnet *ifp;
1410
1411 ifp = &sc->ethercom.ec_if;
1412
1413 /* Disable interrupts for now. */
1414 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1415
1416 /* Tell the chip where to find the general information block. */
1417 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1418 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1419 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1420
1421 /* Load the firmware into SRAM. */
1422 ti_loadfw(sc);
1423
1424 /* Set up the contents of the general info and ring control blocks. */
1425
1426 /* Set up the event ring and producer pointer. */
1427 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1428
1429 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1430 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1431 rcb->ti_flags = 0;
1432 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1433 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1434 - (caddr_t)sc->ti_rdata);
1435 sc->ti_ev_prodidx.ti_idx = 0;
1436 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1437 sc->ti_ev_saved_considx = 0;
1438
1439 /* Set up the command ring and producer mailbox. */
1440 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1441
1442 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1443 rcb->ti_flags = 0;
1444 rcb->ti_max_len = 0;
1445 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1446 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1447 }
1448 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1449 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1450 sc->ti_cmd_saved_prodidx = 0;
1451
1452 /*
1453 * Assign the address of the stats refresh buffer.
1454 * We re-use the current stats buffer for this to
1455 * conserve memory.
1456 */
1457 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1458 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1459 - (caddr_t)sc->ti_rdata);
1460
1461 /* Set up the standard receive ring. */
1462 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1463 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1464 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1465 - (caddr_t)sc->ti_rdata);
1466 rcb->ti_max_len = TI_FRAMELEN;
1467 rcb->ti_flags = 0;
1468 #ifdef TI_CSUM_OFFLOAD
1469 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1470 #endif
1471 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1472
1473 /* Set up the jumbo receive ring. */
1474 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1475 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1476 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1477 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1478 rcb->ti_flags = 0;
1479 #ifdef TI_CSUM_OFFLOAD
1480 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1481 #endif
1482 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1483
1484 /*
1485 * Set up the mini ring. Only activated on the
1486 * Tigon 2 but the slot in the config block is
1487 * still there on the Tigon 1.
1488 */
1489 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1490 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1491 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1492 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1493 if (sc->ti_hwrev == TI_HWREV_TIGON)
1494 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1495 else
1496 rcb->ti_flags = 0;
1497 #ifdef TI_CSUM_OFFLOAD
1498 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1499 #endif
1500 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1501
1502 /*
1503 * Set up the receive return ring.
1504 */
1505 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1506 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1507 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1508 rcb->ti_flags = 0;
1509 rcb->ti_max_len = TI_RETURN_RING_CNT;
1510 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1511 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1512 - (caddr_t)sc->ti_rdata);
1513
1514 /*
1515 * Set up the tx ring. Note: for the Tigon 2, we have the option
1516 * of putting the transmit ring in the host's address space and
1517 * letting the chip DMA it instead of leaving the ring in the NIC's
1518 * memory and accessing it through the shared memory region. We
1519 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1520 * so we have to revert to the shared memory scheme if we detect
1521 * a Tigon 1 chip.
1522 */
1523 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1524 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1525 sc->ti_rdata->ti_tx_ring_nic =
1526 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1527 }
1528 bzero((char *)sc->ti_rdata->ti_tx_ring,
1529 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1530 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1531 if (sc->ti_hwrev == TI_HWREV_TIGON)
1532 rcb->ti_flags = 0;
1533 else
1534 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1535 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1536 rcb->ti_max_len = TI_TX_RING_CNT;
1537 if (sc->ti_hwrev == TI_HWREV_TIGON)
1538 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1539 else
1540 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1541 ((caddr_t)&sc->ti_rdata->ti_tx_ring
1542 - (caddr_t)sc->ti_rdata);
1543 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1544 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1545 - (caddr_t)sc->ti_rdata);
1546
1547 /* Set up tuneables */
1548 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1549 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1550 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1551 (sc->ti_rx_coal_ticks / 10));
1552 else
1553 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1554 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1555 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1556 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1557 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1558 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1559
1560 /* Turn interrupts on. */
1561 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1562 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1563
1564 /* Start CPU. */
1565 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1566
1567 return(0);
1568 }
1569
1570 /*
1571 * look for id in the device list, returning the first match
1572 */
1573 static struct ti_type * ti_type_match(pa)
1574 struct pci_attach_args *pa;
1575 {
1576 struct ti_type *t;
1577
1578 t = ti_devs;
1579 while(t->ti_name != NULL) {
1580 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1581 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1582 return (t);
1583 }
1584 t++;
1585 }
1586
1587 return(NULL);
1588 }
1589
1590 /*
1591 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1592 * against our list and return its name if we find a match.
1593 */
1594 static int ti_probe(parent, match, aux)
1595 struct device *parent;
1596 struct cfdata *match;
1597 void *aux;
1598 {
1599 struct pci_attach_args *pa = aux;
1600 struct ti_type *t;
1601
1602 t = ti_type_match(pa);
1603
1604 return((t == NULL) ? 0 : 1);
1605 }
1606
1607 static void ti_attach(parent, self, aux)
1608 struct device *parent, *self;
1609 void *aux;
1610 {
1611 u_int32_t command;
1612 struct ifnet *ifp;
1613 struct ti_softc *sc;
1614 u_char eaddr[ETHER_ADDR_LEN];
1615 struct pci_attach_args *pa = aux;
1616 pci_chipset_tag_t pc = pa->pa_pc;
1617 pci_intr_handle_t ih;
1618 const char *intrstr = NULL;
1619 bus_dma_segment_t dmaseg;
1620 int error, dmanseg, nolinear;
1621 struct ti_type *t;
1622
1623 t = ti_type_match(pa);
1624 if (t == NULL) {
1625 printf("ti_attach: were did the card go ?\n");
1626 return;
1627 }
1628
1629 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1630
1631 sc = (struct ti_softc *)self;
1632
1633 /*
1634 * Map control/status registers.
1635 */
1636 nolinear = 0;
1637 if (pci_mapreg_map(pa, 0x10,
1638 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1639 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1640 NULL, NULL)) {
1641 nolinear = 1;
1642 if (pci_mapreg_map(pa, 0x10,
1643 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1644 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1645 printf(": can't map memory space\n");
1646 return;
1647 }
1648 }
1649 if (nolinear == 0)
1650 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1651 else
1652 sc->ti_vhandle = NULL;
1653
1654 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1655 command |= PCI_COMMAND_MASTER_ENABLE;
1656 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1657
1658 /* Allocate interrupt */
1659 if (pci_intr_map(pa, &ih)) {
1660 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1661 return;;
1662 }
1663 intrstr = pci_intr_string(pc, ih);
1664 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1665 if (sc->sc_ih == NULL) {
1666 printf("%s: couldn't establish interrupt",
1667 sc->sc_dev.dv_xname);
1668 if (intrstr != NULL)
1669 printf(" at %s", intrstr);
1670 printf("\n");
1671 return;;
1672 }
1673 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1674 /*
1675 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1676 * doing do could allow DMA to corrupt kernel memory during the
1677 * reboot before the driver initializes.
1678 */
1679 (void) shutdownhook_establish(ti_shutdown, sc);
1680
1681 if (ti_chipinit(sc)) {
1682 printf("%s: chip initialization failed\n", self->dv_xname);
1683 goto fail2;
1684 }
1685 if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
1686 printf("%s: memory space not mapped linear\n", self->dv_xname);
1687 }
1688
1689 /* Zero out the NIC's on-board SRAM. */
1690 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1691
1692 /* Init again -- zeroing memory may have clobbered some registers. */
1693 if (ti_chipinit(sc)) {
1694 printf("%s: chip initialization failed\n", self->dv_xname);
1695 goto fail2;
1696 }
1697
1698 /*
1699 * Get station address from the EEPROM. Note: the manual states
1700 * that the MAC address is at offset 0x8c, however the data is
1701 * stored as two longwords (since that's how it's loaded into
1702 * the NIC). This means the MAC address is actually preceeded
1703 * by two zero bytes. We need to skip over those.
1704 */
1705 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1706 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1707 printf("%s: failed to read station address\n", self->dv_xname);
1708 goto fail2;
1709 }
1710
1711 /*
1712 * A Tigon chip was detected. Inform the world.
1713 */
1714 printf("%s: Ethernet address: %s\n", self->dv_xname,
1715 ether_sprintf(eaddr));
1716
1717 sc->sc_dmat = pa->pa_dmat;
1718
1719 /* Allocate the general information block and ring buffers. */
1720 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1721 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1722 BUS_DMA_NOWAIT)) != 0) {
1723 printf("%s: can't allocate ring buffer, error = %d\n",
1724 sc->sc_dev.dv_xname, error);
1725 goto fail2;
1726 }
1727
1728 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1729 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1730 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1731 printf("%s: can't map ring buffer, error = %d\n",
1732 sc->sc_dev.dv_xname, error);
1733 goto fail2;
1734 }
1735
1736 if ((error = bus_dmamap_create(sc->sc_dmat,
1737 sizeof(struct ti_ring_data), 1,
1738 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1739 &sc->info_dmamap)) != 0) {
1740 printf("%s: can't create ring buffer DMA map, error = %d\n",
1741 sc->sc_dev.dv_xname, error);
1742 goto fail2;
1743 }
1744
1745 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1746 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1747 BUS_DMA_NOWAIT)) != 0) {
1748 printf("%s: can't load ring buffer DMA map, error = %d\n",
1749 sc->sc_dev.dv_xname, error);
1750 goto fail2;
1751 }
1752
1753 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1754
1755 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1756
1757 /* Try to allocate memory for jumbo buffers. */
1758 if (ti_alloc_jumbo_mem(sc)) {
1759 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1760 goto fail2;
1761 }
1762
1763 /*
1764 * We really need a better way to tell a 1000baseTX card
1765 * from a 1000baseSX one, since in theory there could be
1766 * OEMed 1000baseTX cards from lame vendors who aren't
1767 * clever enough to change the PCI ID. For the moment
1768 * though, the AceNIC is the only copper card available.
1769 */
1770 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1771 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1772 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1773 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1774 sc->ti_copper = 1;
1775 else
1776 sc->ti_copper = 0;
1777
1778 /* Set default tuneable values. */
1779 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1780 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1781 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1782 sc->ti_rx_max_coal_bds = 64;
1783 sc->ti_tx_max_coal_bds = 128;
1784 sc->ti_tx_buf_ratio = 21;
1785
1786 /* Set up ifnet structure */
1787 ifp = &sc->ethercom.ec_if;
1788 ifp->if_softc = sc;
1789 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1790 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1791 ifp->if_ioctl = ti_ioctl;
1792 ifp->if_start = ti_start;
1793 ifp->if_watchdog = ti_watchdog;
1794 IFQ_SET_READY(&ifp->if_snd);
1795
1796 #if 0
1797 /*
1798 * XXX This is not really correct -- we don't necessarily
1799 * XXX want to queue up as many as we can transmit at the
1800 * XXX upper layer like that. Someone with a board should
1801 * XXX check to see how this affects performance.
1802 */
1803 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1804 #endif
1805
1806 /*
1807 * We can support 802.1Q VLAN-sized frames.
1808 */
1809 sc->ethercom.ec_capabilities |=
1810 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1811
1812 /* Set up ifmedia support. */
1813 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1814 if (sc->ti_copper) {
1815 /*
1816 * Copper cards allow manual 10/100 mode selection,
1817 * but not manual 1000baseTX mode selection. Why?
1818 * Becuase currently there's no way to specify the
1819 * master/slave setting through the firmware interface,
1820 * so Alteon decided to just bag it and handle it
1821 * via autonegotiation.
1822 */
1823 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1824 ifmedia_add(&sc->ifmedia,
1825 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1826 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1827 ifmedia_add(&sc->ifmedia,
1828 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1829 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1830 ifmedia_add(&sc->ifmedia,
1831 IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1832 } else {
1833 /* Fiber cards don't support 10/100 modes. */
1834 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1835 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1836 }
1837 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1838 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1839
1840 /*
1841 * Call MI attach routines.
1842 */
1843 if_attach(ifp);
1844 ether_ifattach(ifp, eaddr);
1845
1846 return;
1847 fail2:
1848 pci_intr_disestablish(pc, sc->sc_ih);
1849 return;
1850 }
1851
1852 /*
1853 * Frame reception handling. This is called if there's a frame
1854 * on the receive return list.
1855 *
1856 * Note: we have to be able to handle three possibilities here:
1857 * 1) the frame is from the mini receive ring (can only happen)
1858 * on Tigon 2 boards)
1859 * 2) the frame is from the jumbo recieve ring
1860 * 3) the frame is from the standard receive ring
1861 */
1862
1863 static void ti_rxeof(sc)
1864 struct ti_softc *sc;
1865 {
1866 struct ifnet *ifp;
1867 struct ti_cmd_desc cmd;
1868
1869 ifp = &sc->ethercom.ec_if;
1870
1871 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1872 struct ti_rx_desc *cur_rx;
1873 u_int32_t rxidx;
1874 struct mbuf *m = NULL;
1875 u_int16_t vlan_tag = 0;
1876 int have_tag = 0;
1877 #ifdef TI_CSUM_OFFLOAD
1878 struct ip *ip;
1879 #endif
1880 bus_dmamap_t dmamap;
1881
1882 cur_rx =
1883 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1884 rxidx = cur_rx->ti_idx;
1885 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1886
1887 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1888 have_tag = 1;
1889 vlan_tag = cur_rx->ti_vlan_tag;
1890 }
1891
1892 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1893 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1894 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1895 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1896 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1897 ifp->if_ierrors++;
1898 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1899 continue;
1900 }
1901 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1902 == ENOBUFS) {
1903 ifp->if_ierrors++;
1904 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1905 continue;
1906 }
1907 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1908 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1909 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1910 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1911 dmamap = sc->mini_dmamap[rxidx];
1912 sc->mini_dmamap[rxidx] = 0;
1913 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1914 ifp->if_ierrors++;
1915 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1916 continue;
1917 }
1918 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1919 == ENOBUFS) {
1920 ifp->if_ierrors++;
1921 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1922 continue;
1923 }
1924 } else {
1925 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1926 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1927 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1928 dmamap = sc->std_dmamap[rxidx];
1929 sc->std_dmamap[rxidx] = 0;
1930 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1931 ifp->if_ierrors++;
1932 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1933 continue;
1934 }
1935 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1936 == ENOBUFS) {
1937 ifp->if_ierrors++;
1938 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1939 continue;
1940 }
1941 }
1942
1943 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1944 ifp->if_ipackets++;
1945 m->m_pkthdr.rcvif = ifp;
1946
1947 #if NBPFILTER > 0
1948 /*
1949 * Handle BPF listeners. Let the BPF user see the packet, but
1950 * don't pass it up to the ether_input() layer unless it's
1951 * a broadcast packet, multicast packet, matches our ethernet
1952 * address or the interface is in promiscuous mode.
1953 */
1954 if (ifp->if_bpf)
1955 bpf_mtap(ifp->if_bpf, m);
1956 #endif
1957
1958 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
1959 ip = mtod(m, struct ip *);
1960 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1961 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1962 m->m_flags |= M_HWCKSUM;
1963 #endif
1964
1965 if (have_tag) {
1966 struct mbuf *n;
1967 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1968 if (n) {
1969 *mtod(n, int *) = vlan_tag;
1970 n->m_len = sizeof(int);
1971 } else {
1972 printf("%s: no mbuf for tag\n", ifp->if_xname);
1973 m_freem(m);
1974 continue;
1975 }
1976 have_tag = vlan_tag = 0;
1977 }
1978 (*ifp->if_input)(ifp, m);
1979 }
1980
1981 /* Only necessary on the Tigon 1. */
1982 if (sc->ti_hwrev == TI_HWREV_TIGON)
1983 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1984 sc->ti_rx_saved_considx);
1985
1986 TI_UPDATE_STDPROD(sc, sc->ti_std);
1987 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1988 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1989
1990 return;
1991 }
1992
1993 static void ti_txeof(sc)
1994 struct ti_softc *sc;
1995 {
1996 struct ti_tx_desc *cur_tx = NULL;
1997 struct ifnet *ifp;
1998
1999 ifp = &sc->ethercom.ec_if;
2000
2001 /*
2002 * Go through our tx ring and free mbufs for those
2003 * frames that have been sent.
2004 */
2005 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2006 u_int32_t idx = 0;
2007
2008 idx = sc->ti_tx_saved_considx;
2009 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2010 if (idx > 383)
2011 CSR_WRITE_4(sc, TI_WINBASE,
2012 TI_TX_RING_BASE + 6144);
2013 else if (idx > 255)
2014 CSR_WRITE_4(sc, TI_WINBASE,
2015 TI_TX_RING_BASE + 4096);
2016 else if (idx > 127)
2017 CSR_WRITE_4(sc, TI_WINBASE,
2018 TI_TX_RING_BASE + 2048);
2019 else
2020 CSR_WRITE_4(sc, TI_WINBASE,
2021 TI_TX_RING_BASE);
2022 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2023 } else
2024 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2025 if (cur_tx->ti_flags & TI_BDFLAG_END)
2026 ifp->if_opackets++;
2027 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2028 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2029 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2030
2031 /* if (sc->txdma[idx] == 0) panic() */
2032 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2033 link);
2034 sc->txdma[idx] = 0;
2035 }
2036 sc->ti_txcnt--;
2037 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2038 ifp->if_timer = 0;
2039 }
2040
2041 if (cur_tx != NULL)
2042 ifp->if_flags &= ~IFF_OACTIVE;
2043
2044 return;
2045 }
2046
2047 static int ti_intr(xsc)
2048 void *xsc;
2049 {
2050 struct ti_softc *sc;
2051 struct ifnet *ifp;
2052
2053 sc = xsc;
2054 ifp = &sc->ethercom.ec_if;
2055
2056 #ifdef notdef
2057 /* Avoid this for now -- checking this register is expensive. */
2058 /* Make sure this is really our interrupt. */
2059 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2060 return (0);
2061 #endif
2062
2063 /* Ack interrupt and stop others from occuring. */
2064 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2065
2066 if (ifp->if_flags & IFF_RUNNING) {
2067 /* Check RX return ring producer/consumer */
2068 ti_rxeof(sc);
2069
2070 /* Check TX ring producer/consumer */
2071 ti_txeof(sc);
2072 }
2073
2074 ti_handle_events(sc);
2075
2076 /* Re-enable interrupts. */
2077 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2078
2079 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2080 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2081 ti_start(ifp);
2082
2083 return (1);
2084 }
2085
2086 static void ti_stats_update(sc)
2087 struct ti_softc *sc;
2088 {
2089 struct ifnet *ifp;
2090
2091 ifp = &sc->ethercom.ec_if;
2092
2093 ifp->if_collisions +=
2094 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2095 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2096 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2097 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2098 ifp->if_collisions;
2099
2100 return;
2101 }
2102
2103 /*
2104 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2105 * pointers to descriptors.
2106 */
2107 static int ti_encap(sc, m_head, txidx)
2108 struct ti_softc *sc;
2109 struct mbuf *m_head;
2110 u_int32_t *txidx;
2111 {
2112 struct ti_tx_desc *f = NULL;
2113 u_int32_t frag, cur, cnt = 0;
2114 struct txdmamap_pool_entry *dma;
2115 bus_dmamap_t dmamap;
2116 int error, i;
2117 struct mbuf *n;
2118
2119 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2120 if (dma == NULL) {
2121 return ENOMEM;
2122 }
2123 dmamap = dma->dmamap;
2124
2125 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2126 if (error) {
2127 struct mbuf *m;
2128 int i = 0;
2129 for (m = m_head; m; m = m->m_next)
2130 i++;
2131 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2132 "error %d\n", m_head->m_pkthdr.len, i, error);
2133 return (ENOMEM);
2134 }
2135
2136 cur = frag = *txidx;
2137
2138 /*
2139 * Start packing the mbufs in this chain into
2140 * the fragment pointers. Stop when we run out
2141 * of fragments or hit the end of the mbuf chain.
2142 */
2143 for (i = 0; i < dmamap->dm_nsegs; i++) {
2144 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2145 if (frag > 383)
2146 CSR_WRITE_4(sc, TI_WINBASE,
2147 TI_TX_RING_BASE + 6144);
2148 else if (frag > 255)
2149 CSR_WRITE_4(sc, TI_WINBASE,
2150 TI_TX_RING_BASE + 4096);
2151 else if (frag > 127)
2152 CSR_WRITE_4(sc, TI_WINBASE,
2153 TI_TX_RING_BASE + 2048);
2154 else
2155 CSR_WRITE_4(sc, TI_WINBASE,
2156 TI_TX_RING_BASE);
2157 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2158 } else
2159 f = &sc->ti_rdata->ti_tx_ring[frag];
2160 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2161 break;
2162 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2163 f->ti_len = dmamap->dm_segs[i].ds_len;
2164 f->ti_flags = 0;
2165 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2166 if (n) {
2167 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2168 f->ti_vlan_tag = *mtod(n, int *);
2169 } else {
2170 f->ti_vlan_tag = 0;
2171 }
2172 /*
2173 * Sanity check: avoid coming within 16 descriptors
2174 * of the end of the ring.
2175 */
2176 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2177 return(ENOBUFS);
2178 cur = frag;
2179 TI_INC(frag, TI_TX_RING_CNT);
2180 cnt++;
2181 }
2182
2183 if (i < dmamap->dm_nsegs)
2184 return(ENOBUFS);
2185
2186 if (frag == sc->ti_tx_saved_considx)
2187 return(ENOBUFS);
2188
2189 if (sc->ti_hwrev == TI_HWREV_TIGON)
2190 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2191 TI_BDFLAG_END;
2192 else
2193 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2194 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2195 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2196 sc->txdma[cur] = dma;
2197 sc->ti_txcnt += cnt;
2198
2199 *txidx = frag;
2200
2201 return(0);
2202 }
2203
2204 /*
2205 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2206 * to the mbuf data regions directly in the transmit descriptors.
2207 */
2208 static void ti_start(ifp)
2209 struct ifnet *ifp;
2210 {
2211 struct ti_softc *sc;
2212 struct mbuf *m_head = NULL;
2213 u_int32_t prodidx = 0;
2214
2215 sc = ifp->if_softc;
2216
2217 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2218
2219 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2220 IFQ_POLL(&ifp->if_snd, m_head);
2221 if (m_head == NULL)
2222 break;
2223
2224 /*
2225 * Pack the data into the transmit ring. If we
2226 * don't have room, set the OACTIVE flag and wait
2227 * for the NIC to drain the ring.
2228 */
2229 if (ti_encap(sc, m_head, &prodidx)) {
2230 ifp->if_flags |= IFF_OACTIVE;
2231 break;
2232 }
2233
2234 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2235
2236 /*
2237 * If there's a BPF listener, bounce a copy of this frame
2238 * to him.
2239 */
2240 #if NBPFILTER > 0
2241 if (ifp->if_bpf)
2242 bpf_mtap(ifp->if_bpf, m_head);
2243 #endif
2244 }
2245
2246 /* Transmit */
2247 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2248
2249 /*
2250 * Set a timeout in case the chip goes out to lunch.
2251 */
2252 ifp->if_timer = 5;
2253
2254 return;
2255 }
2256
2257 static void ti_init(xsc)
2258 void *xsc;
2259 {
2260 struct ti_softc *sc = xsc;
2261 int s;
2262
2263 s = splimp();
2264
2265 /* Cancel pending I/O and flush buffers. */
2266 ti_stop(sc);
2267
2268 /* Init the gen info block, ring control blocks and firmware. */
2269 if (ti_gibinit(sc)) {
2270 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2271 splx(s);
2272 return;
2273 }
2274
2275 splx(s);
2276
2277 return;
2278 }
2279
2280 static void ti_init2(sc)
2281 struct ti_softc *sc;
2282 {
2283 struct ti_cmd_desc cmd;
2284 struct ifnet *ifp;
2285 u_int8_t *m;
2286 struct ifmedia *ifm;
2287 int tmp;
2288
2289 ifp = &sc->ethercom.ec_if;
2290
2291 /* Specify MTU and interface index. */
2292 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2293 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) &&
2294 ifp->if_mtu < ETHERMTU + ETHER_VLAN_ENCAP_LEN)
2295 CSR_WRITE_4(sc, TI_GCR_IFMTU, ETHER_MAX_LEN +
2296 ETHER_VLAN_ENCAP_LEN);
2297 else
2298 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2299 ETHER_HDR_LEN + ETHER_CRC_LEN);
2300 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2301
2302 /* Load our MAC address. */
2303 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2304 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2305 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2306 | (m[4] << 8) | m[5]);
2307 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2308
2309 /* Enable or disable promiscuous mode as needed. */
2310 if (ifp->if_flags & IFF_PROMISC) {
2311 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2312 } else {
2313 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2314 }
2315
2316 /* Program multicast filter. */
2317 ti_setmulti(sc);
2318
2319 /*
2320 * If this is a Tigon 1, we should tell the
2321 * firmware to use software packet filtering.
2322 */
2323 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2324 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2325 }
2326
2327 /* Init RX ring. */
2328 ti_init_rx_ring_std(sc);
2329
2330 /* Init jumbo RX ring. */
2331 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2332 ti_init_rx_ring_jumbo(sc);
2333
2334 /*
2335 * If this is a Tigon 2, we can also configure the
2336 * mini ring.
2337 */
2338 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2339 ti_init_rx_ring_mini(sc);
2340
2341 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2342 sc->ti_rx_saved_considx = 0;
2343
2344 /* Init TX ring. */
2345 ti_init_tx_ring(sc);
2346
2347 /* Tell firmware we're alive. */
2348 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2349
2350 /* Enable host interrupts. */
2351 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2352
2353 ifp->if_flags |= IFF_RUNNING;
2354 ifp->if_flags &= ~IFF_OACTIVE;
2355
2356 /*
2357 * Make sure to set media properly. We have to do this
2358 * here since we have to issue commands in order to set
2359 * the link negotiation and we can't issue commands until
2360 * the firmware is running.
2361 */
2362 ifm = &sc->ifmedia;
2363 tmp = ifm->ifm_media;
2364 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2365 ti_ifmedia_upd(ifp);
2366 ifm->ifm_media = tmp;
2367
2368 return;
2369 }
2370
2371 /*
2372 * Set media options.
2373 */
2374 static int ti_ifmedia_upd(ifp)
2375 struct ifnet *ifp;
2376 {
2377 struct ti_softc *sc;
2378 struct ifmedia *ifm;
2379 struct ti_cmd_desc cmd;
2380
2381 sc = ifp->if_softc;
2382 ifm = &sc->ifmedia;
2383
2384 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2385 return(EINVAL);
2386
2387 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2388 case IFM_AUTO:
2389 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2390 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2391 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2392 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2393 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2394 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2395 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2396 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2397 break;
2398 case IFM_1000_SX:
2399 case IFM_1000_TX:
2400 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2401 CSR_WRITE_4(sc, TI_GCR_GLINK,
2402 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2403 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2404 } else {
2405 CSR_WRITE_4(sc, TI_GCR_GLINK,
2406 TI_GLNK_PREF|TI_GLNK_1000MB|
2407 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2408 }
2409 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2410 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2411 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2412 break;
2413 case IFM_100_FX:
2414 case IFM_10_FL:
2415 case IFM_100_TX:
2416 case IFM_10_T:
2417 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2418 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2419 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2420 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2421 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2422 } else {
2423 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2424 }
2425 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2426 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2427 } else {
2428 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2429 }
2430 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2431 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2432 break;
2433 }
2434
2435 sc->ethercom.ec_if.if_baudrate =
2436 ifmedia_baudrate(ifm->ifm_media);
2437
2438 return(0);
2439 }
2440
2441 /*
2442 * Report current media status.
2443 */
2444 static void ti_ifmedia_sts(ifp, ifmr)
2445 struct ifnet *ifp;
2446 struct ifmediareq *ifmr;
2447 {
2448 struct ti_softc *sc;
2449 u_int32_t media = 0;
2450
2451 sc = ifp->if_softc;
2452
2453 ifmr->ifm_status = IFM_AVALID;
2454 ifmr->ifm_active = IFM_ETHER;
2455
2456 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2457 return;
2458
2459 ifmr->ifm_status |= IFM_ACTIVE;
2460
2461 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2462 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2463 if (sc->ti_copper)
2464 ifmr->ifm_active |= IFM_1000_TX;
2465 else
2466 ifmr->ifm_active |= IFM_1000_SX;
2467 if (media & TI_GLNK_FULL_DUPLEX)
2468 ifmr->ifm_active |= IFM_FDX;
2469 else
2470 ifmr->ifm_active |= IFM_HDX;
2471 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2472 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2473 if (sc->ti_copper) {
2474 if (media & TI_LNK_100MB)
2475 ifmr->ifm_active |= IFM_100_TX;
2476 if (media & TI_LNK_10MB)
2477 ifmr->ifm_active |= IFM_10_T;
2478 } else {
2479 if (media & TI_LNK_100MB)
2480 ifmr->ifm_active |= IFM_100_FX;
2481 if (media & TI_LNK_10MB)
2482 ifmr->ifm_active |= IFM_10_FL;
2483 }
2484 if (media & TI_LNK_FULL_DUPLEX)
2485 ifmr->ifm_active |= IFM_FDX;
2486 if (media & TI_LNK_HALF_DUPLEX)
2487 ifmr->ifm_active |= IFM_HDX;
2488 }
2489
2490 sc->ethercom.ec_if.if_baudrate =
2491 ifmedia_baudrate(sc->ifmedia.ifm_media);
2492
2493 return;
2494 }
2495
2496 static int
2497 ti_ether_ioctl(ifp, cmd, data)
2498 struct ifnet *ifp;
2499 u_long cmd;
2500 caddr_t data;
2501 {
2502 struct ifaddr *ifa = (struct ifaddr *) data;
2503 struct ti_softc *sc = ifp->if_softc;
2504
2505 switch (cmd) {
2506 case SIOCSIFADDR:
2507 ifp->if_flags |= IFF_UP;
2508
2509 switch (ifa->ifa_addr->sa_family) {
2510 #ifdef INET
2511 case AF_INET:
2512 ti_init(sc);
2513 arp_ifinit(ifp, ifa);
2514 break;
2515 #endif
2516 #ifdef NS
2517 case AF_NS:
2518 {
2519 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2520
2521 if (ns_nullhost(*ina))
2522 ina->x_host = *(union ns_host *)
2523 LLADDR(ifp->if_sadl);
2524 else
2525 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2526 ifp->if_addrlen);
2527 /* Set new address. */
2528 ti_init(sc);
2529 break;
2530 }
2531 #endif
2532 default:
2533 ti_init(sc);
2534 break;
2535 }
2536 break;
2537
2538 default:
2539 return (EINVAL);
2540 }
2541
2542 return (0);
2543 }
2544
2545 static int ti_ioctl(ifp, command, data)
2546 struct ifnet *ifp;
2547 u_long command;
2548 caddr_t data;
2549 {
2550 struct ti_softc *sc = ifp->if_softc;
2551 struct ifreq *ifr = (struct ifreq *) data;
2552 int s, error = 0;
2553 struct ti_cmd_desc cmd;
2554
2555 s = splimp();
2556
2557 switch(command) {
2558 case SIOCSIFADDR:
2559 case SIOCGIFADDR:
2560 error = ti_ether_ioctl(ifp, command, data);
2561 break;
2562 case SIOCSIFMTU:
2563 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2564 error = EINVAL;
2565 else {
2566 ifp->if_mtu = ifr->ifr_mtu;
2567 ti_init(sc);
2568 }
2569 break;
2570 case SIOCSIFFLAGS:
2571 if (ifp->if_flags & IFF_UP) {
2572 /*
2573 * If only the state of the PROMISC flag changed,
2574 * then just use the 'set promisc mode' command
2575 * instead of reinitializing the entire NIC. Doing
2576 * a full re-init means reloading the firmware and
2577 * waiting for it to start up, which may take a
2578 * second or two.
2579 */
2580 if (ifp->if_flags & IFF_RUNNING &&
2581 ifp->if_flags & IFF_PROMISC &&
2582 !(sc->ti_if_flags & IFF_PROMISC)) {
2583 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2584 TI_CMD_CODE_PROMISC_ENB, 0);
2585 } else if (ifp->if_flags & IFF_RUNNING &&
2586 !(ifp->if_flags & IFF_PROMISC) &&
2587 sc->ti_if_flags & IFF_PROMISC) {
2588 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2589 TI_CMD_CODE_PROMISC_DIS, 0);
2590 } else
2591 ti_init(sc);
2592 } else {
2593 if (ifp->if_flags & IFF_RUNNING) {
2594 ti_stop(sc);
2595 }
2596 }
2597 sc->ti_if_flags = ifp->if_flags;
2598 error = 0;
2599 break;
2600 case SIOCADDMULTI:
2601 case SIOCDELMULTI:
2602 if (command == SIOCADDMULTI)
2603 ether_addmulti(ifr, &sc->ethercom);
2604 else
2605 ether_delmulti(ifr, &sc->ethercom);
2606 if (ifp->if_flags & IFF_RUNNING) {
2607 ti_setmulti(sc);
2608 error = 0;
2609 }
2610 break;
2611 case SIOCSIFMEDIA:
2612 case SIOCGIFMEDIA:
2613 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2614 break;
2615 default:
2616 error = EINVAL;
2617 break;
2618 }
2619
2620 (void)splx(s);
2621
2622 return(error);
2623 }
2624
2625 static void ti_watchdog(ifp)
2626 struct ifnet *ifp;
2627 {
2628 struct ti_softc *sc;
2629
2630 sc = ifp->if_softc;
2631
2632 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2633 ti_stop(sc);
2634 ti_init(sc);
2635
2636 ifp->if_oerrors++;
2637
2638 return;
2639 }
2640
2641 /*
2642 * Stop the adapter and free any mbufs allocated to the
2643 * RX and TX lists.
2644 */
2645 static void ti_stop(sc)
2646 struct ti_softc *sc;
2647 {
2648 struct ifnet *ifp;
2649 struct ti_cmd_desc cmd;
2650
2651 ifp = &sc->ethercom.ec_if;
2652
2653 /* Disable host interrupts. */
2654 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2655 /*
2656 * Tell firmware we're shutting down.
2657 */
2658 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2659
2660 /* Halt and reinitialize. */
2661 ti_chipinit(sc);
2662 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2663 ti_chipinit(sc);
2664
2665 /* Free the RX lists. */
2666 ti_free_rx_ring_std(sc);
2667
2668 /* Free jumbo RX list. */
2669 ti_free_rx_ring_jumbo(sc);
2670
2671 /* Free mini RX list. */
2672 ti_free_rx_ring_mini(sc);
2673
2674 /* Free TX buffers. */
2675 ti_free_tx_ring(sc);
2676
2677 sc->ti_ev_prodidx.ti_idx = 0;
2678 sc->ti_return_prodidx.ti_idx = 0;
2679 sc->ti_tx_considx.ti_idx = 0;
2680 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2681
2682 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2683
2684 return;
2685 }
2686
2687 /*
2688 * Stop all chip I/O so that the kernel's probe routines don't
2689 * get confused by errant DMAs when rebooting.
2690 */
2691 static void ti_shutdown(v)
2692 void *v;
2693 {
2694 struct ti_softc *sc = v;
2695
2696 ti_chipinit(sc);
2697
2698 return;
2699 }
2700