if_ti.c revision 1.20 1 /* $NetBSD: if_ti.c,v 1.20 2001/01/29 01:24:42 enami Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #endif
114
115 #ifdef NS
116 #include <netns/ns.h>
117 #include <netns/ns_if.h>
118 #endif
119
120 #include <machine/bus.h>
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_tireg.h>
127 #include <dev/pci/ti_fw.h>
128 #include <dev/pci/ti_fw2.h>
129
130 #ifdef M_HWCKSUM
131 /*#define TI_CSUM_OFFLOAD*/
132 #endif
133
134 /*
135 * Various supported device vendors/types and their names.
136 */
137
138 static const struct ti_type ti_devs[] = {
139 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
140 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
142 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
143 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
144 "3Com 3c985-SX Gigabit Ethernet" },
145 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
146 "Netgear GA620 1000baseSX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
148 "Netgear GA620 1000baseT Gigabit Ethernet" },
149 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
150 "Silicon Graphics Gigabit Ethernet" },
151 { 0, 0, NULL }
152 };
153
154 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
155 static int ti_probe __P((struct device *, struct cfdata *, void *));
156 static void ti_attach __P((struct device *, struct device *, void *));
157 static void ti_shutdown __P((void *));
158 static void ti_txeof __P((struct ti_softc *));
159 static void ti_rxeof __P((struct ti_softc *));
160
161 static void ti_stats_update __P((struct ti_softc *));
162 static int ti_encap __P((struct ti_softc *, struct mbuf *,
163 u_int32_t *));
164
165 static int ti_intr __P((void *));
166 static void ti_start __P((struct ifnet *));
167 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
168 static void ti_init __P((void *));
169 static void ti_init2 __P((struct ti_softc *));
170 static void ti_stop __P((struct ti_softc *));
171 static void ti_watchdog __P((struct ifnet *));
172 static int ti_ifmedia_upd __P((struct ifnet *));
173 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
174
175 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
176 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
177 int, u_int8_t *));
178 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
179
180 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
181 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
182 static void ti_setmulti __P((struct ti_softc *));
183
184 static void ti_mem __P((struct ti_softc *, u_int32_t,
185 u_int32_t, caddr_t));
186 static void ti_loadfw __P((struct ti_softc *));
187 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
188 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
189 caddr_t, int));
190 static void ti_handle_events __P((struct ti_softc *));
191 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
192 static void *ti_jalloc __P((struct ti_softc *));
193 static void ti_jfree __P((caddr_t, u_int, void *));
194 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
195 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
196 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
197 static int ti_init_rx_ring_std __P((struct ti_softc *));
198 static void ti_free_rx_ring_std __P((struct ti_softc *));
199 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
200 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
201 static int ti_init_rx_ring_mini __P((struct ti_softc *));
202 static void ti_free_rx_ring_mini __P((struct ti_softc *));
203 static void ti_free_tx_ring __P((struct ti_softc *));
204 static int ti_init_tx_ring __P((struct ti_softc *));
205
206 static int ti_64bitslot_war __P((struct ti_softc *));
207 static int ti_chipinit __P((struct ti_softc *));
208 static int ti_gibinit __P((struct ti_softc *));
209
210 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
211
212 struct cfattach ti_ca = {
213 sizeof(struct ti_softc), ti_probe, ti_attach
214 };
215
216 /*
217 * Send an instruction or address to the EEPROM, check for ACK.
218 */
219 static u_int32_t ti_eeprom_putbyte(sc, byte)
220 struct ti_softc *sc;
221 int byte;
222 {
223 int i, ack = 0;
224
225 /*
226 * Make sure we're in TX mode.
227 */
228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
229
230 /*
231 * Feed in each bit and stobe the clock.
232 */
233 for (i = 0x80; i; i >>= 1) {
234 if (byte & i) {
235 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
236 } else {
237 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
238 }
239 DELAY(1);
240 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
241 DELAY(1);
242 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
243 }
244
245 /*
246 * Turn off TX mode.
247 */
248 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
249
250 /*
251 * Check for ack.
252 */
253 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
255 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256
257 return(ack);
258 }
259
260 /*
261 * Read a byte of data stored in the EEPROM at address 'addr.'
262 * We have to send two address bytes since the EEPROM can hold
263 * more than 256 bytes of data.
264 */
265 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
266 struct ti_softc *sc;
267 int addr;
268 u_int8_t *dest;
269 {
270 int i;
271 u_int8_t byte = 0;
272
273 EEPROM_START;
274
275 /*
276 * Send write control code to EEPROM.
277 */
278 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
279 printf("%s: failed to send write command, status: %x\n",
280 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
281 return(1);
282 }
283
284 /*
285 * Send first byte of address of byte we want to read.
286 */
287 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
288 printf("%s: failed to send address, status: %x\n",
289 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
290 return(1);
291 }
292 /*
293 * Send second byte address of byte we want to read.
294 */
295 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
296 printf("%s: failed to send address, status: %x\n",
297 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 return(1);
299 }
300
301 EEPROM_STOP;
302 EEPROM_START;
303 /*
304 * Send read control code to EEPROM.
305 */
306 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
307 printf("%s: failed to send read command, status: %x\n",
308 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
309 return(1);
310 }
311
312 /*
313 * Start reading bits from EEPROM.
314 */
315 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
316 for (i = 0x80; i; i >>= 1) {
317 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 DELAY(1);
319 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
320 byte |= i;
321 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 DELAY(1);
323 }
324
325 EEPROM_STOP;
326
327 /*
328 * No ACK generated for read, so just return byte.
329 */
330
331 *dest = byte;
332
333 return(0);
334 }
335
336 /*
337 * Read a sequence of bytes from the EEPROM.
338 */
339 static int ti_read_eeprom(sc, dest, off, cnt)
340 struct ti_softc *sc;
341 caddr_t dest;
342 int off;
343 int cnt;
344 {
345 int err = 0, i;
346 u_int8_t byte = 0;
347
348 for (i = 0; i < cnt; i++) {
349 err = ti_eeprom_getbyte(sc, off + i, &byte);
350 if (err)
351 break;
352 *(dest + i) = byte;
353 }
354
355 return(err ? 1 : 0);
356 }
357
358 /*
359 * NIC memory access function. Can be used to either clear a section
360 * of NIC local memory or (if buf is non-NULL) copy data into it.
361 */
362 static void ti_mem(sc, addr, len, buf)
363 struct ti_softc *sc;
364 u_int32_t addr, len;
365 caddr_t buf;
366 {
367 int segptr, segsize, cnt;
368 caddr_t ptr;
369
370 segptr = addr;
371 cnt = len;
372 ptr = buf;
373
374 while(cnt) {
375 if (cnt < TI_WINLEN)
376 segsize = cnt;
377 else
378 segsize = TI_WINLEN - (segptr % TI_WINLEN);
379 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
380 if (buf == NULL) {
381 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
382 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
383 segsize / 4);
384 } else {
385 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
387 (u_int32_t *)ptr, segsize / 4);
388 ptr += segsize;
389 }
390 segptr += segsize;
391 cnt -= segsize;
392 }
393
394 return;
395 }
396
397 /*
398 * Load firmware image into the NIC. Check that the firmware revision
399 * is acceptable and see if we want the firmware for the Tigon 1 or
400 * Tigon 2.
401 */
402 static void ti_loadfw(sc)
403 struct ti_softc *sc;
404 {
405 switch(sc->ti_hwrev) {
406 case TI_HWREV_TIGON:
407 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
408 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
409 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
410 printf("%s: firmware revision mismatch; want "
411 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
412 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
413 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
414 tigonFwReleaseMinor, tigonFwReleaseFix);
415 return;
416 }
417 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
418 (caddr_t)tigonFwText);
419 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
420 (caddr_t)tigonFwData);
421 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
422 (caddr_t)tigonFwRodata);
423 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
424 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
425 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
426 break;
427 case TI_HWREV_TIGON_II:
428 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
429 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
430 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
431 printf("%s: firmware revision mismatch; want "
432 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
433 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
434 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
435 tigon2FwReleaseMinor, tigon2FwReleaseFix);
436 return;
437 }
438 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
439 (caddr_t)tigon2FwText);
440 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
441 (caddr_t)tigon2FwData);
442 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
443 (caddr_t)tigon2FwRodata);
444 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
445 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
446 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
447 break;
448 default:
449 printf("%s: can't load firmware: unknown hardware rev\n",
450 sc->sc_dev.dv_xname);
451 break;
452 }
453
454 return;
455 }
456
457 /*
458 * Send the NIC a command via the command ring.
459 */
460 static void ti_cmd(sc, cmd)
461 struct ti_softc *sc;
462 struct ti_cmd_desc *cmd;
463 {
464 u_int32_t index;
465
466 index = sc->ti_cmd_saved_prodidx;
467 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
468 TI_INC(index, TI_CMD_RING_CNT);
469 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
470 sc->ti_cmd_saved_prodidx = index;
471
472 return;
473 }
474
475 /*
476 * Send the NIC an extended command. The 'len' parameter specifies the
477 * number of command slots to include after the initial command.
478 */
479 static void ti_cmd_ext(sc, cmd, arg, len)
480 struct ti_softc *sc;
481 struct ti_cmd_desc *cmd;
482 caddr_t arg;
483 int len;
484 {
485 u_int32_t index;
486 int i;
487
488 index = sc->ti_cmd_saved_prodidx;
489 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
490 TI_INC(index, TI_CMD_RING_CNT);
491 for (i = 0; i < len; i++) {
492 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
493 *(u_int32_t *)(&arg[i * 4]));
494 TI_INC(index, TI_CMD_RING_CNT);
495 }
496 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
497 sc->ti_cmd_saved_prodidx = index;
498
499 return;
500 }
501
502 /*
503 * Handle events that have triggered interrupts.
504 */
505 static void ti_handle_events(sc)
506 struct ti_softc *sc;
507 {
508 struct ti_event_desc *e;
509
510 if (sc->ti_rdata->ti_event_ring == NULL)
511 return;
512
513 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
514 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
515 switch(e->ti_event) {
516 case TI_EV_LINKSTAT_CHANGED:
517 sc->ti_linkstat = e->ti_code;
518 if (e->ti_code == TI_EV_CODE_LINK_UP)
519 printf("%s: 10/100 link up\n",
520 sc->sc_dev.dv_xname);
521 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
522 printf("%s: gigabit link up\n",
523 sc->sc_dev.dv_xname);
524 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
525 printf("%s: link down\n",
526 sc->sc_dev.dv_xname);
527 break;
528 case TI_EV_ERROR:
529 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
530 printf("%s: invalid command\n",
531 sc->sc_dev.dv_xname);
532 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
533 printf("%s: unknown command\n",
534 sc->sc_dev.dv_xname);
535 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
536 printf("%s: bad config data\n",
537 sc->sc_dev.dv_xname);
538 break;
539 case TI_EV_FIRMWARE_UP:
540 ti_init2(sc);
541 break;
542 case TI_EV_STATS_UPDATED:
543 ti_stats_update(sc);
544 break;
545 case TI_EV_RESET_JUMBO_RING:
546 case TI_EV_MCAST_UPDATED:
547 /* Who cares. */
548 break;
549 default:
550 printf("%s: unknown event: %d\n",
551 sc->sc_dev.dv_xname, e->ti_event);
552 break;
553 }
554 /* Advance the consumer index. */
555 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
556 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
557 }
558
559 return;
560 }
561
562 /*
563 * Memory management for the jumbo receive ring is a pain in the
564 * butt. We need to allocate at least 9018 bytes of space per frame,
565 * _and_ it has to be contiguous (unless you use the extended
566 * jumbo descriptor format). Using malloc() all the time won't
567 * work: malloc() allocates memory in powers of two, which means we
568 * would end up wasting a considerable amount of space by allocating
569 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
570 * to do our own memory management.
571 *
572 * The driver needs to allocate a contiguous chunk of memory at boot
573 * time. We then chop this up ourselves into 9K pieces and use them
574 * as external mbuf storage.
575 *
576 * One issue here is how much memory to allocate. The jumbo ring has
577 * 256 slots in it, but at 9K per slot than can consume over 2MB of
578 * RAM. This is a bit much, especially considering we also need
579 * RAM for the standard ring and mini ring (on the Tigon 2). To
580 * save space, we only actually allocate enough memory for 64 slots
581 * by default, which works out to between 500 and 600K. This can
582 * be tuned by changing a #define in if_tireg.h.
583 */
584
585 static int ti_alloc_jumbo_mem(sc)
586 struct ti_softc *sc;
587 {
588 caddr_t ptr;
589 int i;
590 struct ti_jpool_entry *entry;
591 bus_dma_segment_t dmaseg;
592 int error, dmanseg;
593
594 /* Grab a big chunk o' storage. */
595 if ((error = bus_dmamem_alloc(sc->sc_dmat,
596 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
597 BUS_DMA_NOWAIT)) != 0) {
598 printf("%s: can't allocate jumbo buffer, error = %d\n",
599 sc->sc_dev.dv_xname, error);
600 return (error);
601 }
602
603 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
604 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
605 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
606 printf("%s: can't map jumbo buffer, error = %d\n",
607 sc->sc_dev.dv_xname, error);
608 return (error);
609 }
610
611 if ((error = bus_dmamap_create(sc->sc_dmat,
612 TI_JMEM, 1,
613 TI_JMEM, 0, BUS_DMA_NOWAIT,
614 &sc->jumbo_dmamap)) != 0) {
615 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
616 sc->sc_dev.dv_xname, error);
617 return (error);
618 }
619
620 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
621 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
622 BUS_DMA_NOWAIT)) != 0) {
623 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
624 sc->sc_dev.dv_xname, error);
625 return (error);
626 }
627 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
628
629 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
630 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
631
632 /*
633 * Now divide it up into 9K pieces and save the addresses
634 * in an array.
635 */
636 ptr = sc->ti_cdata.ti_jumbo_buf;
637 for (i = 0; i < TI_JSLOTS; i++) {
638 sc->ti_cdata.ti_jslots[i] = ptr;
639 ptr += TI_JLEN;
640 entry = malloc(sizeof(struct ti_jpool_entry),
641 M_DEVBUF, M_NOWAIT);
642 if (entry == NULL) {
643 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
644 sc->ti_cdata.ti_jumbo_buf = NULL;
645 printf("%s: no memory for jumbo "
646 "buffer queue!\n", sc->sc_dev.dv_xname);
647 return(ENOBUFS);
648 }
649 entry->slot = i;
650 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
651 jpool_entries);
652 }
653
654 return(0);
655 }
656
657 /*
658 * Allocate a jumbo buffer.
659 */
660 static void *ti_jalloc(sc)
661 struct ti_softc *sc;
662 {
663 struct ti_jpool_entry *entry;
664
665 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
666
667 if (entry == NULL) {
668 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
669 return(NULL);
670 }
671
672 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
673 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
674 return(sc->ti_cdata.ti_jslots[entry->slot]);
675 }
676
677 /*
678 * Release a jumbo buffer.
679 */
680 static void ti_jfree(buf, size, arg)
681 caddr_t buf;
682 u_int size;
683 void *arg;
684 {
685 struct ti_softc *sc;
686 int i;
687 struct ti_jpool_entry *entry;
688
689 /* Extract the softc struct pointer. */
690 sc = (struct ti_softc *)arg;
691
692 if (sc == NULL)
693 panic("ti_jfree: didn't get softc pointer!");
694
695 /* calculate the slot this buffer belongs to */
696
697 i = ((caddr_t)buf
698 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
699
700 if ((i < 0) || (i >= TI_JSLOTS))
701 panic("ti_jfree: asked to free buffer that we don't manage!");
702 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
703 if (entry == NULL)
704 panic("ti_jfree: buffer not in use!");
705 entry->slot = i;
706 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
707 entry, jpool_entries);
708 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
709 entry, jpool_entries);
710
711 return;
712 }
713
714
715 /*
716 * Intialize a standard receive ring descriptor.
717 */
718 static int ti_newbuf_std(sc, i, m, dmamap)
719 struct ti_softc *sc;
720 int i;
721 struct mbuf *m;
722 bus_dmamap_t dmamap; /* required if (m != NULL) */
723 {
724 struct mbuf *m_new = NULL;
725 struct ti_rx_desc *r;
726 int error;
727
728 if (dmamap == NULL) {
729 /* if (m) panic() */
730
731 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
732 MCLBYTES, 0, BUS_DMA_NOWAIT,
733 &dmamap)) != 0) {
734 printf("%s: can't create recv map, error = %d\n",
735 sc->sc_dev.dv_xname, error);
736 return(ENOMEM);
737 }
738 }
739 sc->std_dmamap[i] = dmamap;
740
741 if (m == NULL) {
742 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 if (m_new == NULL) {
744 printf("%s: mbuf allocation failed "
745 "-- packet dropped!\n", sc->sc_dev.dv_xname);
746 return(ENOBUFS);
747 }
748
749 MCLGET(m_new, M_DONTWAIT);
750 if (!(m_new->m_flags & M_EXT)) {
751 printf("%s: cluster allocation failed "
752 "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 m_freem(m_new);
754 return(ENOBUFS);
755 }
756 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
757 m_adj(m_new, ETHER_ALIGN);
758
759 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
760 mtod(m_new, caddr_t), m_new->m_len, NULL,
761 BUS_DMA_NOWAIT)) != 0) {
762 printf("%s: can't load recv map, error = %d\n",
763 sc->sc_dev.dv_xname, error);
764 return (ENOMEM);
765 }
766 } else {
767 m_new = m;
768 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
769 m_new->m_data = m_new->m_ext.ext_buf;
770 m_adj(m_new, ETHER_ALIGN);
771
772 /* reuse the dmamap */
773 }
774
775 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
776 r = &sc->ti_rdata->ti_rx_std_ring[i];
777 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
778 r->ti_type = TI_BDTYPE_RECV_BD;
779 #ifdef TI_CSUM_OFFLOAD
780 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
781 #else
782 r->ti_flags = 0;
783 #endif
784 r->ti_len = m_new->m_len; /* == ds_len */
785 r->ti_idx = i;
786
787 return(0);
788 }
789
790 /*
791 * Intialize a mini receive ring descriptor. This only applies to
792 * the Tigon 2.
793 */
794 static int ti_newbuf_mini(sc, i, m, dmamap)
795 struct ti_softc *sc;
796 int i;
797 struct mbuf *m;
798 bus_dmamap_t dmamap; /* required if (m != NULL) */
799 {
800 struct mbuf *m_new = NULL;
801 struct ti_rx_desc *r;
802 int error;
803
804 if (dmamap == NULL) {
805 /* if (m) panic() */
806
807 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
808 MHLEN, 0, BUS_DMA_NOWAIT,
809 &dmamap)) != 0) {
810 printf("%s: can't create recv map, error = %d\n",
811 sc->sc_dev.dv_xname, error);
812 return(ENOMEM);
813 }
814 }
815 sc->mini_dmamap[i] = dmamap;
816
817 if (m == NULL) {
818 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
819 if (m_new == NULL) {
820 printf("%s: mbuf allocation failed "
821 "-- packet dropped!\n", sc->sc_dev.dv_xname);
822 return(ENOBUFS);
823 }
824 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
825 m_adj(m_new, ETHER_ALIGN);
826
827 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
828 mtod(m_new, caddr_t), m_new->m_len, NULL,
829 BUS_DMA_NOWAIT)) != 0) {
830 printf("%s: can't load recv map, error = %d\n",
831 sc->sc_dev.dv_xname, error);
832 return (ENOMEM);
833 }
834 } else {
835 m_new = m;
836 m_new->m_data = m_new->m_pktdat;
837 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
838 m_adj(m_new, ETHER_ALIGN);
839
840 /* reuse the dmamap */
841 }
842
843 r = &sc->ti_rdata->ti_rx_mini_ring[i];
844 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
845 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
846 r->ti_type = TI_BDTYPE_RECV_BD;
847 r->ti_flags = TI_BDFLAG_MINI_RING;
848 #ifdef TI_CSUM_OFFLOAD
849 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
850 #endif
851 r->ti_len = m_new->m_len; /* == ds_len */
852 r->ti_idx = i;
853
854 return(0);
855 }
856
857 /*
858 * Initialize a jumbo receive ring descriptor. This allocates
859 * a jumbo buffer from the pool managed internally by the driver.
860 */
861 static int ti_newbuf_jumbo(sc, i, m)
862 struct ti_softc *sc;
863 int i;
864 struct mbuf *m;
865 {
866 struct mbuf *m_new = NULL;
867 struct ti_rx_desc *r;
868
869 if (m == NULL) {
870 caddr_t *buf = NULL;
871
872 /* Allocate the mbuf. */
873 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
874 if (m_new == NULL) {
875 printf("%s: mbuf allocation failed "
876 "-- packet dropped!\n", sc->sc_dev.dv_xname);
877 return(ENOBUFS);
878 }
879
880 /* Allocate the jumbo buffer */
881 buf = ti_jalloc(sc);
882 if (buf == NULL) {
883 m_freem(m_new);
884 printf("%s: jumbo allocation failed "
885 "-- packet dropped!\n", sc->sc_dev.dv_xname);
886 return(ENOBUFS);
887 }
888
889 /* Attach the buffer to the mbuf. */
890 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
891 m_new->m_flags |= M_EXT;
892 m_new->m_len = m_new->m_pkthdr.len =
893 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
894 m_new->m_ext.ext_free = ti_jfree;
895 m_new->m_ext.ext_arg = sc;
896 MCLINITREFERENCE(m_new);
897 } else {
898 m_new = m;
899 m_new->m_data = m_new->m_ext.ext_buf;
900 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
901 }
902
903 m_adj(m_new, ETHER_ALIGN);
904 /* Set up the descriptor. */
905 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
906 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
907 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
908 ((caddr_t)mtod(m_new, caddr_t)
909 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
910 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
911 r->ti_flags = TI_BDFLAG_JUMBO_RING;
912 #ifdef TI_CSUM_OFFLOAD
913 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
914 #endif
915 r->ti_len = m_new->m_len;
916 r->ti_idx = i;
917
918 return(0);
919 }
920
921 /*
922 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
923 * that's 1MB or memory, which is a lot. For now, we fill only the first
924 * 256 ring entries and hope that our CPU is fast enough to keep up with
925 * the NIC.
926 */
927 static int ti_init_rx_ring_std(sc)
928 struct ti_softc *sc;
929 {
930 int i;
931 struct ti_cmd_desc cmd;
932
933 for (i = 0; i < TI_SSLOTS; i++) {
934 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
935 return(ENOBUFS);
936 };
937
938 TI_UPDATE_STDPROD(sc, i - 1);
939 sc->ti_std = i - 1;
940
941 return(0);
942 }
943
944 static void ti_free_rx_ring_std(sc)
945 struct ti_softc *sc;
946 {
947 int i;
948
949 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
950 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
951 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
952 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
953
954 /* if (sc->std_dmamap[i] == 0) panic() */
955 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
956 sc->std_dmamap[i] = 0;
957 }
958 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
959 sizeof(struct ti_rx_desc));
960 }
961
962 return;
963 }
964
965 static int ti_init_rx_ring_jumbo(sc)
966 struct ti_softc *sc;
967 {
968 int i;
969 struct ti_cmd_desc cmd;
970
971 for (i = 0; i < (TI_JSLOTS - 20); i++) {
972 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
973 return(ENOBUFS);
974 };
975
976 TI_UPDATE_JUMBOPROD(sc, i - 1);
977 sc->ti_jumbo = i - 1;
978
979 return(0);
980 }
981
982 static void ti_free_rx_ring_jumbo(sc)
983 struct ti_softc *sc;
984 {
985 int i;
986
987 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
988 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
989 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
990 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
991 }
992 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
993 sizeof(struct ti_rx_desc));
994 }
995
996 return;
997 }
998
999 static int ti_init_rx_ring_mini(sc)
1000 struct ti_softc *sc;
1001 {
1002 int i;
1003
1004 for (i = 0; i < TI_MSLOTS; i++) {
1005 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1006 return(ENOBUFS);
1007 };
1008
1009 TI_UPDATE_MINIPROD(sc, i - 1);
1010 sc->ti_mini = i - 1;
1011
1012 return(0);
1013 }
1014
1015 static void ti_free_rx_ring_mini(sc)
1016 struct ti_softc *sc;
1017 {
1018 int i;
1019
1020 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1022 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1023 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1024
1025 /* if (sc->mini_dmamap[i] == 0) panic() */
1026 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1027 sc->mini_dmamap[i] = 0;
1028 }
1029 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1030 sizeof(struct ti_rx_desc));
1031 }
1032
1033 return;
1034 }
1035
1036 static void ti_free_tx_ring(sc)
1037 struct ti_softc *sc;
1038 {
1039 int i;
1040 struct txdmamap_pool_entry *dma;
1041
1042 if (sc->ti_rdata->ti_tx_ring == NULL)
1043 return;
1044
1045 for (i = 0; i < TI_TX_RING_CNT; i++) {
1046 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1047 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1048 sc->ti_cdata.ti_tx_chain[i] = NULL;
1049
1050 /* if (sc->txdma[i] == 0) panic() */
1051 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1052 link);
1053 sc->txdma[i] = 0;
1054 }
1055 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1056 sizeof(struct ti_tx_desc));
1057 }
1058
1059 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1060 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1061 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1062 free(dma, M_DEVBUF);
1063 }
1064
1065 return;
1066 }
1067
1068 static int ti_init_tx_ring(sc)
1069 struct ti_softc *sc;
1070 {
1071 int i, error;
1072 bus_dmamap_t dmamap;
1073 struct txdmamap_pool_entry *dma;
1074
1075 sc->ti_txcnt = 0;
1076 sc->ti_tx_saved_considx = 0;
1077 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1078
1079 SIMPLEQ_INIT(&sc->txdma_list);
1080 for (i = 0; i < TI_RSLOTS; i++) {
1081 /* I've seen mbufs with 30 fragments. */
1082 if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1083 40, TI_JUMBO_FRAMELEN, 0,
1084 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1085 printf("%s: can't create tx map, error = %d\n",
1086 sc->sc_dev.dv_xname, error);
1087 return(ENOMEM);
1088 }
1089 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1090 if (!dma) {
1091 printf("%s: can't alloc txdmamap_pool_entry\n",
1092 sc->sc_dev.dv_xname);
1093 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1094 return (ENOMEM);
1095 }
1096 dma->dmamap = dmamap;
1097 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1098 }
1099
1100 return(0);
1101 }
1102
1103 /*
1104 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1105 * but we have to support the old way too so that Tigon 1 cards will
1106 * work.
1107 */
1108 void ti_add_mcast(sc, addr)
1109 struct ti_softc *sc;
1110 struct ether_addr *addr;
1111 {
1112 struct ti_cmd_desc cmd;
1113 u_int16_t *m;
1114 u_int32_t ext[2] = {0, 0};
1115
1116 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1117
1118 switch(sc->ti_hwrev) {
1119 case TI_HWREV_TIGON:
1120 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1121 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1122 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1123 break;
1124 case TI_HWREV_TIGON_II:
1125 ext[0] = htons(m[0]);
1126 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1127 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1128 break;
1129 default:
1130 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1131 break;
1132 }
1133
1134 return;
1135 }
1136
1137 void ti_del_mcast(sc, addr)
1138 struct ti_softc *sc;
1139 struct ether_addr *addr;
1140 {
1141 struct ti_cmd_desc cmd;
1142 u_int16_t *m;
1143 u_int32_t ext[2] = {0, 0};
1144
1145 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1146
1147 switch(sc->ti_hwrev) {
1148 case TI_HWREV_TIGON:
1149 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1150 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1151 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1152 break;
1153 case TI_HWREV_TIGON_II:
1154 ext[0] = htons(m[0]);
1155 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1156 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1157 break;
1158 default:
1159 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1160 break;
1161 }
1162
1163 return;
1164 }
1165
1166 /*
1167 * Configure the Tigon's multicast address filter.
1168 *
1169 * The actual multicast table management is a bit of a pain, thanks to
1170 * slight brain damage on the part of both Alteon and us. With our
1171 * multicast code, we are only alerted when the multicast address table
1172 * changes and at that point we only have the current list of addresses:
1173 * we only know the current state, not the previous state, so we don't
1174 * actually know what addresses were removed or added. The firmware has
1175 * state, but we can't get our grubby mits on it, and there is no 'delete
1176 * all multicast addresses' command. Hence, we have to maintain our own
1177 * state so we know what addresses have been programmed into the NIC at
1178 * any given time.
1179 */
1180 static void ti_setmulti(sc)
1181 struct ti_softc *sc;
1182 {
1183 struct ifnet *ifp;
1184 struct ti_cmd_desc cmd;
1185 struct ti_mc_entry *mc;
1186 u_int32_t intrs;
1187 struct ether_multi *enm;
1188 struct ether_multistep step;
1189
1190 ifp = &sc->ethercom.ec_if;
1191
1192 /* Disable interrupts. */
1193 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1194 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1195
1196 /* First, zot all the existing filters. */
1197 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1198 ti_del_mcast(sc, &mc->mc_addr);
1199 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1200 free(mc, M_DEVBUF);
1201 }
1202
1203 /*
1204 * Remember all multicast addresses so that we can delete them
1205 * later. Punt if there is a range of addresses or memory shortage.
1206 */
1207 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1208 while (enm != NULL) {
1209 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1210 ETHER_ADDR_LEN) != 0)
1211 goto allmulti;
1212 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1213 M_NOWAIT)) == NULL)
1214 goto allmulti;
1215 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1216 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1217 ETHER_NEXT_MULTI(step, enm);
1218 }
1219
1220 /* Accept only programmed multicast addresses */
1221 ifp->if_flags &= ~IFF_ALLMULTI;
1222 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1223
1224 /* Now program new ones. */
1225 for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
1226 mc = SIMPLEQ_NEXT(mc, mc_entries))
1227 ti_add_mcast(sc, &mc->mc_addr);
1228
1229 /* Re-enable interrupts. */
1230 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1231
1232 return;
1233
1234 allmulti:
1235 /* No need to keep individual multicast addresses */
1236 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1237 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
1238 mc_entries);
1239 free(mc, M_DEVBUF);
1240 }
1241
1242 /* Accept all multicast addresses */
1243 ifp->if_flags |= IFF_ALLMULTI;
1244 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1245
1246 /* Re-enable interrupts. */
1247 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1248 }
1249
1250 /*
1251 * Check to see if the BIOS has configured us for a 64 bit slot when
1252 * we aren't actually in one. If we detect this condition, we can work
1253 * around it on the Tigon 2 by setting a bit in the PCI state register,
1254 * but for the Tigon 1 we must give up and abort the interface attach.
1255 */
1256 static int ti_64bitslot_war(sc)
1257 struct ti_softc *sc;
1258 {
1259 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1260 CSR_WRITE_4(sc, 0x600, 0);
1261 CSR_WRITE_4(sc, 0x604, 0);
1262 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1263 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1264 if (sc->ti_hwrev == TI_HWREV_TIGON)
1265 return(EINVAL);
1266 else {
1267 TI_SETBIT(sc, TI_PCI_STATE,
1268 TI_PCISTATE_32BIT_BUS);
1269 return(0);
1270 }
1271 }
1272 }
1273
1274 return(0);
1275 }
1276
1277 /*
1278 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1279 * self-test results.
1280 */
1281 static int ti_chipinit(sc)
1282 struct ti_softc *sc;
1283 {
1284 u_int32_t cacheline;
1285 u_int32_t pci_writemax = 0;
1286
1287 /* Initialize link to down state. */
1288 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1289
1290 /* Set endianness before we access any non-PCI registers. */
1291 #if BYTE_ORDER == BIG_ENDIAN
1292 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1293 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1294 #else
1295 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1296 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1297 #endif
1298
1299 /* Check the ROM failed bit to see if self-tests passed. */
1300 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1301 printf("%s: board self-diagnostics failed!\n",
1302 sc->sc_dev.dv_xname);
1303 return(ENODEV);
1304 }
1305
1306 /* Halt the CPU. */
1307 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1308
1309 /* Figure out the hardware revision. */
1310 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1311 case TI_REV_TIGON_I:
1312 sc->ti_hwrev = TI_HWREV_TIGON;
1313 break;
1314 case TI_REV_TIGON_II:
1315 sc->ti_hwrev = TI_HWREV_TIGON_II;
1316 break;
1317 default:
1318 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1319 return(ENODEV);
1320 }
1321
1322 /* Do special setup for Tigon 2. */
1323 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1324 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1325 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1326 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1327 }
1328
1329 /* Set up the PCI state register. */
1330 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1331 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1332 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1333 }
1334
1335 /* Clear the read/write max DMA parameters. */
1336 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1337 TI_PCISTATE_READ_MAXDMA));
1338
1339 /* Get cache line size. */
1340 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1341
1342 /*
1343 * If the system has set enabled the PCI memory write
1344 * and invalidate command in the command register, set
1345 * the write max parameter accordingly. This is necessary
1346 * to use MWI with the Tigon 2.
1347 */
1348 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1349 & PCI_COMMAND_INVALIDATE_ENABLE) {
1350 switch(cacheline) {
1351 case 1:
1352 case 4:
1353 case 8:
1354 case 16:
1355 case 32:
1356 case 64:
1357 break;
1358 default:
1359 /* Disable PCI memory write and invalidate. */
1360 if (bootverbose)
1361 printf("%s: cache line size %d not "
1362 "supported; disabling PCI MWI\n",
1363 sc->sc_dev.dv_xname, cacheline);
1364 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1365 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1366 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1367 break;
1368 }
1369 }
1370
1371 #ifdef __brokenalpha__
1372 /*
1373 * From the Alteon sample driver:
1374 * Must insure that we do not cross an 8K (bytes) boundary
1375 * for DMA reads. Our highest limit is 1K bytes. This is a
1376 * restriction on some ALPHA platforms with early revision
1377 * 21174 PCI chipsets, such as the AlphaPC 164lx
1378 */
1379 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1380 #else
1381 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1382 #endif
1383
1384 /* This sets the min dma param all the way up (0xff). */
1385 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1386
1387 /* Configure DMA variables. */
1388 #if BYTE_ORDER == BIG_ENDIAN
1389 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1390 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1391 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1392 TI_OPMODE_DONT_FRAG_JUMBO);
1393 #else
1394 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1395 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1396 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1397 #endif
1398
1399 /*
1400 * Only allow 1 DMA channel to be active at a time.
1401 * I don't think this is a good idea, but without it
1402 * the firmware racks up lots of nicDmaReadRingFull
1403 * errors.
1404 */
1405 #ifndef TI_CSUM_OFFLOAD
1406 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1407 #endif
1408
1409 /* Recommended settings from Tigon manual. */
1410 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1411 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1412
1413 if (ti_64bitslot_war(sc)) {
1414 printf("%s: bios thinks we're in a 64 bit slot, "
1415 "but we aren't", sc->sc_dev.dv_xname);
1416 return(EINVAL);
1417 }
1418
1419 return(0);
1420 }
1421
1422 /*
1423 * Initialize the general information block and firmware, and
1424 * start the CPU(s) running.
1425 */
1426 static int ti_gibinit(sc)
1427 struct ti_softc *sc;
1428 {
1429 struct ti_rcb *rcb;
1430 int i;
1431 struct ifnet *ifp;
1432
1433 ifp = &sc->ethercom.ec_if;
1434
1435 /* Disable interrupts for now. */
1436 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1437
1438 /* Tell the chip where to find the general information block. */
1439 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1440 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1441 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1442
1443 /* Load the firmware into SRAM. */
1444 ti_loadfw(sc);
1445
1446 /* Set up the contents of the general info and ring control blocks. */
1447
1448 /* Set up the event ring and producer pointer. */
1449 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1450
1451 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1452 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1453 rcb->ti_flags = 0;
1454 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1455 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1456 - (caddr_t)sc->ti_rdata);
1457 sc->ti_ev_prodidx.ti_idx = 0;
1458 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1459 sc->ti_ev_saved_considx = 0;
1460
1461 /* Set up the command ring and producer mailbox. */
1462 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1463
1464 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1465 rcb->ti_flags = 0;
1466 rcb->ti_max_len = 0;
1467 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1469 }
1470 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1471 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1472 sc->ti_cmd_saved_prodidx = 0;
1473
1474 /*
1475 * Assign the address of the stats refresh buffer.
1476 * We re-use the current stats buffer for this to
1477 * conserve memory.
1478 */
1479 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1480 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1481 - (caddr_t)sc->ti_rdata);
1482
1483 /* Set up the standard receive ring. */
1484 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1485 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1486 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1487 - (caddr_t)sc->ti_rdata);
1488 rcb->ti_max_len = TI_FRAMELEN;
1489 rcb->ti_flags = 0;
1490 #ifdef TI_CSUM_OFFLOAD
1491 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1492 #endif
1493 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1494
1495 /* Set up the jumbo receive ring. */
1496 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1497 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1498 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1499 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1500 rcb->ti_flags = 0;
1501 #ifdef TI_CSUM_OFFLOAD
1502 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1503 #endif
1504 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1505
1506 /*
1507 * Set up the mini ring. Only activated on the
1508 * Tigon 2 but the slot in the config block is
1509 * still there on the Tigon 1.
1510 */
1511 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1512 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1513 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1514 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1515 if (sc->ti_hwrev == TI_HWREV_TIGON)
1516 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1517 else
1518 rcb->ti_flags = 0;
1519 #ifdef TI_CSUM_OFFLOAD
1520 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1521 #endif
1522 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1523
1524 /*
1525 * Set up the receive return ring.
1526 */
1527 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1528 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1529 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1530 rcb->ti_flags = 0;
1531 rcb->ti_max_len = TI_RETURN_RING_CNT;
1532 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1533 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1534 - (caddr_t)sc->ti_rdata);
1535
1536 /*
1537 * Set up the tx ring. Note: for the Tigon 2, we have the option
1538 * of putting the transmit ring in the host's address space and
1539 * letting the chip DMA it instead of leaving the ring in the NIC's
1540 * memory and accessing it through the shared memory region. We
1541 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1542 * so we have to revert to the shared memory scheme if we detect
1543 * a Tigon 1 chip.
1544 */
1545 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1546 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1547 sc->ti_rdata->ti_tx_ring_nic =
1548 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1549 }
1550 bzero((char *)sc->ti_rdata->ti_tx_ring,
1551 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1552 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1553 if (sc->ti_hwrev == TI_HWREV_TIGON)
1554 rcb->ti_flags = 0;
1555 else
1556 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1557 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1558 rcb->ti_max_len = TI_TX_RING_CNT;
1559 if (sc->ti_hwrev == TI_HWREV_TIGON)
1560 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1561 else
1562 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1563 ((caddr_t)&sc->ti_rdata->ti_tx_ring
1564 - (caddr_t)sc->ti_rdata);
1565 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1566 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1567 - (caddr_t)sc->ti_rdata);
1568
1569 /* Set up tuneables */
1570 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1571 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1572 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1573 (sc->ti_rx_coal_ticks / 10));
1574 else
1575 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1576 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1577 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1578 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1579 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1580 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1581
1582 /* Turn interrupts on. */
1583 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1584 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1585
1586 /* Start CPU. */
1587 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1588
1589 return(0);
1590 }
1591
1592 /*
1593 * look for id in the device list, returning the first match
1594 */
1595 static const struct ti_type *
1596 ti_type_match(pa)
1597 struct pci_attach_args *pa;
1598 {
1599 const struct ti_type *t;
1600
1601 t = ti_devs;
1602 while(t->ti_name != NULL) {
1603 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1604 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1605 return (t);
1606 }
1607 t++;
1608 }
1609
1610 return(NULL);
1611 }
1612
1613 /*
1614 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1615 * against our list and return its name if we find a match.
1616 */
1617 static int ti_probe(parent, match, aux)
1618 struct device *parent;
1619 struct cfdata *match;
1620 void *aux;
1621 {
1622 struct pci_attach_args *pa = aux;
1623 const struct ti_type *t;
1624
1625 t = ti_type_match(pa);
1626
1627 return((t == NULL) ? 0 : 1);
1628 }
1629
1630 static void ti_attach(parent, self, aux)
1631 struct device *parent, *self;
1632 void *aux;
1633 {
1634 u_int32_t command;
1635 struct ifnet *ifp;
1636 struct ti_softc *sc;
1637 u_char eaddr[ETHER_ADDR_LEN];
1638 struct pci_attach_args *pa = aux;
1639 pci_chipset_tag_t pc = pa->pa_pc;
1640 pci_intr_handle_t ih;
1641 const char *intrstr = NULL;
1642 bus_dma_segment_t dmaseg;
1643 int error, dmanseg, nolinear;
1644 const struct ti_type *t;
1645
1646 t = ti_type_match(pa);
1647 if (t == NULL) {
1648 printf("ti_attach: were did the card go ?\n");
1649 return;
1650 }
1651
1652 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1653
1654 sc = (struct ti_softc *)self;
1655
1656 /*
1657 * Map control/status registers.
1658 */
1659 nolinear = 0;
1660 if (pci_mapreg_map(pa, 0x10,
1661 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1662 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1663 NULL, NULL)) {
1664 nolinear = 1;
1665 if (pci_mapreg_map(pa, 0x10,
1666 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1667 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1668 printf(": can't map memory space\n");
1669 return;
1670 }
1671 }
1672 if (nolinear == 0)
1673 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1674 else
1675 sc->ti_vhandle = NULL;
1676
1677 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1678 command |= PCI_COMMAND_MASTER_ENABLE;
1679 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1680
1681 /* Allocate interrupt */
1682 if (pci_intr_map(pa, &ih)) {
1683 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1684 return;;
1685 }
1686 intrstr = pci_intr_string(pc, ih);
1687 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1688 if (sc->sc_ih == NULL) {
1689 printf("%s: couldn't establish interrupt",
1690 sc->sc_dev.dv_xname);
1691 if (intrstr != NULL)
1692 printf(" at %s", intrstr);
1693 printf("\n");
1694 return;;
1695 }
1696 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1697 /*
1698 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1699 * doing do could allow DMA to corrupt kernel memory during the
1700 * reboot before the driver initializes.
1701 */
1702 (void) shutdownhook_establish(ti_shutdown, sc);
1703
1704 if (ti_chipinit(sc)) {
1705 printf("%s: chip initialization failed\n", self->dv_xname);
1706 goto fail2;
1707 }
1708 if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
1709 printf("%s: memory space not mapped linear\n", self->dv_xname);
1710 }
1711
1712 /* Zero out the NIC's on-board SRAM. */
1713 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1714
1715 /* Init again -- zeroing memory may have clobbered some registers. */
1716 if (ti_chipinit(sc)) {
1717 printf("%s: chip initialization failed\n", self->dv_xname);
1718 goto fail2;
1719 }
1720
1721 /*
1722 * Get station address from the EEPROM. Note: the manual states
1723 * that the MAC address is at offset 0x8c, however the data is
1724 * stored as two longwords (since that's how it's loaded into
1725 * the NIC). This means the MAC address is actually preceeded
1726 * by two zero bytes. We need to skip over those.
1727 */
1728 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1729 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1730 printf("%s: failed to read station address\n", self->dv_xname);
1731 goto fail2;
1732 }
1733
1734 /*
1735 * A Tigon chip was detected. Inform the world.
1736 */
1737 printf("%s: Ethernet address: %s\n", self->dv_xname,
1738 ether_sprintf(eaddr));
1739
1740 sc->sc_dmat = pa->pa_dmat;
1741
1742 /* Allocate the general information block and ring buffers. */
1743 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1744 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1745 BUS_DMA_NOWAIT)) != 0) {
1746 printf("%s: can't allocate ring buffer, error = %d\n",
1747 sc->sc_dev.dv_xname, error);
1748 goto fail2;
1749 }
1750
1751 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1752 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1753 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1754 printf("%s: can't map ring buffer, error = %d\n",
1755 sc->sc_dev.dv_xname, error);
1756 goto fail2;
1757 }
1758
1759 if ((error = bus_dmamap_create(sc->sc_dmat,
1760 sizeof(struct ti_ring_data), 1,
1761 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1762 &sc->info_dmamap)) != 0) {
1763 printf("%s: can't create ring buffer DMA map, error = %d\n",
1764 sc->sc_dev.dv_xname, error);
1765 goto fail2;
1766 }
1767
1768 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1769 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1770 BUS_DMA_NOWAIT)) != 0) {
1771 printf("%s: can't load ring buffer DMA map, error = %d\n",
1772 sc->sc_dev.dv_xname, error);
1773 goto fail2;
1774 }
1775
1776 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1777
1778 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1779
1780 /* Try to allocate memory for jumbo buffers. */
1781 if (ti_alloc_jumbo_mem(sc)) {
1782 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1783 goto fail2;
1784 }
1785
1786 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1787
1788 /*
1789 * We really need a better way to tell a 1000baseTX card
1790 * from a 1000baseSX one, since in theory there could be
1791 * OEMed 1000baseTX cards from lame vendors who aren't
1792 * clever enough to change the PCI ID. For the moment
1793 * though, the AceNIC is the only copper card available.
1794 */
1795 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1796 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1797 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1798 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1799 sc->ti_copper = 1;
1800 else
1801 sc->ti_copper = 0;
1802
1803 /* Set default tuneable values. */
1804 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1805 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1806 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1807 sc->ti_rx_max_coal_bds = 64;
1808 sc->ti_tx_max_coal_bds = 128;
1809 sc->ti_tx_buf_ratio = 21;
1810
1811 /* Set up ifnet structure */
1812 ifp = &sc->ethercom.ec_if;
1813 ifp->if_softc = sc;
1814 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1815 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1816 ifp->if_ioctl = ti_ioctl;
1817 ifp->if_start = ti_start;
1818 ifp->if_watchdog = ti_watchdog;
1819 IFQ_SET_READY(&ifp->if_snd);
1820
1821 #if 0
1822 /*
1823 * XXX This is not really correct -- we don't necessarily
1824 * XXX want to queue up as many as we can transmit at the
1825 * XXX upper layer like that. Someone with a board should
1826 * XXX check to see how this affects performance.
1827 */
1828 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1829 #endif
1830
1831 /*
1832 * We can support 802.1Q VLAN-sized frames.
1833 */
1834 sc->ethercom.ec_capabilities |=
1835 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1836
1837 /* Set up ifmedia support. */
1838 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1839 if (sc->ti_copper) {
1840 /*
1841 * Copper cards allow manual 10/100 mode selection,
1842 * but not manual 1000baseTX mode selection. Why?
1843 * Becuase currently there's no way to specify the
1844 * master/slave setting through the firmware interface,
1845 * so Alteon decided to just bag it and handle it
1846 * via autonegotiation.
1847 */
1848 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1849 ifmedia_add(&sc->ifmedia,
1850 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1851 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1852 ifmedia_add(&sc->ifmedia,
1853 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1854 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1855 ifmedia_add(&sc->ifmedia,
1856 IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1857 } else {
1858 /* Fiber cards don't support 10/100 modes. */
1859 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1860 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1861 }
1862 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1863 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1864
1865 /*
1866 * Call MI attach routines.
1867 */
1868 if_attach(ifp);
1869 ether_ifattach(ifp, eaddr);
1870
1871 return;
1872 fail2:
1873 pci_intr_disestablish(pc, sc->sc_ih);
1874 return;
1875 }
1876
1877 /*
1878 * Frame reception handling. This is called if there's a frame
1879 * on the receive return list.
1880 *
1881 * Note: we have to be able to handle three possibilities here:
1882 * 1) the frame is from the mini receive ring (can only happen)
1883 * on Tigon 2 boards)
1884 * 2) the frame is from the jumbo recieve ring
1885 * 3) the frame is from the standard receive ring
1886 */
1887
1888 static void ti_rxeof(sc)
1889 struct ti_softc *sc;
1890 {
1891 struct ifnet *ifp;
1892 struct ti_cmd_desc cmd;
1893
1894 ifp = &sc->ethercom.ec_if;
1895
1896 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1897 struct ti_rx_desc *cur_rx;
1898 u_int32_t rxidx;
1899 struct mbuf *m = NULL;
1900 u_int16_t vlan_tag = 0;
1901 int have_tag = 0;
1902 #ifdef TI_CSUM_OFFLOAD
1903 struct ip *ip;
1904 #endif
1905 bus_dmamap_t dmamap;
1906
1907 cur_rx =
1908 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1909 rxidx = cur_rx->ti_idx;
1910 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1911
1912 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1913 have_tag = 1;
1914 vlan_tag = cur_rx->ti_vlan_tag;
1915 }
1916
1917 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1918 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1919 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1920 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1921 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1922 ifp->if_ierrors++;
1923 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1924 continue;
1925 }
1926 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1927 == ENOBUFS) {
1928 ifp->if_ierrors++;
1929 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1930 continue;
1931 }
1932 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1933 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1934 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1935 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1936 dmamap = sc->mini_dmamap[rxidx];
1937 sc->mini_dmamap[rxidx] = 0;
1938 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1939 ifp->if_ierrors++;
1940 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1941 continue;
1942 }
1943 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1944 == ENOBUFS) {
1945 ifp->if_ierrors++;
1946 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1947 continue;
1948 }
1949 } else {
1950 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1951 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1952 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1953 dmamap = sc->std_dmamap[rxidx];
1954 sc->std_dmamap[rxidx] = 0;
1955 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1956 ifp->if_ierrors++;
1957 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1958 continue;
1959 }
1960 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1961 == ENOBUFS) {
1962 ifp->if_ierrors++;
1963 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1964 continue;
1965 }
1966 }
1967
1968 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1969 ifp->if_ipackets++;
1970 m->m_pkthdr.rcvif = ifp;
1971
1972 #if NBPFILTER > 0
1973 /*
1974 * Handle BPF listeners. Let the BPF user see the packet, but
1975 * don't pass it up to the ether_input() layer unless it's
1976 * a broadcast packet, multicast packet, matches our ethernet
1977 * address or the interface is in promiscuous mode.
1978 */
1979 if (ifp->if_bpf)
1980 bpf_mtap(ifp->if_bpf, m);
1981 #endif
1982
1983 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
1984 ip = mtod(m, struct ip *);
1985 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1986 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1987 m->m_flags |= M_HWCKSUM;
1988 #endif
1989
1990 if (have_tag) {
1991 struct mbuf *n;
1992 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1993 if (n) {
1994 *mtod(n, int *) = vlan_tag;
1995 n->m_len = sizeof(int);
1996 } else {
1997 printf("%s: no mbuf for tag\n", ifp->if_xname);
1998 m_freem(m);
1999 continue;
2000 }
2001 have_tag = vlan_tag = 0;
2002 }
2003 (*ifp->if_input)(ifp, m);
2004 }
2005
2006 /* Only necessary on the Tigon 1. */
2007 if (sc->ti_hwrev == TI_HWREV_TIGON)
2008 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2009 sc->ti_rx_saved_considx);
2010
2011 TI_UPDATE_STDPROD(sc, sc->ti_std);
2012 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2013 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2014
2015 return;
2016 }
2017
2018 static void ti_txeof(sc)
2019 struct ti_softc *sc;
2020 {
2021 struct ti_tx_desc *cur_tx = NULL;
2022 struct ifnet *ifp;
2023
2024 ifp = &sc->ethercom.ec_if;
2025
2026 /*
2027 * Go through our tx ring and free mbufs for those
2028 * frames that have been sent.
2029 */
2030 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2031 u_int32_t idx = 0;
2032
2033 idx = sc->ti_tx_saved_considx;
2034 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2035 if (idx > 383)
2036 CSR_WRITE_4(sc, TI_WINBASE,
2037 TI_TX_RING_BASE + 6144);
2038 else if (idx > 255)
2039 CSR_WRITE_4(sc, TI_WINBASE,
2040 TI_TX_RING_BASE + 4096);
2041 else if (idx > 127)
2042 CSR_WRITE_4(sc, TI_WINBASE,
2043 TI_TX_RING_BASE + 2048);
2044 else
2045 CSR_WRITE_4(sc, TI_WINBASE,
2046 TI_TX_RING_BASE);
2047 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2048 } else
2049 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2050 if (cur_tx->ti_flags & TI_BDFLAG_END)
2051 ifp->if_opackets++;
2052 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2053 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2054 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2055
2056 /* if (sc->txdma[idx] == 0) panic() */
2057 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2058 link);
2059 sc->txdma[idx] = 0;
2060 }
2061 sc->ti_txcnt--;
2062 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2063 ifp->if_timer = 0;
2064 }
2065
2066 if (cur_tx != NULL)
2067 ifp->if_flags &= ~IFF_OACTIVE;
2068
2069 return;
2070 }
2071
2072 static int ti_intr(xsc)
2073 void *xsc;
2074 {
2075 struct ti_softc *sc;
2076 struct ifnet *ifp;
2077
2078 sc = xsc;
2079 ifp = &sc->ethercom.ec_if;
2080
2081 #ifdef notdef
2082 /* Avoid this for now -- checking this register is expensive. */
2083 /* Make sure this is really our interrupt. */
2084 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2085 return (0);
2086 #endif
2087
2088 /* Ack interrupt and stop others from occuring. */
2089 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2090
2091 if (ifp->if_flags & IFF_RUNNING) {
2092 /* Check RX return ring producer/consumer */
2093 ti_rxeof(sc);
2094
2095 /* Check TX ring producer/consumer */
2096 ti_txeof(sc);
2097 }
2098
2099 ti_handle_events(sc);
2100
2101 /* Re-enable interrupts. */
2102 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2103
2104 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2105 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2106 ti_start(ifp);
2107
2108 return (1);
2109 }
2110
2111 static void ti_stats_update(sc)
2112 struct ti_softc *sc;
2113 {
2114 struct ifnet *ifp;
2115
2116 ifp = &sc->ethercom.ec_if;
2117
2118 ifp->if_collisions +=
2119 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2120 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2121 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2122 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2123 ifp->if_collisions;
2124
2125 return;
2126 }
2127
2128 /*
2129 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2130 * pointers to descriptors.
2131 */
2132 static int ti_encap(sc, m_head, txidx)
2133 struct ti_softc *sc;
2134 struct mbuf *m_head;
2135 u_int32_t *txidx;
2136 {
2137 struct ti_tx_desc *f = NULL;
2138 u_int32_t frag, cur, cnt = 0;
2139 struct txdmamap_pool_entry *dma;
2140 bus_dmamap_t dmamap;
2141 int error, i;
2142 struct mbuf *n;
2143
2144 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2145 if (dma == NULL) {
2146 return ENOMEM;
2147 }
2148 dmamap = dma->dmamap;
2149
2150 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2151 if (error) {
2152 struct mbuf *m;
2153 int i = 0;
2154 for (m = m_head; m; m = m->m_next)
2155 i++;
2156 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2157 "error %d\n", m_head->m_pkthdr.len, i, error);
2158 return (ENOMEM);
2159 }
2160
2161 cur = frag = *txidx;
2162
2163 /*
2164 * Start packing the mbufs in this chain into
2165 * the fragment pointers. Stop when we run out
2166 * of fragments or hit the end of the mbuf chain.
2167 */
2168 for (i = 0; i < dmamap->dm_nsegs; i++) {
2169 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2170 if (frag > 383)
2171 CSR_WRITE_4(sc, TI_WINBASE,
2172 TI_TX_RING_BASE + 6144);
2173 else if (frag > 255)
2174 CSR_WRITE_4(sc, TI_WINBASE,
2175 TI_TX_RING_BASE + 4096);
2176 else if (frag > 127)
2177 CSR_WRITE_4(sc, TI_WINBASE,
2178 TI_TX_RING_BASE + 2048);
2179 else
2180 CSR_WRITE_4(sc, TI_WINBASE,
2181 TI_TX_RING_BASE);
2182 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2183 } else
2184 f = &sc->ti_rdata->ti_tx_ring[frag];
2185 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2186 break;
2187 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2188 f->ti_len = dmamap->dm_segs[i].ds_len;
2189 f->ti_flags = 0;
2190 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2191 if (n) {
2192 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2193 f->ti_vlan_tag = *mtod(n, int *);
2194 } else {
2195 f->ti_vlan_tag = 0;
2196 }
2197 /*
2198 * Sanity check: avoid coming within 16 descriptors
2199 * of the end of the ring.
2200 */
2201 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2202 return(ENOBUFS);
2203 cur = frag;
2204 TI_INC(frag, TI_TX_RING_CNT);
2205 cnt++;
2206 }
2207
2208 if (i < dmamap->dm_nsegs)
2209 return(ENOBUFS);
2210
2211 if (frag == sc->ti_tx_saved_considx)
2212 return(ENOBUFS);
2213
2214 if (sc->ti_hwrev == TI_HWREV_TIGON)
2215 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2216 TI_BDFLAG_END;
2217 else
2218 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2219 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2220 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2221 sc->txdma[cur] = dma;
2222 sc->ti_txcnt += cnt;
2223
2224 *txidx = frag;
2225
2226 return(0);
2227 }
2228
2229 /*
2230 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2231 * to the mbuf data regions directly in the transmit descriptors.
2232 */
2233 static void ti_start(ifp)
2234 struct ifnet *ifp;
2235 {
2236 struct ti_softc *sc;
2237 struct mbuf *m_head = NULL;
2238 u_int32_t prodidx = 0;
2239
2240 sc = ifp->if_softc;
2241
2242 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2243
2244 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2245 IFQ_POLL(&ifp->if_snd, m_head);
2246 if (m_head == NULL)
2247 break;
2248
2249 /*
2250 * Pack the data into the transmit ring. If we
2251 * don't have room, set the OACTIVE flag and wait
2252 * for the NIC to drain the ring.
2253 */
2254 if (ti_encap(sc, m_head, &prodidx)) {
2255 ifp->if_flags |= IFF_OACTIVE;
2256 break;
2257 }
2258
2259 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2260
2261 /*
2262 * If there's a BPF listener, bounce a copy of this frame
2263 * to him.
2264 */
2265 #if NBPFILTER > 0
2266 if (ifp->if_bpf)
2267 bpf_mtap(ifp->if_bpf, m_head);
2268 #endif
2269 }
2270
2271 /* Transmit */
2272 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2273
2274 /*
2275 * Set a timeout in case the chip goes out to lunch.
2276 */
2277 ifp->if_timer = 5;
2278
2279 return;
2280 }
2281
2282 static void ti_init(xsc)
2283 void *xsc;
2284 {
2285 struct ti_softc *sc = xsc;
2286 int s;
2287
2288 s = splnet();
2289
2290 /* Cancel pending I/O and flush buffers. */
2291 ti_stop(sc);
2292
2293 /* Init the gen info block, ring control blocks and firmware. */
2294 if (ti_gibinit(sc)) {
2295 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2296 splx(s);
2297 return;
2298 }
2299
2300 splx(s);
2301
2302 return;
2303 }
2304
2305 static void ti_init2(sc)
2306 struct ti_softc *sc;
2307 {
2308 struct ti_cmd_desc cmd;
2309 struct ifnet *ifp;
2310 u_int8_t *m;
2311 struct ifmedia *ifm;
2312 int tmp;
2313
2314 ifp = &sc->ethercom.ec_if;
2315
2316 /* Specify MTU and interface index. */
2317 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2318 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) &&
2319 ifp->if_mtu < ETHERMTU + ETHER_VLAN_ENCAP_LEN)
2320 CSR_WRITE_4(sc, TI_GCR_IFMTU, ETHER_MAX_LEN +
2321 ETHER_VLAN_ENCAP_LEN);
2322 else
2323 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2324 ETHER_HDR_LEN + ETHER_CRC_LEN);
2325 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2326
2327 /* Load our MAC address. */
2328 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2329 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2330 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2331 | (m[4] << 8) | m[5]);
2332 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2333
2334 /* Enable or disable promiscuous mode as needed. */
2335 if (ifp->if_flags & IFF_PROMISC) {
2336 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2337 } else {
2338 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2339 }
2340
2341 /* Program multicast filter. */
2342 ti_setmulti(sc);
2343
2344 /*
2345 * If this is a Tigon 1, we should tell the
2346 * firmware to use software packet filtering.
2347 */
2348 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2349 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2350 }
2351
2352 /* Init RX ring. */
2353 ti_init_rx_ring_std(sc);
2354
2355 /* Init jumbo RX ring. */
2356 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2357 ti_init_rx_ring_jumbo(sc);
2358
2359 /*
2360 * If this is a Tigon 2, we can also configure the
2361 * mini ring.
2362 */
2363 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2364 ti_init_rx_ring_mini(sc);
2365
2366 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2367 sc->ti_rx_saved_considx = 0;
2368
2369 /* Init TX ring. */
2370 ti_init_tx_ring(sc);
2371
2372 /* Tell firmware we're alive. */
2373 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2374
2375 /* Enable host interrupts. */
2376 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2377
2378 ifp->if_flags |= IFF_RUNNING;
2379 ifp->if_flags &= ~IFF_OACTIVE;
2380
2381 /*
2382 * Make sure to set media properly. We have to do this
2383 * here since we have to issue commands in order to set
2384 * the link negotiation and we can't issue commands until
2385 * the firmware is running.
2386 */
2387 ifm = &sc->ifmedia;
2388 tmp = ifm->ifm_media;
2389 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2390 ti_ifmedia_upd(ifp);
2391 ifm->ifm_media = tmp;
2392
2393 return;
2394 }
2395
2396 /*
2397 * Set media options.
2398 */
2399 static int ti_ifmedia_upd(ifp)
2400 struct ifnet *ifp;
2401 {
2402 struct ti_softc *sc;
2403 struct ifmedia *ifm;
2404 struct ti_cmd_desc cmd;
2405
2406 sc = ifp->if_softc;
2407 ifm = &sc->ifmedia;
2408
2409 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2410 return(EINVAL);
2411
2412 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2413 case IFM_AUTO:
2414 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2415 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2416 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2417 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2418 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2419 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2420 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2421 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2422 break;
2423 case IFM_1000_SX:
2424 case IFM_1000_TX:
2425 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2426 CSR_WRITE_4(sc, TI_GCR_GLINK,
2427 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2428 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2429 } else {
2430 CSR_WRITE_4(sc, TI_GCR_GLINK,
2431 TI_GLNK_PREF|TI_GLNK_1000MB|
2432 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2433 }
2434 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2435 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2436 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2437 break;
2438 case IFM_100_FX:
2439 case IFM_10_FL:
2440 case IFM_100_TX:
2441 case IFM_10_T:
2442 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2443 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2444 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2445 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2446 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2447 } else {
2448 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2449 }
2450 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2451 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2452 } else {
2453 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2454 }
2455 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2456 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2457 break;
2458 }
2459
2460 sc->ethercom.ec_if.if_baudrate =
2461 ifmedia_baudrate(ifm->ifm_media);
2462
2463 return(0);
2464 }
2465
2466 /*
2467 * Report current media status.
2468 */
2469 static void ti_ifmedia_sts(ifp, ifmr)
2470 struct ifnet *ifp;
2471 struct ifmediareq *ifmr;
2472 {
2473 struct ti_softc *sc;
2474 u_int32_t media = 0;
2475
2476 sc = ifp->if_softc;
2477
2478 ifmr->ifm_status = IFM_AVALID;
2479 ifmr->ifm_active = IFM_ETHER;
2480
2481 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2482 return;
2483
2484 ifmr->ifm_status |= IFM_ACTIVE;
2485
2486 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2487 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2488 if (sc->ti_copper)
2489 ifmr->ifm_active |= IFM_1000_TX;
2490 else
2491 ifmr->ifm_active |= IFM_1000_SX;
2492 if (media & TI_GLNK_FULL_DUPLEX)
2493 ifmr->ifm_active |= IFM_FDX;
2494 else
2495 ifmr->ifm_active |= IFM_HDX;
2496 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2497 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2498 if (sc->ti_copper) {
2499 if (media & TI_LNK_100MB)
2500 ifmr->ifm_active |= IFM_100_TX;
2501 if (media & TI_LNK_10MB)
2502 ifmr->ifm_active |= IFM_10_T;
2503 } else {
2504 if (media & TI_LNK_100MB)
2505 ifmr->ifm_active |= IFM_100_FX;
2506 if (media & TI_LNK_10MB)
2507 ifmr->ifm_active |= IFM_10_FL;
2508 }
2509 if (media & TI_LNK_FULL_DUPLEX)
2510 ifmr->ifm_active |= IFM_FDX;
2511 if (media & TI_LNK_HALF_DUPLEX)
2512 ifmr->ifm_active |= IFM_HDX;
2513 }
2514
2515 sc->ethercom.ec_if.if_baudrate =
2516 ifmedia_baudrate(sc->ifmedia.ifm_media);
2517
2518 return;
2519 }
2520
2521 static int
2522 ti_ether_ioctl(ifp, cmd, data)
2523 struct ifnet *ifp;
2524 u_long cmd;
2525 caddr_t data;
2526 {
2527 struct ifaddr *ifa = (struct ifaddr *) data;
2528 struct ti_softc *sc = ifp->if_softc;
2529
2530 switch (cmd) {
2531 case SIOCSIFADDR:
2532 ifp->if_flags |= IFF_UP;
2533
2534 switch (ifa->ifa_addr->sa_family) {
2535 #ifdef INET
2536 case AF_INET:
2537 ti_init(sc);
2538 arp_ifinit(ifp, ifa);
2539 break;
2540 #endif
2541 #ifdef NS
2542 case AF_NS:
2543 {
2544 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2545
2546 if (ns_nullhost(*ina))
2547 ina->x_host = *(union ns_host *)
2548 LLADDR(ifp->if_sadl);
2549 else
2550 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2551 ifp->if_addrlen);
2552 /* Set new address. */
2553 ti_init(sc);
2554 break;
2555 }
2556 #endif
2557 default:
2558 ti_init(sc);
2559 break;
2560 }
2561 break;
2562
2563 default:
2564 return (EINVAL);
2565 }
2566
2567 return (0);
2568 }
2569
2570 static int ti_ioctl(ifp, command, data)
2571 struct ifnet *ifp;
2572 u_long command;
2573 caddr_t data;
2574 {
2575 struct ti_softc *sc = ifp->if_softc;
2576 struct ifreq *ifr = (struct ifreq *) data;
2577 int s, error = 0;
2578 struct ti_cmd_desc cmd;
2579
2580 s = splnet();
2581
2582 switch(command) {
2583 case SIOCSIFADDR:
2584 case SIOCGIFADDR:
2585 error = ti_ether_ioctl(ifp, command, data);
2586 break;
2587 case SIOCSIFMTU:
2588 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2589 error = EINVAL;
2590 else {
2591 ifp->if_mtu = ifr->ifr_mtu;
2592 ti_init(sc);
2593 }
2594 break;
2595 case SIOCSIFFLAGS:
2596 if (ifp->if_flags & IFF_UP) {
2597 /*
2598 * If only the state of the PROMISC flag changed,
2599 * then just use the 'set promisc mode' command
2600 * instead of reinitializing the entire NIC. Doing
2601 * a full re-init means reloading the firmware and
2602 * waiting for it to start up, which may take a
2603 * second or two.
2604 */
2605 if (ifp->if_flags & IFF_RUNNING &&
2606 ifp->if_flags & IFF_PROMISC &&
2607 !(sc->ti_if_flags & IFF_PROMISC)) {
2608 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2609 TI_CMD_CODE_PROMISC_ENB, 0);
2610 } else if (ifp->if_flags & IFF_RUNNING &&
2611 !(ifp->if_flags & IFF_PROMISC) &&
2612 sc->ti_if_flags & IFF_PROMISC) {
2613 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2614 TI_CMD_CODE_PROMISC_DIS, 0);
2615 } else
2616 ti_init(sc);
2617 } else {
2618 if (ifp->if_flags & IFF_RUNNING) {
2619 ti_stop(sc);
2620 }
2621 }
2622 sc->ti_if_flags = ifp->if_flags;
2623 error = 0;
2624 break;
2625 case SIOCADDMULTI:
2626 case SIOCDELMULTI:
2627 error = (command == SIOCADDMULTI) ?
2628 ether_addmulti(ifr, &sc->ethercom) :
2629 ether_delmulti(ifr, &sc->ethercom);
2630 if (error == ENETRESET) {
2631 if (ifp->if_flags & IFF_RUNNING)
2632 ti_setmulti(sc);
2633 error = 0;
2634 }
2635 break;
2636 case SIOCSIFMEDIA:
2637 case SIOCGIFMEDIA:
2638 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2639 break;
2640 default:
2641 error = EINVAL;
2642 break;
2643 }
2644
2645 (void)splx(s);
2646
2647 return(error);
2648 }
2649
2650 static void ti_watchdog(ifp)
2651 struct ifnet *ifp;
2652 {
2653 struct ti_softc *sc;
2654
2655 sc = ifp->if_softc;
2656
2657 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2658 ti_stop(sc);
2659 ti_init(sc);
2660
2661 ifp->if_oerrors++;
2662
2663 return;
2664 }
2665
2666 /*
2667 * Stop the adapter and free any mbufs allocated to the
2668 * RX and TX lists.
2669 */
2670 static void ti_stop(sc)
2671 struct ti_softc *sc;
2672 {
2673 struct ifnet *ifp;
2674 struct ti_cmd_desc cmd;
2675
2676 ifp = &sc->ethercom.ec_if;
2677
2678 /* Disable host interrupts. */
2679 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2680 /*
2681 * Tell firmware we're shutting down.
2682 */
2683 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2684
2685 /* Halt and reinitialize. */
2686 ti_chipinit(sc);
2687 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2688 ti_chipinit(sc);
2689
2690 /* Free the RX lists. */
2691 ti_free_rx_ring_std(sc);
2692
2693 /* Free jumbo RX list. */
2694 ti_free_rx_ring_jumbo(sc);
2695
2696 /* Free mini RX list. */
2697 ti_free_rx_ring_mini(sc);
2698
2699 /* Free TX buffers. */
2700 ti_free_tx_ring(sc);
2701
2702 sc->ti_ev_prodidx.ti_idx = 0;
2703 sc->ti_return_prodidx.ti_idx = 0;
2704 sc->ti_tx_considx.ti_idx = 0;
2705 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2706
2707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2708
2709 return;
2710 }
2711
2712 /*
2713 * Stop all chip I/O so that the kernel's probe routines don't
2714 * get confused by errant DMAs when rebooting.
2715 */
2716 static void ti_shutdown(v)
2717 void *v;
2718 {
2719 struct ti_softc *sc = v;
2720
2721 ti_chipinit(sc);
2722
2723 return;
2724 }
2725