if_ti.c revision 1.24 1 /* $NetBSD: if_ti.c,v 1.24 2001/06/07 14:35:58 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/ip.h>
115 #endif
116
117 #ifdef NS
118 #include <netns/ns.h>
119 #include <netns/ns_if.h>
120 #endif
121
122 #include <machine/bus.h>
123
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 #include <dev/pci/pcidevs.h>
127
128 #include <dev/pci/if_tireg.h>
129 #include <dev/pci/ti_fw.h>
130 #include <dev/pci/ti_fw2.h>
131
132 /*
133 * Various supported device vendors/types and their names.
134 */
135
136 static const struct ti_type ti_devs[] = {
137 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
138 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
139 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
140 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
141 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
142 "3Com 3c985-SX Gigabit Ethernet" },
143 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
144 "Netgear GA620 1000baseSX Gigabit Ethernet" },
145 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
146 "Netgear GA620 1000baseT Gigabit Ethernet" },
147 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
148 "Silicon Graphics Gigabit Ethernet" },
149 { 0, 0, NULL }
150 };
151
152 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
153 static int ti_probe __P((struct device *, struct cfdata *, void *));
154 static void ti_attach __P((struct device *, struct device *, void *));
155 static void ti_shutdown __P((void *));
156 static void ti_txeof __P((struct ti_softc *));
157 static void ti_rxeof __P((struct ti_softc *));
158
159 static void ti_stats_update __P((struct ti_softc *));
160 static int ti_encap __P((struct ti_softc *, struct mbuf *,
161 u_int32_t *));
162
163 static int ti_intr __P((void *));
164 static void ti_start __P((struct ifnet *));
165 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
166 static void ti_init __P((void *));
167 static void ti_init2 __P((struct ti_softc *));
168 static void ti_stop __P((struct ti_softc *));
169 static void ti_watchdog __P((struct ifnet *));
170 static int ti_ifmedia_upd __P((struct ifnet *));
171 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
172
173 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
174 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
175 int, u_int8_t *));
176 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
177
178 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
179 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
180 static void ti_setmulti __P((struct ti_softc *));
181
182 static void ti_mem __P((struct ti_softc *, u_int32_t,
183 u_int32_t, caddr_t));
184 static void ti_loadfw __P((struct ti_softc *));
185 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
186 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
187 caddr_t, int));
188 static void ti_handle_events __P((struct ti_softc *));
189 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
190 static void *ti_jalloc __P((struct ti_softc *));
191 static void ti_jfree __P((caddr_t, u_int, void *));
192 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
193 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
194 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
195 static int ti_init_rx_ring_std __P((struct ti_softc *));
196 static void ti_free_rx_ring_std __P((struct ti_softc *));
197 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
198 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
199 static int ti_init_rx_ring_mini __P((struct ti_softc *));
200 static void ti_free_rx_ring_mini __P((struct ti_softc *));
201 static void ti_free_tx_ring __P((struct ti_softc *));
202 static int ti_init_tx_ring __P((struct ti_softc *));
203
204 static int ti_64bitslot_war __P((struct ti_softc *));
205 static int ti_chipinit __P((struct ti_softc *));
206 static int ti_gibinit __P((struct ti_softc *));
207
208 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
209
210 struct cfattach ti_ca = {
211 sizeof(struct ti_softc), ti_probe, ti_attach
212 };
213
214 /*
215 * Send an instruction or address to the EEPROM, check for ACK.
216 */
217 static u_int32_t ti_eeprom_putbyte(sc, byte)
218 struct ti_softc *sc;
219 int byte;
220 {
221 int i, ack = 0;
222
223 /*
224 * Make sure we're in TX mode.
225 */
226 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
227
228 /*
229 * Feed in each bit and stobe the clock.
230 */
231 for (i = 0x80; i; i >>= 1) {
232 if (byte & i) {
233 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
234 } else {
235 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
236 }
237 DELAY(1);
238 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
239 DELAY(1);
240 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
241 }
242
243 /*
244 * Turn off TX mode.
245 */
246 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
247
248 /*
249 * Check for ack.
250 */
251 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
252 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
253 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254
255 return(ack);
256 }
257
258 /*
259 * Read a byte of data stored in the EEPROM at address 'addr.'
260 * We have to send two address bytes since the EEPROM can hold
261 * more than 256 bytes of data.
262 */
263 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
264 struct ti_softc *sc;
265 int addr;
266 u_int8_t *dest;
267 {
268 int i;
269 u_int8_t byte = 0;
270
271 EEPROM_START;
272
273 /*
274 * Send write control code to EEPROM.
275 */
276 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
277 printf("%s: failed to send write command, status: %x\n",
278 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
279 return(1);
280 }
281
282 /*
283 * Send first byte of address of byte we want to read.
284 */
285 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
286 printf("%s: failed to send address, status: %x\n",
287 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
288 return(1);
289 }
290 /*
291 * Send second byte address of byte we want to read.
292 */
293 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
294 printf("%s: failed to send address, status: %x\n",
295 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
296 return(1);
297 }
298
299 EEPROM_STOP;
300 EEPROM_START;
301 /*
302 * Send read control code to EEPROM.
303 */
304 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
305 printf("%s: failed to send read command, status: %x\n",
306 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
307 return(1);
308 }
309
310 /*
311 * Start reading bits from EEPROM.
312 */
313 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
314 for (i = 0x80; i; i >>= 1) {
315 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316 DELAY(1);
317 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
318 byte |= i;
319 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
320 DELAY(1);
321 }
322
323 EEPROM_STOP;
324
325 /*
326 * No ACK generated for read, so just return byte.
327 */
328
329 *dest = byte;
330
331 return(0);
332 }
333
334 /*
335 * Read a sequence of bytes from the EEPROM.
336 */
337 static int ti_read_eeprom(sc, dest, off, cnt)
338 struct ti_softc *sc;
339 caddr_t dest;
340 int off;
341 int cnt;
342 {
343 int err = 0, i;
344 u_int8_t byte = 0;
345
346 for (i = 0; i < cnt; i++) {
347 err = ti_eeprom_getbyte(sc, off + i, &byte);
348 if (err)
349 break;
350 *(dest + i) = byte;
351 }
352
353 return(err ? 1 : 0);
354 }
355
356 /*
357 * NIC memory access function. Can be used to either clear a section
358 * of NIC local memory or (if buf is non-NULL) copy data into it.
359 */
360 static void ti_mem(sc, addr, len, buf)
361 struct ti_softc *sc;
362 u_int32_t addr, len;
363 caddr_t buf;
364 {
365 int segptr, segsize, cnt;
366 caddr_t ptr;
367
368 segptr = addr;
369 cnt = len;
370 ptr = buf;
371
372 while(cnt) {
373 if (cnt < TI_WINLEN)
374 segsize = cnt;
375 else
376 segsize = TI_WINLEN - (segptr % TI_WINLEN);
377 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
378 if (buf == NULL) {
379 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
380 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
381 segsize / 4);
382 } else {
383 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
384 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
385 (u_int32_t *)ptr, segsize / 4);
386 ptr += segsize;
387 }
388 segptr += segsize;
389 cnt -= segsize;
390 }
391
392 return;
393 }
394
395 /*
396 * Load firmware image into the NIC. Check that the firmware revision
397 * is acceptable and see if we want the firmware for the Tigon 1 or
398 * Tigon 2.
399 */
400 static void ti_loadfw(sc)
401 struct ti_softc *sc;
402 {
403 switch(sc->ti_hwrev) {
404 case TI_HWREV_TIGON:
405 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
406 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
407 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
408 printf("%s: firmware revision mismatch; want "
409 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
410 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
411 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
412 tigonFwReleaseMinor, tigonFwReleaseFix);
413 return;
414 }
415 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
416 (caddr_t)tigonFwText);
417 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
418 (caddr_t)tigonFwData);
419 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
420 (caddr_t)tigonFwRodata);
421 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
422 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
423 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
424 break;
425 case TI_HWREV_TIGON_II:
426 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
427 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
428 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
429 printf("%s: firmware revision mismatch; want "
430 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
431 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
432 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
433 tigon2FwReleaseMinor, tigon2FwReleaseFix);
434 return;
435 }
436 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
437 (caddr_t)tigon2FwText);
438 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
439 (caddr_t)tigon2FwData);
440 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
441 (caddr_t)tigon2FwRodata);
442 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
443 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
444 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
445 break;
446 default:
447 printf("%s: can't load firmware: unknown hardware rev\n",
448 sc->sc_dev.dv_xname);
449 break;
450 }
451
452 return;
453 }
454
455 /*
456 * Send the NIC a command via the command ring.
457 */
458 static void ti_cmd(sc, cmd)
459 struct ti_softc *sc;
460 struct ti_cmd_desc *cmd;
461 {
462 u_int32_t index;
463
464 index = sc->ti_cmd_saved_prodidx;
465 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
466 TI_INC(index, TI_CMD_RING_CNT);
467 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
468 sc->ti_cmd_saved_prodidx = index;
469
470 return;
471 }
472
473 /*
474 * Send the NIC an extended command. The 'len' parameter specifies the
475 * number of command slots to include after the initial command.
476 */
477 static void ti_cmd_ext(sc, cmd, arg, len)
478 struct ti_softc *sc;
479 struct ti_cmd_desc *cmd;
480 caddr_t arg;
481 int len;
482 {
483 u_int32_t index;
484 int i;
485
486 index = sc->ti_cmd_saved_prodidx;
487 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
488 TI_INC(index, TI_CMD_RING_CNT);
489 for (i = 0; i < len; i++) {
490 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
491 *(u_int32_t *)(&arg[i * 4]));
492 TI_INC(index, TI_CMD_RING_CNT);
493 }
494 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
495 sc->ti_cmd_saved_prodidx = index;
496
497 return;
498 }
499
500 /*
501 * Handle events that have triggered interrupts.
502 */
503 static void ti_handle_events(sc)
504 struct ti_softc *sc;
505 {
506 struct ti_event_desc *e;
507
508 if (sc->ti_rdata->ti_event_ring == NULL)
509 return;
510
511 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
512 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
513 switch(e->ti_event) {
514 case TI_EV_LINKSTAT_CHANGED:
515 sc->ti_linkstat = e->ti_code;
516 if (e->ti_code == TI_EV_CODE_LINK_UP)
517 printf("%s: 10/100 link up\n",
518 sc->sc_dev.dv_xname);
519 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
520 printf("%s: gigabit link up\n",
521 sc->sc_dev.dv_xname);
522 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
523 printf("%s: link down\n",
524 sc->sc_dev.dv_xname);
525 break;
526 case TI_EV_ERROR:
527 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
528 printf("%s: invalid command\n",
529 sc->sc_dev.dv_xname);
530 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
531 printf("%s: unknown command\n",
532 sc->sc_dev.dv_xname);
533 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
534 printf("%s: bad config data\n",
535 sc->sc_dev.dv_xname);
536 break;
537 case TI_EV_FIRMWARE_UP:
538 ti_init2(sc);
539 break;
540 case TI_EV_STATS_UPDATED:
541 ti_stats_update(sc);
542 break;
543 case TI_EV_RESET_JUMBO_RING:
544 case TI_EV_MCAST_UPDATED:
545 /* Who cares. */
546 break;
547 default:
548 printf("%s: unknown event: %d\n",
549 sc->sc_dev.dv_xname, e->ti_event);
550 break;
551 }
552 /* Advance the consumer index. */
553 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
554 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
555 }
556
557 return;
558 }
559
560 /*
561 * Memory management for the jumbo receive ring is a pain in the
562 * butt. We need to allocate at least 9018 bytes of space per frame,
563 * _and_ it has to be contiguous (unless you use the extended
564 * jumbo descriptor format). Using malloc() all the time won't
565 * work: malloc() allocates memory in powers of two, which means we
566 * would end up wasting a considerable amount of space by allocating
567 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
568 * to do our own memory management.
569 *
570 * The driver needs to allocate a contiguous chunk of memory at boot
571 * time. We then chop this up ourselves into 9K pieces and use them
572 * as external mbuf storage.
573 *
574 * One issue here is how much memory to allocate. The jumbo ring has
575 * 256 slots in it, but at 9K per slot than can consume over 2MB of
576 * RAM. This is a bit much, especially considering we also need
577 * RAM for the standard ring and mini ring (on the Tigon 2). To
578 * save space, we only actually allocate enough memory for 64 slots
579 * by default, which works out to between 500 and 600K. This can
580 * be tuned by changing a #define in if_tireg.h.
581 */
582
583 static int ti_alloc_jumbo_mem(sc)
584 struct ti_softc *sc;
585 {
586 caddr_t ptr;
587 int i;
588 struct ti_jpool_entry *entry;
589 bus_dma_segment_t dmaseg;
590 int error, dmanseg;
591
592 /* Grab a big chunk o' storage. */
593 if ((error = bus_dmamem_alloc(sc->sc_dmat,
594 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
595 BUS_DMA_NOWAIT)) != 0) {
596 printf("%s: can't allocate jumbo buffer, error = %d\n",
597 sc->sc_dev.dv_xname, error);
598 return (error);
599 }
600
601 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
602 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
603 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
604 printf("%s: can't map jumbo buffer, error = %d\n",
605 sc->sc_dev.dv_xname, error);
606 return (error);
607 }
608
609 if ((error = bus_dmamap_create(sc->sc_dmat,
610 TI_JMEM, 1,
611 TI_JMEM, 0, BUS_DMA_NOWAIT,
612 &sc->jumbo_dmamap)) != 0) {
613 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
614 sc->sc_dev.dv_xname, error);
615 return (error);
616 }
617
618 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
619 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
620 BUS_DMA_NOWAIT)) != 0) {
621 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
622 sc->sc_dev.dv_xname, error);
623 return (error);
624 }
625 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
626
627 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
628 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
629
630 /*
631 * Now divide it up into 9K pieces and save the addresses
632 * in an array.
633 */
634 ptr = sc->ti_cdata.ti_jumbo_buf;
635 for (i = 0; i < TI_JSLOTS; i++) {
636 sc->ti_cdata.ti_jslots[i] = ptr;
637 ptr += TI_JLEN;
638 entry = malloc(sizeof(struct ti_jpool_entry),
639 M_DEVBUF, M_NOWAIT);
640 if (entry == NULL) {
641 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
642 sc->ti_cdata.ti_jumbo_buf = NULL;
643 printf("%s: no memory for jumbo "
644 "buffer queue!\n", sc->sc_dev.dv_xname);
645 return(ENOBUFS);
646 }
647 entry->slot = i;
648 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
649 jpool_entries);
650 }
651
652 return(0);
653 }
654
655 /*
656 * Allocate a jumbo buffer.
657 */
658 static void *ti_jalloc(sc)
659 struct ti_softc *sc;
660 {
661 struct ti_jpool_entry *entry;
662
663 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
664
665 if (entry == NULL) {
666 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
667 return(NULL);
668 }
669
670 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
671 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
672 return(sc->ti_cdata.ti_jslots[entry->slot]);
673 }
674
675 /*
676 * Release a jumbo buffer.
677 */
678 static void ti_jfree(buf, size, arg)
679 caddr_t buf;
680 u_int size;
681 void *arg;
682 {
683 struct ti_softc *sc;
684 int i;
685 struct ti_jpool_entry *entry;
686
687 /* Extract the softc struct pointer. */
688 sc = (struct ti_softc *)arg;
689
690 if (sc == NULL)
691 panic("ti_jfree: didn't get softc pointer!");
692
693 /* calculate the slot this buffer belongs to */
694
695 i = ((caddr_t)buf
696 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
697
698 if ((i < 0) || (i >= TI_JSLOTS))
699 panic("ti_jfree: asked to free buffer that we don't manage!");
700 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
701 if (entry == NULL)
702 panic("ti_jfree: buffer not in use!");
703 entry->slot = i;
704 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
705 entry, jpool_entries);
706 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
707 entry, jpool_entries);
708
709 return;
710 }
711
712
713 /*
714 * Intialize a standard receive ring descriptor.
715 */
716 static int ti_newbuf_std(sc, i, m, dmamap)
717 struct ti_softc *sc;
718 int i;
719 struct mbuf *m;
720 bus_dmamap_t dmamap; /* required if (m != NULL) */
721 {
722 struct mbuf *m_new = NULL;
723 struct ti_rx_desc *r;
724 int error;
725
726 if (dmamap == NULL) {
727 /* if (m) panic() */
728
729 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
730 MCLBYTES, 0, BUS_DMA_NOWAIT,
731 &dmamap)) != 0) {
732 printf("%s: can't create recv map, error = %d\n",
733 sc->sc_dev.dv_xname, error);
734 return(ENOMEM);
735 }
736 }
737 sc->std_dmamap[i] = dmamap;
738
739 if (m == NULL) {
740 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
741 if (m_new == NULL) {
742 printf("%s: mbuf allocation failed "
743 "-- packet dropped!\n", sc->sc_dev.dv_xname);
744 return(ENOBUFS);
745 }
746
747 MCLGET(m_new, M_DONTWAIT);
748 if (!(m_new->m_flags & M_EXT)) {
749 printf("%s: cluster allocation failed "
750 "-- packet dropped!\n", sc->sc_dev.dv_xname);
751 m_freem(m_new);
752 return(ENOBUFS);
753 }
754 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
755 m_adj(m_new, ETHER_ALIGN);
756
757 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
758 mtod(m_new, caddr_t), m_new->m_len, NULL,
759 BUS_DMA_NOWAIT)) != 0) {
760 printf("%s: can't load recv map, error = %d\n",
761 sc->sc_dev.dv_xname, error);
762 return (ENOMEM);
763 }
764 } else {
765 m_new = m;
766 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
767 m_new->m_data = m_new->m_ext.ext_buf;
768 m_adj(m_new, ETHER_ALIGN);
769
770 /* reuse the dmamap */
771 }
772
773 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
774 r = &sc->ti_rdata->ti_rx_std_ring[i];
775 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
776 r->ti_type = TI_BDTYPE_RECV_BD;
777 r->ti_flags = 0;
778 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
779 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
780 if (sc->ethercom.ec_if.if_capenable &
781 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
782 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
783 r->ti_len = m_new->m_len; /* == ds_len */
784 r->ti_idx = i;
785
786 return(0);
787 }
788
789 /*
790 * Intialize a mini receive ring descriptor. This only applies to
791 * the Tigon 2.
792 */
793 static int ti_newbuf_mini(sc, i, m, dmamap)
794 struct ti_softc *sc;
795 int i;
796 struct mbuf *m;
797 bus_dmamap_t dmamap; /* required if (m != NULL) */
798 {
799 struct mbuf *m_new = NULL;
800 struct ti_rx_desc *r;
801 int error;
802
803 if (dmamap == NULL) {
804 /* if (m) panic() */
805
806 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
807 MHLEN, 0, BUS_DMA_NOWAIT,
808 &dmamap)) != 0) {
809 printf("%s: can't create recv map, error = %d\n",
810 sc->sc_dev.dv_xname, error);
811 return(ENOMEM);
812 }
813 }
814 sc->mini_dmamap[i] = dmamap;
815
816 if (m == NULL) {
817 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
818 if (m_new == NULL) {
819 printf("%s: mbuf allocation failed "
820 "-- packet dropped!\n", sc->sc_dev.dv_xname);
821 return(ENOBUFS);
822 }
823 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
824 m_adj(m_new, ETHER_ALIGN);
825
826 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
827 mtod(m_new, caddr_t), m_new->m_len, NULL,
828 BUS_DMA_NOWAIT)) != 0) {
829 printf("%s: can't load recv map, error = %d\n",
830 sc->sc_dev.dv_xname, error);
831 return (ENOMEM);
832 }
833 } else {
834 m_new = m;
835 m_new->m_data = m_new->m_pktdat;
836 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
837 m_adj(m_new, ETHER_ALIGN);
838
839 /* reuse the dmamap */
840 }
841
842 r = &sc->ti_rdata->ti_rx_mini_ring[i];
843 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
844 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
845 r->ti_type = TI_BDTYPE_RECV_BD;
846 r->ti_flags = TI_BDFLAG_MINI_RING;
847 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
848 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
849 if (sc->ethercom.ec_if.if_capenable &
850 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
851 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
852 r->ti_len = m_new->m_len; /* == ds_len */
853 r->ti_idx = i;
854
855 return(0);
856 }
857
858 /*
859 * Initialize a jumbo receive ring descriptor. This allocates
860 * a jumbo buffer from the pool managed internally by the driver.
861 */
862 static int ti_newbuf_jumbo(sc, i, m)
863 struct ti_softc *sc;
864 int i;
865 struct mbuf *m;
866 {
867 struct mbuf *m_new = NULL;
868 struct ti_rx_desc *r;
869
870 if (m == NULL) {
871 caddr_t *buf = NULL;
872
873 /* Allocate the mbuf. */
874 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
875 if (m_new == NULL) {
876 printf("%s: mbuf allocation failed "
877 "-- packet dropped!\n", sc->sc_dev.dv_xname);
878 return(ENOBUFS);
879 }
880
881 /* Allocate the jumbo buffer */
882 buf = ti_jalloc(sc);
883 if (buf == NULL) {
884 m_freem(m_new);
885 printf("%s: jumbo allocation failed "
886 "-- packet dropped!\n", sc->sc_dev.dv_xname);
887 return(ENOBUFS);
888 }
889
890 /* Attach the buffer to the mbuf. */
891 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
892 m_new->m_flags |= M_EXT;
893 m_new->m_len = m_new->m_pkthdr.len =
894 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
895 m_new->m_ext.ext_free = ti_jfree;
896 m_new->m_ext.ext_arg = sc;
897 MCLINITREFERENCE(m_new);
898 } else {
899 m_new = m;
900 m_new->m_data = m_new->m_ext.ext_buf;
901 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
902 }
903
904 m_adj(m_new, ETHER_ALIGN);
905 /* Set up the descriptor. */
906 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
907 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
908 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
909 ((caddr_t)mtod(m_new, caddr_t)
910 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
911 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
912 r->ti_flags = TI_BDFLAG_JUMBO_RING;
913 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
914 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
915 if (sc->ethercom.ec_if.if_capenable &
916 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
917 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
918 r->ti_len = m_new->m_len;
919 r->ti_idx = i;
920
921 return(0);
922 }
923
924 /*
925 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
926 * that's 1MB or memory, which is a lot. For now, we fill only the first
927 * 256 ring entries and hope that our CPU is fast enough to keep up with
928 * the NIC.
929 */
930 static int ti_init_rx_ring_std(sc)
931 struct ti_softc *sc;
932 {
933 int i;
934 struct ti_cmd_desc cmd;
935
936 for (i = 0; i < TI_SSLOTS; i++) {
937 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
938 return(ENOBUFS);
939 };
940
941 TI_UPDATE_STDPROD(sc, i - 1);
942 sc->ti_std = i - 1;
943
944 return(0);
945 }
946
947 static void ti_free_rx_ring_std(sc)
948 struct ti_softc *sc;
949 {
950 int i;
951
952 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
953 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
954 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
955 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
956
957 /* if (sc->std_dmamap[i] == 0) panic() */
958 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
959 sc->std_dmamap[i] = 0;
960 }
961 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
962 sizeof(struct ti_rx_desc));
963 }
964
965 return;
966 }
967
968 static int ti_init_rx_ring_jumbo(sc)
969 struct ti_softc *sc;
970 {
971 int i;
972 struct ti_cmd_desc cmd;
973
974 for (i = 0; i < (TI_JSLOTS - 20); i++) {
975 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
976 return(ENOBUFS);
977 };
978
979 TI_UPDATE_JUMBOPROD(sc, i - 1);
980 sc->ti_jumbo = i - 1;
981
982 return(0);
983 }
984
985 static void ti_free_rx_ring_jumbo(sc)
986 struct ti_softc *sc;
987 {
988 int i;
989
990 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
991 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
992 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
993 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
994 }
995 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
996 sizeof(struct ti_rx_desc));
997 }
998
999 return;
1000 }
1001
1002 static int ti_init_rx_ring_mini(sc)
1003 struct ti_softc *sc;
1004 {
1005 int i;
1006
1007 for (i = 0; i < TI_MSLOTS; i++) {
1008 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1009 return(ENOBUFS);
1010 };
1011
1012 TI_UPDATE_MINIPROD(sc, i - 1);
1013 sc->ti_mini = i - 1;
1014
1015 return(0);
1016 }
1017
1018 static void ti_free_rx_ring_mini(sc)
1019 struct ti_softc *sc;
1020 {
1021 int i;
1022
1023 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1024 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1025 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1026 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1027
1028 /* if (sc->mini_dmamap[i] == 0) panic() */
1029 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1030 sc->mini_dmamap[i] = 0;
1031 }
1032 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1033 sizeof(struct ti_rx_desc));
1034 }
1035
1036 return;
1037 }
1038
1039 static void ti_free_tx_ring(sc)
1040 struct ti_softc *sc;
1041 {
1042 int i;
1043 struct txdmamap_pool_entry *dma;
1044
1045 if (sc->ti_rdata->ti_tx_ring == NULL)
1046 return;
1047
1048 for (i = 0; i < TI_TX_RING_CNT; i++) {
1049 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1050 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1051 sc->ti_cdata.ti_tx_chain[i] = NULL;
1052
1053 /* if (sc->txdma[i] == 0) panic() */
1054 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1055 link);
1056 sc->txdma[i] = 0;
1057 }
1058 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1059 sizeof(struct ti_tx_desc));
1060 }
1061
1062 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1063 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1064 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1065 free(dma, M_DEVBUF);
1066 }
1067
1068 return;
1069 }
1070
1071 static int ti_init_tx_ring(sc)
1072 struct ti_softc *sc;
1073 {
1074 int i, error;
1075 bus_dmamap_t dmamap;
1076 struct txdmamap_pool_entry *dma;
1077
1078 sc->ti_txcnt = 0;
1079 sc->ti_tx_saved_considx = 0;
1080 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1081
1082 SIMPLEQ_INIT(&sc->txdma_list);
1083 for (i = 0; i < TI_RSLOTS; i++) {
1084 /* I've seen mbufs with 30 fragments. */
1085 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1086 40, ETHER_MAX_LEN_JUMBO, 0,
1087 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1088 printf("%s: can't create tx map, error = %d\n",
1089 sc->sc_dev.dv_xname, error);
1090 return(ENOMEM);
1091 }
1092 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1093 if (!dma) {
1094 printf("%s: can't alloc txdmamap_pool_entry\n",
1095 sc->sc_dev.dv_xname);
1096 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1097 return (ENOMEM);
1098 }
1099 dma->dmamap = dmamap;
1100 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1101 }
1102
1103 return(0);
1104 }
1105
1106 /*
1107 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1108 * but we have to support the old way too so that Tigon 1 cards will
1109 * work.
1110 */
1111 void ti_add_mcast(sc, addr)
1112 struct ti_softc *sc;
1113 struct ether_addr *addr;
1114 {
1115 struct ti_cmd_desc cmd;
1116 u_int16_t *m;
1117 u_int32_t ext[2] = {0, 0};
1118
1119 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1120
1121 switch(sc->ti_hwrev) {
1122 case TI_HWREV_TIGON:
1123 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1124 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1125 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1126 break;
1127 case TI_HWREV_TIGON_II:
1128 ext[0] = htons(m[0]);
1129 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1130 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1131 break;
1132 default:
1133 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1134 break;
1135 }
1136
1137 return;
1138 }
1139
1140 void ti_del_mcast(sc, addr)
1141 struct ti_softc *sc;
1142 struct ether_addr *addr;
1143 {
1144 struct ti_cmd_desc cmd;
1145 u_int16_t *m;
1146 u_int32_t ext[2] = {0, 0};
1147
1148 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1149
1150 switch(sc->ti_hwrev) {
1151 case TI_HWREV_TIGON:
1152 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1153 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1154 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1155 break;
1156 case TI_HWREV_TIGON_II:
1157 ext[0] = htons(m[0]);
1158 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1159 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1160 break;
1161 default:
1162 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1163 break;
1164 }
1165
1166 return;
1167 }
1168
1169 /*
1170 * Configure the Tigon's multicast address filter.
1171 *
1172 * The actual multicast table management is a bit of a pain, thanks to
1173 * slight brain damage on the part of both Alteon and us. With our
1174 * multicast code, we are only alerted when the multicast address table
1175 * changes and at that point we only have the current list of addresses:
1176 * we only know the current state, not the previous state, so we don't
1177 * actually know what addresses were removed or added. The firmware has
1178 * state, but we can't get our grubby mits on it, and there is no 'delete
1179 * all multicast addresses' command. Hence, we have to maintain our own
1180 * state so we know what addresses have been programmed into the NIC at
1181 * any given time.
1182 */
1183 static void ti_setmulti(sc)
1184 struct ti_softc *sc;
1185 {
1186 struct ifnet *ifp;
1187 struct ti_cmd_desc cmd;
1188 struct ti_mc_entry *mc;
1189 u_int32_t intrs;
1190 struct ether_multi *enm;
1191 struct ether_multistep step;
1192
1193 ifp = &sc->ethercom.ec_if;
1194
1195 /* Disable interrupts. */
1196 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1197 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1198
1199 /* First, zot all the existing filters. */
1200 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1201 ti_del_mcast(sc, &mc->mc_addr);
1202 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1203 free(mc, M_DEVBUF);
1204 }
1205
1206 /*
1207 * Remember all multicast addresses so that we can delete them
1208 * later. Punt if there is a range of addresses or memory shortage.
1209 */
1210 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1211 while (enm != NULL) {
1212 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1213 ETHER_ADDR_LEN) != 0)
1214 goto allmulti;
1215 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1216 M_NOWAIT)) == NULL)
1217 goto allmulti;
1218 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1219 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1220 ETHER_NEXT_MULTI(step, enm);
1221 }
1222
1223 /* Accept only programmed multicast addresses */
1224 ifp->if_flags &= ~IFF_ALLMULTI;
1225 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1226
1227 /* Now program new ones. */
1228 for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
1229 mc = SIMPLEQ_NEXT(mc, mc_entries))
1230 ti_add_mcast(sc, &mc->mc_addr);
1231
1232 /* Re-enable interrupts. */
1233 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1234
1235 return;
1236
1237 allmulti:
1238 /* No need to keep individual multicast addresses */
1239 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1240 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
1241 mc_entries);
1242 free(mc, M_DEVBUF);
1243 }
1244
1245 /* Accept all multicast addresses */
1246 ifp->if_flags |= IFF_ALLMULTI;
1247 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1248
1249 /* Re-enable interrupts. */
1250 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1251 }
1252
1253 /*
1254 * Check to see if the BIOS has configured us for a 64 bit slot when
1255 * we aren't actually in one. If we detect this condition, we can work
1256 * around it on the Tigon 2 by setting a bit in the PCI state register,
1257 * but for the Tigon 1 we must give up and abort the interface attach.
1258 */
1259 static int ti_64bitslot_war(sc)
1260 struct ti_softc *sc;
1261 {
1262 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1263 CSR_WRITE_4(sc, 0x600, 0);
1264 CSR_WRITE_4(sc, 0x604, 0);
1265 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1266 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1267 if (sc->ti_hwrev == TI_HWREV_TIGON)
1268 return(EINVAL);
1269 else {
1270 TI_SETBIT(sc, TI_PCI_STATE,
1271 TI_PCISTATE_32BIT_BUS);
1272 return(0);
1273 }
1274 }
1275 }
1276
1277 return(0);
1278 }
1279
1280 /*
1281 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1282 * self-test results.
1283 */
1284 static int ti_chipinit(sc)
1285 struct ti_softc *sc;
1286 {
1287 u_int32_t cacheline;
1288 u_int32_t pci_writemax = 0;
1289
1290 /* Initialize link to down state. */
1291 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1292
1293 /* Set endianness before we access any non-PCI registers. */
1294 #if BYTE_ORDER == BIG_ENDIAN
1295 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1296 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1297 #else
1298 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1299 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1300 #endif
1301
1302 /* Check the ROM failed bit to see if self-tests passed. */
1303 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1304 printf("%s: board self-diagnostics failed!\n",
1305 sc->sc_dev.dv_xname);
1306 return(ENODEV);
1307 }
1308
1309 /* Halt the CPU. */
1310 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1311
1312 /* Figure out the hardware revision. */
1313 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1314 case TI_REV_TIGON_I:
1315 sc->ti_hwrev = TI_HWREV_TIGON;
1316 break;
1317 case TI_REV_TIGON_II:
1318 sc->ti_hwrev = TI_HWREV_TIGON_II;
1319 break;
1320 default:
1321 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1322 return(ENODEV);
1323 }
1324
1325 /* Do special setup for Tigon 2. */
1326 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1327 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1328 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1329 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1330 }
1331
1332 /* Set up the PCI state register. */
1333 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1334 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1335 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1336 }
1337
1338 /* Clear the read/write max DMA parameters. */
1339 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1340 TI_PCISTATE_READ_MAXDMA));
1341
1342 /* Get cache line size. */
1343 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1344
1345 /*
1346 * If the system has set enabled the PCI memory write
1347 * and invalidate command in the command register, set
1348 * the write max parameter accordingly. This is necessary
1349 * to use MWI with the Tigon 2.
1350 */
1351 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1352 & PCI_COMMAND_INVALIDATE_ENABLE) {
1353 switch(cacheline) {
1354 case 1:
1355 case 4:
1356 case 8:
1357 case 16:
1358 case 32:
1359 case 64:
1360 break;
1361 default:
1362 /* Disable PCI memory write and invalidate. */
1363 if (bootverbose)
1364 printf("%s: cache line size %d not "
1365 "supported; disabling PCI MWI\n",
1366 sc->sc_dev.dv_xname, cacheline);
1367 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1368 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1369 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1370 break;
1371 }
1372 }
1373
1374 #ifdef __brokenalpha__
1375 /*
1376 * From the Alteon sample driver:
1377 * Must insure that we do not cross an 8K (bytes) boundary
1378 * for DMA reads. Our highest limit is 1K bytes. This is a
1379 * restriction on some ALPHA platforms with early revision
1380 * 21174 PCI chipsets, such as the AlphaPC 164lx
1381 */
1382 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1383 #else
1384 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1385 #endif
1386
1387 /* This sets the min dma param all the way up (0xff). */
1388 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1389
1390 /* Configure DMA variables. */
1391 #if BYTE_ORDER == BIG_ENDIAN
1392 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1393 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1394 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1395 TI_OPMODE_DONT_FRAG_JUMBO);
1396 #else
1397 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1398 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1399 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1400 #endif
1401
1402 /*
1403 * Only allow 1 DMA channel to be active at a time.
1404 * I don't think this is a good idea, but without it
1405 * the firmware racks up lots of nicDmaReadRingFull
1406 * errors.
1407 * Incompatible with hardware assisted checksums.
1408 */
1409 if ((sc->ethercom.ec_if.if_capenable &
1410 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1411 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1412
1413 /* Recommended settings from Tigon manual. */
1414 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1415 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1416
1417 if (ti_64bitslot_war(sc)) {
1418 printf("%s: bios thinks we're in a 64 bit slot, "
1419 "but we aren't", sc->sc_dev.dv_xname);
1420 return(EINVAL);
1421 }
1422
1423 return(0);
1424 }
1425
1426 /*
1427 * Initialize the general information block and firmware, and
1428 * start the CPU(s) running.
1429 */
1430 static int ti_gibinit(sc)
1431 struct ti_softc *sc;
1432 {
1433 struct ti_rcb *rcb;
1434 int i;
1435 struct ifnet *ifp;
1436
1437 ifp = &sc->ethercom.ec_if;
1438
1439 /* Disable interrupts for now. */
1440 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1441
1442 /* Tell the chip where to find the general information block. */
1443 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1444 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1445 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1446
1447 /* Load the firmware into SRAM. */
1448 ti_loadfw(sc);
1449
1450 /* Set up the contents of the general info and ring control blocks. */
1451
1452 /* Set up the event ring and producer pointer. */
1453 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1454
1455 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1456 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1457 rcb->ti_flags = 0;
1458 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1459 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1460 - (caddr_t)sc->ti_rdata);
1461 sc->ti_ev_prodidx.ti_idx = 0;
1462 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1463 sc->ti_ev_saved_considx = 0;
1464
1465 /* Set up the command ring and producer mailbox. */
1466 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1467
1468 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1469 rcb->ti_flags = 0;
1470 rcb->ti_max_len = 0;
1471 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1472 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1473 }
1474 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1475 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1476 sc->ti_cmd_saved_prodidx = 0;
1477
1478 /*
1479 * Assign the address of the stats refresh buffer.
1480 * We re-use the current stats buffer for this to
1481 * conserve memory.
1482 */
1483 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1484 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1485 - (caddr_t)sc->ti_rdata);
1486
1487 /* Set up the standard receive ring. */
1488 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1489 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1490 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1491 - (caddr_t)sc->ti_rdata);
1492 rcb->ti_max_len = ETHER_MAX_LEN;
1493 rcb->ti_flags = 0;
1494 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1495 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1496 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1497 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1498 if (sc->ethercom.ec_nvlans != 0)
1499 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1500
1501 /* Set up the jumbo receive ring. */
1502 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1503 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1504 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1505 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1506 rcb->ti_flags = 0;
1507 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1508 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1509 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1510 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1511 if (sc->ethercom.ec_nvlans != 0)
1512 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1513
1514 /*
1515 * Set up the mini ring. Only activated on the
1516 * Tigon 2 but the slot in the config block is
1517 * still there on the Tigon 1.
1518 */
1519 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1520 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1521 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1522 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1523 if (sc->ti_hwrev == TI_HWREV_TIGON)
1524 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1525 else
1526 rcb->ti_flags = 0;
1527 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1528 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1529 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1530 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1531 if (sc->ethercom.ec_nvlans != 0)
1532 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1533
1534 /*
1535 * Set up the receive return ring.
1536 */
1537 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1538 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1539 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1540 rcb->ti_flags = 0;
1541 rcb->ti_max_len = TI_RETURN_RING_CNT;
1542 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1543 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1544 - (caddr_t)sc->ti_rdata);
1545
1546 /*
1547 * Set up the tx ring. Note: for the Tigon 2, we have the option
1548 * of putting the transmit ring in the host's address space and
1549 * letting the chip DMA it instead of leaving the ring in the NIC's
1550 * memory and accessing it through the shared memory region. We
1551 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1552 * so we have to revert to the shared memory scheme if we detect
1553 * a Tigon 1 chip.
1554 */
1555 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1556 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1557 sc->ti_rdata->ti_tx_ring_nic =
1558 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1559 }
1560 bzero((char *)sc->ti_rdata->ti_tx_ring,
1561 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1562 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1563 if (sc->ti_hwrev == TI_HWREV_TIGON)
1564 rcb->ti_flags = 0;
1565 else
1566 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1567 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1568 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1569 /*
1570 * When we get the packet, there is a pseudo-header seed already
1571 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1572 * compute the pseudo-header checksum again!
1573 */
1574 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1575 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1576 TI_RCB_FLAG_NO_PHDR_CKSUM;
1577 if (sc->ethercom.ec_nvlans != 0)
1578 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1579 rcb->ti_max_len = TI_TX_RING_CNT;
1580 if (sc->ti_hwrev == TI_HWREV_TIGON)
1581 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1582 else
1583 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1584 ((caddr_t)&sc->ti_rdata->ti_tx_ring
1585 - (caddr_t)sc->ti_rdata);
1586 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1587 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1588 - (caddr_t)sc->ti_rdata);
1589
1590 /* Set up tuneables */
1591 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1592 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1593 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1594 (sc->ti_rx_coal_ticks / 10));
1595 else
1596 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1597 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1598 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1599 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1600 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1601 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1602
1603 /* Turn interrupts on. */
1604 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1605 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1606
1607 /* Start CPU. */
1608 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1609
1610 return(0);
1611 }
1612
1613 /*
1614 * look for id in the device list, returning the first match
1615 */
1616 static const struct ti_type *
1617 ti_type_match(pa)
1618 struct pci_attach_args *pa;
1619 {
1620 const struct ti_type *t;
1621
1622 t = ti_devs;
1623 while(t->ti_name != NULL) {
1624 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1625 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1626 return (t);
1627 }
1628 t++;
1629 }
1630
1631 return(NULL);
1632 }
1633
1634 /*
1635 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1636 * against our list and return its name if we find a match.
1637 */
1638 static int ti_probe(parent, match, aux)
1639 struct device *parent;
1640 struct cfdata *match;
1641 void *aux;
1642 {
1643 struct pci_attach_args *pa = aux;
1644 const struct ti_type *t;
1645
1646 t = ti_type_match(pa);
1647
1648 return((t == NULL) ? 0 : 1);
1649 }
1650
1651 static void ti_attach(parent, self, aux)
1652 struct device *parent, *self;
1653 void *aux;
1654 {
1655 u_int32_t command;
1656 struct ifnet *ifp;
1657 struct ti_softc *sc;
1658 u_char eaddr[ETHER_ADDR_LEN];
1659 struct pci_attach_args *pa = aux;
1660 pci_chipset_tag_t pc = pa->pa_pc;
1661 pci_intr_handle_t ih;
1662 const char *intrstr = NULL;
1663 bus_dma_segment_t dmaseg;
1664 int error, dmanseg, nolinear;
1665 const struct ti_type *t;
1666
1667 t = ti_type_match(pa);
1668 if (t == NULL) {
1669 printf("ti_attach: were did the card go ?\n");
1670 return;
1671 }
1672
1673 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1674
1675 sc = (struct ti_softc *)self;
1676
1677 /*
1678 * Map control/status registers.
1679 */
1680 nolinear = 0;
1681 if (pci_mapreg_map(pa, 0x10,
1682 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1683 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1684 NULL, NULL)) {
1685 nolinear = 1;
1686 if (pci_mapreg_map(pa, 0x10,
1687 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1688 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1689 printf(": can't map memory space\n");
1690 return;
1691 }
1692 }
1693 if (nolinear == 0)
1694 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1695 else
1696 sc->ti_vhandle = NULL;
1697
1698 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1699 command |= PCI_COMMAND_MASTER_ENABLE;
1700 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1701
1702 /* Allocate interrupt */
1703 if (pci_intr_map(pa, &ih)) {
1704 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1705 return;;
1706 }
1707 intrstr = pci_intr_string(pc, ih);
1708 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1709 if (sc->sc_ih == NULL) {
1710 printf("%s: couldn't establish interrupt",
1711 sc->sc_dev.dv_xname);
1712 if (intrstr != NULL)
1713 printf(" at %s", intrstr);
1714 printf("\n");
1715 return;;
1716 }
1717 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1718 /*
1719 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1720 * doing do could allow DMA to corrupt kernel memory during the
1721 * reboot before the driver initializes.
1722 */
1723 (void) shutdownhook_establish(ti_shutdown, sc);
1724
1725 if (ti_chipinit(sc)) {
1726 printf("%s: chip initialization failed\n", self->dv_xname);
1727 goto fail2;
1728 }
1729 if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
1730 printf("%s: memory space not mapped linear\n", self->dv_xname);
1731 }
1732
1733 /* Zero out the NIC's on-board SRAM. */
1734 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1735
1736 /* Init again -- zeroing memory may have clobbered some registers. */
1737 if (ti_chipinit(sc)) {
1738 printf("%s: chip initialization failed\n", self->dv_xname);
1739 goto fail2;
1740 }
1741
1742 /*
1743 * Get station address from the EEPROM. Note: the manual states
1744 * that the MAC address is at offset 0x8c, however the data is
1745 * stored as two longwords (since that's how it's loaded into
1746 * the NIC). This means the MAC address is actually preceeded
1747 * by two zero bytes. We need to skip over those.
1748 */
1749 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1750 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1751 printf("%s: failed to read station address\n", self->dv_xname);
1752 goto fail2;
1753 }
1754
1755 /*
1756 * A Tigon chip was detected. Inform the world.
1757 */
1758 printf("%s: Ethernet address: %s\n", self->dv_xname,
1759 ether_sprintf(eaddr));
1760
1761 sc->sc_dmat = pa->pa_dmat;
1762
1763 /* Allocate the general information block and ring buffers. */
1764 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1765 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1766 BUS_DMA_NOWAIT)) != 0) {
1767 printf("%s: can't allocate ring buffer, error = %d\n",
1768 sc->sc_dev.dv_xname, error);
1769 goto fail2;
1770 }
1771
1772 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1773 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1774 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1775 printf("%s: can't map ring buffer, error = %d\n",
1776 sc->sc_dev.dv_xname, error);
1777 goto fail2;
1778 }
1779
1780 if ((error = bus_dmamap_create(sc->sc_dmat,
1781 sizeof(struct ti_ring_data), 1,
1782 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1783 &sc->info_dmamap)) != 0) {
1784 printf("%s: can't create ring buffer DMA map, error = %d\n",
1785 sc->sc_dev.dv_xname, error);
1786 goto fail2;
1787 }
1788
1789 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1790 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1791 BUS_DMA_NOWAIT)) != 0) {
1792 printf("%s: can't load ring buffer DMA map, error = %d\n",
1793 sc->sc_dev.dv_xname, error);
1794 goto fail2;
1795 }
1796
1797 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1798
1799 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1800
1801 /* Try to allocate memory for jumbo buffers. */
1802 if (ti_alloc_jumbo_mem(sc)) {
1803 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1804 goto fail2;
1805 }
1806
1807 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1808
1809 /*
1810 * We really need a better way to tell a 1000baseTX card
1811 * from a 1000baseSX one, since in theory there could be
1812 * OEMed 1000baseTX cards from lame vendors who aren't
1813 * clever enough to change the PCI ID. For the moment
1814 * though, the AceNIC is the only copper card available.
1815 */
1816 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1817 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1818 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1819 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1820 sc->ti_copper = 1;
1821 else
1822 sc->ti_copper = 0;
1823
1824 /* Set default tuneable values. */
1825 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1826 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1827 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1828 sc->ti_rx_max_coal_bds = 64;
1829 sc->ti_tx_max_coal_bds = 128;
1830 sc->ti_tx_buf_ratio = 21;
1831
1832 /* Set up ifnet structure */
1833 ifp = &sc->ethercom.ec_if;
1834 ifp->if_softc = sc;
1835 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1836 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1837 ifp->if_ioctl = ti_ioctl;
1838 ifp->if_start = ti_start;
1839 ifp->if_watchdog = ti_watchdog;
1840 IFQ_SET_READY(&ifp->if_snd);
1841
1842 #if 0
1843 /*
1844 * XXX This is not really correct -- we don't necessarily
1845 * XXX want to queue up as many as we can transmit at the
1846 * XXX upper layer like that. Someone with a board should
1847 * XXX check to see how this affects performance.
1848 */
1849 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1850 #endif
1851
1852 /*
1853 * We can support 802.1Q VLAN-sized frames.
1854 */
1855 sc->ethercom.ec_capabilities |=
1856 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1857
1858 /*
1859 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1860 */
1861 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1862 IFCAP_CSUM_UDPv4;
1863
1864 /* Set up ifmedia support. */
1865 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1866 if (sc->ti_copper) {
1867 /*
1868 * Copper cards allow manual 10/100 mode selection,
1869 * but not manual 1000baseTX mode selection. Why?
1870 * Becuase currently there's no way to specify the
1871 * master/slave setting through the firmware interface,
1872 * so Alteon decided to just bag it and handle it
1873 * via autonegotiation.
1874 */
1875 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1876 ifmedia_add(&sc->ifmedia,
1877 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1878 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1879 ifmedia_add(&sc->ifmedia,
1880 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1881 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1882 ifmedia_add(&sc->ifmedia,
1883 IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1884 } else {
1885 /* Fiber cards don't support 10/100 modes. */
1886 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1887 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1888 }
1889 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1890 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1891
1892 /*
1893 * Call MI attach routines.
1894 */
1895 if_attach(ifp);
1896 ether_ifattach(ifp, eaddr);
1897
1898 return;
1899 fail2:
1900 pci_intr_disestablish(pc, sc->sc_ih);
1901 return;
1902 }
1903
1904 /*
1905 * Frame reception handling. This is called if there's a frame
1906 * on the receive return list.
1907 *
1908 * Note: we have to be able to handle three possibilities here:
1909 * 1) the frame is from the mini receive ring (can only happen)
1910 * on Tigon 2 boards)
1911 * 2) the frame is from the jumbo recieve ring
1912 * 3) the frame is from the standard receive ring
1913 */
1914
1915 static void ti_rxeof(sc)
1916 struct ti_softc *sc;
1917 {
1918 struct ifnet *ifp;
1919 struct ti_cmd_desc cmd;
1920
1921 ifp = &sc->ethercom.ec_if;
1922
1923 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1924 struct ti_rx_desc *cur_rx;
1925 u_int32_t rxidx;
1926 struct mbuf *m = NULL;
1927 u_int16_t vlan_tag = 0;
1928 int have_tag = 0;
1929 struct ether_header *eh;
1930 bus_dmamap_t dmamap;
1931
1932 cur_rx =
1933 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1934 rxidx = cur_rx->ti_idx;
1935 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1936
1937 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1938 have_tag = 1;
1939 vlan_tag = cur_rx->ti_vlan_tag;
1940 }
1941
1942 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1943 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1944 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1945 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1946 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1947 ifp->if_ierrors++;
1948 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1949 continue;
1950 }
1951 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1952 == ENOBUFS) {
1953 ifp->if_ierrors++;
1954 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1955 continue;
1956 }
1957 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1958 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1959 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1960 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1961 dmamap = sc->mini_dmamap[rxidx];
1962 sc->mini_dmamap[rxidx] = 0;
1963 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1964 ifp->if_ierrors++;
1965 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1966 continue;
1967 }
1968 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1969 == ENOBUFS) {
1970 ifp->if_ierrors++;
1971 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1972 continue;
1973 }
1974 } else {
1975 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1976 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1977 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1978 dmamap = sc->std_dmamap[rxidx];
1979 sc->std_dmamap[rxidx] = 0;
1980 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1981 ifp->if_ierrors++;
1982 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1983 continue;
1984 }
1985 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1986 == ENOBUFS) {
1987 ifp->if_ierrors++;
1988 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1989 continue;
1990 }
1991 }
1992
1993 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1994 ifp->if_ipackets++;
1995 m->m_pkthdr.rcvif = ifp;
1996
1997 #if NBPFILTER > 0
1998 /*
1999 * Handle BPF listeners. Let the BPF user see the packet, but
2000 * don't pass it up to the ether_input() layer unless it's
2001 * a broadcast packet, multicast packet, matches our ethernet
2002 * address or the interface is in promiscuous mode.
2003 */
2004 if (ifp->if_bpf)
2005 bpf_mtap(ifp->if_bpf, m);
2006 #endif
2007
2008 eh = mtod(m, struct ether_header *);
2009 switch (ntohs(eh->ether_type)) {
2010 case ETHERTYPE_IP:
2011 {
2012 struct ip *ip = (struct ip *) (eh + 1);
2013
2014 /*
2015 * Note the Tigon firmware does not invert
2016 * the checksum for us, hence the XOR.
2017 */
2018 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2019 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2020 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2021 /*
2022 * ntohs() the constant so the compiler can
2023 * optimize...
2024 *
2025 * XXX Figure out a sane way to deal with
2026 * fragmented packets.
2027 */
2028 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2029 switch (ip->ip_p) {
2030 case IPPROTO_TCP:
2031 m->m_pkthdr.csum_data =
2032 cur_rx->ti_tcp_udp_cksum;
2033 m->m_pkthdr.csum_flags |=
2034 M_CSUM_TCPv4|M_CSUM_DATA;
2035 break;
2036 case IPPROTO_UDP:
2037 m->m_pkthdr.csum_data =
2038 cur_rx->ti_tcp_udp_cksum;
2039 m->m_pkthdr.csum_flags |=
2040 M_CSUM_UDPv4|M_CSUM_DATA;
2041 break;
2042 default:
2043 /* Nothing */;
2044 }
2045 }
2046 break;
2047 }
2048 default:
2049 /* Nothing. */
2050 break;
2051 }
2052
2053 if (have_tag) {
2054 struct mbuf *n;
2055 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2056 if (n) {
2057 *mtod(n, int *) = vlan_tag;
2058 n->m_len = sizeof(int);
2059 } else {
2060 printf("%s: no mbuf for tag\n", ifp->if_xname);
2061 m_freem(m);
2062 continue;
2063 }
2064 have_tag = vlan_tag = 0;
2065 }
2066 (*ifp->if_input)(ifp, m);
2067 }
2068
2069 /* Only necessary on the Tigon 1. */
2070 if (sc->ti_hwrev == TI_HWREV_TIGON)
2071 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2072 sc->ti_rx_saved_considx);
2073
2074 TI_UPDATE_STDPROD(sc, sc->ti_std);
2075 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2076 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2077
2078 return;
2079 }
2080
2081 static void ti_txeof(sc)
2082 struct ti_softc *sc;
2083 {
2084 struct ti_tx_desc *cur_tx = NULL;
2085 struct ifnet *ifp;
2086
2087 ifp = &sc->ethercom.ec_if;
2088
2089 /*
2090 * Go through our tx ring and free mbufs for those
2091 * frames that have been sent.
2092 */
2093 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2094 u_int32_t idx = 0;
2095
2096 idx = sc->ti_tx_saved_considx;
2097 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2098 if (idx > 383)
2099 CSR_WRITE_4(sc, TI_WINBASE,
2100 TI_TX_RING_BASE + 6144);
2101 else if (idx > 255)
2102 CSR_WRITE_4(sc, TI_WINBASE,
2103 TI_TX_RING_BASE + 4096);
2104 else if (idx > 127)
2105 CSR_WRITE_4(sc, TI_WINBASE,
2106 TI_TX_RING_BASE + 2048);
2107 else
2108 CSR_WRITE_4(sc, TI_WINBASE,
2109 TI_TX_RING_BASE);
2110 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2111 } else
2112 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2113 if (cur_tx->ti_flags & TI_BDFLAG_END)
2114 ifp->if_opackets++;
2115 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2116 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2117 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2118
2119 /* if (sc->txdma[idx] == 0) panic() */
2120 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2121 link);
2122 sc->txdma[idx] = 0;
2123 }
2124 sc->ti_txcnt--;
2125 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2126 ifp->if_timer = 0;
2127 }
2128
2129 if (cur_tx != NULL)
2130 ifp->if_flags &= ~IFF_OACTIVE;
2131
2132 return;
2133 }
2134
2135 static int ti_intr(xsc)
2136 void *xsc;
2137 {
2138 struct ti_softc *sc;
2139 struct ifnet *ifp;
2140
2141 sc = xsc;
2142 ifp = &sc->ethercom.ec_if;
2143
2144 #ifdef notdef
2145 /* Avoid this for now -- checking this register is expensive. */
2146 /* Make sure this is really our interrupt. */
2147 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2148 return (0);
2149 #endif
2150
2151 /* Ack interrupt and stop others from occuring. */
2152 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2153
2154 if (ifp->if_flags & IFF_RUNNING) {
2155 /* Check RX return ring producer/consumer */
2156 ti_rxeof(sc);
2157
2158 /* Check TX ring producer/consumer */
2159 ti_txeof(sc);
2160 }
2161
2162 ti_handle_events(sc);
2163
2164 /* Re-enable interrupts. */
2165 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2166
2167 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2168 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2169 ti_start(ifp);
2170
2171 return (1);
2172 }
2173
2174 static void ti_stats_update(sc)
2175 struct ti_softc *sc;
2176 {
2177 struct ifnet *ifp;
2178
2179 ifp = &sc->ethercom.ec_if;
2180
2181 ifp->if_collisions +=
2182 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2183 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2184 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2185 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2186 ifp->if_collisions;
2187
2188 return;
2189 }
2190
2191 /*
2192 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2193 * pointers to descriptors.
2194 */
2195 static int ti_encap(sc, m_head, txidx)
2196 struct ti_softc *sc;
2197 struct mbuf *m_head;
2198 u_int32_t *txidx;
2199 {
2200 struct ti_tx_desc *f = NULL;
2201 u_int32_t frag, cur, cnt = 0;
2202 struct txdmamap_pool_entry *dma;
2203 bus_dmamap_t dmamap;
2204 int error, i;
2205 struct mbuf *n;
2206 u_int16_t csum_flags = 0;
2207
2208 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2209 if (dma == NULL) {
2210 return ENOMEM;
2211 }
2212 dmamap = dma->dmamap;
2213
2214 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2215 if (error) {
2216 struct mbuf *m;
2217 int i = 0;
2218 for (m = m_head; m; m = m->m_next)
2219 i++;
2220 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2221 "error %d\n", m_head->m_pkthdr.len, i, error);
2222 return (ENOMEM);
2223 }
2224
2225 cur = frag = *txidx;
2226
2227 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2228 /* IP header checksum field must be 0! */
2229 csum_flags |= TI_BDFLAG_IP_CKSUM;
2230 }
2231 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2232 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2233
2234 /* XXX fragmented packet checksum capability? */
2235
2236 /*
2237 * Start packing the mbufs in this chain into
2238 * the fragment pointers. Stop when we run out
2239 * of fragments or hit the end of the mbuf chain.
2240 */
2241 for (i = 0; i < dmamap->dm_nsegs; i++) {
2242 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2243 if (frag > 383)
2244 CSR_WRITE_4(sc, TI_WINBASE,
2245 TI_TX_RING_BASE + 6144);
2246 else if (frag > 255)
2247 CSR_WRITE_4(sc, TI_WINBASE,
2248 TI_TX_RING_BASE + 4096);
2249 else if (frag > 127)
2250 CSR_WRITE_4(sc, TI_WINBASE,
2251 TI_TX_RING_BASE + 2048);
2252 else
2253 CSR_WRITE_4(sc, TI_WINBASE,
2254 TI_TX_RING_BASE);
2255 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2256 } else
2257 f = &sc->ti_rdata->ti_tx_ring[frag];
2258 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2259 break;
2260 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2261 f->ti_len = dmamap->dm_segs[i].ds_len;
2262 f->ti_flags = csum_flags;
2263 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2264 if (n) {
2265 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2266 f->ti_vlan_tag = *mtod(n, int *);
2267 } else {
2268 f->ti_vlan_tag = 0;
2269 }
2270 /*
2271 * Sanity check: avoid coming within 16 descriptors
2272 * of the end of the ring.
2273 */
2274 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2275 return(ENOBUFS);
2276 cur = frag;
2277 TI_INC(frag, TI_TX_RING_CNT);
2278 cnt++;
2279 }
2280
2281 if (i < dmamap->dm_nsegs)
2282 return(ENOBUFS);
2283
2284 if (frag == sc->ti_tx_saved_considx)
2285 return(ENOBUFS);
2286
2287 if (sc->ti_hwrev == TI_HWREV_TIGON)
2288 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2289 TI_BDFLAG_END;
2290 else
2291 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2292 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2293 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2294 sc->txdma[cur] = dma;
2295 sc->ti_txcnt += cnt;
2296
2297 *txidx = frag;
2298
2299 return(0);
2300 }
2301
2302 /*
2303 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2304 * to the mbuf data regions directly in the transmit descriptors.
2305 */
2306 static void ti_start(ifp)
2307 struct ifnet *ifp;
2308 {
2309 struct ti_softc *sc;
2310 struct mbuf *m_head = NULL;
2311 u_int32_t prodidx = 0;
2312
2313 sc = ifp->if_softc;
2314
2315 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2316
2317 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2318 IFQ_POLL(&ifp->if_snd, m_head);
2319 if (m_head == NULL)
2320 break;
2321
2322 /*
2323 * Pack the data into the transmit ring. If we
2324 * don't have room, set the OACTIVE flag and wait
2325 * for the NIC to drain the ring.
2326 */
2327 if (ti_encap(sc, m_head, &prodidx)) {
2328 ifp->if_flags |= IFF_OACTIVE;
2329 break;
2330 }
2331
2332 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2333
2334 /*
2335 * If there's a BPF listener, bounce a copy of this frame
2336 * to him.
2337 */
2338 #if NBPFILTER > 0
2339 if (ifp->if_bpf)
2340 bpf_mtap(ifp->if_bpf, m_head);
2341 #endif
2342 }
2343
2344 /* Transmit */
2345 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2346
2347 /*
2348 * Set a timeout in case the chip goes out to lunch.
2349 */
2350 ifp->if_timer = 5;
2351
2352 return;
2353 }
2354
2355 static void ti_init(xsc)
2356 void *xsc;
2357 {
2358 struct ti_softc *sc = xsc;
2359 int s;
2360
2361 s = splnet();
2362
2363 /* Cancel pending I/O and flush buffers. */
2364 ti_stop(sc);
2365
2366 /* Init the gen info block, ring control blocks and firmware. */
2367 if (ti_gibinit(sc)) {
2368 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2369 splx(s);
2370 return;
2371 }
2372
2373 splx(s);
2374
2375 return;
2376 }
2377
2378 static void ti_init2(sc)
2379 struct ti_softc *sc;
2380 {
2381 struct ti_cmd_desc cmd;
2382 struct ifnet *ifp;
2383 u_int8_t *m;
2384 struct ifmedia *ifm;
2385 int tmp;
2386
2387 ifp = &sc->ethercom.ec_if;
2388
2389 /* Specify MTU and interface index. */
2390 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2391
2392 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2393 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2394 tmp += ETHER_VLAN_ENCAP_LEN;
2395 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2396
2397 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2398
2399 /* Load our MAC address. */
2400 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2401 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2402 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2403 | (m[4] << 8) | m[5]);
2404 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2405
2406 /* Enable or disable promiscuous mode as needed. */
2407 if (ifp->if_flags & IFF_PROMISC) {
2408 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2409 } else {
2410 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2411 }
2412
2413 /* Program multicast filter. */
2414 ti_setmulti(sc);
2415
2416 /*
2417 * If this is a Tigon 1, we should tell the
2418 * firmware to use software packet filtering.
2419 */
2420 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2421 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2422 }
2423
2424 /* Init RX ring. */
2425 ti_init_rx_ring_std(sc);
2426
2427 /* Init jumbo RX ring. */
2428 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2429 ti_init_rx_ring_jumbo(sc);
2430
2431 /*
2432 * If this is a Tigon 2, we can also configure the
2433 * mini ring.
2434 */
2435 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2436 ti_init_rx_ring_mini(sc);
2437
2438 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2439 sc->ti_rx_saved_considx = 0;
2440
2441 /* Init TX ring. */
2442 ti_init_tx_ring(sc);
2443
2444 /* Tell firmware we're alive. */
2445 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2446
2447 /* Enable host interrupts. */
2448 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2449
2450 ifp->if_flags |= IFF_RUNNING;
2451 ifp->if_flags &= ~IFF_OACTIVE;
2452
2453 /*
2454 * Make sure to set media properly. We have to do this
2455 * here since we have to issue commands in order to set
2456 * the link negotiation and we can't issue commands until
2457 * the firmware is running.
2458 */
2459 ifm = &sc->ifmedia;
2460 tmp = ifm->ifm_media;
2461 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2462 ti_ifmedia_upd(ifp);
2463 ifm->ifm_media = tmp;
2464
2465 return;
2466 }
2467
2468 /*
2469 * Set media options.
2470 */
2471 static int ti_ifmedia_upd(ifp)
2472 struct ifnet *ifp;
2473 {
2474 struct ti_softc *sc;
2475 struct ifmedia *ifm;
2476 struct ti_cmd_desc cmd;
2477
2478 sc = ifp->if_softc;
2479 ifm = &sc->ifmedia;
2480
2481 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2482 return(EINVAL);
2483
2484 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2485 case IFM_AUTO:
2486 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2487 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2488 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2489 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2490 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2491 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2492 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2493 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2494 break;
2495 case IFM_1000_SX:
2496 case IFM_1000_TX:
2497 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2498 CSR_WRITE_4(sc, TI_GCR_GLINK,
2499 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2500 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2501 } else {
2502 CSR_WRITE_4(sc, TI_GCR_GLINK,
2503 TI_GLNK_PREF|TI_GLNK_1000MB|
2504 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2505 }
2506 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2507 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2508 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2509 break;
2510 case IFM_100_FX:
2511 case IFM_10_FL:
2512 case IFM_100_TX:
2513 case IFM_10_T:
2514 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2515 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2516 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2517 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2518 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2519 } else {
2520 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2521 }
2522 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2523 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2524 } else {
2525 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2526 }
2527 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2528 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2529 break;
2530 }
2531
2532 sc->ethercom.ec_if.if_baudrate =
2533 ifmedia_baudrate(ifm->ifm_media);
2534
2535 return(0);
2536 }
2537
2538 /*
2539 * Report current media status.
2540 */
2541 static void ti_ifmedia_sts(ifp, ifmr)
2542 struct ifnet *ifp;
2543 struct ifmediareq *ifmr;
2544 {
2545 struct ti_softc *sc;
2546 u_int32_t media = 0;
2547
2548 sc = ifp->if_softc;
2549
2550 ifmr->ifm_status = IFM_AVALID;
2551 ifmr->ifm_active = IFM_ETHER;
2552
2553 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2554 return;
2555
2556 ifmr->ifm_status |= IFM_ACTIVE;
2557
2558 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2559 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2560 if (sc->ti_copper)
2561 ifmr->ifm_active |= IFM_1000_TX;
2562 else
2563 ifmr->ifm_active |= IFM_1000_SX;
2564 if (media & TI_GLNK_FULL_DUPLEX)
2565 ifmr->ifm_active |= IFM_FDX;
2566 else
2567 ifmr->ifm_active |= IFM_HDX;
2568 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2569 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2570 if (sc->ti_copper) {
2571 if (media & TI_LNK_100MB)
2572 ifmr->ifm_active |= IFM_100_TX;
2573 if (media & TI_LNK_10MB)
2574 ifmr->ifm_active |= IFM_10_T;
2575 } else {
2576 if (media & TI_LNK_100MB)
2577 ifmr->ifm_active |= IFM_100_FX;
2578 if (media & TI_LNK_10MB)
2579 ifmr->ifm_active |= IFM_10_FL;
2580 }
2581 if (media & TI_LNK_FULL_DUPLEX)
2582 ifmr->ifm_active |= IFM_FDX;
2583 if (media & TI_LNK_HALF_DUPLEX)
2584 ifmr->ifm_active |= IFM_HDX;
2585 }
2586
2587 sc->ethercom.ec_if.if_baudrate =
2588 ifmedia_baudrate(sc->ifmedia.ifm_media);
2589
2590 return;
2591 }
2592
2593 static int
2594 ti_ether_ioctl(ifp, cmd, data)
2595 struct ifnet *ifp;
2596 u_long cmd;
2597 caddr_t data;
2598 {
2599 struct ifaddr *ifa = (struct ifaddr *) data;
2600 struct ti_softc *sc = ifp->if_softc;
2601
2602 switch (cmd) {
2603 case SIOCSIFADDR:
2604 ifp->if_flags |= IFF_UP;
2605
2606 switch (ifa->ifa_addr->sa_family) {
2607 #ifdef INET
2608 case AF_INET:
2609 ti_init(sc);
2610 arp_ifinit(ifp, ifa);
2611 break;
2612 #endif
2613 #ifdef NS
2614 case AF_NS:
2615 {
2616 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2617
2618 if (ns_nullhost(*ina))
2619 ina->x_host = *(union ns_host *)
2620 LLADDR(ifp->if_sadl);
2621 else
2622 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2623 ifp->if_addrlen);
2624 /* Set new address. */
2625 ti_init(sc);
2626 break;
2627 }
2628 #endif
2629 default:
2630 ti_init(sc);
2631 break;
2632 }
2633 break;
2634
2635 default:
2636 return (EINVAL);
2637 }
2638
2639 return (0);
2640 }
2641
2642 static int ti_ioctl(ifp, command, data)
2643 struct ifnet *ifp;
2644 u_long command;
2645 caddr_t data;
2646 {
2647 struct ti_softc *sc = ifp->if_softc;
2648 struct ifreq *ifr = (struct ifreq *) data;
2649 int s, error = 0;
2650 struct ti_cmd_desc cmd;
2651
2652 s = splnet();
2653
2654 switch(command) {
2655 case SIOCSIFADDR:
2656 case SIOCGIFADDR:
2657 error = ti_ether_ioctl(ifp, command, data);
2658 break;
2659 case SIOCSIFMTU:
2660 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2661 error = EINVAL;
2662 else {
2663 ifp->if_mtu = ifr->ifr_mtu;
2664 ti_init(sc);
2665 }
2666 break;
2667 case SIOCSIFFLAGS:
2668 if (ifp->if_flags & IFF_UP) {
2669 /*
2670 * If only the state of the PROMISC flag changed,
2671 * then just use the 'set promisc mode' command
2672 * instead of reinitializing the entire NIC. Doing
2673 * a full re-init means reloading the firmware and
2674 * waiting for it to start up, which may take a
2675 * second or two.
2676 */
2677 if (ifp->if_flags & IFF_RUNNING &&
2678 ifp->if_flags & IFF_PROMISC &&
2679 !(sc->ti_if_flags & IFF_PROMISC)) {
2680 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2681 TI_CMD_CODE_PROMISC_ENB, 0);
2682 } else if (ifp->if_flags & IFF_RUNNING &&
2683 !(ifp->if_flags & IFF_PROMISC) &&
2684 sc->ti_if_flags & IFF_PROMISC) {
2685 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2686 TI_CMD_CODE_PROMISC_DIS, 0);
2687 } else
2688 ti_init(sc);
2689 } else {
2690 if (ifp->if_flags & IFF_RUNNING) {
2691 ti_stop(sc);
2692 }
2693 }
2694 sc->ti_if_flags = ifp->if_flags;
2695 error = 0;
2696 break;
2697 case SIOCADDMULTI:
2698 case SIOCDELMULTI:
2699 error = (command == SIOCADDMULTI) ?
2700 ether_addmulti(ifr, &sc->ethercom) :
2701 ether_delmulti(ifr, &sc->ethercom);
2702 if (error == ENETRESET) {
2703 if (ifp->if_flags & IFF_RUNNING)
2704 ti_setmulti(sc);
2705 error = 0;
2706 }
2707 break;
2708 case SIOCSIFMEDIA:
2709 case SIOCGIFMEDIA:
2710 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2711 break;
2712 default:
2713 error = EINVAL;
2714 break;
2715 }
2716
2717 (void)splx(s);
2718
2719 return(error);
2720 }
2721
2722 static void ti_watchdog(ifp)
2723 struct ifnet *ifp;
2724 {
2725 struct ti_softc *sc;
2726
2727 sc = ifp->if_softc;
2728
2729 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2730 ti_stop(sc);
2731 ti_init(sc);
2732
2733 ifp->if_oerrors++;
2734
2735 return;
2736 }
2737
2738 /*
2739 * Stop the adapter and free any mbufs allocated to the
2740 * RX and TX lists.
2741 */
2742 static void ti_stop(sc)
2743 struct ti_softc *sc;
2744 {
2745 struct ifnet *ifp;
2746 struct ti_cmd_desc cmd;
2747
2748 ifp = &sc->ethercom.ec_if;
2749
2750 /* Disable host interrupts. */
2751 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2752 /*
2753 * Tell firmware we're shutting down.
2754 */
2755 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2756
2757 /* Halt and reinitialize. */
2758 ti_chipinit(sc);
2759 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2760 ti_chipinit(sc);
2761
2762 /* Free the RX lists. */
2763 ti_free_rx_ring_std(sc);
2764
2765 /* Free jumbo RX list. */
2766 ti_free_rx_ring_jumbo(sc);
2767
2768 /* Free mini RX list. */
2769 ti_free_rx_ring_mini(sc);
2770
2771 /* Free TX buffers. */
2772 ti_free_tx_ring(sc);
2773
2774 sc->ti_ev_prodidx.ti_idx = 0;
2775 sc->ti_return_prodidx.ti_idx = 0;
2776 sc->ti_tx_considx.ti_idx = 0;
2777 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2778
2779 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2780
2781 return;
2782 }
2783
2784 /*
2785 * Stop all chip I/O so that the kernel's probe routines don't
2786 * get confused by errant DMAs when rebooting.
2787 */
2788 static void ti_shutdown(v)
2789 void *v;
2790 {
2791 struct ti_softc *sc = v;
2792
2793 ti_chipinit(sc);
2794
2795 return;
2796 }
2797