if_ti.c revision 1.3 1 /* $NetBSD: if_ti.c,v 1.3 2000/01/25 20:19:14 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #if 0
85 #include "vlan.h"
86 #endif
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #if 0
111 #if NVLAN > 0
112 #include <net/if_types.h>
113 #include <net/if_vlan_var.h>
114 #endif
115 #endif
116
117 #ifdef INET
118 #include <netinet/in.h>
119 #include <netinet/if_inarp.h>
120 #endif
121
122 #ifdef NS
123 #include <netns/ns.h>
124 #include <netns/ns_if.h>
125 #endif
126
127 #if 0
128 #include <vm/vm.h> /* for vtophys */
129 #include <vm/pmap.h> /* for vtophys */
130 #include <machine/clock.h> /* for DELAY */
131 #endif
132 #include <machine/bus.h>
133 #if 0
134 #include <machine/resource.h>
135 #include <sys/bus.h>
136 #include <sys/rman.h>
137 #endif
138
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142
143 #include <dev/pci/if_tireg.h>
144 #include <dev/pci/ti_fw.h>
145 #include <dev/pci/ti_fw2.h>
146
147 #ifdef M_HWCKSUM
148 /*#define TI_CSUM_OFFLOAD*/
149 #endif
150
151 #define bootverbose 1
152
153 /*
154 * Various supported device vendors/types and their names.
155 */
156
157 static struct ti_type ti_devs[] = {
158 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
159 "Alteon AceNIC Gigabit Ethernet" },
160 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
161 "3Com 3c985-SX Gigabit Ethernet" },
162 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
163 "Netgear GA620 Gigabit Ethernet" },
164 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
165 "Silicon Graphics Gigabit Ethernet" },
166 { 0, 0, NULL }
167 };
168
169 static int ti_probe __P((struct device *, struct cfdata *, void *));
170 static void ti_attach __P((struct device *, struct device *, void *));
171 #if 0
172 static int ti_detach __P((device_t));
173 #endif
174 static void ti_txeof __P((struct ti_softc *));
175 static void ti_rxeof __P((struct ti_softc *));
176
177 static void ti_stats_update __P((struct ti_softc *));
178 static int ti_encap __P((struct ti_softc *, struct mbuf *,
179 u_int32_t *));
180
181 static int ti_intr __P((void *));
182 static void ti_start __P((struct ifnet *));
183 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
184 static void ti_init __P((void *));
185 static void ti_init2 __P((struct ti_softc *));
186 static void ti_stop __P((struct ti_softc *));
187 static void ti_watchdog __P((struct ifnet *));
188 #if 0
189 static void ti_shutdown __P((device_t));
190 #endif
191 static int ti_ifmedia_upd __P((struct ifnet *));
192 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
193
194 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
195 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
196 int, u_int8_t *));
197 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
198
199 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
200 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
201 static void ti_setmulti __P((struct ti_softc *));
202
203 static void ti_mem __P((struct ti_softc *, u_int32_t,
204 u_int32_t, caddr_t));
205 static void ti_loadfw __P((struct ti_softc *));
206 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
207 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
208 caddr_t, int));
209 static void ti_handle_events __P((struct ti_softc *));
210 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
211 static void *ti_jalloc __P((struct ti_softc *));
212 static void ti_jfree __P((caddr_t, u_int, void *));
213 #if 0
214 static void ti_jref __P((caddr_t, u_int));
215 #endif
216 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
217 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
218 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
219 static int ti_init_rx_ring_std __P((struct ti_softc *));
220 static void ti_free_rx_ring_std __P((struct ti_softc *));
221 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
222 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
223 static int ti_init_rx_ring_mini __P((struct ti_softc *));
224 static void ti_free_rx_ring_mini __P((struct ti_softc *));
225 static void ti_free_tx_ring __P((struct ti_softc *));
226 static int ti_init_tx_ring __P((struct ti_softc *));
227
228 static int ti_64bitslot_war __P((struct ti_softc *));
229 static int ti_chipinit __P((struct ti_softc *));
230 static int ti_gibinit __P((struct ti_softc *));
231
232 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
233
234 struct cfattach ti_ca = {
235 sizeof(struct ti_softc), ti_probe, ti_attach
236 };
237
238 /*
239 * Send an instruction or address to the EEPROM, check for ACK.
240 */
241 static u_int32_t ti_eeprom_putbyte(sc, byte)
242 struct ti_softc *sc;
243 int byte;
244 {
245 register int i, ack = 0;
246
247 /*
248 * Make sure we're in TX mode.
249 */
250 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
251
252 /*
253 * Feed in each bit and stobe the clock.
254 */
255 for (i = 0x80; i; i >>= 1) {
256 if (byte & i) {
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
258 } else {
259 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
260 }
261 DELAY(1);
262 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 DELAY(1);
264 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
265 }
266
267 /*
268 * Turn off TX mode.
269 */
270 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
271
272 /*
273 * Check for ack.
274 */
275 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
276 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
277 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
278
279 return(ack);
280 }
281
282 /*
283 * Read a byte of data stored in the EEPROM at address 'addr.'
284 * We have to send two address bytes since the EEPROM can hold
285 * more than 256 bytes of data.
286 */
287 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
288 struct ti_softc *sc;
289 int addr;
290 u_int8_t *dest;
291 {
292 register int i;
293 u_int8_t byte = 0;
294
295 EEPROM_START;
296
297 /*
298 * Send write control code to EEPROM.
299 */
300 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
301 printf("%s: failed to send write command, status: %x\n",
302 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 return(1);
304 }
305
306 /*
307 * Send first byte of address of byte we want to read.
308 */
309 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
310 printf("%s: failed to send address, status: %x\n",
311 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
312 return(1);
313 }
314 /*
315 * Send second byte address of byte we want to read.
316 */
317 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
318 printf("%s: failed to send address, status: %x\n",
319 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
320 return(1);
321 }
322
323 EEPROM_STOP;
324 EEPROM_START;
325 /*
326 * Send read control code to EEPROM.
327 */
328 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
329 printf("%s: failed to send read command, status: %x\n",
330 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
331 return(1);
332 }
333
334 /*
335 * Start reading bits from EEPROM.
336 */
337 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
338 for (i = 0x80; i; i >>= 1) {
339 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
340 DELAY(1);
341 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
342 byte |= i;
343 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
344 DELAY(1);
345 }
346
347 EEPROM_STOP;
348
349 /*
350 * No ACK generated for read, so just return byte.
351 */
352
353 *dest = byte;
354
355 return(0);
356 }
357
358 /*
359 * Read a sequence of bytes from the EEPROM.
360 */
361 static int ti_read_eeprom(sc, dest, off, cnt)
362 struct ti_softc *sc;
363 caddr_t dest;
364 int off;
365 int cnt;
366 {
367 int err = 0, i;
368 u_int8_t byte = 0;
369
370 for (i = 0; i < cnt; i++) {
371 err = ti_eeprom_getbyte(sc, off + i, &byte);
372 if (err)
373 break;
374 *(dest + i) = byte;
375 }
376
377 return(err ? 1 : 0);
378 }
379
380 /*
381 * NIC memory access function. Can be used to either clear a section
382 * of NIC local memory or (if buf is non-NULL) copy data into it.
383 */
384 static void ti_mem(sc, addr, len, buf)
385 struct ti_softc *sc;
386 u_int32_t addr, len;
387 caddr_t buf;
388 {
389 int segptr, segsize, cnt;
390 caddr_t ti_winbase, ptr;
391
392 segptr = addr;
393 cnt = len;
394 ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
395 ptr = buf;
396
397 while(cnt) {
398 if (cnt < TI_WINLEN)
399 segsize = cnt;
400 else
401 segsize = TI_WINLEN - (segptr % TI_WINLEN);
402 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
403 if (buf == NULL)
404 bzero((char *)ti_winbase + (segptr &
405 (TI_WINLEN - 1)), segsize);
406 else {
407 bcopy((char *)ptr, (char *)ti_winbase +
408 (segptr & (TI_WINLEN - 1)), segsize);
409 ptr += segsize;
410 }
411 segptr += segsize;
412 cnt -= segsize;
413 }
414
415 return;
416 }
417
418 /*
419 * Load firmware image into the NIC. Check that the firmware revision
420 * is acceptable and see if we want the firmware for the Tigon 1 or
421 * Tigon 2.
422 */
423 static void ti_loadfw(sc)
424 struct ti_softc *sc;
425 {
426 switch(sc->ti_hwrev) {
427 case TI_HWREV_TIGON:
428 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
429 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
430 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
431 printf("%s: firmware revision mismatch; want "
432 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
433 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
434 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
435 tigonFwReleaseMinor, tigonFwReleaseFix);
436 return;
437 }
438 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
439 (caddr_t)tigonFwText);
440 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
441 (caddr_t)tigonFwData);
442 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
443 (caddr_t)tigonFwRodata);
444 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
445 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
446 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
447 break;
448 case TI_HWREV_TIGON_II:
449 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
450 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
451 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
452 printf("%s: firmware revision mismatch; want "
453 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
454 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
455 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
456 tigon2FwReleaseMinor, tigon2FwReleaseFix);
457 return;
458 }
459 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
460 (caddr_t)tigon2FwText);
461 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
462 (caddr_t)tigon2FwData);
463 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
464 (caddr_t)tigon2FwRodata);
465 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
466 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
467 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
468 break;
469 default:
470 printf("%s: can't load firmware: unknown hardware rev\n",
471 sc->sc_dev.dv_xname);
472 break;
473 }
474
475 return;
476 }
477
478 /*
479 * Send the NIC a command via the command ring.
480 */
481 static void ti_cmd(sc, cmd)
482 struct ti_softc *sc;
483 struct ti_cmd_desc *cmd;
484 {
485 u_int32_t index;
486
487 if (sc->ti_rdata->ti_cmd_ring == NULL)
488 return;
489
490 index = sc->ti_cmd_saved_prodidx;
491 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
492 TI_INC(index, TI_CMD_RING_CNT);
493 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
494 sc->ti_cmd_saved_prodidx = index;
495
496 return;
497 }
498
499 /*
500 * Send the NIC an extended command. The 'len' parameter specifies the
501 * number of command slots to include after the initial command.
502 */
503 static void ti_cmd_ext(sc, cmd, arg, len)
504 struct ti_softc *sc;
505 struct ti_cmd_desc *cmd;
506 caddr_t arg;
507 int len;
508 {
509 u_int32_t index;
510 register int i;
511
512 if (sc->ti_rdata->ti_cmd_ring == NULL)
513 return;
514
515 index = sc->ti_cmd_saved_prodidx;
516 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
517 TI_INC(index, TI_CMD_RING_CNT);
518 for (i = 0; i < len; i++) {
519 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
520 *(u_int32_t *)(&arg[i * 4]));
521 TI_INC(index, TI_CMD_RING_CNT);
522 }
523 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
524 sc->ti_cmd_saved_prodidx = index;
525
526 return;
527 }
528
529 /*
530 * Handle events that have triggered interrupts.
531 */
532 static void ti_handle_events(sc)
533 struct ti_softc *sc;
534 {
535 struct ti_event_desc *e;
536
537 if (sc->ti_rdata->ti_event_ring == NULL)
538 return;
539
540 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
541 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
542 switch(e->ti_event) {
543 case TI_EV_LINKSTAT_CHANGED:
544 sc->ti_linkstat = e->ti_code;
545 if (e->ti_code == TI_EV_CODE_LINK_UP)
546 printf("%s: 10/100 link up\n",
547 sc->sc_dev.dv_xname);
548 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
549 printf("%s: gigabit link up\n",
550 sc->sc_dev.dv_xname);
551 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
552 printf("%s: link down\n",
553 sc->sc_dev.dv_xname);
554 break;
555 case TI_EV_ERROR:
556 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
557 printf("%s: invalid command\n",
558 sc->sc_dev.dv_xname);
559 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
560 printf("%s: unknown command\n",
561 sc->sc_dev.dv_xname);
562 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
563 printf("%s: bad config data\n",
564 sc->sc_dev.dv_xname);
565 break;
566 case TI_EV_FIRMWARE_UP:
567 ti_init2(sc);
568 break;
569 case TI_EV_STATS_UPDATED:
570 ti_stats_update(sc);
571 break;
572 case TI_EV_RESET_JUMBO_RING:
573 case TI_EV_MCAST_UPDATED:
574 /* Who cares. */
575 break;
576 default:
577 printf("%s: unknown event: %d\n",
578 sc->sc_dev.dv_xname, e->ti_event);
579 break;
580 }
581 /* Advance the consumer index. */
582 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
583 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
584 }
585
586 return;
587 }
588
589 /*
590 * Memory management for the jumbo receive ring is a pain in the
591 * butt. We need to allocate at least 9018 bytes of space per frame,
592 * _and_ it has to be contiguous (unless you use the extended
593 * jumbo descriptor format). Using malloc() all the time won't
594 * work: malloc() allocates memory in powers of two, which means we
595 * would end up wasting a considerable amount of space by allocating
596 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
597 * to do our own memory management.
598 *
599 * The driver needs to allocate a contiguous chunk of memory at boot
600 * time. We then chop this up ourselves into 9K pieces and use them
601 * as external mbuf storage.
602 *
603 * One issue here is how much memory to allocate. The jumbo ring has
604 * 256 slots in it, but at 9K per slot than can consume over 2MB of
605 * RAM. This is a bit much, especially considering we also need
606 * RAM for the standard ring and mini ring (on the Tigon 2). To
607 * save space, we only actually allocate enough memory for 64 slots
608 * by default, which works out to between 500 and 600K. This can
609 * be tuned by changing a #define in if_tireg.h.
610 */
611
612 static int ti_alloc_jumbo_mem(sc)
613 struct ti_softc *sc;
614 {
615 caddr_t ptr;
616 register int i;
617 struct ti_jpool_entry *entry;
618 bus_dma_segment_t dmaseg;
619 int error, dmanseg;
620
621 /* Grab a big chunk o' storage. */
622 if ((error = bus_dmamem_alloc(sc->sc_dmat,
623 TI_JMEM, NBPG, 0, &dmaseg, 1, &dmanseg,
624 BUS_DMA_NOWAIT)) != 0) {
625 printf("%s: can't allocate jumbo buffer, error = %d\n",
626 sc->sc_dev.dv_xname, error);
627 return (error);
628 }
629
630 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
631 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
632 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
633 printf("%s: can't map jumbo buffer, error = %d\n",
634 sc->sc_dev.dv_xname, error);
635 return (error);
636 }
637
638 if ((error = bus_dmamap_create(sc->sc_dmat,
639 TI_JMEM, 1,
640 TI_JMEM, 0, BUS_DMA_NOWAIT,
641 &sc->jumbo_dmamap)) != 0) {
642 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
643 sc->sc_dev.dv_xname, error);
644 return (error);
645 }
646
647 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
648 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
649 BUS_DMA_NOWAIT)) != 0) {
650 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
651 sc->sc_dev.dv_xname, error);
652 return (error);
653 }
654 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
655
656 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
657 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
658
659 /*
660 * Now divide it up into 9K pieces and save the addresses
661 * in an array. Note that we play an evil trick here by using
662 * the first few bytes in the buffer to hold the address
663 * of the softc structure for this interface. This is because
664 * ti_jfree() needs it, but it is called by the mbuf management
665 * code which will not pass it to us explicitly.
666 */
667 ptr = sc->ti_cdata.ti_jumbo_buf;
668 for (i = 0; i < TI_JSLOTS; i++) {
669 u_int64_t **aptr;
670 aptr = (u_int64_t **)ptr;
671 aptr[0] = (u_int64_t *)sc;
672 ptr += sizeof(u_int64_t);
673 sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
674 sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
675 ptr += (TI_JLEN - sizeof(u_int64_t));
676 entry = malloc(sizeof(struct ti_jpool_entry),
677 M_DEVBUF, M_NOWAIT);
678 if (entry == NULL) {
679 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
680 sc->ti_cdata.ti_jumbo_buf = NULL;
681 printf("%s: no memory for jumbo "
682 "buffer queue!\n", sc->sc_dev.dv_xname);
683 return(ENOBUFS);
684 }
685 entry->slot = i;
686 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
687 jpool_entries);
688 }
689
690 return(0);
691 }
692
693 /*
694 * Allocate a jumbo buffer.
695 */
696 static void *ti_jalloc(sc)
697 struct ti_softc *sc;
698 {
699 struct ti_jpool_entry *entry;
700
701 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
702
703 if (entry == NULL) {
704 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
705 return(NULL);
706 }
707
708 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
709 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
710 sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
711 return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
712 }
713
714 #if 0
715 /*
716 * Adjust usage count on a jumbo buffer. In general this doesn't
717 * get used much because our jumbo buffers don't get passed around
718 * too much, but it's implemented for correctness.
719 */
720 static void ti_jref(buf, size)
721 caddr_t buf;
722 u_int size;
723 {
724 struct ti_softc *sc;
725 u_int64_t **aptr;
726 register int i;
727
728 /* Extract the softc struct pointer. */
729 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
730 sc = (struct ti_softc *)(aptr[0]);
731
732 if (sc == NULL)
733 panic("ti_jref: can't find softc pointer!");
734
735 if (size != TI_JUMBO_FRAMELEN)
736 panic("ti_jref: adjusting refcount of buf of wrong size!");
737
738 /* calculate the slot this buffer belongs to */
739
740 i = ((caddr_t)aptr
741 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
742
743 if ((i < 0) || (i >= TI_JSLOTS))
744 panic("ti_jref: asked to reference buffer "
745 "that we don't manage!");
746 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
747 panic("ti_jref: buffer already free!");
748 else
749 sc->ti_cdata.ti_jslots[i].ti_inuse++;
750
751 return;
752 }
753 #endif
754
755 /*
756 * Release a jumbo buffer.
757 */
758 static void ti_jfree(buf, size, arg)
759 caddr_t buf;
760 u_int size;
761 void *arg; /* XXX NetBSD: we should really use it */
762 {
763 struct ti_softc *sc;
764 u_int64_t **aptr;
765 int i;
766 struct ti_jpool_entry *entry;
767
768 /* Extract the softc struct pointer. */
769 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
770 sc = (struct ti_softc *)(aptr[0]);
771
772 if (sc == NULL)
773 panic("ti_jfree: can't find softc pointer!");
774
775 if (size != TI_JUMBO_FRAMELEN)
776 panic("ti_jfree: freeing buffer of wrong size!");
777
778 /* calculate the slot this buffer belongs to */
779
780 i = ((caddr_t)aptr
781 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
782
783 if ((i < 0) || (i >= TI_JSLOTS))
784 panic("ti_jfree: asked to free buffer that we don't manage!");
785 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
786 panic("ti_jfree: buffer already free!");
787 else {
788 sc->ti_cdata.ti_jslots[i].ti_inuse--;
789 if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
790 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
791 if (entry == NULL)
792 panic("ti_jfree: buffer not in use!");
793 entry->slot = i;
794 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
795 entry, jpool_entries);
796 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
797 entry, jpool_entries);
798 }
799 }
800
801 return;
802 }
803
804
805 /*
806 * Intialize a standard receive ring descriptor.
807 */
808 static int ti_newbuf_std(sc, i, m, dmamap)
809 struct ti_softc *sc;
810 int i;
811 struct mbuf *m;
812 bus_dmamap_t dmamap; /* required if (m != NULL) */
813 {
814 struct mbuf *m_new = NULL;
815 struct ti_rx_desc *r;
816 int error;
817
818 if (dmamap == NULL) {
819 /* if (m) panic() */
820
821 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
822 MCLBYTES, 0, BUS_DMA_NOWAIT,
823 &dmamap)) != 0) {
824 printf("%s: can't create recv map, error = %d\n",
825 sc->sc_dev.dv_xname, error);
826 return(ENOMEM);
827 }
828 }
829 sc->std_dmamap[i] = dmamap;
830
831 if (m == NULL) {
832 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
833 if (m_new == NULL) {
834 printf("%s: mbuf allocation failed "
835 "-- packet dropped!\n", sc->sc_dev.dv_xname);
836 return(ENOBUFS);
837 }
838
839 MCLGET(m_new, M_DONTWAIT);
840 if (!(m_new->m_flags & M_EXT)) {
841 printf("%s: cluster allocation failed "
842 "-- packet dropped!\n", sc->sc_dev.dv_xname);
843 m_freem(m_new);
844 return(ENOBUFS);
845 }
846 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
847 m_adj(m_new, ETHER_ALIGN);
848
849 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
850 mtod(m_new, caddr_t), m_new->m_len, NULL,
851 BUS_DMA_NOWAIT)) != 0) {
852 printf("%s: can't load recv map, error = %d\n",
853 sc->sc_dev.dv_xname, error);
854 return (ENOMEM);
855 }
856 } else {
857 m_new = m;
858 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
859 m_new->m_data = m_new->m_ext.ext_buf;
860 m_adj(m_new, ETHER_ALIGN);
861
862 /* reuse the dmamap */
863 }
864
865 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
866 r = &sc->ti_rdata->ti_rx_std_ring[i];
867 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
868 r->ti_type = TI_BDTYPE_RECV_BD;
869 #ifdef TI_CSUM_OFFLOAD
870 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
871 #else
872 r->ti_flags = 0;
873 #endif
874 r->ti_len = m_new->m_len; /* == ds_len */
875 r->ti_idx = i;
876
877 return(0);
878 }
879
880 /*
881 * Intialize a mini receive ring descriptor. This only applies to
882 * the Tigon 2.
883 */
884 static int ti_newbuf_mini(sc, i, m, dmamap)
885 struct ti_softc *sc;
886 int i;
887 struct mbuf *m;
888 bus_dmamap_t dmamap; /* required if (m != NULL) */
889 {
890 struct mbuf *m_new = NULL;
891 struct ti_rx_desc *r;
892 int error;
893
894 if (dmamap == NULL) {
895 /* if (m) panic() */
896
897 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
898 MHLEN, 0, BUS_DMA_NOWAIT,
899 &dmamap)) != 0) {
900 printf("%s: can't create recv map, error = %d\n",
901 sc->sc_dev.dv_xname, error);
902 return(ENOMEM);
903 }
904 }
905 sc->mini_dmamap[i] = dmamap;
906
907 if (m == NULL) {
908 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
909 if (m_new == NULL) {
910 printf("%s: mbuf allocation failed "
911 "-- packet dropped!\n", sc->sc_dev.dv_xname);
912 return(ENOBUFS);
913 }
914 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
915 m_adj(m_new, ETHER_ALIGN);
916
917 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
918 mtod(m_new, caddr_t), m_new->m_len, NULL,
919 BUS_DMA_NOWAIT)) != 0) {
920 printf("%s: can't load recv map, error = %d\n",
921 sc->sc_dev.dv_xname, error);
922 return (ENOMEM);
923 }
924 } else {
925 m_new = m;
926 m_new->m_data = m_new->m_pktdat;
927 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
928 m_adj(m_new, ETHER_ALIGN);
929
930 /* reuse the dmamap */
931 }
932
933 r = &sc->ti_rdata->ti_rx_mini_ring[i];
934 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
935 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
936 r->ti_type = TI_BDTYPE_RECV_BD;
937 r->ti_flags = TI_BDFLAG_MINI_RING;
938 #ifdef TI_CSUM_OFFLOAD
939 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
940 #endif
941 r->ti_len = m_new->m_len; /* == ds_len */
942 r->ti_idx = i;
943
944 return(0);
945 }
946
947 /*
948 * Initialize a jumbo receive ring descriptor. This allocates
949 * a jumbo buffer from the pool managed internally by the driver.
950 */
951 static int ti_newbuf_jumbo(sc, i, m)
952 struct ti_softc *sc;
953 int i;
954 struct mbuf *m;
955 {
956 struct mbuf *m_new = NULL;
957 struct ti_rx_desc *r;
958
959 if (m == NULL) {
960 caddr_t *buf = NULL;
961
962 /* Allocate the mbuf. */
963 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
964 if (m_new == NULL) {
965 printf("%s: mbuf allocation failed "
966 "-- packet dropped!\n", sc->sc_dev.dv_xname);
967 return(ENOBUFS);
968 }
969
970 /* Allocate the jumbo buffer */
971 buf = ti_jalloc(sc);
972 if (buf == NULL) {
973 m_freem(m_new);
974 printf("%s: jumbo allocation failed "
975 "-- packet dropped!\n", sc->sc_dev.dv_xname);
976 return(ENOBUFS);
977 }
978
979 /* Attach the buffer to the mbuf. */
980 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
981 m_new->m_flags |= M_EXT;
982 m_new->m_len = m_new->m_pkthdr.len =
983 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
984 m_new->m_ext.ext_free = ti_jfree;
985 m_new->m_ext.ext_arg = sc;
986 #if 0
987 m_new->m_ext.ext_ref = ti_jref;
988 #endif
989 MCLINITREFERENCE(m_new);
990 } else {
991 m_new = m;
992 m_new->m_data = m_new->m_ext.ext_buf;
993 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
994 }
995
996 m_adj(m_new, ETHER_ALIGN);
997 /* Set up the descriptor. */
998 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
999 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1000 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
1001 ((caddr_t)mtod(m_new, caddr_t)
1002 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
1003 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1004 r->ti_flags = TI_BDFLAG_JUMBO_RING;
1005 #ifdef TI_CSUM_OFFLOAD
1006 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1007 #endif
1008 r->ti_len = m_new->m_len;
1009 r->ti_idx = i;
1010
1011 return(0);
1012 }
1013
1014 /*
1015 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1016 * that's 1MB or memory, which is a lot. For now, we fill only the first
1017 * 256 ring entries and hope that our CPU is fast enough to keep up with
1018 * the NIC.
1019 */
1020 static int ti_init_rx_ring_std(sc)
1021 struct ti_softc *sc;
1022 {
1023 register int i;
1024 struct ti_cmd_desc cmd;
1025
1026 for (i = 0; i < TI_SSLOTS; i++) {
1027 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1028 return(ENOBUFS);
1029 };
1030
1031 TI_UPDATE_STDPROD(sc, i - 1);
1032 sc->ti_std = i - 1;
1033
1034 return(0);
1035 }
1036
1037 static void ti_free_rx_ring_std(sc)
1038 struct ti_softc *sc;
1039 {
1040 register int i;
1041
1042 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1043 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1044 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1045 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1046
1047 /* if (sc->std_dmamap[i] == 0) panic() */
1048 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
1049 sc->std_dmamap[i] = 0;
1050 }
1051 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1052 sizeof(struct ti_rx_desc));
1053 }
1054
1055 return;
1056 }
1057
1058 static int ti_init_rx_ring_jumbo(sc)
1059 struct ti_softc *sc;
1060 {
1061 register int i;
1062 struct ti_cmd_desc cmd;
1063
1064 for (i = 0; i < (TI_JSLOTS - 20); i++) {
1065 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1066 return(ENOBUFS);
1067 };
1068
1069 TI_UPDATE_JUMBOPROD(sc, i - 1);
1070 sc->ti_jumbo = i - 1;
1071
1072 return(0);
1073 }
1074
1075 static void ti_free_rx_ring_jumbo(sc)
1076 struct ti_softc *sc;
1077 {
1078 register int i;
1079
1080 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1081 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1082 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1083 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1084 }
1085 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1086 sizeof(struct ti_rx_desc));
1087 }
1088
1089 return;
1090 }
1091
1092 static int ti_init_rx_ring_mini(sc)
1093 struct ti_softc *sc;
1094 {
1095 register int i;
1096
1097 for (i = 0; i < TI_MSLOTS; i++) {
1098 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1099 return(ENOBUFS);
1100 };
1101
1102 TI_UPDATE_MINIPROD(sc, i - 1);
1103 sc->ti_mini = i - 1;
1104
1105 return(0);
1106 }
1107
1108 static void ti_free_rx_ring_mini(sc)
1109 struct ti_softc *sc;
1110 {
1111 register int i;
1112
1113 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1114 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1115 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1116 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1117
1118 /* if (sc->mini_dmamap[i] == 0) panic() */
1119 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1120 sc->mini_dmamap[i] = 0;
1121 }
1122 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1123 sizeof(struct ti_rx_desc));
1124 }
1125
1126 return;
1127 }
1128
1129 static void ti_free_tx_ring(sc)
1130 struct ti_softc *sc;
1131 {
1132 register int i;
1133 struct txdmamap_pool_entry *dma;
1134
1135 if (sc->ti_rdata->ti_tx_ring == NULL)
1136 return;
1137
1138 for (i = 0; i < TI_TX_RING_CNT; i++) {
1139 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1140 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1141 sc->ti_cdata.ti_tx_chain[i] = NULL;
1142
1143 /* if (sc->txdma[i] == 0) panic() */
1144 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1145 link);
1146 sc->txdma[i] = 0;
1147 }
1148 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1149 sizeof(struct ti_tx_desc));
1150 }
1151
1152 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1153 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1154 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1155 free(dma, M_DEVBUF);
1156 }
1157
1158 return;
1159 }
1160
1161 static int ti_init_tx_ring(sc)
1162 struct ti_softc *sc;
1163 {
1164 int i, error;
1165 bus_dmamap_t dmamap;
1166 struct txdmamap_pool_entry *dma;
1167
1168 sc->ti_txcnt = 0;
1169 sc->ti_tx_saved_considx = 0;
1170 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1171
1172 SIMPLEQ_INIT(&sc->txdma_list);
1173 for (i = 0; i < TI_RSLOTS; i++) {
1174 /* I've seen mbufs with 30 fragments. */
1175 if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1176 40, TI_JUMBO_FRAMELEN, 0,
1177 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1178 printf("%s: can't create tx map, error = %d\n",
1179 sc->sc_dev.dv_xname, error);
1180 return(ENOMEM);
1181 }
1182 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1183 if (!dma) {
1184 printf("%s: can't alloc txdmamap_pool_entry\n",
1185 sc->sc_dev.dv_xname);
1186 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1187 return (ENOMEM);
1188 }
1189 dma->dmamap = dmamap;
1190 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1191 }
1192
1193 return(0);
1194 }
1195
1196 /*
1197 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1198 * but we have to support the old way too so that Tigon 1 cards will
1199 * work.
1200 */
1201 void ti_add_mcast(sc, addr)
1202 struct ti_softc *sc;
1203 struct ether_addr *addr;
1204 {
1205 struct ti_cmd_desc cmd;
1206 u_int16_t *m;
1207 u_int32_t ext[2] = {0, 0};
1208
1209 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1210
1211 switch(sc->ti_hwrev) {
1212 case TI_HWREV_TIGON:
1213 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1214 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1215 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1216 break;
1217 case TI_HWREV_TIGON_II:
1218 ext[0] = htons(m[0]);
1219 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1220 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1221 break;
1222 default:
1223 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1224 break;
1225 }
1226
1227 return;
1228 }
1229
1230 void ti_del_mcast(sc, addr)
1231 struct ti_softc *sc;
1232 struct ether_addr *addr;
1233 {
1234 struct ti_cmd_desc cmd;
1235 u_int16_t *m;
1236 u_int32_t ext[2] = {0, 0};
1237
1238 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1239
1240 switch(sc->ti_hwrev) {
1241 case TI_HWREV_TIGON:
1242 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1243 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1244 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1245 break;
1246 case TI_HWREV_TIGON_II:
1247 ext[0] = htons(m[0]);
1248 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1249 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1250 break;
1251 default:
1252 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1253 break;
1254 }
1255
1256 return;
1257 }
1258
1259 /*
1260 * Configure the Tigon's multicast address filter.
1261 *
1262 * The actual multicast table management is a bit of a pain, thanks to
1263 * slight brain damage on the part of both Alteon and us. With our
1264 * multicast code, we are only alerted when the multicast address table
1265 * changes and at that point we only have the current list of addresses:
1266 * we only know the current state, not the previous state, so we don't
1267 * actually know what addresses were removed or added. The firmware has
1268 * state, but we can't get our grubby mits on it, and there is no 'delete
1269 * all multicast addresses' command. Hence, we have to maintain our own
1270 * state so we know what addresses have been programmed into the NIC at
1271 * any given time.
1272 */
1273 static void ti_setmulti(sc)
1274 struct ti_softc *sc;
1275 {
1276 struct ifnet *ifp;
1277 struct ti_cmd_desc cmd;
1278 struct ti_mc_entry *mc;
1279 u_int32_t intrs;
1280 struct ether_multi *enm;
1281 struct ether_multistep step;
1282
1283 ifp = &sc->ethercom.ec_if;
1284
1285 if (ifp->if_flags & IFF_ALLMULTI) {
1286 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1287 return;
1288 } else {
1289 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1290 }
1291
1292 /* Disable interrupts. */
1293 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1294 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1295
1296 /* First, zot all the existing filters. */
1297 while (SIMPLEQ_FIRST(&sc->ti_mc_listhead) != NULL) {
1298 mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead);
1299 ti_del_mcast(sc, &mc->mc_addr);
1300 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1301 free(mc, M_DEVBUF);
1302 }
1303
1304 /* Now program new ones. */
1305 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1306 while (enm != NULL) {
1307 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1308 bcopy(enm->enm_addrlo,
1309 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1310 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1311 ti_add_mcast(sc, &mc->mc_addr);
1312 ETHER_NEXT_MULTI(step, enm);
1313 }
1314
1315 /* Re-enable interrupts. */
1316 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1317
1318 return;
1319 }
1320
1321 /*
1322 * Check to see if the BIOS has configured us for a 64 bit slot when
1323 * we aren't actually in one. If we detect this condition, we can work
1324 * around it on the Tigon 2 by setting a bit in the PCI state register,
1325 * but for the Tigon 1 we must give up and abort the interface attach.
1326 */
1327 static int ti_64bitslot_war(sc)
1328 struct ti_softc *sc;
1329 {
1330 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1331 CSR_WRITE_4(sc, 0x600, 0);
1332 CSR_WRITE_4(sc, 0x604, 0);
1333 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1334 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1335 if (sc->ti_hwrev == TI_HWREV_TIGON)
1336 return(EINVAL);
1337 else {
1338 TI_SETBIT(sc, TI_PCI_STATE,
1339 TI_PCISTATE_32BIT_BUS);
1340 return(0);
1341 }
1342 }
1343 }
1344
1345 return(0);
1346 }
1347
1348 /*
1349 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1350 * self-test results.
1351 */
1352 static int ti_chipinit(sc)
1353 struct ti_softc *sc;
1354 {
1355 u_int32_t cacheline;
1356 u_int32_t pci_writemax = 0;
1357
1358 /* Initialize link to down state. */
1359 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1360
1361 /* Set endianness before we access any non-PCI registers. */
1362 #if BYTE_ORDER == BIG_ENDIAN
1363 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1364 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1365 #else
1366 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1367 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1368 #endif
1369
1370 /* Check the ROM failed bit to see if self-tests passed. */
1371 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1372 printf("%s: board self-diagnostics failed!\n",
1373 sc->sc_dev.dv_xname);
1374 return(ENODEV);
1375 }
1376
1377 /* Halt the CPU. */
1378 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1379
1380 /* Figure out the hardware revision. */
1381 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1382 case TI_REV_TIGON_I:
1383 sc->ti_hwrev = TI_HWREV_TIGON;
1384 break;
1385 case TI_REV_TIGON_II:
1386 sc->ti_hwrev = TI_HWREV_TIGON_II;
1387 break;
1388 default:
1389 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1390 return(ENODEV);
1391 }
1392
1393 /* Do special setup for Tigon 2. */
1394 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1395 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1396 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1397 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1398 }
1399
1400 /* Set up the PCI state register. */
1401 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1402 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1403 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1404 }
1405
1406 /* Clear the read/write max DMA parameters. */
1407 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1408 TI_PCISTATE_READ_MAXDMA));
1409
1410 /* Get cache line size. */
1411 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1412
1413 /*
1414 * If the system has set enabled the PCI memory write
1415 * and invalidate command in the command register, set
1416 * the write max parameter accordingly. This is necessary
1417 * to use MWI with the Tigon 2.
1418 */
1419 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1420 & PCI_COMMAND_INVALIDATE_ENABLE) {
1421 switch(cacheline) {
1422 case 1:
1423 case 4:
1424 case 8:
1425 case 16:
1426 case 32:
1427 case 64:
1428 break;
1429 default:
1430 /* Disable PCI memory write and invalidate. */
1431 if (bootverbose)
1432 printf("%s: cache line size %d not "
1433 "supported; disabling PCI MWI\n",
1434 sc->sc_dev.dv_xname, cacheline);
1435 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1436 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1437 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1438 break;
1439 }
1440 }
1441
1442 #ifdef __brokenalpha__
1443 /*
1444 * From the Alteon sample driver:
1445 * Must insure that we do not cross an 8K (bytes) boundary
1446 * for DMA reads. Our highest limit is 1K bytes. This is a
1447 * restriction on some ALPHA platforms with early revision
1448 * 21174 PCI chipsets, such as the AlphaPC 164lx
1449 */
1450 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1451 #else
1452 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1453 #endif
1454
1455 /* This sets the min dma param all the way up (0xff). */
1456 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1457
1458 /* Configure DMA variables. */
1459 #if BYTE_ORDER == BIG_ENDIAN
1460 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1461 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1462 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1463 TI_OPMODE_DONT_FRAG_JUMBO);
1464 #else
1465 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1466 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1467 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1468 #endif
1469
1470 /*
1471 * Only allow 1 DMA channel to be active at a time.
1472 * I don't think this is a good idea, but without it
1473 * the firmware racks up lots of nicDmaReadRingFull
1474 * errors.
1475 */
1476 #ifndef TI_CSUM_OFFLOAD
1477 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1478 #endif
1479
1480 /* Recommended settings from Tigon manual. */
1481 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1482 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1483
1484 if (ti_64bitslot_war(sc)) {
1485 printf("%s: bios thinks we're in a 64 bit slot, "
1486 "but we aren't", sc->sc_dev.dv_xname);
1487 return(EINVAL);
1488 }
1489
1490 return(0);
1491 }
1492
1493 /*
1494 * Initialize the general information block and firmware, and
1495 * start the CPU(s) running.
1496 */
1497 static int ti_gibinit(sc)
1498 struct ti_softc *sc;
1499 {
1500 struct ti_rcb *rcb;
1501 int i;
1502 struct ifnet *ifp;
1503
1504 ifp = &sc->ethercom.ec_if;
1505
1506 /* Disable interrupts for now. */
1507 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1508
1509 /* Tell the chip where to find the general information block. */
1510 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1511 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1512 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1513
1514 /* Load the firmware into SRAM. */
1515 ti_loadfw(sc);
1516
1517 /* Set up the contents of the general info and ring control blocks. */
1518
1519 /* Set up the event ring and producer pointer. */
1520 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1521
1522 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1523 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1524 rcb->ti_flags = 0;
1525 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1526 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1527 - (caddr_t)sc->ti_rdata);
1528 sc->ti_ev_prodidx.ti_idx = 0;
1529 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1530 sc->ti_ev_saved_considx = 0;
1531
1532 /* Set up the command ring and producer mailbox. */
1533 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1534
1535 sc->ti_rdata->ti_cmd_ring =
1536 (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1537 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1538 rcb->ti_flags = 0;
1539 rcb->ti_max_len = 0;
1540 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1541 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1542 }
1543 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1544 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1545 sc->ti_cmd_saved_prodidx = 0;
1546
1547 /*
1548 * Assign the address of the stats refresh buffer.
1549 * We re-use the current stats buffer for this to
1550 * conserve memory.
1551 */
1552 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1553 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1554 - (caddr_t)sc->ti_rdata);
1555
1556 /* Set up the standard receive ring. */
1557 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1558 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1559 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1560 - (caddr_t)sc->ti_rdata);
1561 rcb->ti_max_len = TI_FRAMELEN;
1562 rcb->ti_flags = 0;
1563 #ifdef TI_CSUM_OFFLOAD
1564 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1565 #endif
1566 #if NVLAN > 0
1567 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1568 #endif
1569
1570 /* Set up the jumbo receive ring. */
1571 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1572 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1573 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1574 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1575 rcb->ti_flags = 0;
1576 #ifdef TI_CSUM_OFFLOAD
1577 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1578 #endif
1579 #if NVLAN > 0
1580 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1581 #endif
1582
1583 /*
1584 * Set up the mini ring. Only activated on the
1585 * Tigon 2 but the slot in the config block is
1586 * still there on the Tigon 1.
1587 */
1588 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1589 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1590 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1591 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1592 if (sc->ti_hwrev == TI_HWREV_TIGON)
1593 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1594 else
1595 rcb->ti_flags = 0;
1596 #ifdef TI_CSUM_OFFLOAD
1597 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1598 #endif
1599 #if NVLAN > 0
1600 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1601 #endif
1602
1603 /*
1604 * Set up the receive return ring.
1605 */
1606 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1607 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1608 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1609 rcb->ti_flags = 0;
1610 rcb->ti_max_len = TI_RETURN_RING_CNT;
1611 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1612 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1613 - (caddr_t)sc->ti_rdata);
1614
1615 /*
1616 * Set up the tx ring. Note: for the Tigon 2, we have the option
1617 * of putting the transmit ring in the host's address space and
1618 * letting the chip DMA it instead of leaving the ring in the NIC's
1619 * memory and accessing it through the shared memory region. We
1620 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1621 * so we have to revert to the shared memory scheme if we detect
1622 * a Tigon 1 chip.
1623 */
1624 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1625 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1626 sc->ti_rdata->ti_tx_ring_nic =
1627 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1628 }
1629 bzero((char *)sc->ti_rdata->ti_tx_ring,
1630 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1631 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1632 if (sc->ti_hwrev == TI_HWREV_TIGON)
1633 rcb->ti_flags = 0;
1634 else
1635 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1636 #if NVLAN > 0
1637 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1638 #endif
1639 rcb->ti_max_len = TI_TX_RING_CNT;
1640 if (sc->ti_hwrev == TI_HWREV_TIGON)
1641 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1642 else
1643 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1644 ((caddr_t)&sc->ti_rdata->ti_tx_ring
1645 - (caddr_t)sc->ti_rdata);
1646 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1647 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1648 - (caddr_t)sc->ti_rdata);
1649
1650 /* Set up tuneables */
1651 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1652 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1653 (sc->ti_rx_coal_ticks / 10));
1654 else
1655 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1656 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1657 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1658 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1659 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1660 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1661
1662 /* Turn interrupts on. */
1663 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1664 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1665
1666 /* Start CPU. */
1667 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1668
1669 return(0);
1670 }
1671
1672 /*
1673 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1674 * against our list and return its name if we find a match.
1675 */
1676 static int ti_probe(parent, match, aux)
1677 struct device *parent;
1678 struct cfdata *match;
1679 void *aux;
1680 {
1681 struct pci_attach_args *pa = aux;
1682 struct ti_type *t;
1683
1684 t = ti_devs;
1685
1686 while(t->ti_name != NULL) {
1687 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1688 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1689 return(1);
1690 }
1691 t++;
1692 }
1693
1694 return(0);
1695 }
1696
1697 static void ti_attach(parent, self, aux)
1698 struct device *parent, *self;
1699 void *aux;
1700 {
1701 int s;
1702 u_int32_t command;
1703 struct ifnet *ifp;
1704 struct ti_softc *sc;
1705 u_char eaddr[ETHER_ADDR_LEN];
1706 struct pci_attach_args *pa = aux;
1707 pci_chipset_tag_t pc = pa->pa_pc;
1708 pci_intr_handle_t ih;
1709 const char *intrstr = NULL;
1710 bus_dma_segment_t dmaseg;
1711 int error, dmanseg;
1712
1713 s = splimp();
1714
1715 sc = (struct ti_softc *)self;
1716
1717 /*
1718 * Map control/status registers.
1719 */
1720 if (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
1721 &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1722 printf(": can't map i/o space\n");
1723 goto fail;
1724 }
1725 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1726
1727 printf("\n");
1728
1729 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1730 command |= PCI_COMMAND_MASTER_ENABLE;
1731 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1732
1733 /* Allocate interrupt */
1734 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
1735 pa->pa_intrline, &ih)) {
1736 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1737 goto fail;
1738 }
1739 intrstr = pci_intr_string(pc, ih);
1740 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1741 if (sc->sc_ih == NULL) {
1742 printf("%s: couldn't establish interrupt",
1743 sc->sc_dev.dv_xname);
1744 if (intrstr != NULL)
1745 printf(" at %s", intrstr);
1746 printf("\n");
1747 goto fail;
1748 }
1749
1750 if (ti_chipinit(sc)) {
1751 printf("%s: chip initialization failed\n", self->dv_xname);
1752 #if 0
1753 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1754 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1755 bus_release_resource(dev, SYS_RES_MEMORY,
1756 TI_PCI_LOMEM, sc->ti_res);
1757 #endif
1758 goto fail;
1759 }
1760
1761 /* Zero out the NIC's on-board SRAM. */
1762 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1763
1764 /* Init again -- zeroing memory may have clobbered some registers. */
1765 if (ti_chipinit(sc)) {
1766 printf("%s: chip initialization failed\n", self->dv_xname);
1767 #if 0
1768 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1769 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1770 bus_release_resource(dev, SYS_RES_MEMORY,
1771 TI_PCI_LOMEM, sc->ti_res);
1772 #endif
1773 goto fail;
1774 }
1775
1776 /*
1777 * Get station address from the EEPROM. Note: the manual states
1778 * that the MAC address is at offset 0x8c, however the data is
1779 * stored as two longwords (since that's how it's loaded into
1780 * the NIC). This means the MAC address is actually preceeded
1781 * by two zero bytes. We need to skip over those.
1782 */
1783 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1784 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1785 printf("%s: failed to read station address\n", self->dv_xname);
1786 #if 0
1787 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1788 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1789 bus_release_resource(dev, SYS_RES_MEMORY,
1790 TI_PCI_LOMEM, sc->ti_res);
1791 #endif
1792 goto fail;
1793 }
1794
1795 /*
1796 * A Tigon chip was detected. Inform the world.
1797 */
1798 printf("%s: Ethernet address: %s\n", self->dv_xname,
1799 ether_sprintf(eaddr));
1800
1801 sc->sc_dmat = pa->pa_dmat;
1802
1803 /* Allocate the general information block and ring buffers. */
1804 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1805 sizeof(struct ti_ring_data), NBPG, 0, &dmaseg, 1, &dmanseg,
1806 BUS_DMA_NOWAIT)) != 0) {
1807 printf("%s: can't allocate ring buffer, error = %d\n",
1808 sc->sc_dev.dv_xname, error);
1809 goto fail;
1810 }
1811
1812 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1813 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1814 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1815 printf("%s: can't map ring buffer, error = %d\n",
1816 sc->sc_dev.dv_xname, error);
1817 goto fail;
1818 }
1819
1820 if ((error = bus_dmamap_create(sc->sc_dmat,
1821 sizeof(struct ti_ring_data), 1,
1822 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1823 &sc->info_dmamap)) != 0) {
1824 printf("%s: can't create ring buffer DMA map, error = %d\n",
1825 sc->sc_dev.dv_xname, error);
1826 goto fail;
1827 }
1828
1829 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1830 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1831 BUS_DMA_NOWAIT)) != 0) {
1832 printf("%s: can't load ring buffer DMA map, error = %d\n",
1833 sc->sc_dev.dv_xname, error);
1834 goto fail;
1835 }
1836
1837 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1838
1839 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1840
1841 /* Try to allocate memory for jumbo buffers. */
1842 if (ti_alloc_jumbo_mem(sc)) {
1843 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1844 #if 0
1845 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1846 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1847 bus_release_resource(dev, SYS_RES_MEMORY,
1848 TI_PCI_LOMEM, sc->ti_res);
1849 free(sc->ti_rdata, M_DEVBUF);
1850 #endif
1851 goto fail;
1852 }
1853
1854 /* Set default tuneable values. */
1855 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1856 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1857 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1858 sc->ti_rx_max_coal_bds = 64;
1859 sc->ti_tx_max_coal_bds = 128;
1860 sc->ti_tx_buf_ratio = 21;
1861
1862 /* Set up ifnet structure */
1863 ifp = &sc->ethercom.ec_if;
1864 ifp->if_softc = sc;
1865 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1866 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1867 ifp->if_ioctl = ti_ioctl;
1868 #if 0
1869 ifp->if_output = ether_output;
1870 #endif
1871 ifp->if_start = ti_start;
1872 ifp->if_watchdog = ti_watchdog;
1873 ifp->if_baudrate = 10000000;
1874 #if 0
1875 ifp->if_init = ti_init;
1876 ifp->if_mtu = ETHERMTU;
1877 #endif
1878 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1879
1880 /* Set up ifmedia support. */
1881 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1882 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1883 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1884 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1885 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1886 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1887 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1888 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1889 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1890
1891 /*
1892 * Call MI attach routines.
1893 */
1894 if_attach(ifp);
1895 ether_ifattach(ifp, eaddr);
1896
1897 #if NBPFILTER > 0
1898 bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
1899 sizeof(struct ether_header));
1900 #endif
1901
1902 fail:
1903 splx(s);
1904 }
1905
1906 #if 0
1907 static int ti_detach(dev)
1908 device_t dev;
1909 {
1910 struct ti_softc *sc;
1911 struct ifnet *ifp;
1912 int s;
1913
1914 s = splimp();
1915
1916 sc = device_get_softc(dev);
1917 ifp = &sc->arpcom.ac_if;
1918
1919 if_detach(ifp);
1920 ti_stop(sc);
1921
1922 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1923 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1924 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1925
1926 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1927 free(sc->ti_rdata, M_DEVBUF);
1928 ifmedia_removeall(&sc->ifmedia);
1929
1930 splx(s);
1931
1932 return(0);
1933 }
1934 #endif
1935
1936 /*
1937 * Frame reception handling. This is called if there's a frame
1938 * on the receive return list.
1939 *
1940 * Note: we have to be able to handle three possibilities here:
1941 * 1) the frame is from the mini receive ring (can only happen)
1942 * on Tigon 2 boards)
1943 * 2) the frame is from the jumbo recieve ring
1944 * 3) the frame is from the standard receive ring
1945 */
1946
1947 static void ti_rxeof(sc)
1948 struct ti_softc *sc;
1949 {
1950 struct ifnet *ifp;
1951 struct ti_cmd_desc cmd;
1952
1953 ifp = &sc->ethercom.ec_if;
1954
1955 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1956 struct ti_rx_desc *cur_rx;
1957 u_int32_t rxidx;
1958 struct ether_header *eh;
1959 struct mbuf *m = NULL;
1960 #if NVLAN > 0
1961 u_int16_t vlan_tag = 0;
1962 int have_tag = 0;
1963 #endif
1964 #ifdef TI_CSUM_OFFLOAD
1965 struct ip *ip;
1966 #endif
1967 bus_dmamap_t dmamap;
1968
1969 cur_rx =
1970 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1971 rxidx = cur_rx->ti_idx;
1972 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1973
1974 #if NVLAN > 0
1975 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1976 have_tag = 1;
1977 vlan_tag = cur_rx->ti_vlan_tag;
1978 }
1979 #endif
1980
1981 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1982 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1983 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1984 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1985 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1986 ifp->if_ierrors++;
1987 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1988 continue;
1989 }
1990 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1991 == ENOBUFS) {
1992 ifp->if_ierrors++;
1993 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1994 continue;
1995 }
1996 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1997 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1998 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1999 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2000 dmamap = sc->mini_dmamap[rxidx];
2001 sc->mini_dmamap[rxidx] = 0;
2002 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2003 ifp->if_ierrors++;
2004 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2005 continue;
2006 }
2007 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
2008 == ENOBUFS) {
2009 ifp->if_ierrors++;
2010 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2011 continue;
2012 }
2013 } else {
2014 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2015 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2016 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2017 dmamap = sc->std_dmamap[rxidx];
2018 sc->std_dmamap[rxidx] = 0;
2019 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2020 ifp->if_ierrors++;
2021 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2022 continue;
2023 }
2024 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2025 == ENOBUFS) {
2026 ifp->if_ierrors++;
2027 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2028 continue;
2029 }
2030 }
2031
2032 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2033 ifp->if_ipackets++;
2034 eh = mtod(m, struct ether_header *);
2035 m->m_pkthdr.rcvif = ifp;
2036
2037 #if NBPFILTER > 0
2038 /*
2039 * Handle BPF listeners. Let the BPF user see the packet, but
2040 * don't pass it up to the ether_input() layer unless it's
2041 * a broadcast packet, multicast packet, matches our ethernet
2042 * address or the interface is in promiscuous mode.
2043 */
2044 if (ifp->if_bpf) {
2045 bpf_mtap(ifp->if_bpf, m);
2046 if (ifp->if_flags & IFF_PROMISC &&
2047 (bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
2048 ETHER_ADDR_LEN) &&
2049 (eh->ether_dhost[0] & 1) == 0)) {
2050 m_freem(m);
2051 continue;
2052 }
2053 }
2054 #endif
2055
2056 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
2057 ip = mtod(m, struct ip *);
2058 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
2059 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
2060 m->m_flags |= M_HWCKSUM;
2061 #endif
2062
2063 #if NVLAN > 0 /* XXX NetBSD: broken because m points to ether pkt */
2064 /*
2065 * If we received a packet with a vlan tag, pass it
2066 * to vlan_input() instead of ether_input().
2067 */
2068 if (have_tag) {
2069 vlan_input_tag(eh, m, vlan_tag);
2070 have_tag = vlan_tag = 0;
2071 continue;
2072 }
2073 #endif
2074 (*ifp->if_input)(ifp, m);
2075 }
2076
2077 /* Only necessary on the Tigon 1. */
2078 if (sc->ti_hwrev == TI_HWREV_TIGON)
2079 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2080 sc->ti_rx_saved_considx);
2081
2082 TI_UPDATE_STDPROD(sc, sc->ti_std);
2083 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2084 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2085
2086 return;
2087 }
2088
2089 static void ti_txeof(sc)
2090 struct ti_softc *sc;
2091 {
2092 struct ti_tx_desc *cur_tx = NULL;
2093 struct ifnet *ifp;
2094
2095 ifp = &sc->ethercom.ec_if;
2096
2097 /*
2098 * Go through our tx ring and free mbufs for those
2099 * frames that have been sent.
2100 */
2101 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2102 u_int32_t idx = 0;
2103
2104 idx = sc->ti_tx_saved_considx;
2105 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2106 if (idx > 383)
2107 CSR_WRITE_4(sc, TI_WINBASE,
2108 TI_TX_RING_BASE + 6144);
2109 else if (idx > 255)
2110 CSR_WRITE_4(sc, TI_WINBASE,
2111 TI_TX_RING_BASE + 4096);
2112 else if (idx > 127)
2113 CSR_WRITE_4(sc, TI_WINBASE,
2114 TI_TX_RING_BASE + 2048);
2115 else
2116 CSR_WRITE_4(sc, TI_WINBASE,
2117 TI_TX_RING_BASE);
2118 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2119 } else
2120 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2121 if (cur_tx->ti_flags & TI_BDFLAG_END)
2122 ifp->if_opackets++;
2123 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2124 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2125 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2126
2127 /* if (sc->txdma[idx] == 0) panic() */
2128 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2129 link);
2130 sc->txdma[idx] = 0;
2131 }
2132 sc->ti_txcnt--;
2133 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2134 ifp->if_timer = 0;
2135 }
2136
2137 if (cur_tx != NULL)
2138 ifp->if_flags &= ~IFF_OACTIVE;
2139
2140 return;
2141 }
2142
2143 static int ti_intr(xsc)
2144 void *xsc;
2145 {
2146 struct ti_softc *sc;
2147 struct ifnet *ifp;
2148
2149 sc = xsc;
2150 ifp = &sc->ethercom.ec_if;
2151
2152 #ifdef notdef
2153 /* Avoid this for now -- checking this register is expensive. */
2154 /* Make sure this is really our interrupt. */
2155 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2156 return (0);
2157 #endif
2158
2159 /* Ack interrupt and stop others from occuring. */
2160 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2161
2162 if (ifp->if_flags & IFF_RUNNING) {
2163 /* Check RX return ring producer/consumer */
2164 ti_rxeof(sc);
2165
2166 /* Check TX ring producer/consumer */
2167 ti_txeof(sc);
2168 }
2169
2170 ti_handle_events(sc);
2171
2172 /* Re-enable interrupts. */
2173 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2174
2175 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2176 ti_start(ifp);
2177
2178 return (1);
2179 }
2180
2181 static void ti_stats_update(sc)
2182 struct ti_softc *sc;
2183 {
2184 struct ifnet *ifp;
2185
2186 ifp = &sc->ethercom.ec_if;
2187
2188 ifp->if_collisions +=
2189 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2190 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2191 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2192 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2193 ifp->if_collisions;
2194
2195 return;
2196 }
2197
2198 /*
2199 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2200 * pointers to descriptors.
2201 */
2202 static int ti_encap(sc, m_head, txidx)
2203 struct ti_softc *sc;
2204 struct mbuf *m_head;
2205 u_int32_t *txidx;
2206 {
2207 struct ti_tx_desc *f = NULL;
2208 u_int32_t frag, cur, cnt = 0;
2209 struct txdmamap_pool_entry *dma;
2210 bus_dmamap_t dmamap;
2211 int error, i;
2212 #if NVLAN > 0
2213 struct ifvlan *ifv = NULL;
2214
2215 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2216 m_head->m_pkthdr.rcvif != NULL &&
2217 m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2218 ifv = m_head->m_pkthdr.rcvif->if_softc;
2219 #endif
2220
2221 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2222 dmamap = dma->dmamap;
2223
2224 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2225 if (error) {
2226 struct mbuf *m;
2227 int i = 0;
2228 for (m = m_head; m; m = m->m_next)
2229 i++;
2230 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2231 "error %d\n", m_head->m_pkthdr.len, i, error);
2232 return (ENOMEM);
2233 }
2234
2235 cur = frag = *txidx;
2236
2237 /*
2238 * Start packing the mbufs in this chain into
2239 * the fragment pointers. Stop when we run out
2240 * of fragments or hit the end of the mbuf chain.
2241 */
2242 for (i = 0; i < dmamap->dm_nsegs; i++) {
2243 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2244 if (frag > 383)
2245 CSR_WRITE_4(sc, TI_WINBASE,
2246 TI_TX_RING_BASE + 6144);
2247 else if (frag > 255)
2248 CSR_WRITE_4(sc, TI_WINBASE,
2249 TI_TX_RING_BASE + 4096);
2250 else if (frag > 127)
2251 CSR_WRITE_4(sc, TI_WINBASE,
2252 TI_TX_RING_BASE + 2048);
2253 else
2254 CSR_WRITE_4(sc, TI_WINBASE,
2255 TI_TX_RING_BASE);
2256 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2257 } else
2258 f = &sc->ti_rdata->ti_tx_ring[frag];
2259 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2260 break;
2261 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2262 f->ti_len = dmamap->dm_segs[i].ds_len;
2263 f->ti_flags = 0;
2264 #if NVLAN > 0
2265 if (ifv != NULL) {
2266 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2267 f->ti_vlan_tag = ifv->ifv_tag;
2268 } else {
2269 f->ti_vlan_tag = 0;
2270 }
2271 #endif
2272 /*
2273 * Sanity check: avoid coming within 16 descriptors
2274 * of the end of the ring.
2275 */
2276 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2277 return(ENOBUFS);
2278 cur = frag;
2279 TI_INC(frag, TI_TX_RING_CNT);
2280 cnt++;
2281 }
2282
2283 if (i < dmamap->dm_nsegs)
2284 return(ENOBUFS);
2285
2286 if (frag == sc->ti_tx_saved_considx)
2287 return(ENOBUFS);
2288
2289 if (sc->ti_hwrev == TI_HWREV_TIGON)
2290 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2291 TI_BDFLAG_END;
2292 else
2293 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2294 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2295 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2296 sc->txdma[cur] = dma;
2297 sc->ti_txcnt += cnt;
2298
2299 *txidx = frag;
2300
2301 return(0);
2302 }
2303
2304 /*
2305 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2306 * to the mbuf data regions directly in the transmit descriptors.
2307 */
2308 static void ti_start(ifp)
2309 struct ifnet *ifp;
2310 {
2311 struct ti_softc *sc;
2312 struct mbuf *m_head = NULL;
2313 u_int32_t prodidx = 0;
2314
2315 sc = ifp->if_softc;
2316
2317 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2318
2319 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2320 IF_DEQUEUE(&ifp->if_snd, m_head);
2321 if (m_head == NULL)
2322 break;
2323
2324 /*
2325 * Pack the data into the transmit ring. If we
2326 * don't have room, set the OACTIVE flag and wait
2327 * for the NIC to drain the ring.
2328 */
2329 if (ti_encap(sc, m_head, &prodidx)) {
2330 IF_PREPEND(&ifp->if_snd, m_head);
2331 ifp->if_flags |= IFF_OACTIVE;
2332 break;
2333 }
2334
2335 /*
2336 * If there's a BPF listener, bounce a copy of this frame
2337 * to him.
2338 */
2339 #if NBPFILTER > 0
2340 if (ifp->if_bpf)
2341 bpf_mtap(ifp->if_bpf, m_head);
2342 #endif
2343 }
2344
2345 /* Transmit */
2346 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2347
2348 /*
2349 * Set a timeout in case the chip goes out to lunch.
2350 */
2351 ifp->if_timer = 5;
2352
2353 return;
2354 }
2355
2356 static void ti_init(xsc)
2357 void *xsc;
2358 {
2359 struct ti_softc *sc = xsc;
2360 int s;
2361
2362 s = splimp();
2363
2364 /* Cancel pending I/O and flush buffers. */
2365 ti_stop(sc);
2366
2367 /* Init the gen info block, ring control blocks and firmware. */
2368 if (ti_gibinit(sc)) {
2369 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2370 splx(s);
2371 return;
2372 }
2373
2374 splx(s);
2375
2376 return;
2377 }
2378
2379 static void ti_init2(sc)
2380 struct ti_softc *sc;
2381 {
2382 struct ti_cmd_desc cmd;
2383 struct ifnet *ifp;
2384 u_int8_t *m;
2385 struct ifmedia *ifm;
2386 int tmp;
2387
2388 ifp = &sc->ethercom.ec_if;
2389
2390 /* Specify MTU and interface index. */
2391 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2392 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2393 ETHER_HDR_LEN + ETHER_CRC_LEN);
2394 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2395
2396 /* Load our MAC address. */
2397 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2398 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2399 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2400 | (m[4] << 8) | m[5]);
2401 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2402
2403 /* Enable or disable promiscuous mode as needed. */
2404 if (ifp->if_flags & IFF_PROMISC) {
2405 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2406 } else {
2407 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2408 }
2409
2410 /* Program multicast filter. */
2411 ti_setmulti(sc);
2412
2413 /*
2414 * If this is a Tigon 1, we should tell the
2415 * firmware to use software packet filtering.
2416 */
2417 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2418 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2419 }
2420
2421 /* Init RX ring. */
2422 ti_init_rx_ring_std(sc);
2423
2424 /* Init jumbo RX ring. */
2425 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2426 ti_init_rx_ring_jumbo(sc);
2427
2428 /*
2429 * If this is a Tigon 2, we can also configure the
2430 * mini ring.
2431 */
2432 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2433 ti_init_rx_ring_mini(sc);
2434
2435 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2436 sc->ti_rx_saved_considx = 0;
2437
2438 /* Init TX ring. */
2439 ti_init_tx_ring(sc);
2440
2441 /* Tell firmware we're alive. */
2442 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2443
2444 /* Enable host interrupts. */
2445 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2446
2447 ifp->if_flags |= IFF_RUNNING;
2448 ifp->if_flags &= ~IFF_OACTIVE;
2449
2450 /*
2451 * Make sure to set media properly. We have to do this
2452 * here since we have to issue commands in order to set
2453 * the link negotiation and we can't issue commands until
2454 * the firmware is running.
2455 */
2456 ifm = &sc->ifmedia;
2457 tmp = ifm->ifm_media;
2458 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2459 ti_ifmedia_upd(ifp);
2460 ifm->ifm_media = tmp;
2461
2462 return;
2463 }
2464
2465 /*
2466 * Set media options.
2467 */
2468 static int ti_ifmedia_upd(ifp)
2469 struct ifnet *ifp;
2470 {
2471 struct ti_softc *sc;
2472 struct ifmedia *ifm;
2473 struct ti_cmd_desc cmd;
2474
2475 sc = ifp->if_softc;
2476 ifm = &sc->ifmedia;
2477
2478 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2479 return(EINVAL);
2480
2481 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2482 case IFM_AUTO:
2483 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2484 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2485 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2486 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2487 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2488 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2489 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2490 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2491 break;
2492 case IFM_1000_SX:
2493 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2494 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2495 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2496 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2497 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2498 break;
2499 case IFM_100_FX:
2500 case IFM_10_FL:
2501 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2502 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2503 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2504 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2505 } else {
2506 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2507 }
2508 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2509 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2510 } else {
2511 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2512 }
2513 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2514 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2515 break;
2516 }
2517
2518 return(0);
2519 }
2520
2521 /*
2522 * Report current media status.
2523 */
2524 static void ti_ifmedia_sts(ifp, ifmr)
2525 struct ifnet *ifp;
2526 struct ifmediareq *ifmr;
2527 {
2528 struct ti_softc *sc;
2529
2530 sc = ifp->if_softc;
2531
2532 ifmr->ifm_status = IFM_AVALID;
2533 ifmr->ifm_active = IFM_ETHER;
2534
2535 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2536 return;
2537
2538 ifmr->ifm_status |= IFM_ACTIVE;
2539
2540 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2541 ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2542 else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2543 u_int32_t media;
2544 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2545 if (media & TI_LNK_100MB)
2546 ifmr->ifm_active |= IFM_100_FX;
2547 if (media & TI_LNK_10MB)
2548 ifmr->ifm_active |= IFM_10_FL;
2549 if (media & TI_LNK_FULL_DUPLEX)
2550 ifmr->ifm_active |= IFM_FDX;
2551 if (media & TI_LNK_HALF_DUPLEX)
2552 ifmr->ifm_active |= IFM_HDX;
2553 }
2554
2555 return;
2556 }
2557
2558 static int
2559 ti_ether_ioctl(ifp, cmd, data)
2560 struct ifnet *ifp;
2561 u_long cmd;
2562 caddr_t data;
2563 {
2564 struct ifaddr *ifa = (struct ifaddr *) data;
2565 struct ti_softc *sc = ifp->if_softc;
2566
2567 switch (cmd) {
2568 case SIOCSIFADDR:
2569 ifp->if_flags |= IFF_UP;
2570
2571 switch (ifa->ifa_addr->sa_family) {
2572 #ifdef INET
2573 case AF_INET:
2574 ti_init(sc);
2575 arp_ifinit(ifp, ifa);
2576 break;
2577 #endif
2578 #ifdef NS
2579 case AF_NS:
2580 {
2581 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2582
2583 if (ns_nullhost(*ina))
2584 ina->x_host = *(union ns_host *)
2585 LLADDR(ifp->if_sadl);
2586 else
2587 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2588 ifp->if_addrlen);
2589 /* Set new address. */
2590 ti_init(sc);
2591 break;
2592 }
2593 #endif
2594 default:
2595 ti_init(sc);
2596 break;
2597 }
2598 break;
2599
2600 default:
2601 return (EINVAL);
2602 }
2603
2604 return (0);
2605 }
2606
2607 static int ti_ioctl(ifp, command, data)
2608 struct ifnet *ifp;
2609 u_long command;
2610 caddr_t data;
2611 {
2612 struct ti_softc *sc = ifp->if_softc;
2613 struct ifreq *ifr = (struct ifreq *) data;
2614 int s, error = 0;
2615 struct ti_cmd_desc cmd;
2616
2617 s = splimp();
2618
2619 switch(command) {
2620 case SIOCSIFADDR:
2621 case SIOCGIFADDR:
2622 error = ti_ether_ioctl(ifp, command, data);
2623 break;
2624 case SIOCSIFMTU:
2625 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2626 error = EINVAL;
2627 else {
2628 ifp->if_mtu = ifr->ifr_mtu;
2629 ti_init(sc);
2630 }
2631 break;
2632 case SIOCSIFFLAGS:
2633 if (ifp->if_flags & IFF_UP) {
2634 /*
2635 * If only the state of the PROMISC flag changed,
2636 * then just use the 'set promisc mode' command
2637 * instead of reinitializing the entire NIC. Doing
2638 * a full re-init means reloading the firmware and
2639 * waiting for it to start up, which may take a
2640 * second or two.
2641 */
2642 if (ifp->if_flags & IFF_RUNNING &&
2643 ifp->if_flags & IFF_PROMISC &&
2644 !(sc->ti_if_flags & IFF_PROMISC)) {
2645 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2646 TI_CMD_CODE_PROMISC_ENB, 0);
2647 } else if (ifp->if_flags & IFF_RUNNING &&
2648 !(ifp->if_flags & IFF_PROMISC) &&
2649 sc->ti_if_flags & IFF_PROMISC) {
2650 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2651 TI_CMD_CODE_PROMISC_DIS, 0);
2652 } else
2653 ti_init(sc);
2654 } else {
2655 if (ifp->if_flags & IFF_RUNNING) {
2656 ti_stop(sc);
2657 }
2658 }
2659 sc->ti_if_flags = ifp->if_flags;
2660 error = 0;
2661 break;
2662 case SIOCADDMULTI:
2663 case SIOCDELMULTI:
2664 if (ifp->if_flags & IFF_RUNNING) {
2665 ti_setmulti(sc);
2666 error = 0;
2667 }
2668 break;
2669 case SIOCSIFMEDIA:
2670 case SIOCGIFMEDIA:
2671 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2672 break;
2673 default:
2674 error = EINVAL;
2675 break;
2676 }
2677
2678 (void)splx(s);
2679
2680 return(error);
2681 }
2682
2683 static void ti_watchdog(ifp)
2684 struct ifnet *ifp;
2685 {
2686 struct ti_softc *sc;
2687
2688 sc = ifp->if_softc;
2689
2690 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2691 ti_stop(sc);
2692 ti_init(sc);
2693
2694 ifp->if_oerrors++;
2695
2696 return;
2697 }
2698
2699 /*
2700 * Stop the adapter and free any mbufs allocated to the
2701 * RX and TX lists.
2702 */
2703 static void ti_stop(sc)
2704 struct ti_softc *sc;
2705 {
2706 struct ifnet *ifp;
2707 struct ti_cmd_desc cmd;
2708
2709 ifp = &sc->ethercom.ec_if;
2710
2711 /* Disable host interrupts. */
2712 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2713 /*
2714 * Tell firmware we're shutting down.
2715 */
2716 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2717
2718 /* Halt and reinitialize. */
2719 ti_chipinit(sc);
2720 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2721 ti_chipinit(sc);
2722
2723 /* Free the RX lists. */
2724 ti_free_rx_ring_std(sc);
2725
2726 /* Free jumbo RX list. */
2727 ti_free_rx_ring_jumbo(sc);
2728
2729 /* Free mini RX list. */
2730 ti_free_rx_ring_mini(sc);
2731
2732 /* Free TX buffers. */
2733 ti_free_tx_ring(sc);
2734
2735 sc->ti_ev_prodidx.ti_idx = 0;
2736 sc->ti_return_prodidx.ti_idx = 0;
2737 sc->ti_tx_considx.ti_idx = 0;
2738 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2739
2740 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2741
2742 return;
2743 }
2744
2745 #if 0
2746 /*
2747 * Stop all chip I/O so that the kernel's probe routines don't
2748 * get confused by errant DMAs when rebooting.
2749 */
2750 static void ti_shutdown(dev)
2751 device_t dev;
2752 {
2753 struct ti_softc *sc;
2754
2755 sc = device_get_softc(dev);
2756
2757 ti_chipinit(sc);
2758
2759 return;
2760 }
2761 #endif
2762