if_ti.c revision 1.41 1 /* $NetBSD: if_ti.c,v 1.41 2001/08/14 11:55:38 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/if_ether.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #ifdef INET
111 #include <netinet/in.h>
112 #include <netinet/if_inarp.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/ip.h>
115 #endif
116
117 #ifdef NS
118 #include <netns/ns.h>
119 #include <netns/ns_if.h>
120 #endif
121
122 #include <machine/bus.h>
123
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 #include <dev/pci/pcidevs.h>
127
128 #include <dev/pci/if_tireg.h>
129
130 #include <dev/microcode/tigon/ti_fw.h>
131 #include <dev/microcode/tigon/ti_fw2.h>
132
133 /*
134 * Various supported device vendors/types and their names.
135 */
136
137 static const struct ti_type ti_devs[] = {
138 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
139 "Alteon AceNIC 1000BASE-SX Ethernet" },
140 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
141 "Alteon AceNIC 1000BASE-T Ethernet" },
142 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
143 "3Com 3c985-SX Gigabit Ethernet" },
144 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
145 "Netgear GA620 1000BASE-SX Ethernet" },
146 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
147 "Netgear GA620 1000BASE-T Ethernet" },
148 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
149 "Silicon Graphics Gigabit Ethernet" },
150 { 0, 0, NULL }
151 };
152
153 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
154 static int ti_probe __P((struct device *, struct cfdata *, void *));
155 static void ti_attach __P((struct device *, struct device *, void *));
156 static void ti_shutdown __P((void *));
157 static void ti_txeof_tigon1 __P((struct ti_softc *));
158 static void ti_txeof_tigon2 __P((struct ti_softc *));
159 static void ti_rxeof __P((struct ti_softc *));
160
161 static void ti_stats_update __P((struct ti_softc *));
162 static int ti_encap_tigon1 __P((struct ti_softc *, struct mbuf *,
163 u_int32_t *));
164 static int ti_encap_tigon2 __P((struct ti_softc *, struct mbuf *,
165 u_int32_t *));
166
167 static int ti_intr __P((void *));
168 static void ti_start __P((struct ifnet *));
169 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
170 static void ti_init __P((void *));
171 static void ti_init2 __P((struct ti_softc *));
172 static void ti_stop __P((struct ti_softc *));
173 static void ti_watchdog __P((struct ifnet *));
174 static int ti_ifmedia_upd __P((struct ifnet *));
175 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
176
177 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
178 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
179 int, u_int8_t *));
180 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
181
182 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
183 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
184 static void ti_setmulti __P((struct ti_softc *));
185
186 static void ti_mem __P((struct ti_softc *, u_int32_t,
187 u_int32_t, caddr_t));
188 static void ti_loadfw __P((struct ti_softc *));
189 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
190 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
191 caddr_t, int));
192 static void ti_handle_events __P((struct ti_softc *));
193 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
194 static void *ti_jalloc __P((struct ti_softc *));
195 static void ti_jfree __P((caddr_t, u_int, void *));
196 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
197 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
198 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
199 static int ti_init_rx_ring_std __P((struct ti_softc *));
200 static void ti_free_rx_ring_std __P((struct ti_softc *));
201 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
202 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
203 static int ti_init_rx_ring_mini __P((struct ti_softc *));
204 static void ti_free_rx_ring_mini __P((struct ti_softc *));
205 static void ti_free_tx_ring __P((struct ti_softc *));
206 static int ti_init_tx_ring __P((struct ti_softc *));
207
208 static int ti_64bitslot_war __P((struct ti_softc *));
209 static int ti_chipinit __P((struct ti_softc *));
210 static int ti_gibinit __P((struct ti_softc *));
211
212 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
213
214 struct cfattach ti_ca = {
215 sizeof(struct ti_softc), ti_probe, ti_attach
216 };
217
218 /*
219 * Send an instruction or address to the EEPROM, check for ACK.
220 */
221 static u_int32_t ti_eeprom_putbyte(sc, byte)
222 struct ti_softc *sc;
223 int byte;
224 {
225 int i, ack = 0;
226
227 /*
228 * Make sure we're in TX mode.
229 */
230 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
231
232 /*
233 * Feed in each bit and stobe the clock.
234 */
235 for (i = 0x80; i; i >>= 1) {
236 if (byte & i) {
237 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
238 } else {
239 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 }
241 DELAY(1);
242 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
243 DELAY(1);
244 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 }
246
247 /*
248 * Turn off TX mode.
249 */
250 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
251
252 /*
253 * Check for ack.
254 */
255 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
257 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258
259 return(ack);
260 }
261
262 /*
263 * Read a byte of data stored in the EEPROM at address 'addr.'
264 * We have to send two address bytes since the EEPROM can hold
265 * more than 256 bytes of data.
266 */
267 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
268 struct ti_softc *sc;
269 int addr;
270 u_int8_t *dest;
271 {
272 int i;
273 u_int8_t byte = 0;
274
275 EEPROM_START;
276
277 /*
278 * Send write control code to EEPROM.
279 */
280 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
281 printf("%s: failed to send write command, status: %x\n",
282 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
283 return(1);
284 }
285
286 /*
287 * Send first byte of address of byte we want to read.
288 */
289 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
290 printf("%s: failed to send address, status: %x\n",
291 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
292 return(1);
293 }
294 /*
295 * Send second byte address of byte we want to read.
296 */
297 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
298 printf("%s: failed to send address, status: %x\n",
299 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300 return(1);
301 }
302
303 EEPROM_STOP;
304 EEPROM_START;
305 /*
306 * Send read control code to EEPROM.
307 */
308 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
309 printf("%s: failed to send read command, status: %x\n",
310 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
311 return(1);
312 }
313
314 /*
315 * Start reading bits from EEPROM.
316 */
317 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
318 for (i = 0x80; i; i >>= 1) {
319 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
320 DELAY(1);
321 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
322 byte |= i;
323 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
324 DELAY(1);
325 }
326
327 EEPROM_STOP;
328
329 /*
330 * No ACK generated for read, so just return byte.
331 */
332
333 *dest = byte;
334
335 return(0);
336 }
337
338 /*
339 * Read a sequence of bytes from the EEPROM.
340 */
341 static int ti_read_eeprom(sc, dest, off, cnt)
342 struct ti_softc *sc;
343 caddr_t dest;
344 int off;
345 int cnt;
346 {
347 int err = 0, i;
348 u_int8_t byte = 0;
349
350 for (i = 0; i < cnt; i++) {
351 err = ti_eeprom_getbyte(sc, off + i, &byte);
352 if (err)
353 break;
354 *(dest + i) = byte;
355 }
356
357 return(err ? 1 : 0);
358 }
359
360 /*
361 * NIC memory access function. Can be used to either clear a section
362 * of NIC local memory or (if buf is non-NULL) copy data into it.
363 */
364 static void ti_mem(sc, addr, len, buf)
365 struct ti_softc *sc;
366 u_int32_t addr, len;
367 caddr_t buf;
368 {
369 int segptr, segsize, cnt;
370 caddr_t ptr;
371
372 segptr = addr;
373 cnt = len;
374 ptr = buf;
375
376 while(cnt) {
377 if (cnt < TI_WINLEN)
378 segsize = cnt;
379 else
380 segsize = TI_WINLEN - (segptr % TI_WINLEN);
381 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
382 if (buf == NULL) {
383 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
384 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
385 segsize / 4);
386 } else {
387 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
388 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
389 (u_int32_t *)ptr, segsize / 4);
390 ptr += segsize;
391 }
392 segptr += segsize;
393 cnt -= segsize;
394 }
395
396 return;
397 }
398
399 /*
400 * Load firmware image into the NIC. Check that the firmware revision
401 * is acceptable and see if we want the firmware for the Tigon 1 or
402 * Tigon 2.
403 */
404 static void ti_loadfw(sc)
405 struct ti_softc *sc;
406 {
407 switch(sc->ti_hwrev) {
408 case TI_HWREV_TIGON:
409 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
410 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
411 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
412 printf("%s: firmware revision mismatch; want "
413 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
414 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
415 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
416 tigonFwReleaseMinor, tigonFwReleaseFix);
417 return;
418 }
419 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
420 (caddr_t)tigonFwText);
421 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
422 (caddr_t)tigonFwData);
423 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
424 (caddr_t)tigonFwRodata);
425 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
426 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
427 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
428 break;
429 case TI_HWREV_TIGON_II:
430 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
431 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
432 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
433 printf("%s: firmware revision mismatch; want "
434 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
435 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
436 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
437 tigon2FwReleaseMinor, tigon2FwReleaseFix);
438 return;
439 }
440 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
441 (caddr_t)tigon2FwText);
442 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
443 (caddr_t)tigon2FwData);
444 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
445 (caddr_t)tigon2FwRodata);
446 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
447 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
448 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
449 break;
450 default:
451 printf("%s: can't load firmware: unknown hardware rev\n",
452 sc->sc_dev.dv_xname);
453 break;
454 }
455
456 return;
457 }
458
459 /*
460 * Send the NIC a command via the command ring.
461 */
462 static void ti_cmd(sc, cmd)
463 struct ti_softc *sc;
464 struct ti_cmd_desc *cmd;
465 {
466 u_int32_t index;
467
468 index = sc->ti_cmd_saved_prodidx;
469 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
470 TI_INC(index, TI_CMD_RING_CNT);
471 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
472 sc->ti_cmd_saved_prodidx = index;
473
474 return;
475 }
476
477 /*
478 * Send the NIC an extended command. The 'len' parameter specifies the
479 * number of command slots to include after the initial command.
480 */
481 static void ti_cmd_ext(sc, cmd, arg, len)
482 struct ti_softc *sc;
483 struct ti_cmd_desc *cmd;
484 caddr_t arg;
485 int len;
486 {
487 u_int32_t index;
488 int i;
489
490 index = sc->ti_cmd_saved_prodidx;
491 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
492 TI_INC(index, TI_CMD_RING_CNT);
493 for (i = 0; i < len; i++) {
494 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
495 *(u_int32_t *)(&arg[i * 4]));
496 TI_INC(index, TI_CMD_RING_CNT);
497 }
498 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
499 sc->ti_cmd_saved_prodidx = index;
500
501 return;
502 }
503
504 /*
505 * Handle events that have triggered interrupts.
506 */
507 static void ti_handle_events(sc)
508 struct ti_softc *sc;
509 {
510 struct ti_event_desc *e;
511
512 if (sc->ti_rdata->ti_event_ring == NULL)
513 return;
514
515 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
516 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
517 switch(e->ti_event) {
518 case TI_EV_LINKSTAT_CHANGED:
519 sc->ti_linkstat = e->ti_code;
520 if (e->ti_code == TI_EV_CODE_LINK_UP)
521 printf("%s: 10/100 link up\n",
522 sc->sc_dev.dv_xname);
523 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
524 printf("%s: gigabit link up\n",
525 sc->sc_dev.dv_xname);
526 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
527 printf("%s: link down\n",
528 sc->sc_dev.dv_xname);
529 break;
530 case TI_EV_ERROR:
531 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
532 printf("%s: invalid command\n",
533 sc->sc_dev.dv_xname);
534 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
535 printf("%s: unknown command\n",
536 sc->sc_dev.dv_xname);
537 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
538 printf("%s: bad config data\n",
539 sc->sc_dev.dv_xname);
540 break;
541 case TI_EV_FIRMWARE_UP:
542 ti_init2(sc);
543 break;
544 case TI_EV_STATS_UPDATED:
545 ti_stats_update(sc);
546 break;
547 case TI_EV_RESET_JUMBO_RING:
548 case TI_EV_MCAST_UPDATED:
549 /* Who cares. */
550 break;
551 default:
552 printf("%s: unknown event: %d\n",
553 sc->sc_dev.dv_xname, e->ti_event);
554 break;
555 }
556 /* Advance the consumer index. */
557 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
558 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
559 }
560
561 return;
562 }
563
564 /*
565 * Memory management for the jumbo receive ring is a pain in the
566 * butt. We need to allocate at least 9018 bytes of space per frame,
567 * _and_ it has to be contiguous (unless you use the extended
568 * jumbo descriptor format). Using malloc() all the time won't
569 * work: malloc() allocates memory in powers of two, which means we
570 * would end up wasting a considerable amount of space by allocating
571 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
572 * to do our own memory management.
573 *
574 * The driver needs to allocate a contiguous chunk of memory at boot
575 * time. We then chop this up ourselves into 9K pieces and use them
576 * as external mbuf storage.
577 *
578 * One issue here is how much memory to allocate. The jumbo ring has
579 * 256 slots in it, but at 9K per slot than can consume over 2MB of
580 * RAM. This is a bit much, especially considering we also need
581 * RAM for the standard ring and mini ring (on the Tigon 2). To
582 * save space, we only actually allocate enough memory for 64 slots
583 * by default, which works out to between 500 and 600K. This can
584 * be tuned by changing a #define in if_tireg.h.
585 */
586
587 static int ti_alloc_jumbo_mem(sc)
588 struct ti_softc *sc;
589 {
590 caddr_t ptr;
591 int i;
592 struct ti_jpool_entry *entry;
593 bus_dma_segment_t dmaseg;
594 int error, dmanseg;
595
596 /* Grab a big chunk o' storage. */
597 if ((error = bus_dmamem_alloc(sc->sc_dmat,
598 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
599 BUS_DMA_NOWAIT)) != 0) {
600 printf("%s: can't allocate jumbo buffer, error = %d\n",
601 sc->sc_dev.dv_xname, error);
602 return (error);
603 }
604
605 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
606 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
607 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
608 printf("%s: can't map jumbo buffer, error = %d\n",
609 sc->sc_dev.dv_xname, error);
610 return (error);
611 }
612
613 if ((error = bus_dmamap_create(sc->sc_dmat,
614 TI_JMEM, 1,
615 TI_JMEM, 0, BUS_DMA_NOWAIT,
616 &sc->jumbo_dmamap)) != 0) {
617 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
618 sc->sc_dev.dv_xname, error);
619 return (error);
620 }
621
622 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
623 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
624 BUS_DMA_NOWAIT)) != 0) {
625 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
626 sc->sc_dev.dv_xname, error);
627 return (error);
628 }
629 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
630
631 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
632 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
633
634 /*
635 * Now divide it up into 9K pieces and save the addresses
636 * in an array.
637 */
638 ptr = sc->ti_cdata.ti_jumbo_buf;
639 for (i = 0; i < TI_JSLOTS; i++) {
640 sc->ti_cdata.ti_jslots[i] = ptr;
641 ptr += TI_JLEN;
642 entry = malloc(sizeof(struct ti_jpool_entry),
643 M_DEVBUF, M_NOWAIT);
644 if (entry == NULL) {
645 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
646 sc->ti_cdata.ti_jumbo_buf = NULL;
647 printf("%s: no memory for jumbo "
648 "buffer queue!\n", sc->sc_dev.dv_xname);
649 return(ENOBUFS);
650 }
651 entry->slot = i;
652 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
653 jpool_entries);
654 }
655
656 return(0);
657 }
658
659 /*
660 * Allocate a jumbo buffer.
661 */
662 static void *ti_jalloc(sc)
663 struct ti_softc *sc;
664 {
665 struct ti_jpool_entry *entry;
666
667 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
668
669 if (entry == NULL) {
670 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
671 return(NULL);
672 }
673
674 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
675 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
676 return(sc->ti_cdata.ti_jslots[entry->slot]);
677 }
678
679 /*
680 * Release a jumbo buffer.
681 */
682 static void ti_jfree(buf, size, arg)
683 caddr_t buf;
684 u_int size;
685 void *arg;
686 {
687 struct ti_softc *sc;
688 int i;
689 struct ti_jpool_entry *entry;
690
691 /* Extract the softc struct pointer. */
692 sc = (struct ti_softc *)arg;
693
694 if (sc == NULL)
695 panic("ti_jfree: didn't get softc pointer!");
696
697 /* calculate the slot this buffer belongs to */
698
699 i = ((caddr_t)buf
700 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
701
702 if ((i < 0) || (i >= TI_JSLOTS))
703 panic("ti_jfree: asked to free buffer that we don't manage!");
704 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
705 if (entry == NULL)
706 panic("ti_jfree: buffer not in use!");
707 entry->slot = i;
708 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
709 entry, jpool_entries);
710 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
711 entry, jpool_entries);
712
713 return;
714 }
715
716
717 /*
718 * Intialize a standard receive ring descriptor.
719 */
720 static int ti_newbuf_std(sc, i, m, dmamap)
721 struct ti_softc *sc;
722 int i;
723 struct mbuf *m;
724 bus_dmamap_t dmamap; /* required if (m != NULL) */
725 {
726 struct mbuf *m_new = NULL;
727 struct ti_rx_desc *r;
728 int error;
729
730 if (dmamap == NULL) {
731 /* if (m) panic() */
732
733 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
734 MCLBYTES, 0, BUS_DMA_NOWAIT,
735 &dmamap)) != 0) {
736 printf("%s: can't create recv map, error = %d\n",
737 sc->sc_dev.dv_xname, error);
738 return(ENOMEM);
739 }
740 }
741 sc->std_dmamap[i] = dmamap;
742
743 if (m == NULL) {
744 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
745 if (m_new == NULL) {
746 printf("%s: mbuf allocation failed "
747 "-- packet dropped!\n", sc->sc_dev.dv_xname);
748 return(ENOBUFS);
749 }
750
751 MCLGET(m_new, M_DONTWAIT);
752 if (!(m_new->m_flags & M_EXT)) {
753 printf("%s: cluster allocation failed "
754 "-- packet dropped!\n", sc->sc_dev.dv_xname);
755 m_freem(m_new);
756 return(ENOBUFS);
757 }
758 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
759 m_adj(m_new, ETHER_ALIGN);
760
761 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
762 mtod(m_new, caddr_t), m_new->m_len, NULL,
763 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
764 printf("%s: can't load recv map, error = %d\n",
765 sc->sc_dev.dv_xname, error);
766 return (ENOMEM);
767 }
768 } else {
769 m_new = m;
770 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
771 m_new->m_data = m_new->m_ext.ext_buf;
772 m_adj(m_new, ETHER_ALIGN);
773
774 /* reuse the dmamap */
775 }
776
777 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
778 r = &sc->ti_rdata->ti_rx_std_ring[i];
779 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
780 r->ti_type = TI_BDTYPE_RECV_BD;
781 r->ti_flags = 0;
782 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
783 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
784 if (sc->ethercom.ec_if.if_capenable &
785 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
786 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
787 r->ti_len = m_new->m_len; /* == ds_len */
788 r->ti_idx = i;
789
790 return(0);
791 }
792
793 /*
794 * Intialize a mini receive ring descriptor. This only applies to
795 * the Tigon 2.
796 */
797 static int ti_newbuf_mini(sc, i, m, dmamap)
798 struct ti_softc *sc;
799 int i;
800 struct mbuf *m;
801 bus_dmamap_t dmamap; /* required if (m != NULL) */
802 {
803 struct mbuf *m_new = NULL;
804 struct ti_rx_desc *r;
805 int error;
806
807 if (dmamap == NULL) {
808 /* if (m) panic() */
809
810 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
811 MHLEN, 0, BUS_DMA_NOWAIT,
812 &dmamap)) != 0) {
813 printf("%s: can't create recv map, error = %d\n",
814 sc->sc_dev.dv_xname, error);
815 return(ENOMEM);
816 }
817 }
818 sc->mini_dmamap[i] = dmamap;
819
820 if (m == NULL) {
821 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
822 if (m_new == NULL) {
823 printf("%s: mbuf allocation failed "
824 "-- packet dropped!\n", sc->sc_dev.dv_xname);
825 return(ENOBUFS);
826 }
827 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
828 m_adj(m_new, ETHER_ALIGN);
829
830 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
831 mtod(m_new, caddr_t), m_new->m_len, NULL,
832 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
833 printf("%s: can't load recv map, error = %d\n",
834 sc->sc_dev.dv_xname, error);
835 return (ENOMEM);
836 }
837 } else {
838 m_new = m;
839 m_new->m_data = m_new->m_pktdat;
840 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
841 m_adj(m_new, ETHER_ALIGN);
842
843 /* reuse the dmamap */
844 }
845
846 r = &sc->ti_rdata->ti_rx_mini_ring[i];
847 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
848 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
849 r->ti_type = TI_BDTYPE_RECV_BD;
850 r->ti_flags = TI_BDFLAG_MINI_RING;
851 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
852 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
853 if (sc->ethercom.ec_if.if_capenable &
854 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
855 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
856 r->ti_len = m_new->m_len; /* == ds_len */
857 r->ti_idx = i;
858
859 return(0);
860 }
861
862 /*
863 * Initialize a jumbo receive ring descriptor. This allocates
864 * a jumbo buffer from the pool managed internally by the driver.
865 */
866 static int ti_newbuf_jumbo(sc, i, m)
867 struct ti_softc *sc;
868 int i;
869 struct mbuf *m;
870 {
871 struct mbuf *m_new = NULL;
872 struct ti_rx_desc *r;
873
874 if (m == NULL) {
875 caddr_t *buf = NULL;
876
877 /* Allocate the mbuf. */
878 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
879 if (m_new == NULL) {
880 printf("%s: mbuf allocation failed "
881 "-- packet dropped!\n", sc->sc_dev.dv_xname);
882 return(ENOBUFS);
883 }
884
885 /* Allocate the jumbo buffer */
886 buf = ti_jalloc(sc);
887 if (buf == NULL) {
888 m_freem(m_new);
889 printf("%s: jumbo allocation failed "
890 "-- packet dropped!\n", sc->sc_dev.dv_xname);
891 return(ENOBUFS);
892 }
893
894 /* Attach the buffer to the mbuf. */
895 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
896 m_new->m_flags |= M_EXT;
897 m_new->m_len = m_new->m_pkthdr.len =
898 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
899 m_new->m_ext.ext_free = ti_jfree;
900 m_new->m_ext.ext_arg = sc;
901 MCLINITREFERENCE(m_new);
902 } else {
903 m_new = m;
904 m_new->m_data = m_new->m_ext.ext_buf;
905 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
906 }
907
908 m_adj(m_new, ETHER_ALIGN);
909 /* Set up the descriptor. */
910 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
911 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
912 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
913 ((caddr_t)mtod(m_new, caddr_t)
914 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
915 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
916 r->ti_flags = TI_BDFLAG_JUMBO_RING;
917 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
918 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
919 if (sc->ethercom.ec_if.if_capenable &
920 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
921 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
922 r->ti_len = m_new->m_len;
923 r->ti_idx = i;
924
925 return(0);
926 }
927
928 /*
929 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
930 * that's 1MB or memory, which is a lot. For now, we fill only the first
931 * 256 ring entries and hope that our CPU is fast enough to keep up with
932 * the NIC.
933 */
934 static int ti_init_rx_ring_std(sc)
935 struct ti_softc *sc;
936 {
937 int i;
938 struct ti_cmd_desc cmd;
939
940 for (i = 0; i < TI_SSLOTS; i++) {
941 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
942 return(ENOBUFS);
943 };
944
945 TI_UPDATE_STDPROD(sc, i - 1);
946 sc->ti_std = i - 1;
947
948 return(0);
949 }
950
951 static void ti_free_rx_ring_std(sc)
952 struct ti_softc *sc;
953 {
954 int i;
955
956 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
957 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
958 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
959 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
960
961 /* if (sc->std_dmamap[i] == 0) panic() */
962 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
963 sc->std_dmamap[i] = 0;
964 }
965 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
966 sizeof(struct ti_rx_desc));
967 }
968
969 return;
970 }
971
972 static int ti_init_rx_ring_jumbo(sc)
973 struct ti_softc *sc;
974 {
975 int i;
976 struct ti_cmd_desc cmd;
977
978 for (i = 0; i < (TI_JSLOTS - 20); i++) {
979 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
980 return(ENOBUFS);
981 };
982
983 TI_UPDATE_JUMBOPROD(sc, i - 1);
984 sc->ti_jumbo = i - 1;
985
986 return(0);
987 }
988
989 static void ti_free_rx_ring_jumbo(sc)
990 struct ti_softc *sc;
991 {
992 int i;
993
994 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
995 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
996 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
997 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
998 }
999 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1000 sizeof(struct ti_rx_desc));
1001 }
1002
1003 return;
1004 }
1005
1006 static int ti_init_rx_ring_mini(sc)
1007 struct ti_softc *sc;
1008 {
1009 int i;
1010
1011 for (i = 0; i < TI_MSLOTS; i++) {
1012 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1013 return(ENOBUFS);
1014 };
1015
1016 TI_UPDATE_MINIPROD(sc, i - 1);
1017 sc->ti_mini = i - 1;
1018
1019 return(0);
1020 }
1021
1022 static void ti_free_rx_ring_mini(sc)
1023 struct ti_softc *sc;
1024 {
1025 int i;
1026
1027 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1028 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1029 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1030 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1031
1032 /* if (sc->mini_dmamap[i] == 0) panic() */
1033 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1034 sc->mini_dmamap[i] = 0;
1035 }
1036 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1037 sizeof(struct ti_rx_desc));
1038 }
1039
1040 return;
1041 }
1042
1043 static void ti_free_tx_ring(sc)
1044 struct ti_softc *sc;
1045 {
1046 int i;
1047 struct txdmamap_pool_entry *dma;
1048
1049 if (sc->ti_rdata->ti_tx_ring == NULL)
1050 return;
1051
1052 for (i = 0; i < TI_TX_RING_CNT; i++) {
1053 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1054 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1055 sc->ti_cdata.ti_tx_chain[i] = NULL;
1056
1057 /* if (sc->txdma[i] == 0) panic() */
1058 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1059 link);
1060 sc->txdma[i] = 0;
1061 }
1062 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1063 sizeof(struct ti_tx_desc));
1064 }
1065
1066 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1067 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1068 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1069 free(dma, M_DEVBUF);
1070 }
1071
1072 return;
1073 }
1074
1075 static int ti_init_tx_ring(sc)
1076 struct ti_softc *sc;
1077 {
1078 int i, error;
1079 bus_dmamap_t dmamap;
1080 struct txdmamap_pool_entry *dma;
1081
1082 sc->ti_txcnt = 0;
1083 sc->ti_tx_saved_considx = 0;
1084 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1085
1086 SIMPLEQ_INIT(&sc->txdma_list);
1087 for (i = 0; i < TI_RSLOTS; i++) {
1088 /* I've seen mbufs with 30 fragments. */
1089 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1090 40, ETHER_MAX_LEN_JUMBO, 0,
1091 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1092 printf("%s: can't create tx map, error = %d\n",
1093 sc->sc_dev.dv_xname, error);
1094 return(ENOMEM);
1095 }
1096 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1097 if (!dma) {
1098 printf("%s: can't alloc txdmamap_pool_entry\n",
1099 sc->sc_dev.dv_xname);
1100 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1101 return (ENOMEM);
1102 }
1103 dma->dmamap = dmamap;
1104 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1105 }
1106
1107 return(0);
1108 }
1109
1110 /*
1111 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1112 * but we have to support the old way too so that Tigon 1 cards will
1113 * work.
1114 */
1115 void ti_add_mcast(sc, addr)
1116 struct ti_softc *sc;
1117 struct ether_addr *addr;
1118 {
1119 struct ti_cmd_desc cmd;
1120 u_int16_t *m;
1121 u_int32_t ext[2] = {0, 0};
1122
1123 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1124
1125 switch(sc->ti_hwrev) {
1126 case TI_HWREV_TIGON:
1127 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1128 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1129 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1130 break;
1131 case TI_HWREV_TIGON_II:
1132 ext[0] = htons(m[0]);
1133 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1134 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1135 break;
1136 default:
1137 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1138 break;
1139 }
1140
1141 return;
1142 }
1143
1144 void ti_del_mcast(sc, addr)
1145 struct ti_softc *sc;
1146 struct ether_addr *addr;
1147 {
1148 struct ti_cmd_desc cmd;
1149 u_int16_t *m;
1150 u_int32_t ext[2] = {0, 0};
1151
1152 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1153
1154 switch(sc->ti_hwrev) {
1155 case TI_HWREV_TIGON:
1156 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1157 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1158 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1159 break;
1160 case TI_HWREV_TIGON_II:
1161 ext[0] = htons(m[0]);
1162 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1163 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1164 break;
1165 default:
1166 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1167 break;
1168 }
1169
1170 return;
1171 }
1172
1173 /*
1174 * Configure the Tigon's multicast address filter.
1175 *
1176 * The actual multicast table management is a bit of a pain, thanks to
1177 * slight brain damage on the part of both Alteon and us. With our
1178 * multicast code, we are only alerted when the multicast address table
1179 * changes and at that point we only have the current list of addresses:
1180 * we only know the current state, not the previous state, so we don't
1181 * actually know what addresses were removed or added. The firmware has
1182 * state, but we can't get our grubby mits on it, and there is no 'delete
1183 * all multicast addresses' command. Hence, we have to maintain our own
1184 * state so we know what addresses have been programmed into the NIC at
1185 * any given time.
1186 */
1187 static void ti_setmulti(sc)
1188 struct ti_softc *sc;
1189 {
1190 struct ifnet *ifp;
1191 struct ti_cmd_desc cmd;
1192 struct ti_mc_entry *mc;
1193 u_int32_t intrs;
1194 struct ether_multi *enm;
1195 struct ether_multistep step;
1196
1197 ifp = &sc->ethercom.ec_if;
1198
1199 /* Disable interrupts. */
1200 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1201 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1202
1203 /* First, zot all the existing filters. */
1204 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1205 ti_del_mcast(sc, &mc->mc_addr);
1206 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1207 free(mc, M_DEVBUF);
1208 }
1209
1210 /*
1211 * Remember all multicast addresses so that we can delete them
1212 * later. Punt if there is a range of addresses or memory shortage.
1213 */
1214 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1215 while (enm != NULL) {
1216 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1217 ETHER_ADDR_LEN) != 0)
1218 goto allmulti;
1219 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1220 M_NOWAIT)) == NULL)
1221 goto allmulti;
1222 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1223 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1224 ETHER_NEXT_MULTI(step, enm);
1225 }
1226
1227 /* Accept only programmed multicast addresses */
1228 ifp->if_flags &= ~IFF_ALLMULTI;
1229 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1230
1231 /* Now program new ones. */
1232 for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
1233 mc = SIMPLEQ_NEXT(mc, mc_entries))
1234 ti_add_mcast(sc, &mc->mc_addr);
1235
1236 /* Re-enable interrupts. */
1237 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1238
1239 return;
1240
1241 allmulti:
1242 /* No need to keep individual multicast addresses */
1243 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1244 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
1245 mc_entries);
1246 free(mc, M_DEVBUF);
1247 }
1248
1249 /* Accept all multicast addresses */
1250 ifp->if_flags |= IFF_ALLMULTI;
1251 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1252
1253 /* Re-enable interrupts. */
1254 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1255 }
1256
1257 /*
1258 * Check to see if the BIOS has configured us for a 64 bit slot when
1259 * we aren't actually in one. If we detect this condition, we can work
1260 * around it on the Tigon 2 by setting a bit in the PCI state register,
1261 * but for the Tigon 1 we must give up and abort the interface attach.
1262 */
1263 static int ti_64bitslot_war(sc)
1264 struct ti_softc *sc;
1265 {
1266 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1267 CSR_WRITE_4(sc, 0x600, 0);
1268 CSR_WRITE_4(sc, 0x604, 0);
1269 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1270 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1271 if (sc->ti_hwrev == TI_HWREV_TIGON)
1272 return(EINVAL);
1273 else {
1274 TI_SETBIT(sc, TI_PCI_STATE,
1275 TI_PCISTATE_32BIT_BUS);
1276 return(0);
1277 }
1278 }
1279 }
1280
1281 return(0);
1282 }
1283
1284 /*
1285 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1286 * self-test results.
1287 */
1288 static int ti_chipinit(sc)
1289 struct ti_softc *sc;
1290 {
1291 u_int32_t cacheline;
1292 u_int32_t pci_writemax = 0;
1293
1294 /* Initialize link to down state. */
1295 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1296
1297 /* Set endianness before we access any non-PCI registers. */
1298 #if BYTE_ORDER == BIG_ENDIAN
1299 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1300 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1301 #else
1302 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1304 #endif
1305
1306 /* Check the ROM failed bit to see if self-tests passed. */
1307 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1308 printf("%s: board self-diagnostics failed!\n",
1309 sc->sc_dev.dv_xname);
1310 return(ENODEV);
1311 }
1312
1313 /* Halt the CPU. */
1314 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1315
1316 /* Figure out the hardware revision. */
1317 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1318 case TI_REV_TIGON_I:
1319 sc->ti_hwrev = TI_HWREV_TIGON;
1320 break;
1321 case TI_REV_TIGON_II:
1322 sc->ti_hwrev = TI_HWREV_TIGON_II;
1323 break;
1324 default:
1325 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1326 return(ENODEV);
1327 }
1328
1329 /* Do special setup for Tigon 2. */
1330 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1332 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1333 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1334 }
1335
1336 /* Set up the PCI state register. */
1337 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1338 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1339 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1340 }
1341
1342 /* Clear the read/write max DMA parameters. */
1343 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1344 TI_PCISTATE_READ_MAXDMA));
1345
1346 /* Get cache line size. */
1347 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1348
1349 /*
1350 * If the system has set enabled the PCI memory write
1351 * and invalidate command in the command register, set
1352 * the write max parameter accordingly. This is necessary
1353 * to use MWI with the Tigon 2.
1354 */
1355 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1356 & PCI_COMMAND_INVALIDATE_ENABLE) {
1357 switch(cacheline) {
1358 case 1:
1359 case 4:
1360 case 8:
1361 case 16:
1362 case 32:
1363 case 64:
1364 break;
1365 default:
1366 /* Disable PCI memory write and invalidate. */
1367 if (bootverbose)
1368 printf("%s: cache line size %d not "
1369 "supported; disabling PCI MWI\n",
1370 sc->sc_dev.dv_xname, cacheline);
1371 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1372 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1373 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1374 break;
1375 }
1376 }
1377
1378 #ifdef __brokenalpha__
1379 /*
1380 * From the Alteon sample driver:
1381 * Must insure that we do not cross an 8K (bytes) boundary
1382 * for DMA reads. Our highest limit is 1K bytes. This is a
1383 * restriction on some ALPHA platforms with early revision
1384 * 21174 PCI chipsets, such as the AlphaPC 164lx
1385 */
1386 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1387 #else
1388 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1389 #endif
1390
1391 /* This sets the min dma param all the way up (0xff). */
1392 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1393
1394 /* Configure DMA variables. */
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1397 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1398 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1399 TI_OPMODE_DONT_FRAG_JUMBO);
1400 #else
1401 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1402 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1403 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1404 #endif
1405
1406 /*
1407 * Only allow 1 DMA channel to be active at a time.
1408 * I don't think this is a good idea, but without it
1409 * the firmware racks up lots of nicDmaReadRingFull
1410 * errors.
1411 * Incompatible with hardware assisted checksums.
1412 */
1413 if ((sc->ethercom.ec_if.if_capenable &
1414 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1415 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1416
1417 /* Recommended settings from Tigon manual. */
1418 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1419 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1420
1421 if (ti_64bitslot_war(sc)) {
1422 printf("%s: bios thinks we're in a 64 bit slot, "
1423 "but we aren't", sc->sc_dev.dv_xname);
1424 return(EINVAL);
1425 }
1426
1427 return(0);
1428 }
1429
1430 /*
1431 * Initialize the general information block and firmware, and
1432 * start the CPU(s) running.
1433 */
1434 static int ti_gibinit(sc)
1435 struct ti_softc *sc;
1436 {
1437 struct ti_rcb *rcb;
1438 int i;
1439 struct ifnet *ifp;
1440
1441 ifp = &sc->ethercom.ec_if;
1442
1443 /* Disable interrupts for now. */
1444 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1445
1446 /* Tell the chip where to find the general information block. */
1447 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1448 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1449
1450 /* Load the firmware into SRAM. */
1451 ti_loadfw(sc);
1452
1453 /* Set up the contents of the general info and ring control blocks. */
1454
1455 /* Set up the event ring and producer pointer. */
1456 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1457
1458 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1459 rcb->ti_flags = 0;
1460 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1461 TI_CDEVPRODADDR(sc);
1462
1463 sc->ti_ev_prodidx.ti_idx = 0;
1464 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1465 sc->ti_ev_saved_considx = 0;
1466
1467 /* Set up the command ring and producer mailbox. */
1468 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1469
1470 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1471 rcb->ti_flags = 0;
1472 rcb->ti_max_len = 0;
1473 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1474 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1475 }
1476 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1477 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1478 sc->ti_cmd_saved_prodidx = 0;
1479
1480 /*
1481 * Assign the address of the stats refresh buffer.
1482 * We re-use the current stats buffer for this to
1483 * conserve memory.
1484 */
1485 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1486 TI_CDSTATSADDR(sc);
1487
1488 /* Set up the standard receive ring. */
1489 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1490 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1491 rcb->ti_max_len = ETHER_MAX_LEN;
1492 rcb->ti_flags = 0;
1493 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1494 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1496 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 if (sc->ethercom.ec_nvlans != 0)
1498 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1499
1500 /* Set up the jumbo receive ring. */
1501 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1502 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1503 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1504 rcb->ti_flags = 0;
1505 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1506 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1507 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1508 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1509 if (sc->ethercom.ec_nvlans != 0)
1510 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1511
1512 /*
1513 * Set up the mini ring. Only activated on the
1514 * Tigon 2 but the slot in the config block is
1515 * still there on the Tigon 1.
1516 */
1517 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1518 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1519 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1520 if (sc->ti_hwrev == TI_HWREV_TIGON)
1521 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1522 else
1523 rcb->ti_flags = 0;
1524 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1525 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1526 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1527 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1528 if (sc->ethercom.ec_nvlans != 0)
1529 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1530
1531 /*
1532 * Set up the receive return ring.
1533 */
1534 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1535 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1536 rcb->ti_flags = 0;
1537 rcb->ti_max_len = TI_RETURN_RING_CNT;
1538 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1539 TI_CDRTNPRODADDR(sc);
1540
1541 /*
1542 * Set up the tx ring. Note: for the Tigon 2, we have the option
1543 * of putting the transmit ring in the host's address space and
1544 * letting the chip DMA it instead of leaving the ring in the NIC's
1545 * memory and accessing it through the shared memory region. We
1546 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1547 * so we have to revert to the shared memory scheme if we detect
1548 * a Tigon 1 chip.
1549 */
1550 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1551 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1552 sc->ti_tx_ring_nic =
1553 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1554 }
1555 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1556 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1557 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1558 if (sc->ti_hwrev == TI_HWREV_TIGON)
1559 rcb->ti_flags = 0;
1560 else
1561 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1562 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1563 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1564 /*
1565 * When we get the packet, there is a pseudo-header seed already
1566 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1567 * compute the pseudo-header checksum again!
1568 */
1569 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1570 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1571 TI_RCB_FLAG_NO_PHDR_CKSUM;
1572 if (sc->ethercom.ec_nvlans != 0)
1573 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1574 rcb->ti_max_len = TI_TX_RING_CNT;
1575 if (sc->ti_hwrev == TI_HWREV_TIGON)
1576 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1577 else
1578 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1579 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1580 TI_CDTXCONSADDR(sc);
1581
1582 /*
1583 * We're done frobbing the General Information Block. Sync
1584 * it. Note we take care of the first stats sync here, as
1585 * well.
1586 */
1587 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1588
1589 /* Set up tuneables */
1590 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1591 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1592 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1593 (sc->ti_rx_coal_ticks / 10));
1594 else
1595 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1596 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1597 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1598 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1599 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1600 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1601
1602 /* Turn interrupts on. */
1603 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1604 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1605
1606 /* Start CPU. */
1607 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1608
1609 return(0);
1610 }
1611
1612 /*
1613 * look for id in the device list, returning the first match
1614 */
1615 static const struct ti_type *
1616 ti_type_match(pa)
1617 struct pci_attach_args *pa;
1618 {
1619 const struct ti_type *t;
1620
1621 t = ti_devs;
1622 while(t->ti_name != NULL) {
1623 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1624 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1625 return (t);
1626 }
1627 t++;
1628 }
1629
1630 return(NULL);
1631 }
1632
1633 /*
1634 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1635 * against our list and return its name if we find a match.
1636 */
1637 static int ti_probe(parent, match, aux)
1638 struct device *parent;
1639 struct cfdata *match;
1640 void *aux;
1641 {
1642 struct pci_attach_args *pa = aux;
1643 const struct ti_type *t;
1644
1645 t = ti_type_match(pa);
1646
1647 return((t == NULL) ? 0 : 1);
1648 }
1649
1650 static void ti_attach(parent, self, aux)
1651 struct device *parent, *self;
1652 void *aux;
1653 {
1654 u_int32_t command;
1655 struct ifnet *ifp;
1656 struct ti_softc *sc;
1657 u_char eaddr[ETHER_ADDR_LEN];
1658 struct pci_attach_args *pa = aux;
1659 pci_chipset_tag_t pc = pa->pa_pc;
1660 pci_intr_handle_t ih;
1661 const char *intrstr = NULL;
1662 bus_dma_segment_t dmaseg;
1663 int error, dmanseg, nolinear;
1664 const struct ti_type *t;
1665
1666 t = ti_type_match(pa);
1667 if (t == NULL) {
1668 printf("ti_attach: were did the card go ?\n");
1669 return;
1670 }
1671
1672 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1673
1674 sc = (struct ti_softc *)self;
1675
1676 /*
1677 * Map control/status registers.
1678 */
1679 nolinear = 0;
1680 if (pci_mapreg_map(pa, 0x10,
1681 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1682 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1683 NULL, NULL)) {
1684 nolinear = 1;
1685 if (pci_mapreg_map(pa, 0x10,
1686 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1687 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1688 printf(": can't map memory space\n");
1689 return;
1690 }
1691 }
1692 if (nolinear == 0)
1693 sc->ti_vhandle = (void *)(u_long)(sc->ti_bhandle); /* XXX XXX XXX */
1694 else
1695 sc->ti_vhandle = NULL;
1696
1697 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1698 command |= PCI_COMMAND_MASTER_ENABLE;
1699 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1700
1701 /* Allocate interrupt */
1702 if (pci_intr_map(pa, &ih)) {
1703 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1704 return;;
1705 }
1706 intrstr = pci_intr_string(pc, ih);
1707 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1708 if (sc->sc_ih == NULL) {
1709 printf("%s: couldn't establish interrupt",
1710 sc->sc_dev.dv_xname);
1711 if (intrstr != NULL)
1712 printf(" at %s", intrstr);
1713 printf("\n");
1714 return;;
1715 }
1716 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1717 /*
1718 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1719 * doing do could allow DMA to corrupt kernel memory during the
1720 * reboot before the driver initializes.
1721 */
1722 (void) shutdownhook_establish(ti_shutdown, sc);
1723
1724 if (ti_chipinit(sc)) {
1725 printf("%s: chip initialization failed\n", self->dv_xname);
1726 goto fail2;
1727 }
1728
1729 /*
1730 * Deal with some chip diffrences.
1731 */
1732 switch (sc->ti_hwrev) {
1733 case TI_HWREV_TIGON:
1734 sc->sc_tx_encap = ti_encap_tigon1;
1735 sc->sc_tx_eof = ti_txeof_tigon1;
1736 if (nolinear == 1)
1737 printf("%s: memory space not mapped linear\n",
1738 self->dv_xname);
1739 break;
1740
1741 case TI_HWREV_TIGON_II:
1742 sc->sc_tx_encap = ti_encap_tigon2;
1743 sc->sc_tx_eof = ti_txeof_tigon2;
1744 break;
1745
1746 default:
1747 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1748 sc->ti_hwrev);
1749 goto fail2;
1750 }
1751
1752 /* Zero out the NIC's on-board SRAM. */
1753 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1754
1755 /* Init again -- zeroing memory may have clobbered some registers. */
1756 if (ti_chipinit(sc)) {
1757 printf("%s: chip initialization failed\n", self->dv_xname);
1758 goto fail2;
1759 }
1760
1761 /*
1762 * Get station address from the EEPROM. Note: the manual states
1763 * that the MAC address is at offset 0x8c, however the data is
1764 * stored as two longwords (since that's how it's loaded into
1765 * the NIC). This means the MAC address is actually preceeded
1766 * by two zero bytes. We need to skip over those.
1767 */
1768 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1769 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1770 printf("%s: failed to read station address\n", self->dv_xname);
1771 goto fail2;
1772 }
1773
1774 /*
1775 * A Tigon chip was detected. Inform the world.
1776 */
1777 printf("%s: Ethernet address: %s\n", self->dv_xname,
1778 ether_sprintf(eaddr));
1779
1780 sc->sc_dmat = pa->pa_dmat;
1781
1782 /* Allocate the general information block and ring buffers. */
1783 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1784 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1785 BUS_DMA_NOWAIT)) != 0) {
1786 printf("%s: can't allocate ring buffer, error = %d\n",
1787 sc->sc_dev.dv_xname, error);
1788 goto fail2;
1789 }
1790
1791 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1792 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1793 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1794 printf("%s: can't map ring buffer, error = %d\n",
1795 sc->sc_dev.dv_xname, error);
1796 goto fail2;
1797 }
1798
1799 if ((error = bus_dmamap_create(sc->sc_dmat,
1800 sizeof(struct ti_ring_data), 1,
1801 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1802 &sc->info_dmamap)) != 0) {
1803 printf("%s: can't create ring buffer DMA map, error = %d\n",
1804 sc->sc_dev.dv_xname, error);
1805 goto fail2;
1806 }
1807
1808 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1809 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1810 BUS_DMA_NOWAIT)) != 0) {
1811 printf("%s: can't load ring buffer DMA map, error = %d\n",
1812 sc->sc_dev.dv_xname, error);
1813 goto fail2;
1814 }
1815
1816 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1817
1818 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1819
1820 /* Try to allocate memory for jumbo buffers. */
1821 if (ti_alloc_jumbo_mem(sc)) {
1822 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1823 goto fail2;
1824 }
1825
1826 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1827
1828 /*
1829 * We really need a better way to tell a 1000baseT card
1830 * from a 1000baseSX one, since in theory there could be
1831 * OEMed 1000baseT cards from lame vendors who aren't
1832 * clever enough to change the PCI ID. For the moment
1833 * though, the AceNIC is the only copper card available.
1834 */
1835 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1836 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1837 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1838 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1839 sc->ti_copper = 1;
1840 else
1841 sc->ti_copper = 0;
1842
1843 /* Set default tuneable values. */
1844 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1845 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1846 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1847 sc->ti_rx_max_coal_bds = 64;
1848 sc->ti_tx_max_coal_bds = 128;
1849 sc->ti_tx_buf_ratio = 21;
1850
1851 /* Set up ifnet structure */
1852 ifp = &sc->ethercom.ec_if;
1853 ifp->if_softc = sc;
1854 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1855 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1856 ifp->if_ioctl = ti_ioctl;
1857 ifp->if_start = ti_start;
1858 ifp->if_watchdog = ti_watchdog;
1859 IFQ_SET_READY(&ifp->if_snd);
1860
1861 #if 0
1862 /*
1863 * XXX This is not really correct -- we don't necessarily
1864 * XXX want to queue up as many as we can transmit at the
1865 * XXX upper layer like that. Someone with a board should
1866 * XXX check to see how this affects performance.
1867 */
1868 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1869 #endif
1870
1871 /*
1872 * We can support 802.1Q VLAN-sized frames.
1873 */
1874 sc->ethercom.ec_capabilities |=
1875 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1876
1877 /*
1878 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1879 */
1880 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1881 IFCAP_CSUM_UDPv4;
1882
1883 /* Set up ifmedia support. */
1884 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1885 if (sc->ti_copper) {
1886 /*
1887 * Copper cards allow manual 10/100 mode selection,
1888 * but not manual 1000baseT mode selection. Why?
1889 * Becuase currently there's no way to specify the
1890 * master/slave setting through the firmware interface,
1891 * so Alteon decided to just bag it and handle it
1892 * via autonegotiation.
1893 */
1894 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1895 ifmedia_add(&sc->ifmedia,
1896 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1897 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1898 ifmedia_add(&sc->ifmedia,
1899 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1900 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1901 ifmedia_add(&sc->ifmedia,
1902 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1903 } else {
1904 /* Fiber cards don't support 10/100 modes. */
1905 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1906 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1907 }
1908 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1909 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1910
1911 /*
1912 * Call MI attach routines.
1913 */
1914 if_attach(ifp);
1915 ether_ifattach(ifp, eaddr);
1916
1917 return;
1918 fail2:
1919 pci_intr_disestablish(pc, sc->sc_ih);
1920 return;
1921 }
1922
1923 /*
1924 * Frame reception handling. This is called if there's a frame
1925 * on the receive return list.
1926 *
1927 * Note: we have to be able to handle three possibilities here:
1928 * 1) the frame is from the mini receive ring (can only happen)
1929 * on Tigon 2 boards)
1930 * 2) the frame is from the jumbo receive ring
1931 * 3) the frame is from the standard receive ring
1932 */
1933
1934 static void ti_rxeof(sc)
1935 struct ti_softc *sc;
1936 {
1937 struct ifnet *ifp;
1938 struct ti_cmd_desc cmd;
1939
1940 ifp = &sc->ethercom.ec_if;
1941
1942 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1943 struct ti_rx_desc *cur_rx;
1944 u_int32_t rxidx;
1945 struct mbuf *m = NULL;
1946 u_int16_t vlan_tag = 0;
1947 int have_tag = 0;
1948 struct ether_header *eh;
1949 bus_dmamap_t dmamap;
1950
1951 cur_rx =
1952 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1953 rxidx = cur_rx->ti_idx;
1954 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1955
1956 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1957 have_tag = 1;
1958 vlan_tag = cur_rx->ti_vlan_tag;
1959 }
1960
1961 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1962 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1963 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1964 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1965 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1966 ifp->if_ierrors++;
1967 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1968 continue;
1969 }
1970 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1971 == ENOBUFS) {
1972 ifp->if_ierrors++;
1973 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1974 continue;
1975 }
1976 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1977 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1978 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1979 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1980 dmamap = sc->mini_dmamap[rxidx];
1981 sc->mini_dmamap[rxidx] = 0;
1982 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1983 ifp->if_ierrors++;
1984 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1985 continue;
1986 }
1987 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1988 == ENOBUFS) {
1989 ifp->if_ierrors++;
1990 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1991 continue;
1992 }
1993 } else {
1994 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1995 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1996 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1997 dmamap = sc->std_dmamap[rxidx];
1998 sc->std_dmamap[rxidx] = 0;
1999 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2000 ifp->if_ierrors++;
2001 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2002 continue;
2003 }
2004 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2005 == ENOBUFS) {
2006 ifp->if_ierrors++;
2007 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2008 continue;
2009 }
2010 }
2011
2012 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2013 ifp->if_ipackets++;
2014 m->m_pkthdr.rcvif = ifp;
2015
2016 #if NBPFILTER > 0
2017 /*
2018 * Handle BPF listeners. Let the BPF user see the packet, but
2019 * don't pass it up to the ether_input() layer unless it's
2020 * a broadcast packet, multicast packet, matches our ethernet
2021 * address or the interface is in promiscuous mode.
2022 */
2023 if (ifp->if_bpf)
2024 bpf_mtap(ifp->if_bpf, m);
2025 #endif
2026
2027 eh = mtod(m, struct ether_header *);
2028 switch (ntohs(eh->ether_type)) {
2029 case ETHERTYPE_IP:
2030 {
2031 struct ip *ip = (struct ip *) (eh + 1);
2032
2033 /*
2034 * Note the Tigon firmware does not invert
2035 * the checksum for us, hence the XOR.
2036 */
2037 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2038 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2039 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2040 /*
2041 * ntohs() the constant so the compiler can
2042 * optimize...
2043 *
2044 * XXX Figure out a sane way to deal with
2045 * fragmented packets.
2046 */
2047 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2048 switch (ip->ip_p) {
2049 case IPPROTO_TCP:
2050 m->m_pkthdr.csum_data =
2051 cur_rx->ti_tcp_udp_cksum;
2052 m->m_pkthdr.csum_flags |=
2053 M_CSUM_TCPv4|M_CSUM_DATA;
2054 break;
2055 case IPPROTO_UDP:
2056 m->m_pkthdr.csum_data =
2057 cur_rx->ti_tcp_udp_cksum;
2058 m->m_pkthdr.csum_flags |=
2059 M_CSUM_UDPv4|M_CSUM_DATA;
2060 break;
2061 default:
2062 /* Nothing */;
2063 }
2064 }
2065 break;
2066 }
2067 default:
2068 /* Nothing. */
2069 break;
2070 }
2071
2072 if (have_tag) {
2073 struct mbuf *n;
2074 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2075 if (n) {
2076 *mtod(n, int *) = vlan_tag;
2077 n->m_len = sizeof(int);
2078 } else {
2079 printf("%s: no mbuf for tag\n", ifp->if_xname);
2080 m_freem(m);
2081 continue;
2082 }
2083 have_tag = vlan_tag = 0;
2084 }
2085 (*ifp->if_input)(ifp, m);
2086 }
2087
2088 /* Only necessary on the Tigon 1. */
2089 if (sc->ti_hwrev == TI_HWREV_TIGON)
2090 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2091 sc->ti_rx_saved_considx);
2092
2093 TI_UPDATE_STDPROD(sc, sc->ti_std);
2094 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2095 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2096
2097 return;
2098 }
2099
2100 static void ti_txeof_tigon1(sc)
2101 struct ti_softc *sc;
2102 {
2103 struct ti_tx_desc *cur_tx = NULL;
2104 struct ifnet *ifp;
2105 struct txdmamap_pool_entry *dma;
2106
2107 ifp = &sc->ethercom.ec_if;
2108
2109 /*
2110 * Go through our tx ring and free mbufs for those
2111 * frames that have been sent.
2112 */
2113 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2114 u_int32_t idx = 0;
2115
2116 idx = sc->ti_tx_saved_considx;
2117 if (idx > 383)
2118 CSR_WRITE_4(sc, TI_WINBASE,
2119 TI_TX_RING_BASE + 6144);
2120 else if (idx > 255)
2121 CSR_WRITE_4(sc, TI_WINBASE,
2122 TI_TX_RING_BASE + 4096);
2123 else if (idx > 127)
2124 CSR_WRITE_4(sc, TI_WINBASE,
2125 TI_TX_RING_BASE + 2048);
2126 else
2127 CSR_WRITE_4(sc, TI_WINBASE,
2128 TI_TX_RING_BASE);
2129 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2130 if (cur_tx->ti_flags & TI_BDFLAG_END)
2131 ifp->if_opackets++;
2132 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2133 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2134 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2135
2136 dma = sc->txdma[idx];
2137 KDASSERT(dma != NULL);
2138 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2139 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2140 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2141
2142 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2143 sc->txdma[idx] = NULL;
2144 }
2145 sc->ti_txcnt--;
2146 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2147 ifp->if_timer = 0;
2148 }
2149
2150 if (cur_tx != NULL)
2151 ifp->if_flags &= ~IFF_OACTIVE;
2152
2153 return;
2154 }
2155
2156 static void ti_txeof_tigon2(sc)
2157 struct ti_softc *sc;
2158 {
2159 struct ti_tx_desc *cur_tx = NULL;
2160 struct ifnet *ifp;
2161 struct txdmamap_pool_entry *dma;
2162 int firstidx, cnt;
2163
2164 ifp = &sc->ethercom.ec_if;
2165
2166 /*
2167 * Go through our tx ring and free mbufs for those
2168 * frames that have been sent.
2169 */
2170 firstidx = sc->ti_tx_saved_considx;
2171 cnt = 0;
2172 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2173 u_int32_t idx = 0;
2174
2175 idx = sc->ti_tx_saved_considx;
2176 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2177 if (cur_tx->ti_flags & TI_BDFLAG_END)
2178 ifp->if_opackets++;
2179 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2180 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2181 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2182
2183 dma = sc->txdma[idx];
2184 KDASSERT(dma != NULL);
2185 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2186 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2187 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2188
2189 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2190 sc->txdma[idx] = NULL;
2191 }
2192 cnt++;
2193 sc->ti_txcnt--;
2194 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2195 ifp->if_timer = 0;
2196 }
2197
2198 if (cnt != 0)
2199 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2200
2201 if (cur_tx != NULL)
2202 ifp->if_flags &= ~IFF_OACTIVE;
2203
2204 return;
2205 }
2206
2207 static int ti_intr(xsc)
2208 void *xsc;
2209 {
2210 struct ti_softc *sc;
2211 struct ifnet *ifp;
2212
2213 sc = xsc;
2214 ifp = &sc->ethercom.ec_if;
2215
2216 #ifdef notdef
2217 /* Avoid this for now -- checking this register is expensive. */
2218 /* Make sure this is really our interrupt. */
2219 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2220 return (0);
2221 #endif
2222
2223 /* Ack interrupt and stop others from occuring. */
2224 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2225
2226 if (ifp->if_flags & IFF_RUNNING) {
2227 /* Check RX return ring producer/consumer */
2228 ti_rxeof(sc);
2229
2230 /* Check TX ring producer/consumer */
2231 (*sc->sc_tx_eof)(sc);
2232 }
2233
2234 ti_handle_events(sc);
2235
2236 /* Re-enable interrupts. */
2237 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2238
2239 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2240 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2241 ti_start(ifp);
2242
2243 return (1);
2244 }
2245
2246 static void ti_stats_update(sc)
2247 struct ti_softc *sc;
2248 {
2249 struct ifnet *ifp;
2250
2251 ifp = &sc->ethercom.ec_if;
2252
2253 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2254
2255 ifp->if_collisions +=
2256 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2257 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2258 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2259 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2260 ifp->if_collisions;
2261
2262 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2263 }
2264
2265 /*
2266 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2267 * pointers to descriptors.
2268 */
2269 static int ti_encap_tigon1(sc, m_head, txidx)
2270 struct ti_softc *sc;
2271 struct mbuf *m_head;
2272 u_int32_t *txidx;
2273 {
2274 struct ti_tx_desc *f = NULL;
2275 u_int32_t frag, cur, cnt = 0;
2276 struct txdmamap_pool_entry *dma;
2277 bus_dmamap_t dmamap;
2278 int error, i;
2279 struct mbuf *n;
2280 u_int16_t csum_flags = 0;
2281
2282 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2283 if (dma == NULL) {
2284 return ENOMEM;
2285 }
2286 dmamap = dma->dmamap;
2287
2288 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2289 BUS_DMA_WRITE);
2290 if (error) {
2291 struct mbuf *m;
2292 int i = 0;
2293 for (m = m_head; m; m = m->m_next)
2294 i++;
2295 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2296 "error %d\n", m_head->m_pkthdr.len, i, error);
2297 return (ENOMEM);
2298 }
2299
2300 cur = frag = *txidx;
2301
2302 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2303 /* IP header checksum field must be 0! */
2304 csum_flags |= TI_BDFLAG_IP_CKSUM;
2305 }
2306 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2307 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2308
2309 /* XXX fragmented packet checksum capability? */
2310
2311 /*
2312 * Start packing the mbufs in this chain into
2313 * the fragment pointers. Stop when we run out
2314 * of fragments or hit the end of the mbuf chain.
2315 */
2316 for (i = 0; i < dmamap->dm_nsegs; i++) {
2317 if (frag > 383)
2318 CSR_WRITE_4(sc, TI_WINBASE,
2319 TI_TX_RING_BASE + 6144);
2320 else if (frag > 255)
2321 CSR_WRITE_4(sc, TI_WINBASE,
2322 TI_TX_RING_BASE + 4096);
2323 else if (frag > 127)
2324 CSR_WRITE_4(sc, TI_WINBASE,
2325 TI_TX_RING_BASE + 2048);
2326 else
2327 CSR_WRITE_4(sc, TI_WINBASE,
2328 TI_TX_RING_BASE);
2329 f = &sc->ti_tx_ring_nic[frag % 128];
2330 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2331 break;
2332 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2333 f->ti_len = dmamap->dm_segs[i].ds_len;
2334 f->ti_flags = csum_flags;
2335 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2336 if (n) {
2337 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2338 f->ti_vlan_tag = *mtod(n, int *);
2339 } else {
2340 f->ti_vlan_tag = 0;
2341 }
2342 /*
2343 * Sanity check: avoid coming within 16 descriptors
2344 * of the end of the ring.
2345 */
2346 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2347 return(ENOBUFS);
2348 cur = frag;
2349 TI_INC(frag, TI_TX_RING_CNT);
2350 cnt++;
2351 }
2352
2353 if (i < dmamap->dm_nsegs)
2354 return(ENOBUFS);
2355
2356 if (frag == sc->ti_tx_saved_considx)
2357 return(ENOBUFS);
2358
2359 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2360 TI_BDFLAG_END;
2361
2362 /* Sync the packet's DMA map. */
2363 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2364 BUS_DMASYNC_PREWRITE);
2365
2366 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2367 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2368 sc->txdma[cur] = dma;
2369 sc->ti_txcnt += cnt;
2370
2371 *txidx = frag;
2372
2373 return(0);
2374 }
2375
2376 static int ti_encap_tigon2(sc, m_head, txidx)
2377 struct ti_softc *sc;
2378 struct mbuf *m_head;
2379 u_int32_t *txidx;
2380 {
2381 struct ti_tx_desc *f = NULL;
2382 u_int32_t frag, firstfrag, cur, cnt = 0;
2383 struct txdmamap_pool_entry *dma;
2384 bus_dmamap_t dmamap;
2385 int error, i;
2386 struct mbuf *n;
2387 u_int16_t csum_flags = 0;
2388
2389 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2390 if (dma == NULL) {
2391 return ENOMEM;
2392 }
2393 dmamap = dma->dmamap;
2394
2395 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2396 BUS_DMA_WRITE);
2397 if (error) {
2398 struct mbuf *m;
2399 int i = 0;
2400 for (m = m_head; m; m = m->m_next)
2401 i++;
2402 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2403 "error %d\n", m_head->m_pkthdr.len, i, error);
2404 return (ENOMEM);
2405 }
2406
2407 cur = firstfrag = frag = *txidx;
2408
2409 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2410 /* IP header checksum field must be 0! */
2411 csum_flags |= TI_BDFLAG_IP_CKSUM;
2412 }
2413 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2414 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2415
2416 /* XXX fragmented packet checksum capability? */
2417
2418 /*
2419 * Start packing the mbufs in this chain into
2420 * the fragment pointers. Stop when we run out
2421 * of fragments or hit the end of the mbuf chain.
2422 */
2423 for (i = 0; i < dmamap->dm_nsegs; i++) {
2424 f = &sc->ti_rdata->ti_tx_ring[frag];
2425 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2426 break;
2427 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2428 f->ti_len = dmamap->dm_segs[i].ds_len;
2429 f->ti_flags = csum_flags;
2430 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2431 if (n) {
2432 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2433 f->ti_vlan_tag = *mtod(n, int *);
2434 } else {
2435 f->ti_vlan_tag = 0;
2436 }
2437 /*
2438 * Sanity check: avoid coming within 16 descriptors
2439 * of the end of the ring.
2440 */
2441 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2442 return(ENOBUFS);
2443 cur = frag;
2444 TI_INC(frag, TI_TX_RING_CNT);
2445 cnt++;
2446 }
2447
2448 if (i < dmamap->dm_nsegs)
2449 return(ENOBUFS);
2450
2451 if (frag == sc->ti_tx_saved_considx)
2452 return(ENOBUFS);
2453
2454 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2455
2456 /* Sync the packet's DMA map. */
2457 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2458 BUS_DMASYNC_PREWRITE);
2459
2460 /* Sync the descriptors we are using. */
2461 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2462
2463 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2464 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2465 sc->txdma[cur] = dma;
2466 sc->ti_txcnt += cnt;
2467
2468 *txidx = frag;
2469
2470 return(0);
2471 }
2472
2473 /*
2474 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2475 * to the mbuf data regions directly in the transmit descriptors.
2476 */
2477 static void ti_start(ifp)
2478 struct ifnet *ifp;
2479 {
2480 struct ti_softc *sc;
2481 struct mbuf *m_head = NULL;
2482 u_int32_t prodidx = 0;
2483
2484 sc = ifp->if_softc;
2485
2486 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2487
2488 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2489 IFQ_POLL(&ifp->if_snd, m_head);
2490 if (m_head == NULL)
2491 break;
2492
2493 /*
2494 * Pack the data into the transmit ring. If we
2495 * don't have room, set the OACTIVE flag and wait
2496 * for the NIC to drain the ring.
2497 */
2498 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2499 ifp->if_flags |= IFF_OACTIVE;
2500 break;
2501 }
2502
2503 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2504
2505 /*
2506 * If there's a BPF listener, bounce a copy of this frame
2507 * to him.
2508 */
2509 #if NBPFILTER > 0
2510 if (ifp->if_bpf)
2511 bpf_mtap(ifp->if_bpf, m_head);
2512 #endif
2513 }
2514
2515 /* Transmit */
2516 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2517
2518 /*
2519 * Set a timeout in case the chip goes out to lunch.
2520 */
2521 ifp->if_timer = 5;
2522
2523 return;
2524 }
2525
2526 static void ti_init(xsc)
2527 void *xsc;
2528 {
2529 struct ti_softc *sc = xsc;
2530 int s;
2531
2532 s = splnet();
2533
2534 /* Cancel pending I/O and flush buffers. */
2535 ti_stop(sc);
2536
2537 /* Init the gen info block, ring control blocks and firmware. */
2538 if (ti_gibinit(sc)) {
2539 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2540 splx(s);
2541 return;
2542 }
2543
2544 splx(s);
2545
2546 return;
2547 }
2548
2549 static void ti_init2(sc)
2550 struct ti_softc *sc;
2551 {
2552 struct ti_cmd_desc cmd;
2553 struct ifnet *ifp;
2554 u_int8_t *m;
2555 struct ifmedia *ifm;
2556 int tmp;
2557
2558 ifp = &sc->ethercom.ec_if;
2559
2560 /* Specify MTU and interface index. */
2561 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2562
2563 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2564 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2565 tmp += ETHER_VLAN_ENCAP_LEN;
2566 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2567
2568 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2569
2570 /* Load our MAC address. */
2571 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2572 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2573 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2574 | (m[4] << 8) | m[5]);
2575 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2576
2577 /* Enable or disable promiscuous mode as needed. */
2578 if (ifp->if_flags & IFF_PROMISC) {
2579 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2580 } else {
2581 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2582 }
2583
2584 /* Program multicast filter. */
2585 ti_setmulti(sc);
2586
2587 /*
2588 * If this is a Tigon 1, we should tell the
2589 * firmware to use software packet filtering.
2590 */
2591 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2592 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2593 }
2594
2595 /* Init RX ring. */
2596 ti_init_rx_ring_std(sc);
2597
2598 /* Init jumbo RX ring. */
2599 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2600 ti_init_rx_ring_jumbo(sc);
2601
2602 /*
2603 * If this is a Tigon 2, we can also configure the
2604 * mini ring.
2605 */
2606 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2607 ti_init_rx_ring_mini(sc);
2608
2609 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2610 sc->ti_rx_saved_considx = 0;
2611
2612 /* Init TX ring. */
2613 ti_init_tx_ring(sc);
2614
2615 /* Tell firmware we're alive. */
2616 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2617
2618 /* Enable host interrupts. */
2619 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2620
2621 ifp->if_flags |= IFF_RUNNING;
2622 ifp->if_flags &= ~IFF_OACTIVE;
2623
2624 /*
2625 * Make sure to set media properly. We have to do this
2626 * here since we have to issue commands in order to set
2627 * the link negotiation and we can't issue commands until
2628 * the firmware is running.
2629 */
2630 ifm = &sc->ifmedia;
2631 tmp = ifm->ifm_media;
2632 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2633 ti_ifmedia_upd(ifp);
2634 ifm->ifm_media = tmp;
2635
2636 return;
2637 }
2638
2639 /*
2640 * Set media options.
2641 */
2642 static int ti_ifmedia_upd(ifp)
2643 struct ifnet *ifp;
2644 {
2645 struct ti_softc *sc;
2646 struct ifmedia *ifm;
2647 struct ti_cmd_desc cmd;
2648
2649 sc = ifp->if_softc;
2650 ifm = &sc->ifmedia;
2651
2652 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2653 return(EINVAL);
2654
2655 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2656 case IFM_AUTO:
2657 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2658 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2659 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2660 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2661 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2662 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2663 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2664 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2665 break;
2666 case IFM_1000_SX:
2667 case IFM_1000_T:
2668 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2669 CSR_WRITE_4(sc, TI_GCR_GLINK,
2670 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2671 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2672 } else {
2673 CSR_WRITE_4(sc, TI_GCR_GLINK,
2674 TI_GLNK_PREF|TI_GLNK_1000MB|
2675 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2676 }
2677 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2678 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2679 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2680 break;
2681 case IFM_100_FX:
2682 case IFM_10_FL:
2683 case IFM_100_TX:
2684 case IFM_10_T:
2685 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2686 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2687 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2688 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2689 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2690 } else {
2691 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2692 }
2693 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2694 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2695 } else {
2696 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2697 }
2698 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2699 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2700 break;
2701 }
2702
2703 sc->ethercom.ec_if.if_baudrate =
2704 ifmedia_baudrate(ifm->ifm_media);
2705
2706 return(0);
2707 }
2708
2709 /*
2710 * Report current media status.
2711 */
2712 static void ti_ifmedia_sts(ifp, ifmr)
2713 struct ifnet *ifp;
2714 struct ifmediareq *ifmr;
2715 {
2716 struct ti_softc *sc;
2717 u_int32_t media = 0;
2718
2719 sc = ifp->if_softc;
2720
2721 ifmr->ifm_status = IFM_AVALID;
2722 ifmr->ifm_active = IFM_ETHER;
2723
2724 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2725 return;
2726
2727 ifmr->ifm_status |= IFM_ACTIVE;
2728
2729 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2730 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2731 if (sc->ti_copper)
2732 ifmr->ifm_active |= IFM_1000_T;
2733 else
2734 ifmr->ifm_active |= IFM_1000_SX;
2735 if (media & TI_GLNK_FULL_DUPLEX)
2736 ifmr->ifm_active |= IFM_FDX;
2737 else
2738 ifmr->ifm_active |= IFM_HDX;
2739 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2740 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2741 if (sc->ti_copper) {
2742 if (media & TI_LNK_100MB)
2743 ifmr->ifm_active |= IFM_100_TX;
2744 if (media & TI_LNK_10MB)
2745 ifmr->ifm_active |= IFM_10_T;
2746 } else {
2747 if (media & TI_LNK_100MB)
2748 ifmr->ifm_active |= IFM_100_FX;
2749 if (media & TI_LNK_10MB)
2750 ifmr->ifm_active |= IFM_10_FL;
2751 }
2752 if (media & TI_LNK_FULL_DUPLEX)
2753 ifmr->ifm_active |= IFM_FDX;
2754 if (media & TI_LNK_HALF_DUPLEX)
2755 ifmr->ifm_active |= IFM_HDX;
2756 }
2757
2758 sc->ethercom.ec_if.if_baudrate =
2759 ifmedia_baudrate(sc->ifmedia.ifm_media);
2760
2761 return;
2762 }
2763
2764 static int
2765 ti_ether_ioctl(ifp, cmd, data)
2766 struct ifnet *ifp;
2767 u_long cmd;
2768 caddr_t data;
2769 {
2770 struct ifaddr *ifa = (struct ifaddr *) data;
2771 struct ti_softc *sc = ifp->if_softc;
2772
2773 if ((ifp->if_flags & IFF_UP) == 0) {
2774 ifp->if_flags |= IFF_UP;
2775 ti_init(sc);
2776 }
2777
2778 switch (cmd) {
2779 case SIOCSIFADDR:
2780
2781 switch (ifa->ifa_addr->sa_family) {
2782 #ifdef INET
2783 case AF_INET:
2784 arp_ifinit(ifp, ifa);
2785 break;
2786 #endif
2787 #ifdef NS
2788 case AF_NS:
2789 {
2790 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2791
2792 if (ns_nullhost(*ina))
2793 ina->x_host = *(union ns_host *)
2794 LLADDR(ifp->if_sadl);
2795 else
2796 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2797 ifp->if_addrlen);
2798 break;
2799 }
2800 #endif
2801 default:
2802 break;
2803 }
2804 break;
2805
2806 default:
2807 return (EINVAL);
2808 }
2809
2810 return (0);
2811 }
2812
2813 static int ti_ioctl(ifp, command, data)
2814 struct ifnet *ifp;
2815 u_long command;
2816 caddr_t data;
2817 {
2818 struct ti_softc *sc = ifp->if_softc;
2819 struct ifreq *ifr = (struct ifreq *) data;
2820 int s, error = 0;
2821 struct ti_cmd_desc cmd;
2822
2823 s = splnet();
2824
2825 switch(command) {
2826 case SIOCSIFADDR:
2827 case SIOCGIFADDR:
2828 error = ti_ether_ioctl(ifp, command, data);
2829 break;
2830 case SIOCSIFMTU:
2831 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2832 error = EINVAL;
2833 else {
2834 ifp->if_mtu = ifr->ifr_mtu;
2835 ti_init(sc);
2836 }
2837 break;
2838 case SIOCSIFFLAGS:
2839 if (ifp->if_flags & IFF_UP) {
2840 /*
2841 * If only the state of the PROMISC flag changed,
2842 * then just use the 'set promisc mode' command
2843 * instead of reinitializing the entire NIC. Doing
2844 * a full re-init means reloading the firmware and
2845 * waiting for it to start up, which may take a
2846 * second or two.
2847 */
2848 if (ifp->if_flags & IFF_RUNNING &&
2849 ifp->if_flags & IFF_PROMISC &&
2850 !(sc->ti_if_flags & IFF_PROMISC)) {
2851 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2852 TI_CMD_CODE_PROMISC_ENB, 0);
2853 } else if (ifp->if_flags & IFF_RUNNING &&
2854 !(ifp->if_flags & IFF_PROMISC) &&
2855 sc->ti_if_flags & IFF_PROMISC) {
2856 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2857 TI_CMD_CODE_PROMISC_DIS, 0);
2858 } else
2859 ti_init(sc);
2860 } else {
2861 if (ifp->if_flags & IFF_RUNNING) {
2862 ti_stop(sc);
2863 }
2864 }
2865 sc->ti_if_flags = ifp->if_flags;
2866 error = 0;
2867 break;
2868 case SIOCADDMULTI:
2869 case SIOCDELMULTI:
2870 error = (command == SIOCADDMULTI) ?
2871 ether_addmulti(ifr, &sc->ethercom) :
2872 ether_delmulti(ifr, &sc->ethercom);
2873 if (error == ENETRESET) {
2874 if (ifp->if_flags & IFF_RUNNING)
2875 ti_setmulti(sc);
2876 error = 0;
2877 }
2878 break;
2879 case SIOCSIFMEDIA:
2880 case SIOCGIFMEDIA:
2881 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2882 break;
2883 default:
2884 error = EINVAL;
2885 break;
2886 }
2887
2888 (void)splx(s);
2889
2890 return(error);
2891 }
2892
2893 static void ti_watchdog(ifp)
2894 struct ifnet *ifp;
2895 {
2896 struct ti_softc *sc;
2897
2898 sc = ifp->if_softc;
2899
2900 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2901 ti_stop(sc);
2902 ti_init(sc);
2903
2904 ifp->if_oerrors++;
2905
2906 return;
2907 }
2908
2909 /*
2910 * Stop the adapter and free any mbufs allocated to the
2911 * RX and TX lists.
2912 */
2913 static void ti_stop(sc)
2914 struct ti_softc *sc;
2915 {
2916 struct ifnet *ifp;
2917 struct ti_cmd_desc cmd;
2918
2919 ifp = &sc->ethercom.ec_if;
2920
2921 /* Disable host interrupts. */
2922 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2923 /*
2924 * Tell firmware we're shutting down.
2925 */
2926 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2927
2928 /* Halt and reinitialize. */
2929 ti_chipinit(sc);
2930 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2931 ti_chipinit(sc);
2932
2933 /* Free the RX lists. */
2934 ti_free_rx_ring_std(sc);
2935
2936 /* Free jumbo RX list. */
2937 ti_free_rx_ring_jumbo(sc);
2938
2939 /* Free mini RX list. */
2940 ti_free_rx_ring_mini(sc);
2941
2942 /* Free TX buffers. */
2943 ti_free_tx_ring(sc);
2944
2945 sc->ti_ev_prodidx.ti_idx = 0;
2946 sc->ti_return_prodidx.ti_idx = 0;
2947 sc->ti_tx_considx.ti_idx = 0;
2948 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2949
2950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2951
2952 return;
2953 }
2954
2955 /*
2956 * Stop all chip I/O so that the kernel's probe routines don't
2957 * get confused by errant DMAs when rebooting.
2958 */
2959 static void ti_shutdown(v)
2960 void *v;
2961 {
2962 struct ti_softc *sc = v;
2963
2964 ti_chipinit(sc);
2965
2966 return;
2967 }
2968