if_ti.c revision 1.49 1 /* $NetBSD: if_ti.c,v 1.49 2002/07/16 20:20:01 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.49 2002/07/16 20:20:01 bouyer Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe __P((struct device *, struct cfdata *, void *));
158 static void ti_attach __P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1 __P((struct ti_softc *));
161 static void ti_txeof_tigon2 __P((struct ti_softc *));
162 static void ti_rxeof __P((struct ti_softc *));
163
164 static void ti_stats_update __P((struct ti_softc *));
165 static int ti_encap_tigon1 __P((struct ti_softc *, struct mbuf *,
166 u_int32_t *));
167 static int ti_encap_tigon2 __P((struct ti_softc *, struct mbuf *,
168 u_int32_t *));
169
170 static int ti_intr __P((void *));
171 static void ti_start __P((struct ifnet *));
172 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
173 static void ti_init __P((void *));
174 static void ti_init2 __P((struct ti_softc *));
175 static void ti_stop __P((struct ti_softc *));
176 static void ti_watchdog __P((struct ifnet *));
177 static int ti_ifmedia_upd __P((struct ifnet *));
178 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
179
180 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
181 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
182 int, u_int8_t *));
183 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
184
185 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti __P((struct ti_softc *));
188
189 static void ti_mem __P((struct ti_softc *, u_int32_t,
190 u_int32_t, caddr_t));
191 static void ti_loadfw __P((struct ti_softc *));
192 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
194 caddr_t, int));
195 static void ti_handle_events __P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
197 static void *ti_jalloc __P((struct ti_softc *));
198 static void ti_jfree __P((struct mbuf *, caddr_t, u_int, void *));
199 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std __P((struct ti_softc *));
203 static void ti_free_rx_ring_std __P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
206 static int ti_init_rx_ring_mini __P((struct ti_softc *));
207 static void ti_free_rx_ring_mini __P((struct ti_softc *));
208 static void ti_free_tx_ring __P((struct ti_softc *));
209 static int ti_init_tx_ring __P((struct ti_softc *));
210
211 static int ti_64bitslot_war __P((struct ti_softc *));
212 static int ti_chipinit __P((struct ti_softc *));
213 static int ti_gibinit __P((struct ti_softc *));
214
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216
217 struct cfattach ti_ca = {
218 sizeof(struct ti_softc), ti_probe, ti_attach
219 };
220
221 /*
222 * Send an instruction or address to the EEPROM, check for ACK.
223 */
224 static u_int32_t ti_eeprom_putbyte(sc, byte)
225 struct ti_softc *sc;
226 int byte;
227 {
228 int i, ack = 0;
229
230 /*
231 * Make sure we're in TX mode.
232 */
233 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
234
235 /*
236 * Feed in each bit and stobe the clock.
237 */
238 for (i = 0x80; i; i >>= 1) {
239 if (byte & i) {
240 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
241 } else {
242 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243 }
244 DELAY(1);
245 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246 DELAY(1);
247 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 }
249
250 /*
251 * Turn off TX mode.
252 */
253 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
254
255 /*
256 * Check for ack.
257 */
258 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
259 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
260 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261
262 return(ack);
263 }
264
265 /*
266 * Read a byte of data stored in the EEPROM at address 'addr.'
267 * We have to send two address bytes since the EEPROM can hold
268 * more than 256 bytes of data.
269 */
270 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
271 struct ti_softc *sc;
272 int addr;
273 u_int8_t *dest;
274 {
275 int i;
276 u_int8_t byte = 0;
277
278 EEPROM_START;
279
280 /*
281 * Send write control code to EEPROM.
282 */
283 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
284 printf("%s: failed to send write command, status: %x\n",
285 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 return(1);
287 }
288
289 /*
290 * Send first byte of address of byte we want to read.
291 */
292 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
293 printf("%s: failed to send address, status: %x\n",
294 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
295 return(1);
296 }
297 /*
298 * Send second byte address of byte we want to read.
299 */
300 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
301 printf("%s: failed to send address, status: %x\n",
302 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 return(1);
304 }
305
306 EEPROM_STOP;
307 EEPROM_START;
308 /*
309 * Send read control code to EEPROM.
310 */
311 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
312 printf("%s: failed to send read command, status: %x\n",
313 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
314 return(1);
315 }
316
317 /*
318 * Start reading bits from EEPROM.
319 */
320 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
321 for (i = 0x80; i; i >>= 1) {
322 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
323 DELAY(1);
324 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
325 byte |= i;
326 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327 DELAY(1);
328 }
329
330 EEPROM_STOP;
331
332 /*
333 * No ACK generated for read, so just return byte.
334 */
335
336 *dest = byte;
337
338 return(0);
339 }
340
341 /*
342 * Read a sequence of bytes from the EEPROM.
343 */
344 static int ti_read_eeprom(sc, dest, off, cnt)
345 struct ti_softc *sc;
346 caddr_t dest;
347 int off;
348 int cnt;
349 {
350 int err = 0, i;
351 u_int8_t byte = 0;
352
353 for (i = 0; i < cnt; i++) {
354 err = ti_eeprom_getbyte(sc, off + i, &byte);
355 if (err)
356 break;
357 *(dest + i) = byte;
358 }
359
360 return(err ? 1 : 0);
361 }
362
363 /*
364 * NIC memory access function. Can be used to either clear a section
365 * of NIC local memory or (if buf is non-NULL) copy data into it.
366 */
367 static void ti_mem(sc, addr, len, buf)
368 struct ti_softc *sc;
369 u_int32_t addr, len;
370 caddr_t buf;
371 {
372 int segptr, segsize, cnt;
373 caddr_t ptr;
374
375 segptr = addr;
376 cnt = len;
377 ptr = buf;
378
379 while(cnt) {
380 if (cnt < TI_WINLEN)
381 segsize = cnt;
382 else
383 segsize = TI_WINLEN - (segptr % TI_WINLEN);
384 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
385 if (buf == NULL) {
386 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
387 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
388 segsize / 4);
389 } else {
390 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
391 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
392 (u_int32_t *)ptr, segsize / 4);
393 ptr += segsize;
394 }
395 segptr += segsize;
396 cnt -= segsize;
397 }
398
399 return;
400 }
401
402 /*
403 * Load firmware image into the NIC. Check that the firmware revision
404 * is acceptable and see if we want the firmware for the Tigon 1 or
405 * Tigon 2.
406 */
407 static void ti_loadfw(sc)
408 struct ti_softc *sc;
409 {
410 switch(sc->ti_hwrev) {
411 case TI_HWREV_TIGON:
412 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
413 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
414 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
415 printf("%s: firmware revision mismatch; want "
416 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
417 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
418 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
419 tigonFwReleaseMinor, tigonFwReleaseFix);
420 return;
421 }
422 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
423 (caddr_t)tigonFwText);
424 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
425 (caddr_t)tigonFwData);
426 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
427 (caddr_t)tigonFwRodata);
428 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
429 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
430 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
431 break;
432 case TI_HWREV_TIGON_II:
433 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
434 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
435 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
436 printf("%s: firmware revision mismatch; want "
437 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
438 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
439 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
440 tigon2FwReleaseMinor, tigon2FwReleaseFix);
441 return;
442 }
443 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
444 (caddr_t)tigon2FwText);
445 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
446 (caddr_t)tigon2FwData);
447 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
448 (caddr_t)tigon2FwRodata);
449 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
450 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
451 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
452 break;
453 default:
454 printf("%s: can't load firmware: unknown hardware rev\n",
455 sc->sc_dev.dv_xname);
456 break;
457 }
458
459 return;
460 }
461
462 /*
463 * Send the NIC a command via the command ring.
464 */
465 static void ti_cmd(sc, cmd)
466 struct ti_softc *sc;
467 struct ti_cmd_desc *cmd;
468 {
469 u_int32_t index;
470
471 index = sc->ti_cmd_saved_prodidx;
472 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
473 TI_INC(index, TI_CMD_RING_CNT);
474 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
475 sc->ti_cmd_saved_prodidx = index;
476
477 return;
478 }
479
480 /*
481 * Send the NIC an extended command. The 'len' parameter specifies the
482 * number of command slots to include after the initial command.
483 */
484 static void ti_cmd_ext(sc, cmd, arg, len)
485 struct ti_softc *sc;
486 struct ti_cmd_desc *cmd;
487 caddr_t arg;
488 int len;
489 {
490 u_int32_t index;
491 int i;
492
493 index = sc->ti_cmd_saved_prodidx;
494 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
495 TI_INC(index, TI_CMD_RING_CNT);
496 for (i = 0; i < len; i++) {
497 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
498 *(u_int32_t *)(&arg[i * 4]));
499 TI_INC(index, TI_CMD_RING_CNT);
500 }
501 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
502 sc->ti_cmd_saved_prodidx = index;
503
504 return;
505 }
506
507 /*
508 * Handle events that have triggered interrupts.
509 */
510 static void ti_handle_events(sc)
511 struct ti_softc *sc;
512 {
513 struct ti_event_desc *e;
514
515 if (sc->ti_rdata->ti_event_ring == NULL)
516 return;
517
518 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
519 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
520 switch(e->ti_event) {
521 case TI_EV_LINKSTAT_CHANGED:
522 sc->ti_linkstat = e->ti_code;
523 if (e->ti_code == TI_EV_CODE_LINK_UP)
524 printf("%s: 10/100 link up\n",
525 sc->sc_dev.dv_xname);
526 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
527 printf("%s: gigabit link up\n",
528 sc->sc_dev.dv_xname);
529 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
530 printf("%s: link down\n",
531 sc->sc_dev.dv_xname);
532 break;
533 case TI_EV_ERROR:
534 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
535 printf("%s: invalid command\n",
536 sc->sc_dev.dv_xname);
537 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
538 printf("%s: unknown command\n",
539 sc->sc_dev.dv_xname);
540 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
541 printf("%s: bad config data\n",
542 sc->sc_dev.dv_xname);
543 break;
544 case TI_EV_FIRMWARE_UP:
545 ti_init2(sc);
546 break;
547 case TI_EV_STATS_UPDATED:
548 ti_stats_update(sc);
549 break;
550 case TI_EV_RESET_JUMBO_RING:
551 case TI_EV_MCAST_UPDATED:
552 /* Who cares. */
553 break;
554 default:
555 printf("%s: unknown event: %d\n",
556 sc->sc_dev.dv_xname, e->ti_event);
557 break;
558 }
559 /* Advance the consumer index. */
560 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
561 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
562 }
563
564 return;
565 }
566
567 /*
568 * Memory management for the jumbo receive ring is a pain in the
569 * butt. We need to allocate at least 9018 bytes of space per frame,
570 * _and_ it has to be contiguous (unless you use the extended
571 * jumbo descriptor format). Using malloc() all the time won't
572 * work: malloc() allocates memory in powers of two, which means we
573 * would end up wasting a considerable amount of space by allocating
574 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
575 * to do our own memory management.
576 *
577 * The driver needs to allocate a contiguous chunk of memory at boot
578 * time. We then chop this up ourselves into 9K pieces and use them
579 * as external mbuf storage.
580 *
581 * One issue here is how much memory to allocate. The jumbo ring has
582 * 256 slots in it, but at 9K per slot than can consume over 2MB of
583 * RAM. This is a bit much, especially considering we also need
584 * RAM for the standard ring and mini ring (on the Tigon 2). To
585 * save space, we only actually allocate enough memory for 64 slots
586 * by default, which works out to between 500 and 600K. This can
587 * be tuned by changing a #define in if_tireg.h.
588 */
589
590 static int ti_alloc_jumbo_mem(sc)
591 struct ti_softc *sc;
592 {
593 caddr_t ptr;
594 int i;
595 struct ti_jpool_entry *entry;
596 bus_dma_segment_t dmaseg;
597 int error, dmanseg;
598
599 /* Grab a big chunk o' storage. */
600 if ((error = bus_dmamem_alloc(sc->sc_dmat,
601 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
602 BUS_DMA_NOWAIT)) != 0) {
603 printf("%s: can't allocate jumbo buffer, error = %d\n",
604 sc->sc_dev.dv_xname, error);
605 return (error);
606 }
607
608 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
609 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
610 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
611 printf("%s: can't map jumbo buffer, error = %d\n",
612 sc->sc_dev.dv_xname, error);
613 return (error);
614 }
615
616 if ((error = bus_dmamap_create(sc->sc_dmat,
617 TI_JMEM, 1,
618 TI_JMEM, 0, BUS_DMA_NOWAIT,
619 &sc->jumbo_dmamap)) != 0) {
620 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
621 sc->sc_dev.dv_xname, error);
622 return (error);
623 }
624
625 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
626 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
627 BUS_DMA_NOWAIT)) != 0) {
628 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
629 sc->sc_dev.dv_xname, error);
630 return (error);
631 }
632 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
633
634 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
635 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
636
637 /*
638 * Now divide it up into 9K pieces and save the addresses
639 * in an array.
640 */
641 ptr = sc->ti_cdata.ti_jumbo_buf;
642 for (i = 0; i < TI_JSLOTS; i++) {
643 sc->ti_cdata.ti_jslots[i] = ptr;
644 ptr += TI_JLEN;
645 entry = malloc(sizeof(struct ti_jpool_entry),
646 M_DEVBUF, M_NOWAIT);
647 if (entry == NULL) {
648 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
649 sc->ti_cdata.ti_jumbo_buf = NULL;
650 printf("%s: no memory for jumbo "
651 "buffer queue!\n", sc->sc_dev.dv_xname);
652 return(ENOBUFS);
653 }
654 entry->slot = i;
655 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
656 jpool_entries);
657 }
658
659 return(0);
660 }
661
662 /*
663 * Allocate a jumbo buffer.
664 */
665 static void *ti_jalloc(sc)
666 struct ti_softc *sc;
667 {
668 struct ti_jpool_entry *entry;
669
670 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
671
672 if (entry == NULL) {
673 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
674 return(NULL);
675 }
676
677 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
678 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
679 return(sc->ti_cdata.ti_jslots[entry->slot]);
680 }
681
682 /*
683 * Release a jumbo buffer.
684 */
685 static void ti_jfree(m, buf, size, arg)
686 struct mbuf *m;
687 caddr_t buf;
688 u_int size;
689 void *arg;
690 {
691 struct ti_softc *sc;
692 int i, s;
693 struct ti_jpool_entry *entry;
694
695 /* Extract the softc struct pointer. */
696 sc = (struct ti_softc *)arg;
697
698 if (sc == NULL)
699 panic("ti_jfree: didn't get softc pointer!");
700
701 /* calculate the slot this buffer belongs to */
702
703 i = ((caddr_t)buf
704 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
705
706 if ((i < 0) || (i >= TI_JSLOTS))
707 panic("ti_jfree: asked to free buffer that we don't manage!");
708
709 s = splvm();
710 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
711 if (entry == NULL)
712 panic("ti_jfree: buffer not in use!");
713 entry->slot = i;
714 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
715 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
716
717 if (__predict_true(m != NULL))
718 pool_cache_put(&mbpool_cache, m);
719 splx(s);
720 }
721
722
723 /*
724 * Intialize a standard receive ring descriptor.
725 */
726 static int ti_newbuf_std(sc, i, m, dmamap)
727 struct ti_softc *sc;
728 int i;
729 struct mbuf *m;
730 bus_dmamap_t dmamap; /* required if (m != NULL) */
731 {
732 struct mbuf *m_new = NULL;
733 struct ti_rx_desc *r;
734 int error;
735
736 if (dmamap == NULL) {
737 /* if (m) panic() */
738
739 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
740 MCLBYTES, 0, BUS_DMA_NOWAIT,
741 &dmamap)) != 0) {
742 printf("%s: can't create recv map, error = %d\n",
743 sc->sc_dev.dv_xname, error);
744 return(ENOMEM);
745 }
746 }
747 sc->std_dmamap[i] = dmamap;
748
749 if (m == NULL) {
750 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
751 if (m_new == NULL) {
752 printf("%s: mbuf allocation failed "
753 "-- packet dropped!\n", sc->sc_dev.dv_xname);
754 return(ENOBUFS);
755 }
756
757 MCLGET(m_new, M_DONTWAIT);
758 if (!(m_new->m_flags & M_EXT)) {
759 printf("%s: cluster allocation failed "
760 "-- packet dropped!\n", sc->sc_dev.dv_xname);
761 m_freem(m_new);
762 return(ENOBUFS);
763 }
764 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
765 m_adj(m_new, ETHER_ALIGN);
766
767 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
768 mtod(m_new, caddr_t), m_new->m_len, NULL,
769 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
770 printf("%s: can't load recv map, error = %d\n",
771 sc->sc_dev.dv_xname, error);
772 return (ENOMEM);
773 }
774 } else {
775 m_new = m;
776 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
777 m_new->m_data = m_new->m_ext.ext_buf;
778 m_adj(m_new, ETHER_ALIGN);
779
780 /* reuse the dmamap */
781 }
782
783 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
784 r = &sc->ti_rdata->ti_rx_std_ring[i];
785 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
786 r->ti_type = TI_BDTYPE_RECV_BD;
787 r->ti_flags = 0;
788 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
789 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
790 if (sc->ethercom.ec_if.if_capenable &
791 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
792 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
793 r->ti_len = m_new->m_len; /* == ds_len */
794 r->ti_idx = i;
795
796 return(0);
797 }
798
799 /*
800 * Intialize a mini receive ring descriptor. This only applies to
801 * the Tigon 2.
802 */
803 static int ti_newbuf_mini(sc, i, m, dmamap)
804 struct ti_softc *sc;
805 int i;
806 struct mbuf *m;
807 bus_dmamap_t dmamap; /* required if (m != NULL) */
808 {
809 struct mbuf *m_new = NULL;
810 struct ti_rx_desc *r;
811 int error;
812
813 if (dmamap == NULL) {
814 /* if (m) panic() */
815
816 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
817 MHLEN, 0, BUS_DMA_NOWAIT,
818 &dmamap)) != 0) {
819 printf("%s: can't create recv map, error = %d\n",
820 sc->sc_dev.dv_xname, error);
821 return(ENOMEM);
822 }
823 }
824 sc->mini_dmamap[i] = dmamap;
825
826 if (m == NULL) {
827 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
828 if (m_new == NULL) {
829 printf("%s: mbuf allocation failed "
830 "-- packet dropped!\n", sc->sc_dev.dv_xname);
831 return(ENOBUFS);
832 }
833 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
834 m_adj(m_new, ETHER_ALIGN);
835
836 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
837 mtod(m_new, caddr_t), m_new->m_len, NULL,
838 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
839 printf("%s: can't load recv map, error = %d\n",
840 sc->sc_dev.dv_xname, error);
841 return (ENOMEM);
842 }
843 } else {
844 m_new = m;
845 m_new->m_data = m_new->m_pktdat;
846 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
847 m_adj(m_new, ETHER_ALIGN);
848
849 /* reuse the dmamap */
850 }
851
852 r = &sc->ti_rdata->ti_rx_mini_ring[i];
853 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
854 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
855 r->ti_type = TI_BDTYPE_RECV_BD;
856 r->ti_flags = TI_BDFLAG_MINI_RING;
857 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
858 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
859 if (sc->ethercom.ec_if.if_capenable &
860 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
861 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
862 r->ti_len = m_new->m_len; /* == ds_len */
863 r->ti_idx = i;
864
865 return(0);
866 }
867
868 /*
869 * Initialize a jumbo receive ring descriptor. This allocates
870 * a jumbo buffer from the pool managed internally by the driver.
871 */
872 static int ti_newbuf_jumbo(sc, i, m)
873 struct ti_softc *sc;
874 int i;
875 struct mbuf *m;
876 {
877 struct mbuf *m_new = NULL;
878 struct ti_rx_desc *r;
879
880 if (m == NULL) {
881 caddr_t *buf = NULL;
882
883 /* Allocate the mbuf. */
884 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
885 if (m_new == NULL) {
886 printf("%s: mbuf allocation failed "
887 "-- packet dropped!\n", sc->sc_dev.dv_xname);
888 return(ENOBUFS);
889 }
890
891 /* Allocate the jumbo buffer */
892 buf = ti_jalloc(sc);
893 if (buf == NULL) {
894 m_freem(m_new);
895 printf("%s: jumbo allocation failed "
896 "-- packet dropped!\n", sc->sc_dev.dv_xname);
897 return(ENOBUFS);
898 }
899
900 /* Attach the buffer to the mbuf. */
901 MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
902 M_DEVBUF, ti_jfree, sc);
903 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
904 } else {
905 m_new = m;
906 m_new->m_data = m_new->m_ext.ext_buf;
907 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
908 }
909
910 m_adj(m_new, ETHER_ALIGN);
911 /* Set up the descriptor. */
912 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
913 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
914 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
915 ((caddr_t)mtod(m_new, caddr_t)
916 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
917 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
918 r->ti_flags = TI_BDFLAG_JUMBO_RING;
919 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
920 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
921 if (sc->ethercom.ec_if.if_capenable &
922 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
923 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
924 r->ti_len = m_new->m_len;
925 r->ti_idx = i;
926
927 return(0);
928 }
929
930 /*
931 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
932 * that's 1MB or memory, which is a lot. For now, we fill only the first
933 * 256 ring entries and hope that our CPU is fast enough to keep up with
934 * the NIC.
935 */
936 static int ti_init_rx_ring_std(sc)
937 struct ti_softc *sc;
938 {
939 int i;
940 struct ti_cmd_desc cmd;
941
942 for (i = 0; i < TI_SSLOTS; i++) {
943 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
944 return(ENOBUFS);
945 };
946
947 TI_UPDATE_STDPROD(sc, i - 1);
948 sc->ti_std = i - 1;
949
950 return(0);
951 }
952
953 static void ti_free_rx_ring_std(sc)
954 struct ti_softc *sc;
955 {
956 int i;
957
958 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
959 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
960 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
961 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
962
963 /* if (sc->std_dmamap[i] == 0) panic() */
964 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
965 sc->std_dmamap[i] = 0;
966 }
967 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
968 sizeof(struct ti_rx_desc));
969 }
970
971 return;
972 }
973
974 static int ti_init_rx_ring_jumbo(sc)
975 struct ti_softc *sc;
976 {
977 int i;
978 struct ti_cmd_desc cmd;
979
980 for (i = 0; i < (TI_JSLOTS - 20); i++) {
981 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
982 return(ENOBUFS);
983 };
984
985 TI_UPDATE_JUMBOPROD(sc, i - 1);
986 sc->ti_jumbo = i - 1;
987
988 return(0);
989 }
990
991 static void ti_free_rx_ring_jumbo(sc)
992 struct ti_softc *sc;
993 {
994 int i;
995
996 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
997 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
998 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
999 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1000 }
1001 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1002 sizeof(struct ti_rx_desc));
1003 }
1004
1005 return;
1006 }
1007
1008 static int ti_init_rx_ring_mini(sc)
1009 struct ti_softc *sc;
1010 {
1011 int i;
1012
1013 for (i = 0; i < TI_MSLOTS; i++) {
1014 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1015 return(ENOBUFS);
1016 };
1017
1018 TI_UPDATE_MINIPROD(sc, i - 1);
1019 sc->ti_mini = i - 1;
1020
1021 return(0);
1022 }
1023
1024 static void ti_free_rx_ring_mini(sc)
1025 struct ti_softc *sc;
1026 {
1027 int i;
1028
1029 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1030 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1031 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1032 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1033
1034 /* if (sc->mini_dmamap[i] == 0) panic() */
1035 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1036 sc->mini_dmamap[i] = 0;
1037 }
1038 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1039 sizeof(struct ti_rx_desc));
1040 }
1041
1042 return;
1043 }
1044
1045 static void ti_free_tx_ring(sc)
1046 struct ti_softc *sc;
1047 {
1048 int i;
1049 struct txdmamap_pool_entry *dma;
1050
1051 if (sc->ti_rdata->ti_tx_ring == NULL)
1052 return;
1053
1054 for (i = 0; i < TI_TX_RING_CNT; i++) {
1055 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1056 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1057 sc->ti_cdata.ti_tx_chain[i] = NULL;
1058
1059 /* if (sc->txdma[i] == 0) panic() */
1060 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1061 link);
1062 sc->txdma[i] = 0;
1063 }
1064 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1065 sizeof(struct ti_tx_desc));
1066 }
1067
1068 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1069 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1070 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1071 free(dma, M_DEVBUF);
1072 }
1073
1074 return;
1075 }
1076
1077 static int ti_init_tx_ring(sc)
1078 struct ti_softc *sc;
1079 {
1080 int i, error;
1081 bus_dmamap_t dmamap;
1082 struct txdmamap_pool_entry *dma;
1083
1084 sc->ti_txcnt = 0;
1085 sc->ti_tx_saved_considx = 0;
1086 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1087
1088 SIMPLEQ_INIT(&sc->txdma_list);
1089 for (i = 0; i < TI_RSLOTS; i++) {
1090 /* I've seen mbufs with 30 fragments. */
1091 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1092 40, ETHER_MAX_LEN_JUMBO, 0,
1093 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1094 printf("%s: can't create tx map, error = %d\n",
1095 sc->sc_dev.dv_xname, error);
1096 return(ENOMEM);
1097 }
1098 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1099 if (!dma) {
1100 printf("%s: can't alloc txdmamap_pool_entry\n",
1101 sc->sc_dev.dv_xname);
1102 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1103 return (ENOMEM);
1104 }
1105 dma->dmamap = dmamap;
1106 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1107 }
1108
1109 return(0);
1110 }
1111
1112 /*
1113 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1114 * but we have to support the old way too so that Tigon 1 cards will
1115 * work.
1116 */
1117 void ti_add_mcast(sc, addr)
1118 struct ti_softc *sc;
1119 struct ether_addr *addr;
1120 {
1121 struct ti_cmd_desc cmd;
1122 u_int16_t *m;
1123 u_int32_t ext[2] = {0, 0};
1124
1125 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1126
1127 switch(sc->ti_hwrev) {
1128 case TI_HWREV_TIGON:
1129 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1130 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1131 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1132 break;
1133 case TI_HWREV_TIGON_II:
1134 ext[0] = htons(m[0]);
1135 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1136 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1137 break;
1138 default:
1139 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1140 break;
1141 }
1142
1143 return;
1144 }
1145
1146 void ti_del_mcast(sc, addr)
1147 struct ti_softc *sc;
1148 struct ether_addr *addr;
1149 {
1150 struct ti_cmd_desc cmd;
1151 u_int16_t *m;
1152 u_int32_t ext[2] = {0, 0};
1153
1154 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1155
1156 switch(sc->ti_hwrev) {
1157 case TI_HWREV_TIGON:
1158 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1159 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1160 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1161 break;
1162 case TI_HWREV_TIGON_II:
1163 ext[0] = htons(m[0]);
1164 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1165 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1166 break;
1167 default:
1168 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1169 break;
1170 }
1171
1172 return;
1173 }
1174
1175 /*
1176 * Configure the Tigon's multicast address filter.
1177 *
1178 * The actual multicast table management is a bit of a pain, thanks to
1179 * slight brain damage on the part of both Alteon and us. With our
1180 * multicast code, we are only alerted when the multicast address table
1181 * changes and at that point we only have the current list of addresses:
1182 * we only know the current state, not the previous state, so we don't
1183 * actually know what addresses were removed or added. The firmware has
1184 * state, but we can't get our grubby mits on it, and there is no 'delete
1185 * all multicast addresses' command. Hence, we have to maintain our own
1186 * state so we know what addresses have been programmed into the NIC at
1187 * any given time.
1188 */
1189 static void ti_setmulti(sc)
1190 struct ti_softc *sc;
1191 {
1192 struct ifnet *ifp;
1193 struct ti_cmd_desc cmd;
1194 struct ti_mc_entry *mc;
1195 u_int32_t intrs;
1196 struct ether_multi *enm;
1197 struct ether_multistep step;
1198
1199 ifp = &sc->ethercom.ec_if;
1200
1201 /* Disable interrupts. */
1202 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1203 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1204
1205 /* First, zot all the existing filters. */
1206 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1207 ti_del_mcast(sc, &mc->mc_addr);
1208 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1209 free(mc, M_DEVBUF);
1210 }
1211
1212 /*
1213 * Remember all multicast addresses so that we can delete them
1214 * later. Punt if there is a range of addresses or memory shortage.
1215 */
1216 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1217 while (enm != NULL) {
1218 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1219 ETHER_ADDR_LEN) != 0)
1220 goto allmulti;
1221 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1222 M_NOWAIT)) == NULL)
1223 goto allmulti;
1224 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1225 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1226 ETHER_NEXT_MULTI(step, enm);
1227 }
1228
1229 /* Accept only programmed multicast addresses */
1230 ifp->if_flags &= ~IFF_ALLMULTI;
1231 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1232
1233 /* Now program new ones. */
1234 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1235 ti_add_mcast(sc, &mc->mc_addr);
1236
1237 /* Re-enable interrupts. */
1238 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1239
1240 return;
1241
1242 allmulti:
1243 /* No need to keep individual multicast addresses */
1244 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1245 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1246 free(mc, M_DEVBUF);
1247 }
1248
1249 /* Accept all multicast addresses */
1250 ifp->if_flags |= IFF_ALLMULTI;
1251 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1252
1253 /* Re-enable interrupts. */
1254 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1255 }
1256
1257 /*
1258 * Check to see if the BIOS has configured us for a 64 bit slot when
1259 * we aren't actually in one. If we detect this condition, we can work
1260 * around it on the Tigon 2 by setting a bit in the PCI state register,
1261 * but for the Tigon 1 we must give up and abort the interface attach.
1262 */
1263 static int ti_64bitslot_war(sc)
1264 struct ti_softc *sc;
1265 {
1266 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1267 CSR_WRITE_4(sc, 0x600, 0);
1268 CSR_WRITE_4(sc, 0x604, 0);
1269 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1270 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1271 if (sc->ti_hwrev == TI_HWREV_TIGON)
1272 return(EINVAL);
1273 else {
1274 TI_SETBIT(sc, TI_PCI_STATE,
1275 TI_PCISTATE_32BIT_BUS);
1276 return(0);
1277 }
1278 }
1279 }
1280
1281 return(0);
1282 }
1283
1284 /*
1285 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1286 * self-test results.
1287 */
1288 static int ti_chipinit(sc)
1289 struct ti_softc *sc;
1290 {
1291 u_int32_t cacheline;
1292 u_int32_t pci_writemax = 0;
1293
1294 /* Initialize link to down state. */
1295 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1296
1297 /* Set endianness before we access any non-PCI registers. */
1298 #if BYTE_ORDER == BIG_ENDIAN
1299 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1300 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1301 #else
1302 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1304 #endif
1305
1306 /* Check the ROM failed bit to see if self-tests passed. */
1307 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1308 printf("%s: board self-diagnostics failed!\n",
1309 sc->sc_dev.dv_xname);
1310 return(ENODEV);
1311 }
1312
1313 /* Halt the CPU. */
1314 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1315
1316 /* Figure out the hardware revision. */
1317 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1318 case TI_REV_TIGON_I:
1319 sc->ti_hwrev = TI_HWREV_TIGON;
1320 break;
1321 case TI_REV_TIGON_II:
1322 sc->ti_hwrev = TI_HWREV_TIGON_II;
1323 break;
1324 default:
1325 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1326 return(ENODEV);
1327 }
1328
1329 /* Do special setup for Tigon 2. */
1330 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1332 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1333 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1334 }
1335
1336 /* Set up the PCI state register. */
1337 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1338 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1339 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1340 }
1341
1342 /* Clear the read/write max DMA parameters. */
1343 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1344 TI_PCISTATE_READ_MAXDMA));
1345
1346 /* Get cache line size. */
1347 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1348
1349 /*
1350 * If the system has set enabled the PCI memory write
1351 * and invalidate command in the command register, set
1352 * the write max parameter accordingly. This is necessary
1353 * to use MWI with the Tigon 2.
1354 */
1355 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1356 & PCI_COMMAND_INVALIDATE_ENABLE) {
1357 switch(cacheline) {
1358 case 1:
1359 case 4:
1360 case 8:
1361 case 16:
1362 case 32:
1363 case 64:
1364 break;
1365 default:
1366 /* Disable PCI memory write and invalidate. */
1367 if (bootverbose)
1368 printf("%s: cache line size %d not "
1369 "supported; disabling PCI MWI\n",
1370 sc->sc_dev.dv_xname, cacheline);
1371 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1372 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1373 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1374 break;
1375 }
1376 }
1377
1378 #ifdef __brokenalpha__
1379 /*
1380 * From the Alteon sample driver:
1381 * Must insure that we do not cross an 8K (bytes) boundary
1382 * for DMA reads. Our highest limit is 1K bytes. This is a
1383 * restriction on some ALPHA platforms with early revision
1384 * 21174 PCI chipsets, such as the AlphaPC 164lx
1385 */
1386 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1387 #else
1388 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1389 #endif
1390
1391 /* This sets the min dma param all the way up (0xff). */
1392 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1393
1394 /* Configure DMA variables. */
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1397 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1398 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1399 TI_OPMODE_DONT_FRAG_JUMBO);
1400 #else
1401 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1402 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1403 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1404 #endif
1405
1406 /*
1407 * Only allow 1 DMA channel to be active at a time.
1408 * I don't think this is a good idea, but without it
1409 * the firmware racks up lots of nicDmaReadRingFull
1410 * errors.
1411 * Incompatible with hardware assisted checksums.
1412 */
1413 if ((sc->ethercom.ec_if.if_capenable &
1414 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1415 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1416
1417 /* Recommended settings from Tigon manual. */
1418 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1419 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1420
1421 if (ti_64bitslot_war(sc)) {
1422 printf("%s: bios thinks we're in a 64 bit slot, "
1423 "but we aren't", sc->sc_dev.dv_xname);
1424 return(EINVAL);
1425 }
1426
1427 return(0);
1428 }
1429
1430 /*
1431 * Initialize the general information block and firmware, and
1432 * start the CPU(s) running.
1433 */
1434 static int ti_gibinit(sc)
1435 struct ti_softc *sc;
1436 {
1437 struct ti_rcb *rcb;
1438 int i;
1439 struct ifnet *ifp;
1440
1441 ifp = &sc->ethercom.ec_if;
1442
1443 /* Disable interrupts for now. */
1444 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1445
1446 /* Tell the chip where to find the general information block. */
1447 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1448 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1449
1450 /* Load the firmware into SRAM. */
1451 ti_loadfw(sc);
1452
1453 /* Set up the contents of the general info and ring control blocks. */
1454
1455 /* Set up the event ring and producer pointer. */
1456 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1457
1458 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1459 rcb->ti_flags = 0;
1460 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1461 TI_CDEVPRODADDR(sc);
1462
1463 sc->ti_ev_prodidx.ti_idx = 0;
1464 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1465 sc->ti_ev_saved_considx = 0;
1466
1467 /* Set up the command ring and producer mailbox. */
1468 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1469
1470 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1471 rcb->ti_flags = 0;
1472 rcb->ti_max_len = 0;
1473 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1474 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1475 }
1476 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1477 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1478 sc->ti_cmd_saved_prodidx = 0;
1479
1480 /*
1481 * Assign the address of the stats refresh buffer.
1482 * We re-use the current stats buffer for this to
1483 * conserve memory.
1484 */
1485 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1486 TI_CDSTATSADDR(sc);
1487
1488 /* Set up the standard receive ring. */
1489 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1490 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1491 rcb->ti_max_len = ETHER_MAX_LEN;
1492 rcb->ti_flags = 0;
1493 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1494 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1496 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 if (sc->ethercom.ec_nvlans != 0)
1498 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1499
1500 /* Set up the jumbo receive ring. */
1501 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1502 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1503 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1504 rcb->ti_flags = 0;
1505 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1506 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1507 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1508 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1509 if (sc->ethercom.ec_nvlans != 0)
1510 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1511
1512 /*
1513 * Set up the mini ring. Only activated on the
1514 * Tigon 2 but the slot in the config block is
1515 * still there on the Tigon 1.
1516 */
1517 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1518 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1519 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1520 if (sc->ti_hwrev == TI_HWREV_TIGON)
1521 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1522 else
1523 rcb->ti_flags = 0;
1524 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1525 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1526 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1527 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1528 if (sc->ethercom.ec_nvlans != 0)
1529 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1530
1531 /*
1532 * Set up the receive return ring.
1533 */
1534 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1535 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1536 rcb->ti_flags = 0;
1537 rcb->ti_max_len = TI_RETURN_RING_CNT;
1538 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1539 TI_CDRTNPRODADDR(sc);
1540
1541 /*
1542 * Set up the tx ring. Note: for the Tigon 2, we have the option
1543 * of putting the transmit ring in the host's address space and
1544 * letting the chip DMA it instead of leaving the ring in the NIC's
1545 * memory and accessing it through the shared memory region. We
1546 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1547 * so we have to revert to the shared memory scheme if we detect
1548 * a Tigon 1 chip.
1549 */
1550 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1551 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1552 sc->ti_tx_ring_nic =
1553 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1554 }
1555 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1556 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1557 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1558 if (sc->ti_hwrev == TI_HWREV_TIGON)
1559 rcb->ti_flags = 0;
1560 else
1561 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1562 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1563 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1564 /*
1565 * When we get the packet, there is a pseudo-header seed already
1566 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1567 * compute the pseudo-header checksum again!
1568 */
1569 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1570 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1571 TI_RCB_FLAG_NO_PHDR_CKSUM;
1572 if (sc->ethercom.ec_nvlans != 0)
1573 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1574 rcb->ti_max_len = TI_TX_RING_CNT;
1575 if (sc->ti_hwrev == TI_HWREV_TIGON)
1576 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1577 else
1578 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1579 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1580 TI_CDTXCONSADDR(sc);
1581
1582 /*
1583 * We're done frobbing the General Information Block. Sync
1584 * it. Note we take care of the first stats sync here, as
1585 * well.
1586 */
1587 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1588
1589 /* Set up tuneables */
1590 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1591 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1592 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1593 (sc->ti_rx_coal_ticks / 10));
1594 else
1595 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1596 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1597 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1598 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1599 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1600 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1601
1602 /* Turn interrupts on. */
1603 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1604 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1605
1606 /* Start CPU. */
1607 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1608
1609 return(0);
1610 }
1611
1612 /*
1613 * look for id in the device list, returning the first match
1614 */
1615 static const struct ti_type *
1616 ti_type_match(pa)
1617 struct pci_attach_args *pa;
1618 {
1619 const struct ti_type *t;
1620
1621 t = ti_devs;
1622 while(t->ti_name != NULL) {
1623 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1624 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1625 return (t);
1626 }
1627 t++;
1628 }
1629
1630 return(NULL);
1631 }
1632
1633 /*
1634 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1635 * against our list and return its name if we find a match.
1636 */
1637 static int ti_probe(parent, match, aux)
1638 struct device *parent;
1639 struct cfdata *match;
1640 void *aux;
1641 {
1642 struct pci_attach_args *pa = aux;
1643 const struct ti_type *t;
1644
1645 t = ti_type_match(pa);
1646
1647 return((t == NULL) ? 0 : 1);
1648 }
1649
1650 static void ti_attach(parent, self, aux)
1651 struct device *parent, *self;
1652 void *aux;
1653 {
1654 u_int32_t command;
1655 struct ifnet *ifp;
1656 struct ti_softc *sc;
1657 u_char eaddr[ETHER_ADDR_LEN];
1658 struct pci_attach_args *pa = aux;
1659 pci_chipset_tag_t pc = pa->pa_pc;
1660 pci_intr_handle_t ih;
1661 const char *intrstr = NULL;
1662 bus_dma_segment_t dmaseg;
1663 int error, dmanseg, nolinear;
1664 const struct ti_type *t;
1665
1666 t = ti_type_match(pa);
1667 if (t == NULL) {
1668 printf("ti_attach: were did the card go ?\n");
1669 return;
1670 }
1671
1672 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1673
1674 sc = (struct ti_softc *)self;
1675
1676 /*
1677 * Map control/status registers.
1678 */
1679 nolinear = 0;
1680 if (pci_mapreg_map(pa, 0x10,
1681 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1682 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1683 NULL, NULL)) {
1684 nolinear = 1;
1685 if (pci_mapreg_map(pa, 0x10,
1686 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1687 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1688 printf(": can't map memory space\n");
1689 return;
1690 }
1691 }
1692 if (nolinear == 0)
1693 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1694 else
1695 sc->ti_vhandle = NULL;
1696
1697 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1698 command |= PCI_COMMAND_MASTER_ENABLE;
1699 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1700
1701 /* Allocate interrupt */
1702 if (pci_intr_map(pa, &ih)) {
1703 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1704 return;;
1705 }
1706 intrstr = pci_intr_string(pc, ih);
1707 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1708 if (sc->sc_ih == NULL) {
1709 printf("%s: couldn't establish interrupt",
1710 sc->sc_dev.dv_xname);
1711 if (intrstr != NULL)
1712 printf(" at %s", intrstr);
1713 printf("\n");
1714 return;;
1715 }
1716 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1717 /*
1718 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1719 * doing do could allow DMA to corrupt kernel memory during the
1720 * reboot before the driver initializes.
1721 */
1722 (void) shutdownhook_establish(ti_shutdown, sc);
1723
1724 if (ti_chipinit(sc)) {
1725 printf("%s: chip initialization failed\n", self->dv_xname);
1726 goto fail2;
1727 }
1728
1729 /*
1730 * Deal with some chip diffrences.
1731 */
1732 switch (sc->ti_hwrev) {
1733 case TI_HWREV_TIGON:
1734 sc->sc_tx_encap = ti_encap_tigon1;
1735 sc->sc_tx_eof = ti_txeof_tigon1;
1736 if (nolinear == 1)
1737 printf("%s: memory space not mapped linear\n",
1738 self->dv_xname);
1739 break;
1740
1741 case TI_HWREV_TIGON_II:
1742 sc->sc_tx_encap = ti_encap_tigon2;
1743 sc->sc_tx_eof = ti_txeof_tigon2;
1744 break;
1745
1746 default:
1747 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1748 sc->ti_hwrev);
1749 goto fail2;
1750 }
1751
1752 /* Zero out the NIC's on-board SRAM. */
1753 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1754
1755 /* Init again -- zeroing memory may have clobbered some registers. */
1756 if (ti_chipinit(sc)) {
1757 printf("%s: chip initialization failed\n", self->dv_xname);
1758 goto fail2;
1759 }
1760
1761 /*
1762 * Get station address from the EEPROM. Note: the manual states
1763 * that the MAC address is at offset 0x8c, however the data is
1764 * stored as two longwords (since that's how it's loaded into
1765 * the NIC). This means the MAC address is actually preceded
1766 * by two zero bytes. We need to skip over those.
1767 */
1768 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1769 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1770 printf("%s: failed to read station address\n", self->dv_xname);
1771 goto fail2;
1772 }
1773
1774 /*
1775 * A Tigon chip was detected. Inform the world.
1776 */
1777 printf("%s: Ethernet address: %s\n", self->dv_xname,
1778 ether_sprintf(eaddr));
1779
1780 sc->sc_dmat = pa->pa_dmat;
1781
1782 /* Allocate the general information block and ring buffers. */
1783 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1784 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1785 BUS_DMA_NOWAIT)) != 0) {
1786 printf("%s: can't allocate ring buffer, error = %d\n",
1787 sc->sc_dev.dv_xname, error);
1788 goto fail2;
1789 }
1790
1791 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1792 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1793 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1794 printf("%s: can't map ring buffer, error = %d\n",
1795 sc->sc_dev.dv_xname, error);
1796 goto fail2;
1797 }
1798
1799 if ((error = bus_dmamap_create(sc->sc_dmat,
1800 sizeof(struct ti_ring_data), 1,
1801 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1802 &sc->info_dmamap)) != 0) {
1803 printf("%s: can't create ring buffer DMA map, error = %d\n",
1804 sc->sc_dev.dv_xname, error);
1805 goto fail2;
1806 }
1807
1808 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1809 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1810 BUS_DMA_NOWAIT)) != 0) {
1811 printf("%s: can't load ring buffer DMA map, error = %d\n",
1812 sc->sc_dev.dv_xname, error);
1813 goto fail2;
1814 }
1815
1816 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1817
1818 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1819
1820 /* Try to allocate memory for jumbo buffers. */
1821 if (ti_alloc_jumbo_mem(sc)) {
1822 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1823 goto fail2;
1824 }
1825
1826 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1827
1828 /*
1829 * We really need a better way to tell a 1000baseT card
1830 * from a 1000baseSX one, since in theory there could be
1831 * OEMed 1000baseT cards from lame vendors who aren't
1832 * clever enough to change the PCI ID. For the moment
1833 * though, the AceNIC is the only copper card available.
1834 */
1835 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1836 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1837 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1838 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1839 sc->ti_copper = 1;
1840 else
1841 sc->ti_copper = 0;
1842
1843 /* Set default tuneable values. */
1844 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1845 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1846 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1847 sc->ti_rx_max_coal_bds = 64;
1848 sc->ti_tx_max_coal_bds = 128;
1849 sc->ti_tx_buf_ratio = 21;
1850
1851 /* Set up ifnet structure */
1852 ifp = &sc->ethercom.ec_if;
1853 ifp->if_softc = sc;
1854 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1855 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1856 ifp->if_ioctl = ti_ioctl;
1857 ifp->if_start = ti_start;
1858 ifp->if_watchdog = ti_watchdog;
1859 IFQ_SET_READY(&ifp->if_snd);
1860
1861 #if 0
1862 /*
1863 * XXX This is not really correct -- we don't necessarily
1864 * XXX want to queue up as many as we can transmit at the
1865 * XXX upper layer like that. Someone with a board should
1866 * XXX check to see how this affects performance.
1867 */
1868 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1869 #endif
1870
1871 /*
1872 * We can support 802.1Q VLAN-sized frames.
1873 */
1874 sc->ethercom.ec_capabilities |=
1875 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1876
1877 /*
1878 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1879 */
1880 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1881 IFCAP_CSUM_UDPv4;
1882
1883 /* Set up ifmedia support. */
1884 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1885 if (sc->ti_copper) {
1886 /*
1887 * Copper cards allow manual 10/100 mode selection,
1888 * but not manual 1000baseT mode selection. Why?
1889 * Becuase currently there's no way to specify the
1890 * master/slave setting through the firmware interface,
1891 * so Alteon decided to just bag it and handle it
1892 * via autonegotiation.
1893 */
1894 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1895 ifmedia_add(&sc->ifmedia,
1896 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1897 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1898 ifmedia_add(&sc->ifmedia,
1899 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1900 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1901 ifmedia_add(&sc->ifmedia,
1902 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1903 } else {
1904 /* Fiber cards don't support 10/100 modes. */
1905 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1906 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1907 }
1908 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1909 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1910
1911 /*
1912 * Call MI attach routines.
1913 */
1914 if_attach(ifp);
1915 ether_ifattach(ifp, eaddr);
1916
1917 return;
1918 fail2:
1919 pci_intr_disestablish(pc, sc->sc_ih);
1920 return;
1921 }
1922
1923 /*
1924 * Frame reception handling. This is called if there's a frame
1925 * on the receive return list.
1926 *
1927 * Note: we have to be able to handle three possibilities here:
1928 * 1) the frame is from the mini receive ring (can only happen)
1929 * on Tigon 2 boards)
1930 * 2) the frame is from the jumbo receive ring
1931 * 3) the frame is from the standard receive ring
1932 */
1933
1934 static void ti_rxeof(sc)
1935 struct ti_softc *sc;
1936 {
1937 struct ifnet *ifp;
1938 struct ti_cmd_desc cmd;
1939
1940 ifp = &sc->ethercom.ec_if;
1941
1942 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1943 struct ti_rx_desc *cur_rx;
1944 u_int32_t rxidx;
1945 struct mbuf *m = NULL;
1946 u_int16_t vlan_tag = 0;
1947 int have_tag = 0;
1948 struct ether_header *eh;
1949 bus_dmamap_t dmamap;
1950
1951 cur_rx =
1952 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1953 rxidx = cur_rx->ti_idx;
1954 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1955
1956 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1957 have_tag = 1;
1958 vlan_tag = cur_rx->ti_vlan_tag;
1959 }
1960
1961 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1962 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1963 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1964 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1965 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1966 ifp->if_ierrors++;
1967 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1968 continue;
1969 }
1970 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1971 == ENOBUFS) {
1972 ifp->if_ierrors++;
1973 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1974 continue;
1975 }
1976 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1977 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1978 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1979 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1980 dmamap = sc->mini_dmamap[rxidx];
1981 sc->mini_dmamap[rxidx] = 0;
1982 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1983 ifp->if_ierrors++;
1984 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1985 continue;
1986 }
1987 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1988 == ENOBUFS) {
1989 ifp->if_ierrors++;
1990 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1991 continue;
1992 }
1993 } else {
1994 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1995 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1996 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1997 dmamap = sc->std_dmamap[rxidx];
1998 sc->std_dmamap[rxidx] = 0;
1999 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2000 ifp->if_ierrors++;
2001 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2002 continue;
2003 }
2004 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2005 == ENOBUFS) {
2006 ifp->if_ierrors++;
2007 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2008 continue;
2009 }
2010 }
2011
2012 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2013 ifp->if_ipackets++;
2014 m->m_pkthdr.rcvif = ifp;
2015
2016 #if NBPFILTER > 0
2017 /*
2018 * Handle BPF listeners. Let the BPF user see the packet, but
2019 * don't pass it up to the ether_input() layer unless it's
2020 * a broadcast packet, multicast packet, matches our ethernet
2021 * address or the interface is in promiscuous mode.
2022 */
2023 if (ifp->if_bpf)
2024 bpf_mtap(ifp->if_bpf, m);
2025 #endif
2026
2027 eh = mtod(m, struct ether_header *);
2028 switch (ntohs(eh->ether_type)) {
2029 #ifdef INET
2030 case ETHERTYPE_IP:
2031 {
2032 struct ip *ip = (struct ip *) (eh + 1);
2033
2034 /*
2035 * Note the Tigon firmware does not invert
2036 * the checksum for us, hence the XOR.
2037 */
2038 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2039 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2040 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2041 /*
2042 * ntohs() the constant so the compiler can
2043 * optimize...
2044 *
2045 * XXX Figure out a sane way to deal with
2046 * fragmented packets.
2047 */
2048 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2049 switch (ip->ip_p) {
2050 case IPPROTO_TCP:
2051 m->m_pkthdr.csum_data =
2052 cur_rx->ti_tcp_udp_cksum;
2053 m->m_pkthdr.csum_flags |=
2054 M_CSUM_TCPv4|M_CSUM_DATA;
2055 break;
2056 case IPPROTO_UDP:
2057 m->m_pkthdr.csum_data =
2058 cur_rx->ti_tcp_udp_cksum;
2059 m->m_pkthdr.csum_flags |=
2060 M_CSUM_UDPv4|M_CSUM_DATA;
2061 break;
2062 default:
2063 /* Nothing */;
2064 }
2065 }
2066 break;
2067 }
2068 #endif
2069 default:
2070 /* Nothing. */
2071 break;
2072 }
2073
2074 if (have_tag) {
2075 struct mbuf *n;
2076 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2077 if (n) {
2078 *mtod(n, int *) = vlan_tag;
2079 n->m_len = sizeof(int);
2080 } else {
2081 printf("%s: no mbuf for tag\n", ifp->if_xname);
2082 m_freem(m);
2083 continue;
2084 }
2085 have_tag = vlan_tag = 0;
2086 }
2087 (*ifp->if_input)(ifp, m);
2088 }
2089
2090 /* Only necessary on the Tigon 1. */
2091 if (sc->ti_hwrev == TI_HWREV_TIGON)
2092 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2093 sc->ti_rx_saved_considx);
2094
2095 TI_UPDATE_STDPROD(sc, sc->ti_std);
2096 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2097 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2098
2099 return;
2100 }
2101
2102 static void ti_txeof_tigon1(sc)
2103 struct ti_softc *sc;
2104 {
2105 struct ti_tx_desc *cur_tx = NULL;
2106 struct ifnet *ifp;
2107 struct txdmamap_pool_entry *dma;
2108
2109 ifp = &sc->ethercom.ec_if;
2110
2111 /*
2112 * Go through our tx ring and free mbufs for those
2113 * frames that have been sent.
2114 */
2115 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2116 u_int32_t idx = 0;
2117
2118 idx = sc->ti_tx_saved_considx;
2119 if (idx > 383)
2120 CSR_WRITE_4(sc, TI_WINBASE,
2121 TI_TX_RING_BASE + 6144);
2122 else if (idx > 255)
2123 CSR_WRITE_4(sc, TI_WINBASE,
2124 TI_TX_RING_BASE + 4096);
2125 else if (idx > 127)
2126 CSR_WRITE_4(sc, TI_WINBASE,
2127 TI_TX_RING_BASE + 2048);
2128 else
2129 CSR_WRITE_4(sc, TI_WINBASE,
2130 TI_TX_RING_BASE);
2131 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2132 if (cur_tx->ti_flags & TI_BDFLAG_END)
2133 ifp->if_opackets++;
2134 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2135 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2136 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2137
2138 dma = sc->txdma[idx];
2139 KDASSERT(dma != NULL);
2140 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2141 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2142 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2143
2144 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2145 sc->txdma[idx] = NULL;
2146 }
2147 sc->ti_txcnt--;
2148 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2149 ifp->if_timer = 0;
2150 }
2151
2152 if (cur_tx != NULL)
2153 ifp->if_flags &= ~IFF_OACTIVE;
2154
2155 return;
2156 }
2157
2158 static void ti_txeof_tigon2(sc)
2159 struct ti_softc *sc;
2160 {
2161 struct ti_tx_desc *cur_tx = NULL;
2162 struct ifnet *ifp;
2163 struct txdmamap_pool_entry *dma;
2164 int firstidx, cnt;
2165
2166 ifp = &sc->ethercom.ec_if;
2167
2168 /*
2169 * Go through our tx ring and free mbufs for those
2170 * frames that have been sent.
2171 */
2172 firstidx = sc->ti_tx_saved_considx;
2173 cnt = 0;
2174 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2175 u_int32_t idx = 0;
2176
2177 idx = sc->ti_tx_saved_considx;
2178 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2179 if (cur_tx->ti_flags & TI_BDFLAG_END)
2180 ifp->if_opackets++;
2181 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2182 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2183 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2184
2185 dma = sc->txdma[idx];
2186 KDASSERT(dma != NULL);
2187 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2188 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2189 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2190
2191 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2192 sc->txdma[idx] = NULL;
2193 }
2194 cnt++;
2195 sc->ti_txcnt--;
2196 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2197 ifp->if_timer = 0;
2198 }
2199
2200 if (cnt != 0)
2201 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2202
2203 if (cur_tx != NULL)
2204 ifp->if_flags &= ~IFF_OACTIVE;
2205
2206 return;
2207 }
2208
2209 static int ti_intr(xsc)
2210 void *xsc;
2211 {
2212 struct ti_softc *sc;
2213 struct ifnet *ifp;
2214
2215 sc = xsc;
2216 ifp = &sc->ethercom.ec_if;
2217
2218 #ifdef notdef
2219 /* Avoid this for now -- checking this register is expensive. */
2220 /* Make sure this is really our interrupt. */
2221 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2222 return (0);
2223 #endif
2224
2225 /* Ack interrupt and stop others from occuring. */
2226 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2227
2228 if (ifp->if_flags & IFF_RUNNING) {
2229 /* Check RX return ring producer/consumer */
2230 ti_rxeof(sc);
2231
2232 /* Check TX ring producer/consumer */
2233 (*sc->sc_tx_eof)(sc);
2234 }
2235
2236 ti_handle_events(sc);
2237
2238 /* Re-enable interrupts. */
2239 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2240
2241 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2242 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2243 ti_start(ifp);
2244
2245 return (1);
2246 }
2247
2248 static void ti_stats_update(sc)
2249 struct ti_softc *sc;
2250 {
2251 struct ifnet *ifp;
2252
2253 ifp = &sc->ethercom.ec_if;
2254
2255 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2256
2257 ifp->if_collisions +=
2258 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2259 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2260 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2261 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2262 ifp->if_collisions;
2263
2264 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2265 }
2266
2267 /*
2268 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2269 * pointers to descriptors.
2270 */
2271 static int ti_encap_tigon1(sc, m_head, txidx)
2272 struct ti_softc *sc;
2273 struct mbuf *m_head;
2274 u_int32_t *txidx;
2275 {
2276 struct ti_tx_desc *f = NULL;
2277 u_int32_t frag, cur, cnt = 0;
2278 struct txdmamap_pool_entry *dma;
2279 bus_dmamap_t dmamap;
2280 int error, i;
2281 struct mbuf *n;
2282 u_int16_t csum_flags = 0;
2283
2284 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2285 if (dma == NULL) {
2286 return ENOMEM;
2287 }
2288 dmamap = dma->dmamap;
2289
2290 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2291 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2292 if (error) {
2293 struct mbuf *m;
2294 int i = 0;
2295 for (m = m_head; m; m = m->m_next)
2296 i++;
2297 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2298 "error %d\n", m_head->m_pkthdr.len, i, error);
2299 return (ENOMEM);
2300 }
2301
2302 cur = frag = *txidx;
2303
2304 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2305 /* IP header checksum field must be 0! */
2306 csum_flags |= TI_BDFLAG_IP_CKSUM;
2307 }
2308 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2309 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2310
2311 /* XXX fragmented packet checksum capability? */
2312
2313 /*
2314 * Start packing the mbufs in this chain into
2315 * the fragment pointers. Stop when we run out
2316 * of fragments or hit the end of the mbuf chain.
2317 */
2318 for (i = 0; i < dmamap->dm_nsegs; i++) {
2319 if (frag > 383)
2320 CSR_WRITE_4(sc, TI_WINBASE,
2321 TI_TX_RING_BASE + 6144);
2322 else if (frag > 255)
2323 CSR_WRITE_4(sc, TI_WINBASE,
2324 TI_TX_RING_BASE + 4096);
2325 else if (frag > 127)
2326 CSR_WRITE_4(sc, TI_WINBASE,
2327 TI_TX_RING_BASE + 2048);
2328 else
2329 CSR_WRITE_4(sc, TI_WINBASE,
2330 TI_TX_RING_BASE);
2331 f = &sc->ti_tx_ring_nic[frag % 128];
2332 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2333 break;
2334 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2335 f->ti_len = dmamap->dm_segs[i].ds_len;
2336 f->ti_flags = csum_flags;
2337 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2338 if (n) {
2339 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2340 f->ti_vlan_tag = *mtod(n, int *);
2341 } else {
2342 f->ti_vlan_tag = 0;
2343 }
2344 /*
2345 * Sanity check: avoid coming within 16 descriptors
2346 * of the end of the ring.
2347 */
2348 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2349 return(ENOBUFS);
2350 cur = frag;
2351 TI_INC(frag, TI_TX_RING_CNT);
2352 cnt++;
2353 }
2354
2355 if (i < dmamap->dm_nsegs)
2356 return(ENOBUFS);
2357
2358 if (frag == sc->ti_tx_saved_considx)
2359 return(ENOBUFS);
2360
2361 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2362 TI_BDFLAG_END;
2363
2364 /* Sync the packet's DMA map. */
2365 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2366 BUS_DMASYNC_PREWRITE);
2367
2368 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2369 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2370 sc->txdma[cur] = dma;
2371 sc->ti_txcnt += cnt;
2372
2373 *txidx = frag;
2374
2375 return(0);
2376 }
2377
2378 static int ti_encap_tigon2(sc, m_head, txidx)
2379 struct ti_softc *sc;
2380 struct mbuf *m_head;
2381 u_int32_t *txidx;
2382 {
2383 struct ti_tx_desc *f = NULL;
2384 u_int32_t frag, firstfrag, cur, cnt = 0;
2385 struct txdmamap_pool_entry *dma;
2386 bus_dmamap_t dmamap;
2387 int error, i;
2388 struct mbuf *n;
2389 u_int16_t csum_flags = 0;
2390
2391 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2392 if (dma == NULL) {
2393 return ENOMEM;
2394 }
2395 dmamap = dma->dmamap;
2396
2397 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2398 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2399 if (error) {
2400 struct mbuf *m;
2401 int i = 0;
2402 for (m = m_head; m; m = m->m_next)
2403 i++;
2404 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2405 "error %d\n", m_head->m_pkthdr.len, i, error);
2406 return (ENOMEM);
2407 }
2408
2409 cur = firstfrag = frag = *txidx;
2410
2411 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2412 /* IP header checksum field must be 0! */
2413 csum_flags |= TI_BDFLAG_IP_CKSUM;
2414 }
2415 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2416 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2417
2418 /* XXX fragmented packet checksum capability? */
2419
2420 /*
2421 * Start packing the mbufs in this chain into
2422 * the fragment pointers. Stop when we run out
2423 * of fragments or hit the end of the mbuf chain.
2424 */
2425 for (i = 0; i < dmamap->dm_nsegs; i++) {
2426 f = &sc->ti_rdata->ti_tx_ring[frag];
2427 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2428 break;
2429 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2430 f->ti_len = dmamap->dm_segs[i].ds_len;
2431 f->ti_flags = csum_flags;
2432 n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
2433 if (n) {
2434 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2435 f->ti_vlan_tag = *mtod(n, int *);
2436 } else {
2437 f->ti_vlan_tag = 0;
2438 }
2439 /*
2440 * Sanity check: avoid coming within 16 descriptors
2441 * of the end of the ring.
2442 */
2443 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2444 return(ENOBUFS);
2445 cur = frag;
2446 TI_INC(frag, TI_TX_RING_CNT);
2447 cnt++;
2448 }
2449
2450 if (i < dmamap->dm_nsegs)
2451 return(ENOBUFS);
2452
2453 if (frag == sc->ti_tx_saved_considx)
2454 return(ENOBUFS);
2455
2456 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2457
2458 /* Sync the packet's DMA map. */
2459 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2460 BUS_DMASYNC_PREWRITE);
2461
2462 /* Sync the descriptors we are using. */
2463 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2464
2465 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2466 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2467 sc->txdma[cur] = dma;
2468 sc->ti_txcnt += cnt;
2469
2470 *txidx = frag;
2471
2472 return(0);
2473 }
2474
2475 /*
2476 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2477 * to the mbuf data regions directly in the transmit descriptors.
2478 */
2479 static void ti_start(ifp)
2480 struct ifnet *ifp;
2481 {
2482 struct ti_softc *sc;
2483 struct mbuf *m_head = NULL;
2484 u_int32_t prodidx = 0;
2485
2486 sc = ifp->if_softc;
2487
2488 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2489
2490 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2491 IFQ_POLL(&ifp->if_snd, m_head);
2492 if (m_head == NULL)
2493 break;
2494
2495 /*
2496 * Pack the data into the transmit ring. If we
2497 * don't have room, set the OACTIVE flag and wait
2498 * for the NIC to drain the ring.
2499 */
2500 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2501 ifp->if_flags |= IFF_OACTIVE;
2502 break;
2503 }
2504
2505 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2506
2507 /*
2508 * If there's a BPF listener, bounce a copy of this frame
2509 * to him.
2510 */
2511 #if NBPFILTER > 0
2512 if (ifp->if_bpf)
2513 bpf_mtap(ifp->if_bpf, m_head);
2514 #endif
2515 }
2516
2517 /* Transmit */
2518 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2519
2520 /*
2521 * Set a timeout in case the chip goes out to lunch.
2522 */
2523 ifp->if_timer = 5;
2524
2525 return;
2526 }
2527
2528 static void ti_init(xsc)
2529 void *xsc;
2530 {
2531 struct ti_softc *sc = xsc;
2532 int s;
2533
2534 s = splnet();
2535
2536 /* Cancel pending I/O and flush buffers. */
2537 ti_stop(sc);
2538
2539 /* Init the gen info block, ring control blocks and firmware. */
2540 if (ti_gibinit(sc)) {
2541 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2542 splx(s);
2543 return;
2544 }
2545
2546 splx(s);
2547
2548 return;
2549 }
2550
2551 static void ti_init2(sc)
2552 struct ti_softc *sc;
2553 {
2554 struct ti_cmd_desc cmd;
2555 struct ifnet *ifp;
2556 u_int8_t *m;
2557 struct ifmedia *ifm;
2558 int tmp;
2559
2560 ifp = &sc->ethercom.ec_if;
2561
2562 /* Specify MTU and interface index. */
2563 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2564
2565 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2566 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2567 tmp += ETHER_VLAN_ENCAP_LEN;
2568 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2569
2570 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2571
2572 /* Load our MAC address. */
2573 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2574 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2575 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2576 | (m[4] << 8) | m[5]);
2577 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2578
2579 /* Enable or disable promiscuous mode as needed. */
2580 if (ifp->if_flags & IFF_PROMISC) {
2581 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2582 } else {
2583 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2584 }
2585
2586 /* Program multicast filter. */
2587 ti_setmulti(sc);
2588
2589 /*
2590 * If this is a Tigon 1, we should tell the
2591 * firmware to use software packet filtering.
2592 */
2593 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2594 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2595 }
2596
2597 /* Init RX ring. */
2598 ti_init_rx_ring_std(sc);
2599
2600 /* Init jumbo RX ring. */
2601 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2602 ti_init_rx_ring_jumbo(sc);
2603
2604 /*
2605 * If this is a Tigon 2, we can also configure the
2606 * mini ring.
2607 */
2608 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2609 ti_init_rx_ring_mini(sc);
2610
2611 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2612 sc->ti_rx_saved_considx = 0;
2613
2614 /* Init TX ring. */
2615 ti_init_tx_ring(sc);
2616
2617 /* Tell firmware we're alive. */
2618 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2619
2620 /* Enable host interrupts. */
2621 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2622
2623 ifp->if_flags |= IFF_RUNNING;
2624 ifp->if_flags &= ~IFF_OACTIVE;
2625
2626 /*
2627 * Make sure to set media properly. We have to do this
2628 * here since we have to issue commands in order to set
2629 * the link negotiation and we can't issue commands until
2630 * the firmware is running.
2631 */
2632 ifm = &sc->ifmedia;
2633 tmp = ifm->ifm_media;
2634 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2635 ti_ifmedia_upd(ifp);
2636 ifm->ifm_media = tmp;
2637
2638 return;
2639 }
2640
2641 /*
2642 * Set media options.
2643 */
2644 static int ti_ifmedia_upd(ifp)
2645 struct ifnet *ifp;
2646 {
2647 struct ti_softc *sc;
2648 struct ifmedia *ifm;
2649 struct ti_cmd_desc cmd;
2650
2651 sc = ifp->if_softc;
2652 ifm = &sc->ifmedia;
2653
2654 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2655 return(EINVAL);
2656
2657 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2658 case IFM_AUTO:
2659 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2660 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2661 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2662 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2663 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2664 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2665 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2666 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2667 break;
2668 case IFM_1000_SX:
2669 case IFM_1000_T:
2670 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2671 CSR_WRITE_4(sc, TI_GCR_GLINK,
2672 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2673 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2674 } else {
2675 CSR_WRITE_4(sc, TI_GCR_GLINK,
2676 TI_GLNK_PREF|TI_GLNK_1000MB|
2677 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2678 }
2679 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2680 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2681 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2682 break;
2683 case IFM_100_FX:
2684 case IFM_10_FL:
2685 case IFM_100_TX:
2686 case IFM_10_T:
2687 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2688 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2689 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2690 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2691 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2692 } else {
2693 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2694 }
2695 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2696 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2697 } else {
2698 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2699 }
2700 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2701 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2702 break;
2703 }
2704
2705 sc->ethercom.ec_if.if_baudrate =
2706 ifmedia_baudrate(ifm->ifm_media);
2707
2708 return(0);
2709 }
2710
2711 /*
2712 * Report current media status.
2713 */
2714 static void ti_ifmedia_sts(ifp, ifmr)
2715 struct ifnet *ifp;
2716 struct ifmediareq *ifmr;
2717 {
2718 struct ti_softc *sc;
2719 u_int32_t media = 0;
2720
2721 sc = ifp->if_softc;
2722
2723 ifmr->ifm_status = IFM_AVALID;
2724 ifmr->ifm_active = IFM_ETHER;
2725
2726 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2727 return;
2728
2729 ifmr->ifm_status |= IFM_ACTIVE;
2730
2731 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2732 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2733 if (sc->ti_copper)
2734 ifmr->ifm_active |= IFM_1000_T;
2735 else
2736 ifmr->ifm_active |= IFM_1000_SX;
2737 if (media & TI_GLNK_FULL_DUPLEX)
2738 ifmr->ifm_active |= IFM_FDX;
2739 else
2740 ifmr->ifm_active |= IFM_HDX;
2741 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2742 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2743 if (sc->ti_copper) {
2744 if (media & TI_LNK_100MB)
2745 ifmr->ifm_active |= IFM_100_TX;
2746 if (media & TI_LNK_10MB)
2747 ifmr->ifm_active |= IFM_10_T;
2748 } else {
2749 if (media & TI_LNK_100MB)
2750 ifmr->ifm_active |= IFM_100_FX;
2751 if (media & TI_LNK_10MB)
2752 ifmr->ifm_active |= IFM_10_FL;
2753 }
2754 if (media & TI_LNK_FULL_DUPLEX)
2755 ifmr->ifm_active |= IFM_FDX;
2756 if (media & TI_LNK_HALF_DUPLEX)
2757 ifmr->ifm_active |= IFM_HDX;
2758 }
2759
2760 sc->ethercom.ec_if.if_baudrate =
2761 ifmedia_baudrate(sc->ifmedia.ifm_media);
2762
2763 return;
2764 }
2765
2766 static int
2767 ti_ether_ioctl(ifp, cmd, data)
2768 struct ifnet *ifp;
2769 u_long cmd;
2770 caddr_t data;
2771 {
2772 struct ifaddr *ifa = (struct ifaddr *) data;
2773 struct ti_softc *sc = ifp->if_softc;
2774
2775 if ((ifp->if_flags & IFF_UP) == 0) {
2776 ifp->if_flags |= IFF_UP;
2777 ti_init(sc);
2778 }
2779
2780 switch (cmd) {
2781 case SIOCSIFADDR:
2782
2783 switch (ifa->ifa_addr->sa_family) {
2784 #ifdef INET
2785 case AF_INET:
2786 arp_ifinit(ifp, ifa);
2787 break;
2788 #endif
2789 #ifdef NS
2790 case AF_NS:
2791 {
2792 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2793
2794 if (ns_nullhost(*ina))
2795 ina->x_host = *(union ns_host *)
2796 LLADDR(ifp->if_sadl);
2797 else
2798 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2799 ifp->if_addrlen);
2800 break;
2801 }
2802 #endif
2803 default:
2804 break;
2805 }
2806 break;
2807
2808 default:
2809 return (EINVAL);
2810 }
2811
2812 return (0);
2813 }
2814
2815 static int ti_ioctl(ifp, command, data)
2816 struct ifnet *ifp;
2817 u_long command;
2818 caddr_t data;
2819 {
2820 struct ti_softc *sc = ifp->if_softc;
2821 struct ifreq *ifr = (struct ifreq *) data;
2822 int s, error = 0;
2823 struct ti_cmd_desc cmd;
2824
2825 s = splnet();
2826
2827 switch(command) {
2828 case SIOCSIFADDR:
2829 case SIOCGIFADDR:
2830 error = ti_ether_ioctl(ifp, command, data);
2831 break;
2832 case SIOCSIFMTU:
2833 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2834 error = EINVAL;
2835 else {
2836 ifp->if_mtu = ifr->ifr_mtu;
2837 ti_init(sc);
2838 }
2839 break;
2840 case SIOCSIFFLAGS:
2841 if (ifp->if_flags & IFF_UP) {
2842 /*
2843 * If only the state of the PROMISC flag changed,
2844 * then just use the 'set promisc mode' command
2845 * instead of reinitializing the entire NIC. Doing
2846 * a full re-init means reloading the firmware and
2847 * waiting for it to start up, which may take a
2848 * second or two.
2849 */
2850 if (ifp->if_flags & IFF_RUNNING &&
2851 ifp->if_flags & IFF_PROMISC &&
2852 !(sc->ti_if_flags & IFF_PROMISC)) {
2853 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2854 TI_CMD_CODE_PROMISC_ENB, 0);
2855 } else if (ifp->if_flags & IFF_RUNNING &&
2856 !(ifp->if_flags & IFF_PROMISC) &&
2857 sc->ti_if_flags & IFF_PROMISC) {
2858 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2859 TI_CMD_CODE_PROMISC_DIS, 0);
2860 } else
2861 ti_init(sc);
2862 } else {
2863 if (ifp->if_flags & IFF_RUNNING) {
2864 ti_stop(sc);
2865 }
2866 }
2867 sc->ti_if_flags = ifp->if_flags;
2868 error = 0;
2869 break;
2870 case SIOCADDMULTI:
2871 case SIOCDELMULTI:
2872 error = (command == SIOCADDMULTI) ?
2873 ether_addmulti(ifr, &sc->ethercom) :
2874 ether_delmulti(ifr, &sc->ethercom);
2875 if (error == ENETRESET) {
2876 if (ifp->if_flags & IFF_RUNNING)
2877 ti_setmulti(sc);
2878 error = 0;
2879 }
2880 break;
2881 case SIOCSIFMEDIA:
2882 case SIOCGIFMEDIA:
2883 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2884 break;
2885 default:
2886 error = EINVAL;
2887 break;
2888 }
2889
2890 (void)splx(s);
2891
2892 return(error);
2893 }
2894
2895 static void ti_watchdog(ifp)
2896 struct ifnet *ifp;
2897 {
2898 struct ti_softc *sc;
2899
2900 sc = ifp->if_softc;
2901
2902 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2903 ti_stop(sc);
2904 ti_init(sc);
2905
2906 ifp->if_oerrors++;
2907
2908 return;
2909 }
2910
2911 /*
2912 * Stop the adapter and free any mbufs allocated to the
2913 * RX and TX lists.
2914 */
2915 static void ti_stop(sc)
2916 struct ti_softc *sc;
2917 {
2918 struct ifnet *ifp;
2919 struct ti_cmd_desc cmd;
2920
2921 ifp = &sc->ethercom.ec_if;
2922
2923 /* Disable host interrupts. */
2924 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2925 /*
2926 * Tell firmware we're shutting down.
2927 */
2928 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2929
2930 /* Halt and reinitialize. */
2931 ti_chipinit(sc);
2932 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2933 ti_chipinit(sc);
2934
2935 /* Free the RX lists. */
2936 ti_free_rx_ring_std(sc);
2937
2938 /* Free jumbo RX list. */
2939 ti_free_rx_ring_jumbo(sc);
2940
2941 /* Free mini RX list. */
2942 ti_free_rx_ring_mini(sc);
2943
2944 /* Free TX buffers. */
2945 ti_free_tx_ring(sc);
2946
2947 sc->ti_ev_prodidx.ti_idx = 0;
2948 sc->ti_return_prodidx.ti_idx = 0;
2949 sc->ti_tx_considx.ti_idx = 0;
2950 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2951
2952 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2953
2954 return;
2955 }
2956
2957 /*
2958 * Stop all chip I/O so that the kernel's probe routines don't
2959 * get confused by errant DMAs when rebooting.
2960 */
2961 static void ti_shutdown(v)
2962 void *v;
2963 {
2964 struct ti_softc *sc = v;
2965
2966 ti_chipinit(sc);
2967
2968 return;
2969 }
2970