if_ti.c revision 1.53 1 /* $NetBSD: if_ti.c,v 1.53 2003/01/17 08:11:51 itojun Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.53 2003/01/17 08:11:51 itojun Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe __P((struct device *, struct cfdata *, void *));
158 static void ti_attach __P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1 __P((struct ti_softc *));
161 static void ti_txeof_tigon2 __P((struct ti_softc *));
162 static void ti_rxeof __P((struct ti_softc *));
163
164 static void ti_stats_update __P((struct ti_softc *));
165 static int ti_encap_tigon1 __P((struct ti_softc *, struct mbuf *,
166 u_int32_t *));
167 static int ti_encap_tigon2 __P((struct ti_softc *, struct mbuf *,
168 u_int32_t *));
169
170 static int ti_intr __P((void *));
171 static void ti_start __P((struct ifnet *));
172 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
173 static void ti_init __P((void *));
174 static void ti_init2 __P((struct ti_softc *));
175 static void ti_stop __P((struct ti_softc *));
176 static void ti_watchdog __P((struct ifnet *));
177 static int ti_ifmedia_upd __P((struct ifnet *));
178 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
179
180 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
181 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
182 int, u_int8_t *));
183 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
184
185 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti __P((struct ti_softc *));
188
189 static void ti_mem __P((struct ti_softc *, u_int32_t,
190 u_int32_t, caddr_t));
191 static void ti_loadfw __P((struct ti_softc *));
192 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
194 caddr_t, int));
195 static void ti_handle_events __P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
197 static void *ti_jalloc __P((struct ti_softc *));
198 static void ti_jfree __P((struct mbuf *, caddr_t, u_int, void *));
199 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std __P((struct ti_softc *));
203 static void ti_free_rx_ring_std __P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
206 static int ti_init_rx_ring_mini __P((struct ti_softc *));
207 static void ti_free_rx_ring_mini __P((struct ti_softc *));
208 static void ti_free_tx_ring __P((struct ti_softc *));
209 static int ti_init_tx_ring __P((struct ti_softc *));
210
211 static int ti_64bitslot_war __P((struct ti_softc *));
212 static int ti_chipinit __P((struct ti_softc *));
213 static int ti_gibinit __P((struct ti_softc *));
214
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216
217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
218 ti_probe, ti_attach, NULL, NULL);
219
220 /*
221 * Send an instruction or address to the EEPROM, check for ACK.
222 */
223 static u_int32_t ti_eeprom_putbyte(sc, byte)
224 struct ti_softc *sc;
225 int byte;
226 {
227 int i, ack = 0;
228
229 /*
230 * Make sure we're in TX mode.
231 */
232 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
233
234 /*
235 * Feed in each bit and stobe the clock.
236 */
237 for (i = 0x80; i; i >>= 1) {
238 if (byte & i) {
239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 } else {
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
242 }
243 DELAY(1);
244 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 DELAY(1);
246 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 }
248
249 /*
250 * Turn off TX mode.
251 */
252 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
253
254 /*
255 * Check for ack.
256 */
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
259 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260
261 return(ack);
262 }
263
264 /*
265 * Read a byte of data stored in the EEPROM at address 'addr.'
266 * We have to send two address bytes since the EEPROM can hold
267 * more than 256 bytes of data.
268 */
269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
270 struct ti_softc *sc;
271 int addr;
272 u_int8_t *dest;
273 {
274 int i;
275 u_int8_t byte = 0;
276
277 EEPROM_START;
278
279 /*
280 * Send write control code to EEPROM.
281 */
282 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
283 printf("%s: failed to send write command, status: %x\n",
284 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
285 return(1);
286 }
287
288 /*
289 * Send first byte of address of byte we want to read.
290 */
291 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
292 printf("%s: failed to send address, status: %x\n",
293 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return(1);
295 }
296 /*
297 * Send second byte address of byte we want to read.
298 */
299 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
300 printf("%s: failed to send address, status: %x\n",
301 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 return(1);
303 }
304
305 EEPROM_STOP;
306 EEPROM_START;
307 /*
308 * Send read control code to EEPROM.
309 */
310 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
311 printf("%s: failed to send read command, status: %x\n",
312 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
313 return(1);
314 }
315
316 /*
317 * Start reading bits from EEPROM.
318 */
319 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
320 for (i = 0x80; i; i >>= 1) {
321 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 DELAY(1);
323 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
324 byte |= i;
325 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 DELAY(1);
327 }
328
329 EEPROM_STOP;
330
331 /*
332 * No ACK generated for read, so just return byte.
333 */
334
335 *dest = byte;
336
337 return(0);
338 }
339
340 /*
341 * Read a sequence of bytes from the EEPROM.
342 */
343 static int ti_read_eeprom(sc, dest, off, cnt)
344 struct ti_softc *sc;
345 caddr_t dest;
346 int off;
347 int cnt;
348 {
349 int err = 0, i;
350 u_int8_t byte = 0;
351
352 for (i = 0; i < cnt; i++) {
353 err = ti_eeprom_getbyte(sc, off + i, &byte);
354 if (err)
355 break;
356 *(dest + i) = byte;
357 }
358
359 return(err ? 1 : 0);
360 }
361
362 /*
363 * NIC memory access function. Can be used to either clear a section
364 * of NIC local memory or (if buf is non-NULL) copy data into it.
365 */
366 static void ti_mem(sc, addr, len, buf)
367 struct ti_softc *sc;
368 u_int32_t addr, len;
369 caddr_t buf;
370 {
371 int segptr, segsize, cnt;
372 caddr_t ptr;
373
374 segptr = addr;
375 cnt = len;
376 ptr = buf;
377
378 while(cnt) {
379 if (cnt < TI_WINLEN)
380 segsize = cnt;
381 else
382 segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 if (buf == NULL) {
385 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
387 segsize / 4);
388 } else {
389 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
390 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
391 (u_int32_t *)ptr, segsize / 4);
392 ptr += segsize;
393 }
394 segptr += segsize;
395 cnt -= segsize;
396 }
397
398 return;
399 }
400
401 /*
402 * Load firmware image into the NIC. Check that the firmware revision
403 * is acceptable and see if we want the firmware for the Tigon 1 or
404 * Tigon 2.
405 */
406 static void ti_loadfw(sc)
407 struct ti_softc *sc;
408 {
409 switch(sc->ti_hwrev) {
410 case TI_HWREV_TIGON:
411 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
412 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
413 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
414 printf("%s: firmware revision mismatch; want "
415 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
416 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
417 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
418 tigonFwReleaseMinor, tigonFwReleaseFix);
419 return;
420 }
421 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
422 (caddr_t)tigonFwText);
423 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
424 (caddr_t)tigonFwData);
425 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
426 (caddr_t)tigonFwRodata);
427 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
428 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
429 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
430 break;
431 case TI_HWREV_TIGON_II:
432 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
433 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
434 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
435 printf("%s: firmware revision mismatch; want "
436 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
437 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
438 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
439 tigon2FwReleaseMinor, tigon2FwReleaseFix);
440 return;
441 }
442 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
443 (caddr_t)tigon2FwText);
444 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
445 (caddr_t)tigon2FwData);
446 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
447 (caddr_t)tigon2FwRodata);
448 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
449 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
450 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
451 break;
452 default:
453 printf("%s: can't load firmware: unknown hardware rev\n",
454 sc->sc_dev.dv_xname);
455 break;
456 }
457
458 return;
459 }
460
461 /*
462 * Send the NIC a command via the command ring.
463 */
464 static void ti_cmd(sc, cmd)
465 struct ti_softc *sc;
466 struct ti_cmd_desc *cmd;
467 {
468 u_int32_t index;
469
470 index = sc->ti_cmd_saved_prodidx;
471 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
472 TI_INC(index, TI_CMD_RING_CNT);
473 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
474 sc->ti_cmd_saved_prodidx = index;
475
476 return;
477 }
478
479 /*
480 * Send the NIC an extended command. The 'len' parameter specifies the
481 * number of command slots to include after the initial command.
482 */
483 static void ti_cmd_ext(sc, cmd, arg, len)
484 struct ti_softc *sc;
485 struct ti_cmd_desc *cmd;
486 caddr_t arg;
487 int len;
488 {
489 u_int32_t index;
490 int i;
491
492 index = sc->ti_cmd_saved_prodidx;
493 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
494 TI_INC(index, TI_CMD_RING_CNT);
495 for (i = 0; i < len; i++) {
496 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
497 *(u_int32_t *)(&arg[i * 4]));
498 TI_INC(index, TI_CMD_RING_CNT);
499 }
500 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
501 sc->ti_cmd_saved_prodidx = index;
502
503 return;
504 }
505
506 /*
507 * Handle events that have triggered interrupts.
508 */
509 static void ti_handle_events(sc)
510 struct ti_softc *sc;
511 {
512 struct ti_event_desc *e;
513
514 if (sc->ti_rdata->ti_event_ring == NULL)
515 return;
516
517 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
518 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
519 switch(e->ti_event) {
520 case TI_EV_LINKSTAT_CHANGED:
521 sc->ti_linkstat = e->ti_code;
522 if (e->ti_code == TI_EV_CODE_LINK_UP)
523 printf("%s: 10/100 link up\n",
524 sc->sc_dev.dv_xname);
525 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
526 printf("%s: gigabit link up\n",
527 sc->sc_dev.dv_xname);
528 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
529 printf("%s: link down\n",
530 sc->sc_dev.dv_xname);
531 break;
532 case TI_EV_ERROR:
533 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
534 printf("%s: invalid command\n",
535 sc->sc_dev.dv_xname);
536 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
537 printf("%s: unknown command\n",
538 sc->sc_dev.dv_xname);
539 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
540 printf("%s: bad config data\n",
541 sc->sc_dev.dv_xname);
542 break;
543 case TI_EV_FIRMWARE_UP:
544 ti_init2(sc);
545 break;
546 case TI_EV_STATS_UPDATED:
547 ti_stats_update(sc);
548 break;
549 case TI_EV_RESET_JUMBO_RING:
550 case TI_EV_MCAST_UPDATED:
551 /* Who cares. */
552 break;
553 default:
554 printf("%s: unknown event: %d\n",
555 sc->sc_dev.dv_xname, e->ti_event);
556 break;
557 }
558 /* Advance the consumer index. */
559 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
560 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
561 }
562
563 return;
564 }
565
566 /*
567 * Memory management for the jumbo receive ring is a pain in the
568 * butt. We need to allocate at least 9018 bytes of space per frame,
569 * _and_ it has to be contiguous (unless you use the extended
570 * jumbo descriptor format). Using malloc() all the time won't
571 * work: malloc() allocates memory in powers of two, which means we
572 * would end up wasting a considerable amount of space by allocating
573 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
574 * to do our own memory management.
575 *
576 * The driver needs to allocate a contiguous chunk of memory at boot
577 * time. We then chop this up ourselves into 9K pieces and use them
578 * as external mbuf storage.
579 *
580 * One issue here is how much memory to allocate. The jumbo ring has
581 * 256 slots in it, but at 9K per slot than can consume over 2MB of
582 * RAM. This is a bit much, especially considering we also need
583 * RAM for the standard ring and mini ring (on the Tigon 2). To
584 * save space, we only actually allocate enough memory for 64 slots
585 * by default, which works out to between 500 and 600K. This can
586 * be tuned by changing a #define in if_tireg.h.
587 */
588
589 static int ti_alloc_jumbo_mem(sc)
590 struct ti_softc *sc;
591 {
592 caddr_t ptr;
593 int i;
594 struct ti_jpool_entry *entry;
595 bus_dma_segment_t dmaseg;
596 int error, dmanseg;
597
598 /* Grab a big chunk o' storage. */
599 if ((error = bus_dmamem_alloc(sc->sc_dmat,
600 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
601 BUS_DMA_NOWAIT)) != 0) {
602 printf("%s: can't allocate jumbo buffer, error = %d\n",
603 sc->sc_dev.dv_xname, error);
604 return (error);
605 }
606
607 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
608 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
609 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
610 printf("%s: can't map jumbo buffer, error = %d\n",
611 sc->sc_dev.dv_xname, error);
612 return (error);
613 }
614
615 if ((error = bus_dmamap_create(sc->sc_dmat,
616 TI_JMEM, 1,
617 TI_JMEM, 0, BUS_DMA_NOWAIT,
618 &sc->jumbo_dmamap)) != 0) {
619 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
620 sc->sc_dev.dv_xname, error);
621 return (error);
622 }
623
624 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
625 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
626 BUS_DMA_NOWAIT)) != 0) {
627 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
628 sc->sc_dev.dv_xname, error);
629 return (error);
630 }
631 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
632
633 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
634 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
635
636 /*
637 * Now divide it up into 9K pieces and save the addresses
638 * in an array.
639 */
640 ptr = sc->ti_cdata.ti_jumbo_buf;
641 for (i = 0; i < TI_JSLOTS; i++) {
642 sc->ti_cdata.ti_jslots[i] = ptr;
643 ptr += TI_JLEN;
644 entry = malloc(sizeof(struct ti_jpool_entry),
645 M_DEVBUF, M_NOWAIT);
646 if (entry == NULL) {
647 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
648 sc->ti_cdata.ti_jumbo_buf = NULL;
649 printf("%s: no memory for jumbo "
650 "buffer queue!\n", sc->sc_dev.dv_xname);
651 return(ENOBUFS);
652 }
653 entry->slot = i;
654 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
655 jpool_entries);
656 }
657
658 return(0);
659 }
660
661 /*
662 * Allocate a jumbo buffer.
663 */
664 static void *ti_jalloc(sc)
665 struct ti_softc *sc;
666 {
667 struct ti_jpool_entry *entry;
668
669 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
670
671 if (entry == NULL) {
672 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
673 return(NULL);
674 }
675
676 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
677 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
678 return(sc->ti_cdata.ti_jslots[entry->slot]);
679 }
680
681 /*
682 * Release a jumbo buffer.
683 */
684 static void ti_jfree(m, buf, size, arg)
685 struct mbuf *m;
686 caddr_t buf;
687 u_int size;
688 void *arg;
689 {
690 struct ti_softc *sc;
691 int i, s;
692 struct ti_jpool_entry *entry;
693
694 /* Extract the softc struct pointer. */
695 sc = (struct ti_softc *)arg;
696
697 if (sc == NULL)
698 panic("ti_jfree: didn't get softc pointer!");
699
700 /* calculate the slot this buffer belongs to */
701
702 i = ((caddr_t)buf
703 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
704
705 if ((i < 0) || (i >= TI_JSLOTS))
706 panic("ti_jfree: asked to free buffer that we don't manage!");
707
708 s = splvm();
709 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
710 if (entry == NULL)
711 panic("ti_jfree: buffer not in use!");
712 entry->slot = i;
713 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
714 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
715
716 if (__predict_true(m != NULL))
717 pool_cache_put(&mbpool_cache, m);
718 splx(s);
719 }
720
721
722 /*
723 * Intialize a standard receive ring descriptor.
724 */
725 static int ti_newbuf_std(sc, i, m, dmamap)
726 struct ti_softc *sc;
727 int i;
728 struct mbuf *m;
729 bus_dmamap_t dmamap; /* required if (m != NULL) */
730 {
731 struct mbuf *m_new = NULL;
732 struct ti_rx_desc *r;
733 int error;
734
735 if (dmamap == NULL) {
736 /* if (m) panic() */
737
738 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
739 MCLBYTES, 0, BUS_DMA_NOWAIT,
740 &dmamap)) != 0) {
741 printf("%s: can't create recv map, error = %d\n",
742 sc->sc_dev.dv_xname, error);
743 return(ENOMEM);
744 }
745 }
746 sc->std_dmamap[i] = dmamap;
747
748 if (m == NULL) {
749 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
750 if (m_new == NULL) {
751 printf("%s: mbuf allocation failed "
752 "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 return(ENOBUFS);
754 }
755
756 MCLGET(m_new, M_DONTWAIT);
757 if (!(m_new->m_flags & M_EXT)) {
758 printf("%s: cluster allocation failed "
759 "-- packet dropped!\n", sc->sc_dev.dv_xname);
760 m_freem(m_new);
761 return(ENOBUFS);
762 }
763 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
764 m_adj(m_new, ETHER_ALIGN);
765
766 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
767 mtod(m_new, caddr_t), m_new->m_len, NULL,
768 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
769 printf("%s: can't load recv map, error = %d\n",
770 sc->sc_dev.dv_xname, error);
771 return (ENOMEM);
772 }
773 } else {
774 m_new = m;
775 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
776 m_new->m_data = m_new->m_ext.ext_buf;
777 m_adj(m_new, ETHER_ALIGN);
778
779 /* reuse the dmamap */
780 }
781
782 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
783 r = &sc->ti_rdata->ti_rx_std_ring[i];
784 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
785 r->ti_type = TI_BDTYPE_RECV_BD;
786 r->ti_flags = 0;
787 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
788 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
789 if (sc->ethercom.ec_if.if_capenable &
790 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
791 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
792 r->ti_len = m_new->m_len; /* == ds_len */
793 r->ti_idx = i;
794
795 return(0);
796 }
797
798 /*
799 * Intialize a mini receive ring descriptor. This only applies to
800 * the Tigon 2.
801 */
802 static int ti_newbuf_mini(sc, i, m, dmamap)
803 struct ti_softc *sc;
804 int i;
805 struct mbuf *m;
806 bus_dmamap_t dmamap; /* required if (m != NULL) */
807 {
808 struct mbuf *m_new = NULL;
809 struct ti_rx_desc *r;
810 int error;
811
812 if (dmamap == NULL) {
813 /* if (m) panic() */
814
815 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
816 MHLEN, 0, BUS_DMA_NOWAIT,
817 &dmamap)) != 0) {
818 printf("%s: can't create recv map, error = %d\n",
819 sc->sc_dev.dv_xname, error);
820 return(ENOMEM);
821 }
822 }
823 sc->mini_dmamap[i] = dmamap;
824
825 if (m == NULL) {
826 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
827 if (m_new == NULL) {
828 printf("%s: mbuf allocation failed "
829 "-- packet dropped!\n", sc->sc_dev.dv_xname);
830 return(ENOBUFS);
831 }
832 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
833 m_adj(m_new, ETHER_ALIGN);
834
835 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
836 mtod(m_new, caddr_t), m_new->m_len, NULL,
837 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
838 printf("%s: can't load recv map, error = %d\n",
839 sc->sc_dev.dv_xname, error);
840 return (ENOMEM);
841 }
842 } else {
843 m_new = m;
844 m_new->m_data = m_new->m_pktdat;
845 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
846 m_adj(m_new, ETHER_ALIGN);
847
848 /* reuse the dmamap */
849 }
850
851 r = &sc->ti_rdata->ti_rx_mini_ring[i];
852 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
853 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
854 r->ti_type = TI_BDTYPE_RECV_BD;
855 r->ti_flags = TI_BDFLAG_MINI_RING;
856 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
857 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
858 if (sc->ethercom.ec_if.if_capenable &
859 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
860 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
861 r->ti_len = m_new->m_len; /* == ds_len */
862 r->ti_idx = i;
863
864 return(0);
865 }
866
867 /*
868 * Initialize a jumbo receive ring descriptor. This allocates
869 * a jumbo buffer from the pool managed internally by the driver.
870 */
871 static int ti_newbuf_jumbo(sc, i, m)
872 struct ti_softc *sc;
873 int i;
874 struct mbuf *m;
875 {
876 struct mbuf *m_new = NULL;
877 struct ti_rx_desc *r;
878
879 if (m == NULL) {
880 caddr_t *buf = NULL;
881
882 /* Allocate the mbuf. */
883 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
884 if (m_new == NULL) {
885 printf("%s: mbuf allocation failed "
886 "-- packet dropped!\n", sc->sc_dev.dv_xname);
887 return(ENOBUFS);
888 }
889
890 /* Allocate the jumbo buffer */
891 buf = ti_jalloc(sc);
892 if (buf == NULL) {
893 m_freem(m_new);
894 printf("%s: jumbo allocation failed "
895 "-- packet dropped!\n", sc->sc_dev.dv_xname);
896 return(ENOBUFS);
897 }
898
899 /* Attach the buffer to the mbuf. */
900 MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
901 M_DEVBUF, ti_jfree, sc);
902 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
903 } else {
904 m_new = m;
905 m_new->m_data = m_new->m_ext.ext_buf;
906 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
907 }
908
909 m_adj(m_new, ETHER_ALIGN);
910 /* Set up the descriptor. */
911 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
912 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
913 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
914 ((caddr_t)mtod(m_new, caddr_t)
915 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
916 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
917 r->ti_flags = TI_BDFLAG_JUMBO_RING;
918 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
919 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
920 if (sc->ethercom.ec_if.if_capenable &
921 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
922 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
923 r->ti_len = m_new->m_len;
924 r->ti_idx = i;
925
926 return(0);
927 }
928
929 /*
930 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
931 * that's 1MB or memory, which is a lot. For now, we fill only the first
932 * 256 ring entries and hope that our CPU is fast enough to keep up with
933 * the NIC.
934 */
935 static int ti_init_rx_ring_std(sc)
936 struct ti_softc *sc;
937 {
938 int i;
939 struct ti_cmd_desc cmd;
940
941 for (i = 0; i < TI_SSLOTS; i++) {
942 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
943 return(ENOBUFS);
944 };
945
946 TI_UPDATE_STDPROD(sc, i - 1);
947 sc->ti_std = i - 1;
948
949 return(0);
950 }
951
952 static void ti_free_rx_ring_std(sc)
953 struct ti_softc *sc;
954 {
955 int i;
956
957 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
958 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
959 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
960 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
961
962 /* if (sc->std_dmamap[i] == 0) panic() */
963 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
964 sc->std_dmamap[i] = 0;
965 }
966 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
967 sizeof(struct ti_rx_desc));
968 }
969
970 return;
971 }
972
973 static int ti_init_rx_ring_jumbo(sc)
974 struct ti_softc *sc;
975 {
976 int i;
977 struct ti_cmd_desc cmd;
978
979 for (i = 0; i < (TI_JSLOTS - 20); i++) {
980 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
981 return(ENOBUFS);
982 };
983
984 TI_UPDATE_JUMBOPROD(sc, i - 1);
985 sc->ti_jumbo = i - 1;
986
987 return(0);
988 }
989
990 static void ti_free_rx_ring_jumbo(sc)
991 struct ti_softc *sc;
992 {
993 int i;
994
995 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
996 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
997 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
998 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
999 }
1000 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1001 sizeof(struct ti_rx_desc));
1002 }
1003
1004 return;
1005 }
1006
1007 static int ti_init_rx_ring_mini(sc)
1008 struct ti_softc *sc;
1009 {
1010 int i;
1011
1012 for (i = 0; i < TI_MSLOTS; i++) {
1013 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1014 return(ENOBUFS);
1015 };
1016
1017 TI_UPDATE_MINIPROD(sc, i - 1);
1018 sc->ti_mini = i - 1;
1019
1020 return(0);
1021 }
1022
1023 static void ti_free_rx_ring_mini(sc)
1024 struct ti_softc *sc;
1025 {
1026 int i;
1027
1028 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1029 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1030 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1031 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1032
1033 /* if (sc->mini_dmamap[i] == 0) panic() */
1034 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1035 sc->mini_dmamap[i] = 0;
1036 }
1037 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1038 sizeof(struct ti_rx_desc));
1039 }
1040
1041 return;
1042 }
1043
1044 static void ti_free_tx_ring(sc)
1045 struct ti_softc *sc;
1046 {
1047 int i;
1048 struct txdmamap_pool_entry *dma;
1049
1050 if (sc->ti_rdata->ti_tx_ring == NULL)
1051 return;
1052
1053 for (i = 0; i < TI_TX_RING_CNT; i++) {
1054 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1055 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1056 sc->ti_cdata.ti_tx_chain[i] = NULL;
1057
1058 /* if (sc->txdma[i] == 0) panic() */
1059 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1060 link);
1061 sc->txdma[i] = 0;
1062 }
1063 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1064 sizeof(struct ti_tx_desc));
1065 }
1066
1067 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1068 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1069 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1070 free(dma, M_DEVBUF);
1071 }
1072
1073 return;
1074 }
1075
1076 static int ti_init_tx_ring(sc)
1077 struct ti_softc *sc;
1078 {
1079 int i, error;
1080 bus_dmamap_t dmamap;
1081 struct txdmamap_pool_entry *dma;
1082
1083 sc->ti_txcnt = 0;
1084 sc->ti_tx_saved_considx = 0;
1085 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1086
1087 SIMPLEQ_INIT(&sc->txdma_list);
1088 for (i = 0; i < TI_RSLOTS; i++) {
1089 /* I've seen mbufs with 30 fragments. */
1090 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1091 40, ETHER_MAX_LEN_JUMBO, 0,
1092 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1093 printf("%s: can't create tx map, error = %d\n",
1094 sc->sc_dev.dv_xname, error);
1095 return(ENOMEM);
1096 }
1097 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1098 if (!dma) {
1099 printf("%s: can't alloc txdmamap_pool_entry\n",
1100 sc->sc_dev.dv_xname);
1101 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1102 return (ENOMEM);
1103 }
1104 dma->dmamap = dmamap;
1105 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1106 }
1107
1108 return(0);
1109 }
1110
1111 /*
1112 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1113 * but we have to support the old way too so that Tigon 1 cards will
1114 * work.
1115 */
1116 void ti_add_mcast(sc, addr)
1117 struct ti_softc *sc;
1118 struct ether_addr *addr;
1119 {
1120 struct ti_cmd_desc cmd;
1121 u_int16_t *m;
1122 u_int32_t ext[2] = {0, 0};
1123
1124 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1125
1126 switch(sc->ti_hwrev) {
1127 case TI_HWREV_TIGON:
1128 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1129 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1130 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1131 break;
1132 case TI_HWREV_TIGON_II:
1133 ext[0] = htons(m[0]);
1134 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1135 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1136 break;
1137 default:
1138 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1139 break;
1140 }
1141
1142 return;
1143 }
1144
1145 void ti_del_mcast(sc, addr)
1146 struct ti_softc *sc;
1147 struct ether_addr *addr;
1148 {
1149 struct ti_cmd_desc cmd;
1150 u_int16_t *m;
1151 u_int32_t ext[2] = {0, 0};
1152
1153 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1154
1155 switch(sc->ti_hwrev) {
1156 case TI_HWREV_TIGON:
1157 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1158 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1159 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1160 break;
1161 case TI_HWREV_TIGON_II:
1162 ext[0] = htons(m[0]);
1163 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1164 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1165 break;
1166 default:
1167 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1168 break;
1169 }
1170
1171 return;
1172 }
1173
1174 /*
1175 * Configure the Tigon's multicast address filter.
1176 *
1177 * The actual multicast table management is a bit of a pain, thanks to
1178 * slight brain damage on the part of both Alteon and us. With our
1179 * multicast code, we are only alerted when the multicast address table
1180 * changes and at that point we only have the current list of addresses:
1181 * we only know the current state, not the previous state, so we don't
1182 * actually know what addresses were removed or added. The firmware has
1183 * state, but we can't get our grubby mits on it, and there is no 'delete
1184 * all multicast addresses' command. Hence, we have to maintain our own
1185 * state so we know what addresses have been programmed into the NIC at
1186 * any given time.
1187 */
1188 static void ti_setmulti(sc)
1189 struct ti_softc *sc;
1190 {
1191 struct ifnet *ifp;
1192 struct ti_cmd_desc cmd;
1193 struct ti_mc_entry *mc;
1194 u_int32_t intrs;
1195 struct ether_multi *enm;
1196 struct ether_multistep step;
1197
1198 ifp = &sc->ethercom.ec_if;
1199
1200 /* Disable interrupts. */
1201 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1202 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1203
1204 /* First, zot all the existing filters. */
1205 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1206 ti_del_mcast(sc, &mc->mc_addr);
1207 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1208 free(mc, M_DEVBUF);
1209 }
1210
1211 /*
1212 * Remember all multicast addresses so that we can delete them
1213 * later. Punt if there is a range of addresses or memory shortage.
1214 */
1215 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1216 while (enm != NULL) {
1217 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1218 ETHER_ADDR_LEN) != 0)
1219 goto allmulti;
1220 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1221 M_NOWAIT)) == NULL)
1222 goto allmulti;
1223 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1224 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1225 ETHER_NEXT_MULTI(step, enm);
1226 }
1227
1228 /* Accept only programmed multicast addresses */
1229 ifp->if_flags &= ~IFF_ALLMULTI;
1230 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1231
1232 /* Now program new ones. */
1233 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1234 ti_add_mcast(sc, &mc->mc_addr);
1235
1236 /* Re-enable interrupts. */
1237 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1238
1239 return;
1240
1241 allmulti:
1242 /* No need to keep individual multicast addresses */
1243 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1244 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1245 free(mc, M_DEVBUF);
1246 }
1247
1248 /* Accept all multicast addresses */
1249 ifp->if_flags |= IFF_ALLMULTI;
1250 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1251
1252 /* Re-enable interrupts. */
1253 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1254 }
1255
1256 /*
1257 * Check to see if the BIOS has configured us for a 64 bit slot when
1258 * we aren't actually in one. If we detect this condition, we can work
1259 * around it on the Tigon 2 by setting a bit in the PCI state register,
1260 * but for the Tigon 1 we must give up and abort the interface attach.
1261 */
1262 static int ti_64bitslot_war(sc)
1263 struct ti_softc *sc;
1264 {
1265 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1266 CSR_WRITE_4(sc, 0x600, 0);
1267 CSR_WRITE_4(sc, 0x604, 0);
1268 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1269 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1270 if (sc->ti_hwrev == TI_HWREV_TIGON)
1271 return(EINVAL);
1272 else {
1273 TI_SETBIT(sc, TI_PCI_STATE,
1274 TI_PCISTATE_32BIT_BUS);
1275 return(0);
1276 }
1277 }
1278 }
1279
1280 return(0);
1281 }
1282
1283 /*
1284 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1285 * self-test results.
1286 */
1287 static int ti_chipinit(sc)
1288 struct ti_softc *sc;
1289 {
1290 u_int32_t cacheline;
1291 u_int32_t pci_writemax = 0;
1292
1293 /* Initialize link to down state. */
1294 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1295
1296 /* Set endianness before we access any non-PCI registers. */
1297 #if BYTE_ORDER == BIG_ENDIAN
1298 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1299 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1300 #else
1301 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1302 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1303 #endif
1304
1305 /* Check the ROM failed bit to see if self-tests passed. */
1306 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1307 printf("%s: board self-diagnostics failed!\n",
1308 sc->sc_dev.dv_xname);
1309 return(ENODEV);
1310 }
1311
1312 /* Halt the CPU. */
1313 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1314
1315 /* Figure out the hardware revision. */
1316 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1317 case TI_REV_TIGON_I:
1318 sc->ti_hwrev = TI_HWREV_TIGON;
1319 break;
1320 case TI_REV_TIGON_II:
1321 sc->ti_hwrev = TI_HWREV_TIGON_II;
1322 break;
1323 default:
1324 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1325 return(ENODEV);
1326 }
1327
1328 /* Do special setup for Tigon 2. */
1329 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1330 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1331 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1332 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1333 }
1334
1335 /* Set up the PCI state register. */
1336 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1337 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1338 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1339 }
1340
1341 /* Clear the read/write max DMA parameters. */
1342 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1343 TI_PCISTATE_READ_MAXDMA));
1344
1345 /* Get cache line size. */
1346 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1347
1348 /*
1349 * If the system has set enabled the PCI memory write
1350 * and invalidate command in the command register, set
1351 * the write max parameter accordingly. This is necessary
1352 * to use MWI with the Tigon 2.
1353 */
1354 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1355 & PCI_COMMAND_INVALIDATE_ENABLE) {
1356 switch(cacheline) {
1357 case 1:
1358 case 4:
1359 case 8:
1360 case 16:
1361 case 32:
1362 case 64:
1363 break;
1364 default:
1365 /* Disable PCI memory write and invalidate. */
1366 if (bootverbose)
1367 printf("%s: cache line size %d not "
1368 "supported; disabling PCI MWI\n",
1369 sc->sc_dev.dv_xname, cacheline);
1370 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1371 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1372 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1373 break;
1374 }
1375 }
1376
1377 #ifdef __brokenalpha__
1378 /*
1379 * From the Alteon sample driver:
1380 * Must insure that we do not cross an 8K (bytes) boundary
1381 * for DMA reads. Our highest limit is 1K bytes. This is a
1382 * restriction on some ALPHA platforms with early revision
1383 * 21174 PCI chipsets, such as the AlphaPC 164lx
1384 */
1385 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1386 #else
1387 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1388 #endif
1389
1390 /* This sets the min dma param all the way up (0xff). */
1391 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1392
1393 /* Configure DMA variables. */
1394 #if BYTE_ORDER == BIG_ENDIAN
1395 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1396 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1397 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1398 TI_OPMODE_DONT_FRAG_JUMBO);
1399 #else
1400 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1401 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1402 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1403 #endif
1404
1405 /*
1406 * Only allow 1 DMA channel to be active at a time.
1407 * I don't think this is a good idea, but without it
1408 * the firmware racks up lots of nicDmaReadRingFull
1409 * errors.
1410 * Incompatible with hardware assisted checksums.
1411 */
1412 if ((sc->ethercom.ec_if.if_capenable &
1413 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1414 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1415
1416 /* Recommended settings from Tigon manual. */
1417 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1418 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1419
1420 if (ti_64bitslot_war(sc)) {
1421 printf("%s: bios thinks we're in a 64 bit slot, "
1422 "but we aren't", sc->sc_dev.dv_xname);
1423 return(EINVAL);
1424 }
1425
1426 return(0);
1427 }
1428
1429 /*
1430 * Initialize the general information block and firmware, and
1431 * start the CPU(s) running.
1432 */
1433 static int ti_gibinit(sc)
1434 struct ti_softc *sc;
1435 {
1436 struct ti_rcb *rcb;
1437 int i;
1438 struct ifnet *ifp;
1439
1440 ifp = &sc->ethercom.ec_if;
1441
1442 /* Disable interrupts for now. */
1443 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1444
1445 /* Tell the chip where to find the general information block. */
1446 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1447 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1448
1449 /* Load the firmware into SRAM. */
1450 ti_loadfw(sc);
1451
1452 /* Set up the contents of the general info and ring control blocks. */
1453
1454 /* Set up the event ring and producer pointer. */
1455 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1456
1457 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1458 rcb->ti_flags = 0;
1459 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1460 TI_CDEVPRODADDR(sc);
1461
1462 sc->ti_ev_prodidx.ti_idx = 0;
1463 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1464 sc->ti_ev_saved_considx = 0;
1465
1466 /* Set up the command ring and producer mailbox. */
1467 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1468
1469 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1470 rcb->ti_flags = 0;
1471 rcb->ti_max_len = 0;
1472 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1473 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1474 }
1475 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1476 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1477 sc->ti_cmd_saved_prodidx = 0;
1478
1479 /*
1480 * Assign the address of the stats refresh buffer.
1481 * We re-use the current stats buffer for this to
1482 * conserve memory.
1483 */
1484 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1485 TI_CDSTATSADDR(sc);
1486
1487 /* Set up the standard receive ring. */
1488 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1489 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1490 rcb->ti_max_len = ETHER_MAX_LEN;
1491 rcb->ti_flags = 0;
1492 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1493 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1494 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1495 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1496 if (sc->ethercom.ec_nvlans != 0)
1497 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1498
1499 /* Set up the jumbo receive ring. */
1500 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1501 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1502 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1503 rcb->ti_flags = 0;
1504 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1505 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1506 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1507 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1508 if (sc->ethercom.ec_nvlans != 0)
1509 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1510
1511 /*
1512 * Set up the mini ring. Only activated on the
1513 * Tigon 2 but the slot in the config block is
1514 * still there on the Tigon 1.
1515 */
1516 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1517 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1518 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1519 if (sc->ti_hwrev == TI_HWREV_TIGON)
1520 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1521 else
1522 rcb->ti_flags = 0;
1523 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1524 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1525 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1526 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1527 if (sc->ethercom.ec_nvlans != 0)
1528 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1529
1530 /*
1531 * Set up the receive return ring.
1532 */
1533 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1534 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1535 rcb->ti_flags = 0;
1536 rcb->ti_max_len = TI_RETURN_RING_CNT;
1537 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1538 TI_CDRTNPRODADDR(sc);
1539
1540 /*
1541 * Set up the tx ring. Note: for the Tigon 2, we have the option
1542 * of putting the transmit ring in the host's address space and
1543 * letting the chip DMA it instead of leaving the ring in the NIC's
1544 * memory and accessing it through the shared memory region. We
1545 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1546 * so we have to revert to the shared memory scheme if we detect
1547 * a Tigon 1 chip.
1548 */
1549 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1550 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1551 sc->ti_tx_ring_nic =
1552 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1553 }
1554 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1555 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1556 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1557 if (sc->ti_hwrev == TI_HWREV_TIGON)
1558 rcb->ti_flags = 0;
1559 else
1560 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1561 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1562 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1563 /*
1564 * When we get the packet, there is a pseudo-header seed already
1565 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1566 * compute the pseudo-header checksum again!
1567 */
1568 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1569 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1570 TI_RCB_FLAG_NO_PHDR_CKSUM;
1571 if (sc->ethercom.ec_nvlans != 0)
1572 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1573 rcb->ti_max_len = TI_TX_RING_CNT;
1574 if (sc->ti_hwrev == TI_HWREV_TIGON)
1575 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1576 else
1577 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1578 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1579 TI_CDTXCONSADDR(sc);
1580
1581 /*
1582 * We're done frobbing the General Information Block. Sync
1583 * it. Note we take care of the first stats sync here, as
1584 * well.
1585 */
1586 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1587
1588 /* Set up tuneables */
1589 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1590 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1591 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1592 (sc->ti_rx_coal_ticks / 10));
1593 else
1594 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1595 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1596 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1597 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1598 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1599 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1600
1601 /* Turn interrupts on. */
1602 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1603 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1604
1605 /* Start CPU. */
1606 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1607
1608 return(0);
1609 }
1610
1611 /*
1612 * look for id in the device list, returning the first match
1613 */
1614 static const struct ti_type *
1615 ti_type_match(pa)
1616 struct pci_attach_args *pa;
1617 {
1618 const struct ti_type *t;
1619
1620 t = ti_devs;
1621 while(t->ti_name != NULL) {
1622 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1623 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1624 return (t);
1625 }
1626 t++;
1627 }
1628
1629 return(NULL);
1630 }
1631
1632 /*
1633 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1634 * against our list and return its name if we find a match.
1635 */
1636 static int ti_probe(parent, match, aux)
1637 struct device *parent;
1638 struct cfdata *match;
1639 void *aux;
1640 {
1641 struct pci_attach_args *pa = aux;
1642 const struct ti_type *t;
1643
1644 t = ti_type_match(pa);
1645
1646 return((t == NULL) ? 0 : 1);
1647 }
1648
1649 static void ti_attach(parent, self, aux)
1650 struct device *parent, *self;
1651 void *aux;
1652 {
1653 u_int32_t command;
1654 struct ifnet *ifp;
1655 struct ti_softc *sc;
1656 u_char eaddr[ETHER_ADDR_LEN];
1657 struct pci_attach_args *pa = aux;
1658 pci_chipset_tag_t pc = pa->pa_pc;
1659 pci_intr_handle_t ih;
1660 const char *intrstr = NULL;
1661 bus_dma_segment_t dmaseg;
1662 int error, dmanseg, nolinear;
1663 const struct ti_type *t;
1664
1665 t = ti_type_match(pa);
1666 if (t == NULL) {
1667 printf("ti_attach: were did the card go ?\n");
1668 return;
1669 }
1670
1671 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1672
1673 sc = (struct ti_softc *)self;
1674
1675 /*
1676 * Map control/status registers.
1677 */
1678 nolinear = 0;
1679 if (pci_mapreg_map(pa, 0x10,
1680 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1681 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1682 NULL, NULL)) {
1683 nolinear = 1;
1684 if (pci_mapreg_map(pa, 0x10,
1685 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1686 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1687 printf(": can't map memory space\n");
1688 return;
1689 }
1690 }
1691 if (nolinear == 0)
1692 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1693 else
1694 sc->ti_vhandle = NULL;
1695
1696 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1697 command |= PCI_COMMAND_MASTER_ENABLE;
1698 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1699
1700 /* Allocate interrupt */
1701 if (pci_intr_map(pa, &ih)) {
1702 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1703 return;;
1704 }
1705 intrstr = pci_intr_string(pc, ih);
1706 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1707 if (sc->sc_ih == NULL) {
1708 printf("%s: couldn't establish interrupt",
1709 sc->sc_dev.dv_xname);
1710 if (intrstr != NULL)
1711 printf(" at %s", intrstr);
1712 printf("\n");
1713 return;;
1714 }
1715 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1716 /*
1717 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1718 * doing do could allow DMA to corrupt kernel memory during the
1719 * reboot before the driver initializes.
1720 */
1721 (void) shutdownhook_establish(ti_shutdown, sc);
1722
1723 if (ti_chipinit(sc)) {
1724 printf("%s: chip initialization failed\n", self->dv_xname);
1725 goto fail2;
1726 }
1727
1728 /*
1729 * Deal with some chip diffrences.
1730 */
1731 switch (sc->ti_hwrev) {
1732 case TI_HWREV_TIGON:
1733 sc->sc_tx_encap = ti_encap_tigon1;
1734 sc->sc_tx_eof = ti_txeof_tigon1;
1735 if (nolinear == 1)
1736 printf("%s: memory space not mapped linear\n",
1737 self->dv_xname);
1738 break;
1739
1740 case TI_HWREV_TIGON_II:
1741 sc->sc_tx_encap = ti_encap_tigon2;
1742 sc->sc_tx_eof = ti_txeof_tigon2;
1743 break;
1744
1745 default:
1746 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1747 sc->ti_hwrev);
1748 goto fail2;
1749 }
1750
1751 /* Zero out the NIC's on-board SRAM. */
1752 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1753
1754 /* Init again -- zeroing memory may have clobbered some registers. */
1755 if (ti_chipinit(sc)) {
1756 printf("%s: chip initialization failed\n", self->dv_xname);
1757 goto fail2;
1758 }
1759
1760 /*
1761 * Get station address from the EEPROM. Note: the manual states
1762 * that the MAC address is at offset 0x8c, however the data is
1763 * stored as two longwords (since that's how it's loaded into
1764 * the NIC). This means the MAC address is actually preceded
1765 * by two zero bytes. We need to skip over those.
1766 */
1767 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1768 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1769 printf("%s: failed to read station address\n", self->dv_xname);
1770 goto fail2;
1771 }
1772
1773 /*
1774 * A Tigon chip was detected. Inform the world.
1775 */
1776 printf("%s: Ethernet address: %s\n", self->dv_xname,
1777 ether_sprintf(eaddr));
1778
1779 sc->sc_dmat = pa->pa_dmat;
1780
1781 /* Allocate the general information block and ring buffers. */
1782 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1783 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1784 BUS_DMA_NOWAIT)) != 0) {
1785 printf("%s: can't allocate ring buffer, error = %d\n",
1786 sc->sc_dev.dv_xname, error);
1787 goto fail2;
1788 }
1789
1790 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1791 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1792 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1793 printf("%s: can't map ring buffer, error = %d\n",
1794 sc->sc_dev.dv_xname, error);
1795 goto fail2;
1796 }
1797
1798 if ((error = bus_dmamap_create(sc->sc_dmat,
1799 sizeof(struct ti_ring_data), 1,
1800 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1801 &sc->info_dmamap)) != 0) {
1802 printf("%s: can't create ring buffer DMA map, error = %d\n",
1803 sc->sc_dev.dv_xname, error);
1804 goto fail2;
1805 }
1806
1807 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1808 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1809 BUS_DMA_NOWAIT)) != 0) {
1810 printf("%s: can't load ring buffer DMA map, error = %d\n",
1811 sc->sc_dev.dv_xname, error);
1812 goto fail2;
1813 }
1814
1815 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1816
1817 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1818
1819 /* Try to allocate memory for jumbo buffers. */
1820 if (ti_alloc_jumbo_mem(sc)) {
1821 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1822 goto fail2;
1823 }
1824
1825 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1826
1827 /*
1828 * We really need a better way to tell a 1000baseT card
1829 * from a 1000baseSX one, since in theory there could be
1830 * OEMed 1000baseT cards from lame vendors who aren't
1831 * clever enough to change the PCI ID. For the moment
1832 * though, the AceNIC is the only copper card available.
1833 */
1834 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1835 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1836 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1837 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1838 sc->ti_copper = 1;
1839 else
1840 sc->ti_copper = 0;
1841
1842 /* Set default tuneable values. */
1843 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1844 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1845 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1846 sc->ti_rx_max_coal_bds = 64;
1847 sc->ti_tx_max_coal_bds = 128;
1848 sc->ti_tx_buf_ratio = 21;
1849
1850 /* Set up ifnet structure */
1851 ifp = &sc->ethercom.ec_if;
1852 ifp->if_softc = sc;
1853 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1854 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1855 ifp->if_ioctl = ti_ioctl;
1856 ifp->if_start = ti_start;
1857 ifp->if_watchdog = ti_watchdog;
1858 IFQ_SET_READY(&ifp->if_snd);
1859
1860 #if 0
1861 /*
1862 * XXX This is not really correct -- we don't necessarily
1863 * XXX want to queue up as many as we can transmit at the
1864 * XXX upper layer like that. Someone with a board should
1865 * XXX check to see how this affects performance.
1866 */
1867 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1868 #endif
1869
1870 /*
1871 * We can support 802.1Q VLAN-sized frames.
1872 */
1873 sc->ethercom.ec_capabilities |=
1874 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1875
1876 /*
1877 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1878 */
1879 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1880 IFCAP_CSUM_UDPv4;
1881
1882 /* Set up ifmedia support. */
1883 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1884 if (sc->ti_copper) {
1885 /*
1886 * Copper cards allow manual 10/100 mode selection,
1887 * but not manual 1000baseT mode selection. Why?
1888 * Becuase currently there's no way to specify the
1889 * master/slave setting through the firmware interface,
1890 * so Alteon decided to just bag it and handle it
1891 * via autonegotiation.
1892 */
1893 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1894 ifmedia_add(&sc->ifmedia,
1895 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1896 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1897 ifmedia_add(&sc->ifmedia,
1898 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1899 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1900 ifmedia_add(&sc->ifmedia,
1901 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1902 } else {
1903 /* Fiber cards don't support 10/100 modes. */
1904 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1905 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1906 }
1907 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1908 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1909
1910 /*
1911 * Call MI attach routines.
1912 */
1913 if_attach(ifp);
1914 ether_ifattach(ifp, eaddr);
1915
1916 return;
1917 fail2:
1918 pci_intr_disestablish(pc, sc->sc_ih);
1919 return;
1920 }
1921
1922 /*
1923 * Frame reception handling. This is called if there's a frame
1924 * on the receive return list.
1925 *
1926 * Note: we have to be able to handle three possibilities here:
1927 * 1) the frame is from the mini receive ring (can only happen)
1928 * on Tigon 2 boards)
1929 * 2) the frame is from the jumbo receive ring
1930 * 3) the frame is from the standard receive ring
1931 */
1932
1933 static void ti_rxeof(sc)
1934 struct ti_softc *sc;
1935 {
1936 struct ifnet *ifp;
1937 struct ti_cmd_desc cmd;
1938
1939 ifp = &sc->ethercom.ec_if;
1940
1941 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1942 struct ti_rx_desc *cur_rx;
1943 u_int32_t rxidx;
1944 struct mbuf *m = NULL;
1945 u_int16_t vlan_tag = 0;
1946 int have_tag = 0;
1947 struct ether_header *eh;
1948 bus_dmamap_t dmamap;
1949
1950 cur_rx =
1951 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1952 rxidx = cur_rx->ti_idx;
1953 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1954
1955 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1956 have_tag = 1;
1957 vlan_tag = cur_rx->ti_vlan_tag;
1958 }
1959
1960 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1961 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1962 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1963 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1964 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1965 ifp->if_ierrors++;
1966 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1967 continue;
1968 }
1969 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1970 == ENOBUFS) {
1971 ifp->if_ierrors++;
1972 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1973 continue;
1974 }
1975 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1976 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1977 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1978 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1979 dmamap = sc->mini_dmamap[rxidx];
1980 sc->mini_dmamap[rxidx] = 0;
1981 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1982 ifp->if_ierrors++;
1983 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1984 continue;
1985 }
1986 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1987 == ENOBUFS) {
1988 ifp->if_ierrors++;
1989 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1990 continue;
1991 }
1992 } else {
1993 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1994 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1995 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1996 dmamap = sc->std_dmamap[rxidx];
1997 sc->std_dmamap[rxidx] = 0;
1998 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1999 ifp->if_ierrors++;
2000 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2001 continue;
2002 }
2003 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2004 == ENOBUFS) {
2005 ifp->if_ierrors++;
2006 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2007 continue;
2008 }
2009 }
2010
2011 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2012 ifp->if_ipackets++;
2013 m->m_pkthdr.rcvif = ifp;
2014
2015 #if NBPFILTER > 0
2016 /*
2017 * Handle BPF listeners. Let the BPF user see the packet, but
2018 * don't pass it up to the ether_input() layer unless it's
2019 * a broadcast packet, multicast packet, matches our ethernet
2020 * address or the interface is in promiscuous mode.
2021 */
2022 if (ifp->if_bpf)
2023 bpf_mtap(ifp->if_bpf, m);
2024 #endif
2025
2026 eh = mtod(m, struct ether_header *);
2027 switch (ntohs(eh->ether_type)) {
2028 #ifdef INET
2029 case ETHERTYPE_IP:
2030 {
2031 struct ip *ip = (struct ip *) (eh + 1);
2032
2033 /*
2034 * Note the Tigon firmware does not invert
2035 * the checksum for us, hence the XOR.
2036 */
2037 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2038 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2039 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2040 /*
2041 * ntohs() the constant so the compiler can
2042 * optimize...
2043 *
2044 * XXX Figure out a sane way to deal with
2045 * fragmented packets.
2046 */
2047 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2048 switch (ip->ip_p) {
2049 case IPPROTO_TCP:
2050 m->m_pkthdr.csum_data =
2051 cur_rx->ti_tcp_udp_cksum;
2052 m->m_pkthdr.csum_flags |=
2053 M_CSUM_TCPv4|M_CSUM_DATA;
2054 break;
2055 case IPPROTO_UDP:
2056 m->m_pkthdr.csum_data =
2057 cur_rx->ti_tcp_udp_cksum;
2058 m->m_pkthdr.csum_flags |=
2059 M_CSUM_UDPv4|M_CSUM_DATA;
2060 break;
2061 default:
2062 /* Nothing */;
2063 }
2064 }
2065 break;
2066 }
2067 #endif
2068 default:
2069 /* Nothing. */
2070 break;
2071 }
2072
2073 if (have_tag) {
2074 struct m_tag *mtag;
2075
2076 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2077 M_NOWAIT);
2078 if (mtag)
2079 *(u_int *)mtag = vlan_tag;
2080 else {
2081 printf("%s: no mbuf for tag\n", ifp->if_xname);
2082 m_freem(m);
2083 continue;
2084 }
2085 have_tag = vlan_tag = 0;
2086 }
2087 (*ifp->if_input)(ifp, m);
2088 }
2089
2090 /* Only necessary on the Tigon 1. */
2091 if (sc->ti_hwrev == TI_HWREV_TIGON)
2092 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2093 sc->ti_rx_saved_considx);
2094
2095 TI_UPDATE_STDPROD(sc, sc->ti_std);
2096 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2097 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2098
2099 return;
2100 }
2101
2102 static void ti_txeof_tigon1(sc)
2103 struct ti_softc *sc;
2104 {
2105 struct ti_tx_desc *cur_tx = NULL;
2106 struct ifnet *ifp;
2107 struct txdmamap_pool_entry *dma;
2108
2109 ifp = &sc->ethercom.ec_if;
2110
2111 /*
2112 * Go through our tx ring and free mbufs for those
2113 * frames that have been sent.
2114 */
2115 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2116 u_int32_t idx = 0;
2117
2118 idx = sc->ti_tx_saved_considx;
2119 if (idx > 383)
2120 CSR_WRITE_4(sc, TI_WINBASE,
2121 TI_TX_RING_BASE + 6144);
2122 else if (idx > 255)
2123 CSR_WRITE_4(sc, TI_WINBASE,
2124 TI_TX_RING_BASE + 4096);
2125 else if (idx > 127)
2126 CSR_WRITE_4(sc, TI_WINBASE,
2127 TI_TX_RING_BASE + 2048);
2128 else
2129 CSR_WRITE_4(sc, TI_WINBASE,
2130 TI_TX_RING_BASE);
2131 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2132 if (cur_tx->ti_flags & TI_BDFLAG_END)
2133 ifp->if_opackets++;
2134 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2135 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2136 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2137
2138 dma = sc->txdma[idx];
2139 KDASSERT(dma != NULL);
2140 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2141 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2142 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2143
2144 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2145 sc->txdma[idx] = NULL;
2146 }
2147 sc->ti_txcnt--;
2148 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2149 ifp->if_timer = 0;
2150 }
2151
2152 if (cur_tx != NULL)
2153 ifp->if_flags &= ~IFF_OACTIVE;
2154
2155 return;
2156 }
2157
2158 static void ti_txeof_tigon2(sc)
2159 struct ti_softc *sc;
2160 {
2161 struct ti_tx_desc *cur_tx = NULL;
2162 struct ifnet *ifp;
2163 struct txdmamap_pool_entry *dma;
2164 int firstidx, cnt;
2165
2166 ifp = &sc->ethercom.ec_if;
2167
2168 /*
2169 * Go through our tx ring and free mbufs for those
2170 * frames that have been sent.
2171 */
2172 firstidx = sc->ti_tx_saved_considx;
2173 cnt = 0;
2174 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2175 u_int32_t idx = 0;
2176
2177 idx = sc->ti_tx_saved_considx;
2178 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2179 if (cur_tx->ti_flags & TI_BDFLAG_END)
2180 ifp->if_opackets++;
2181 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2182 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2183 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2184
2185 dma = sc->txdma[idx];
2186 KDASSERT(dma != NULL);
2187 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2188 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2189 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2190
2191 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2192 sc->txdma[idx] = NULL;
2193 }
2194 cnt++;
2195 sc->ti_txcnt--;
2196 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2197 ifp->if_timer = 0;
2198 }
2199
2200 if (cnt != 0)
2201 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2202
2203 if (cur_tx != NULL)
2204 ifp->if_flags &= ~IFF_OACTIVE;
2205
2206 return;
2207 }
2208
2209 static int ti_intr(xsc)
2210 void *xsc;
2211 {
2212 struct ti_softc *sc;
2213 struct ifnet *ifp;
2214
2215 sc = xsc;
2216 ifp = &sc->ethercom.ec_if;
2217
2218 #ifdef notdef
2219 /* Avoid this for now -- checking this register is expensive. */
2220 /* Make sure this is really our interrupt. */
2221 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2222 return (0);
2223 #endif
2224
2225 /* Ack interrupt and stop others from occuring. */
2226 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2227
2228 if (ifp->if_flags & IFF_RUNNING) {
2229 /* Check RX return ring producer/consumer */
2230 ti_rxeof(sc);
2231
2232 /* Check TX ring producer/consumer */
2233 (*sc->sc_tx_eof)(sc);
2234 }
2235
2236 ti_handle_events(sc);
2237
2238 /* Re-enable interrupts. */
2239 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2240
2241 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2242 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2243 ti_start(ifp);
2244
2245 return (1);
2246 }
2247
2248 static void ti_stats_update(sc)
2249 struct ti_softc *sc;
2250 {
2251 struct ifnet *ifp;
2252
2253 ifp = &sc->ethercom.ec_if;
2254
2255 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2256
2257 ifp->if_collisions +=
2258 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2259 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2260 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2261 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2262 ifp->if_collisions;
2263
2264 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2265 }
2266
2267 /*
2268 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2269 * pointers to descriptors.
2270 */
2271 static int ti_encap_tigon1(sc, m_head, txidx)
2272 struct ti_softc *sc;
2273 struct mbuf *m_head;
2274 u_int32_t *txidx;
2275 {
2276 struct ti_tx_desc *f = NULL;
2277 u_int32_t frag, cur, cnt = 0;
2278 struct txdmamap_pool_entry *dma;
2279 bus_dmamap_t dmamap;
2280 int error, i;
2281 struct m_tag *mtag;
2282 u_int16_t csum_flags = 0;
2283
2284 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2285 if (dma == NULL) {
2286 return ENOMEM;
2287 }
2288 dmamap = dma->dmamap;
2289
2290 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2291 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2292 if (error) {
2293 struct mbuf *m;
2294 int i = 0;
2295 for (m = m_head; m; m = m->m_next)
2296 i++;
2297 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2298 "error %d\n", m_head->m_pkthdr.len, i, error);
2299 return (ENOMEM);
2300 }
2301
2302 cur = frag = *txidx;
2303
2304 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2305 /* IP header checksum field must be 0! */
2306 csum_flags |= TI_BDFLAG_IP_CKSUM;
2307 }
2308 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2309 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2310
2311 /* XXX fragmented packet checksum capability? */
2312
2313 /*
2314 * Start packing the mbufs in this chain into
2315 * the fragment pointers. Stop when we run out
2316 * of fragments or hit the end of the mbuf chain.
2317 */
2318 for (i = 0; i < dmamap->dm_nsegs; i++) {
2319 if (frag > 383)
2320 CSR_WRITE_4(sc, TI_WINBASE,
2321 TI_TX_RING_BASE + 6144);
2322 else if (frag > 255)
2323 CSR_WRITE_4(sc, TI_WINBASE,
2324 TI_TX_RING_BASE + 4096);
2325 else if (frag > 127)
2326 CSR_WRITE_4(sc, TI_WINBASE,
2327 TI_TX_RING_BASE + 2048);
2328 else
2329 CSR_WRITE_4(sc, TI_WINBASE,
2330 TI_TX_RING_BASE);
2331 f = &sc->ti_tx_ring_nic[frag % 128];
2332 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2333 break;
2334 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2335 f->ti_len = dmamap->dm_segs[i].ds_len;
2336 f->ti_flags = csum_flags;
2337 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2338 if (mtag) {
2339 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2340 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2341 } else {
2342 f->ti_vlan_tag = 0;
2343 }
2344 /*
2345 * Sanity check: avoid coming within 16 descriptors
2346 * of the end of the ring.
2347 */
2348 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2349 return(ENOBUFS);
2350 cur = frag;
2351 TI_INC(frag, TI_TX_RING_CNT);
2352 cnt++;
2353 }
2354
2355 if (i < dmamap->dm_nsegs)
2356 return(ENOBUFS);
2357
2358 if (frag == sc->ti_tx_saved_considx)
2359 return(ENOBUFS);
2360
2361 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2362 TI_BDFLAG_END;
2363
2364 /* Sync the packet's DMA map. */
2365 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2366 BUS_DMASYNC_PREWRITE);
2367
2368 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2369 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2370 sc->txdma[cur] = dma;
2371 sc->ti_txcnt += cnt;
2372
2373 *txidx = frag;
2374
2375 return(0);
2376 }
2377
2378 static int ti_encap_tigon2(sc, m_head, txidx)
2379 struct ti_softc *sc;
2380 struct mbuf *m_head;
2381 u_int32_t *txidx;
2382 {
2383 struct ti_tx_desc *f = NULL;
2384 u_int32_t frag, firstfrag, cur, cnt = 0;
2385 struct txdmamap_pool_entry *dma;
2386 bus_dmamap_t dmamap;
2387 int error, i;
2388 struct m_tag *mtag;
2389 u_int16_t csum_flags = 0;
2390
2391 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2392 if (dma == NULL) {
2393 return ENOMEM;
2394 }
2395 dmamap = dma->dmamap;
2396
2397 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2398 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2399 if (error) {
2400 struct mbuf *m;
2401 int i = 0;
2402 for (m = m_head; m; m = m->m_next)
2403 i++;
2404 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2405 "error %d\n", m_head->m_pkthdr.len, i, error);
2406 return (ENOMEM);
2407 }
2408
2409 cur = firstfrag = frag = *txidx;
2410
2411 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2412 /* IP header checksum field must be 0! */
2413 csum_flags |= TI_BDFLAG_IP_CKSUM;
2414 }
2415 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2416 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2417
2418 /* XXX fragmented packet checksum capability? */
2419
2420 /*
2421 * Start packing the mbufs in this chain into
2422 * the fragment pointers. Stop when we run out
2423 * of fragments or hit the end of the mbuf chain.
2424 */
2425 for (i = 0; i < dmamap->dm_nsegs; i++) {
2426 f = &sc->ti_rdata->ti_tx_ring[frag];
2427 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2428 break;
2429 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2430 f->ti_len = dmamap->dm_segs[i].ds_len;
2431 f->ti_flags = csum_flags;
2432 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2433 if (mtag) {
2434 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2435 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2436 } else {
2437 f->ti_vlan_tag = 0;
2438 }
2439 /*
2440 * Sanity check: avoid coming within 16 descriptors
2441 * of the end of the ring.
2442 */
2443 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2444 return(ENOBUFS);
2445 cur = frag;
2446 TI_INC(frag, TI_TX_RING_CNT);
2447 cnt++;
2448 }
2449
2450 if (i < dmamap->dm_nsegs)
2451 return(ENOBUFS);
2452
2453 if (frag == sc->ti_tx_saved_considx)
2454 return(ENOBUFS);
2455
2456 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2457
2458 /* Sync the packet's DMA map. */
2459 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2460 BUS_DMASYNC_PREWRITE);
2461
2462 /* Sync the descriptors we are using. */
2463 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2464
2465 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2466 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2467 sc->txdma[cur] = dma;
2468 sc->ti_txcnt += cnt;
2469
2470 *txidx = frag;
2471
2472 return(0);
2473 }
2474
2475 /*
2476 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2477 * to the mbuf data regions directly in the transmit descriptors.
2478 */
2479 static void ti_start(ifp)
2480 struct ifnet *ifp;
2481 {
2482 struct ti_softc *sc;
2483 struct mbuf *m_head = NULL;
2484 u_int32_t prodidx = 0;
2485
2486 sc = ifp->if_softc;
2487
2488 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2489
2490 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2491 IFQ_POLL(&ifp->if_snd, m_head);
2492 if (m_head == NULL)
2493 break;
2494
2495 /*
2496 * Pack the data into the transmit ring. If we
2497 * don't have room, set the OACTIVE flag and wait
2498 * for the NIC to drain the ring.
2499 */
2500 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2501 ifp->if_flags |= IFF_OACTIVE;
2502 break;
2503 }
2504
2505 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2506
2507 /*
2508 * If there's a BPF listener, bounce a copy of this frame
2509 * to him.
2510 */
2511 #if NBPFILTER > 0
2512 if (ifp->if_bpf)
2513 bpf_mtap(ifp->if_bpf, m_head);
2514 #endif
2515 }
2516
2517 /* Transmit */
2518 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2519
2520 /*
2521 * Set a timeout in case the chip goes out to lunch.
2522 */
2523 ifp->if_timer = 5;
2524
2525 return;
2526 }
2527
2528 static void ti_init(xsc)
2529 void *xsc;
2530 {
2531 struct ti_softc *sc = xsc;
2532 int s;
2533
2534 s = splnet();
2535
2536 /* Cancel pending I/O and flush buffers. */
2537 ti_stop(sc);
2538
2539 /* Init the gen info block, ring control blocks and firmware. */
2540 if (ti_gibinit(sc)) {
2541 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2542 splx(s);
2543 return;
2544 }
2545
2546 splx(s);
2547
2548 return;
2549 }
2550
2551 static void ti_init2(sc)
2552 struct ti_softc *sc;
2553 {
2554 struct ti_cmd_desc cmd;
2555 struct ifnet *ifp;
2556 u_int8_t *m;
2557 struct ifmedia *ifm;
2558 int tmp;
2559
2560 ifp = &sc->ethercom.ec_if;
2561
2562 /* Specify MTU and interface index. */
2563 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2564
2565 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2566 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2567 tmp += ETHER_VLAN_ENCAP_LEN;
2568 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2569
2570 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2571
2572 /* Load our MAC address. */
2573 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2574 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2575 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2576 | (m[4] << 8) | m[5]);
2577 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2578
2579 /* Enable or disable promiscuous mode as needed. */
2580 if (ifp->if_flags & IFF_PROMISC) {
2581 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2582 } else {
2583 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2584 }
2585
2586 /* Program multicast filter. */
2587 ti_setmulti(sc);
2588
2589 /*
2590 * If this is a Tigon 1, we should tell the
2591 * firmware to use software packet filtering.
2592 */
2593 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2594 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2595 }
2596
2597 /* Init RX ring. */
2598 ti_init_rx_ring_std(sc);
2599
2600 /* Init jumbo RX ring. */
2601 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2602 ti_init_rx_ring_jumbo(sc);
2603
2604 /*
2605 * If this is a Tigon 2, we can also configure the
2606 * mini ring.
2607 */
2608 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2609 ti_init_rx_ring_mini(sc);
2610
2611 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2612 sc->ti_rx_saved_considx = 0;
2613
2614 /* Init TX ring. */
2615 ti_init_tx_ring(sc);
2616
2617 /* Tell firmware we're alive. */
2618 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2619
2620 /* Enable host interrupts. */
2621 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2622
2623 ifp->if_flags |= IFF_RUNNING;
2624 ifp->if_flags &= ~IFF_OACTIVE;
2625
2626 /*
2627 * Make sure to set media properly. We have to do this
2628 * here since we have to issue commands in order to set
2629 * the link negotiation and we can't issue commands until
2630 * the firmware is running.
2631 */
2632 ifm = &sc->ifmedia;
2633 tmp = ifm->ifm_media;
2634 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2635 ti_ifmedia_upd(ifp);
2636 ifm->ifm_media = tmp;
2637
2638 return;
2639 }
2640
2641 /*
2642 * Set media options.
2643 */
2644 static int ti_ifmedia_upd(ifp)
2645 struct ifnet *ifp;
2646 {
2647 struct ti_softc *sc;
2648 struct ifmedia *ifm;
2649 struct ti_cmd_desc cmd;
2650
2651 sc = ifp->if_softc;
2652 ifm = &sc->ifmedia;
2653
2654 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2655 return(EINVAL);
2656
2657 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2658 case IFM_AUTO:
2659 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2660 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2661 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2662 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2663 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2664 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2665 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2666 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2667 break;
2668 case IFM_1000_SX:
2669 case IFM_1000_T:
2670 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2671 CSR_WRITE_4(sc, TI_GCR_GLINK,
2672 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2673 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2674 } else {
2675 CSR_WRITE_4(sc, TI_GCR_GLINK,
2676 TI_GLNK_PREF|TI_GLNK_1000MB|
2677 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2678 }
2679 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2680 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2681 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2682 break;
2683 case IFM_100_FX:
2684 case IFM_10_FL:
2685 case IFM_100_TX:
2686 case IFM_10_T:
2687 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2688 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2689 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2690 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2691 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2692 } else {
2693 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2694 }
2695 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2696 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2697 } else {
2698 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2699 }
2700 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2701 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2702 break;
2703 }
2704
2705 sc->ethercom.ec_if.if_baudrate =
2706 ifmedia_baudrate(ifm->ifm_media);
2707
2708 return(0);
2709 }
2710
2711 /*
2712 * Report current media status.
2713 */
2714 static void ti_ifmedia_sts(ifp, ifmr)
2715 struct ifnet *ifp;
2716 struct ifmediareq *ifmr;
2717 {
2718 struct ti_softc *sc;
2719 u_int32_t media = 0;
2720
2721 sc = ifp->if_softc;
2722
2723 ifmr->ifm_status = IFM_AVALID;
2724 ifmr->ifm_active = IFM_ETHER;
2725
2726 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2727 return;
2728
2729 ifmr->ifm_status |= IFM_ACTIVE;
2730
2731 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2732 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2733 if (sc->ti_copper)
2734 ifmr->ifm_active |= IFM_1000_T;
2735 else
2736 ifmr->ifm_active |= IFM_1000_SX;
2737 if (media & TI_GLNK_FULL_DUPLEX)
2738 ifmr->ifm_active |= IFM_FDX;
2739 else
2740 ifmr->ifm_active |= IFM_HDX;
2741 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2742 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2743 if (sc->ti_copper) {
2744 if (media & TI_LNK_100MB)
2745 ifmr->ifm_active |= IFM_100_TX;
2746 if (media & TI_LNK_10MB)
2747 ifmr->ifm_active |= IFM_10_T;
2748 } else {
2749 if (media & TI_LNK_100MB)
2750 ifmr->ifm_active |= IFM_100_FX;
2751 if (media & TI_LNK_10MB)
2752 ifmr->ifm_active |= IFM_10_FL;
2753 }
2754 if (media & TI_LNK_FULL_DUPLEX)
2755 ifmr->ifm_active |= IFM_FDX;
2756 if (media & TI_LNK_HALF_DUPLEX)
2757 ifmr->ifm_active |= IFM_HDX;
2758 }
2759
2760 sc->ethercom.ec_if.if_baudrate =
2761 ifmedia_baudrate(sc->ifmedia.ifm_media);
2762
2763 return;
2764 }
2765
2766 static int
2767 ti_ether_ioctl(ifp, cmd, data)
2768 struct ifnet *ifp;
2769 u_long cmd;
2770 caddr_t data;
2771 {
2772 struct ifaddr *ifa = (struct ifaddr *) data;
2773 struct ti_softc *sc = ifp->if_softc;
2774
2775 if ((ifp->if_flags & IFF_UP) == 0) {
2776 ifp->if_flags |= IFF_UP;
2777 ti_init(sc);
2778 }
2779
2780 switch (cmd) {
2781 case SIOCSIFADDR:
2782
2783 switch (ifa->ifa_addr->sa_family) {
2784 #ifdef INET
2785 case AF_INET:
2786 arp_ifinit(ifp, ifa);
2787 break;
2788 #endif
2789 #ifdef NS
2790 case AF_NS:
2791 {
2792 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2793
2794 if (ns_nullhost(*ina))
2795 ina->x_host = *(union ns_host *)
2796 LLADDR(ifp->if_sadl);
2797 else
2798 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2799 ifp->if_addrlen);
2800 break;
2801 }
2802 #endif
2803 default:
2804 break;
2805 }
2806 break;
2807
2808 default:
2809 return (EINVAL);
2810 }
2811
2812 return (0);
2813 }
2814
2815 static int ti_ioctl(ifp, command, data)
2816 struct ifnet *ifp;
2817 u_long command;
2818 caddr_t data;
2819 {
2820 struct ti_softc *sc = ifp->if_softc;
2821 struct ifreq *ifr = (struct ifreq *) data;
2822 int s, error = 0;
2823 struct ti_cmd_desc cmd;
2824
2825 s = splnet();
2826
2827 switch(command) {
2828 case SIOCSIFADDR:
2829 case SIOCGIFADDR:
2830 error = ti_ether_ioctl(ifp, command, data);
2831 break;
2832 case SIOCSIFMTU:
2833 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2834 error = EINVAL;
2835 else {
2836 ifp->if_mtu = ifr->ifr_mtu;
2837 ti_init(sc);
2838 }
2839 break;
2840 case SIOCSIFFLAGS:
2841 if (ifp->if_flags & IFF_UP) {
2842 /*
2843 * If only the state of the PROMISC flag changed,
2844 * then just use the 'set promisc mode' command
2845 * instead of reinitializing the entire NIC. Doing
2846 * a full re-init means reloading the firmware and
2847 * waiting for it to start up, which may take a
2848 * second or two.
2849 */
2850 if (ifp->if_flags & IFF_RUNNING &&
2851 ifp->if_flags & IFF_PROMISC &&
2852 !(sc->ti_if_flags & IFF_PROMISC)) {
2853 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2854 TI_CMD_CODE_PROMISC_ENB, 0);
2855 } else if (ifp->if_flags & IFF_RUNNING &&
2856 !(ifp->if_flags & IFF_PROMISC) &&
2857 sc->ti_if_flags & IFF_PROMISC) {
2858 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2859 TI_CMD_CODE_PROMISC_DIS, 0);
2860 } else
2861 ti_init(sc);
2862 } else {
2863 if (ifp->if_flags & IFF_RUNNING) {
2864 ti_stop(sc);
2865 }
2866 }
2867 sc->ti_if_flags = ifp->if_flags;
2868 error = 0;
2869 break;
2870 case SIOCADDMULTI:
2871 case SIOCDELMULTI:
2872 error = (command == SIOCADDMULTI) ?
2873 ether_addmulti(ifr, &sc->ethercom) :
2874 ether_delmulti(ifr, &sc->ethercom);
2875 if (error == ENETRESET) {
2876 if (ifp->if_flags & IFF_RUNNING)
2877 ti_setmulti(sc);
2878 error = 0;
2879 }
2880 break;
2881 case SIOCSIFMEDIA:
2882 case SIOCGIFMEDIA:
2883 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2884 break;
2885 default:
2886 error = EINVAL;
2887 break;
2888 }
2889
2890 (void)splx(s);
2891
2892 return(error);
2893 }
2894
2895 static void ti_watchdog(ifp)
2896 struct ifnet *ifp;
2897 {
2898 struct ti_softc *sc;
2899
2900 sc = ifp->if_softc;
2901
2902 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2903 ti_stop(sc);
2904 ti_init(sc);
2905
2906 ifp->if_oerrors++;
2907
2908 return;
2909 }
2910
2911 /*
2912 * Stop the adapter and free any mbufs allocated to the
2913 * RX and TX lists.
2914 */
2915 static void ti_stop(sc)
2916 struct ti_softc *sc;
2917 {
2918 struct ifnet *ifp;
2919 struct ti_cmd_desc cmd;
2920
2921 ifp = &sc->ethercom.ec_if;
2922
2923 /* Disable host interrupts. */
2924 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2925 /*
2926 * Tell firmware we're shutting down.
2927 */
2928 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2929
2930 /* Halt and reinitialize. */
2931 ti_chipinit(sc);
2932 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2933 ti_chipinit(sc);
2934
2935 /* Free the RX lists. */
2936 ti_free_rx_ring_std(sc);
2937
2938 /* Free jumbo RX list. */
2939 ti_free_rx_ring_jumbo(sc);
2940
2941 /* Free mini RX list. */
2942 ti_free_rx_ring_mini(sc);
2943
2944 /* Free TX buffers. */
2945 ti_free_tx_ring(sc);
2946
2947 sc->ti_ev_prodidx.ti_idx = 0;
2948 sc->ti_return_prodidx.ti_idx = 0;
2949 sc->ti_tx_considx.ti_idx = 0;
2950 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2951
2952 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2953
2954 return;
2955 }
2956
2957 /*
2958 * Stop all chip I/O so that the kernel's probe routines don't
2959 * get confused by errant DMAs when rebooting.
2960 */
2961 static void ti_shutdown(v)
2962 void *v;
2963 {
2964 struct ti_softc *sc = v;
2965
2966 ti_chipinit(sc);
2967
2968 return;
2969 }
2970