if_ti.c revision 1.59 1 /* $NetBSD: if_ti.c,v 1.59 2004/03/18 22:45:35 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.59 2004/03/18 22:45:35 bouyer Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe __P((struct device *, struct cfdata *, void *));
158 static void ti_attach __P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1 __P((struct ti_softc *));
161 static void ti_txeof_tigon2 __P((struct ti_softc *));
162 static void ti_rxeof __P((struct ti_softc *));
163
164 static void ti_stats_update __P((struct ti_softc *));
165 static int ti_encap_tigon1 __P((struct ti_softc *, struct mbuf *,
166 u_int32_t *));
167 static int ti_encap_tigon2 __P((struct ti_softc *, struct mbuf *,
168 u_int32_t *));
169
170 static int ti_intr __P((void *));
171 static void ti_start __P((struct ifnet *));
172 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
173 static void ti_init __P((void *));
174 static void ti_init2 __P((struct ti_softc *));
175 static void ti_stop __P((struct ti_softc *));
176 static void ti_watchdog __P((struct ifnet *));
177 static int ti_ifmedia_upd __P((struct ifnet *));
178 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
179
180 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
181 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
182 int, u_int8_t *));
183 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
184
185 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti __P((struct ti_softc *));
188
189 static void ti_mem __P((struct ti_softc *, u_int32_t,
190 u_int32_t, caddr_t));
191 static void ti_loadfw __P((struct ti_softc *));
192 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
194 caddr_t, int));
195 static void ti_handle_events __P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
197 static void *ti_jalloc __P((struct ti_softc *));
198 static void ti_jfree __P((struct mbuf *, caddr_t, size_t, void *));
199 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std __P((struct ti_softc *));
203 static void ti_free_rx_ring_std __P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
206 static int ti_init_rx_ring_mini __P((struct ti_softc *));
207 static void ti_free_rx_ring_mini __P((struct ti_softc *));
208 static void ti_free_tx_ring __P((struct ti_softc *));
209 static int ti_init_tx_ring __P((struct ti_softc *));
210
211 static int ti_64bitslot_war __P((struct ti_softc *));
212 static int ti_chipinit __P((struct ti_softc *));
213 static int ti_gibinit __P((struct ti_softc *));
214
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216
217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
218 ti_probe, ti_attach, NULL, NULL);
219
220 /*
221 * Send an instruction or address to the EEPROM, check for ACK.
222 */
223 static u_int32_t ti_eeprom_putbyte(sc, byte)
224 struct ti_softc *sc;
225 int byte;
226 {
227 int i, ack = 0;
228
229 /*
230 * Make sure we're in TX mode.
231 */
232 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
233
234 /*
235 * Feed in each bit and stobe the clock.
236 */
237 for (i = 0x80; i; i >>= 1) {
238 if (byte & i) {
239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 } else {
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
242 }
243 DELAY(1);
244 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 DELAY(1);
246 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 }
248
249 /*
250 * Turn off TX mode.
251 */
252 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
253
254 /*
255 * Check for ack.
256 */
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
259 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260
261 return(ack);
262 }
263
264 /*
265 * Read a byte of data stored in the EEPROM at address 'addr.'
266 * We have to send two address bytes since the EEPROM can hold
267 * more than 256 bytes of data.
268 */
269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
270 struct ti_softc *sc;
271 int addr;
272 u_int8_t *dest;
273 {
274 int i;
275 u_int8_t byte = 0;
276
277 EEPROM_START;
278
279 /*
280 * Send write control code to EEPROM.
281 */
282 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
283 printf("%s: failed to send write command, status: %x\n",
284 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
285 return(1);
286 }
287
288 /*
289 * Send first byte of address of byte we want to read.
290 */
291 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
292 printf("%s: failed to send address, status: %x\n",
293 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return(1);
295 }
296 /*
297 * Send second byte address of byte we want to read.
298 */
299 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
300 printf("%s: failed to send address, status: %x\n",
301 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 return(1);
303 }
304
305 EEPROM_STOP;
306 EEPROM_START;
307 /*
308 * Send read control code to EEPROM.
309 */
310 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
311 printf("%s: failed to send read command, status: %x\n",
312 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
313 return(1);
314 }
315
316 /*
317 * Start reading bits from EEPROM.
318 */
319 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
320 for (i = 0x80; i; i >>= 1) {
321 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 DELAY(1);
323 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
324 byte |= i;
325 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 DELAY(1);
327 }
328
329 EEPROM_STOP;
330
331 /*
332 * No ACK generated for read, so just return byte.
333 */
334
335 *dest = byte;
336
337 return(0);
338 }
339
340 /*
341 * Read a sequence of bytes from the EEPROM.
342 */
343 static int ti_read_eeprom(sc, dest, off, cnt)
344 struct ti_softc *sc;
345 caddr_t dest;
346 int off;
347 int cnt;
348 {
349 int err = 0, i;
350 u_int8_t byte = 0;
351
352 for (i = 0; i < cnt; i++) {
353 err = ti_eeprom_getbyte(sc, off + i, &byte);
354 if (err)
355 break;
356 *(dest + i) = byte;
357 }
358
359 return(err ? 1 : 0);
360 }
361
362 /*
363 * NIC memory access function. Can be used to either clear a section
364 * of NIC local memory or (if buf is non-NULL) copy data into it.
365 */
366 static void ti_mem(sc, addr, len, buf)
367 struct ti_softc *sc;
368 u_int32_t addr, len;
369 caddr_t buf;
370 {
371 int segptr, segsize, cnt;
372 caddr_t ptr;
373
374 segptr = addr;
375 cnt = len;
376 ptr = buf;
377
378 while(cnt) {
379 if (cnt < TI_WINLEN)
380 segsize = cnt;
381 else
382 segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 if (buf == NULL) {
385 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
387 segsize / 4);
388 } else {
389 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
390 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
391 (u_int32_t *)ptr, segsize / 4);
392 ptr += segsize;
393 }
394 segptr += segsize;
395 cnt -= segsize;
396 }
397
398 return;
399 }
400
401 /*
402 * Load firmware image into the NIC. Check that the firmware revision
403 * is acceptable and see if we want the firmware for the Tigon 1 or
404 * Tigon 2.
405 */
406 static void ti_loadfw(sc)
407 struct ti_softc *sc;
408 {
409 switch(sc->ti_hwrev) {
410 case TI_HWREV_TIGON:
411 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
412 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
413 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
414 printf("%s: firmware revision mismatch; want "
415 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
416 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
417 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
418 tigonFwReleaseMinor, tigonFwReleaseFix);
419 return;
420 }
421 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
422 (caddr_t)tigonFwText);
423 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
424 (caddr_t)tigonFwData);
425 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
426 (caddr_t)tigonFwRodata);
427 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
428 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
429 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
430 break;
431 case TI_HWREV_TIGON_II:
432 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
433 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
434 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
435 printf("%s: firmware revision mismatch; want "
436 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
437 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
438 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
439 tigon2FwReleaseMinor, tigon2FwReleaseFix);
440 return;
441 }
442 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
443 (caddr_t)tigon2FwText);
444 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
445 (caddr_t)tigon2FwData);
446 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
447 (caddr_t)tigon2FwRodata);
448 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
449 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
450 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
451 break;
452 default:
453 printf("%s: can't load firmware: unknown hardware rev\n",
454 sc->sc_dev.dv_xname);
455 break;
456 }
457
458 return;
459 }
460
461 /*
462 * Send the NIC a command via the command ring.
463 */
464 static void ti_cmd(sc, cmd)
465 struct ti_softc *sc;
466 struct ti_cmd_desc *cmd;
467 {
468 u_int32_t index;
469
470 index = sc->ti_cmd_saved_prodidx;
471 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
472 TI_INC(index, TI_CMD_RING_CNT);
473 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
474 sc->ti_cmd_saved_prodidx = index;
475
476 return;
477 }
478
479 /*
480 * Send the NIC an extended command. The 'len' parameter specifies the
481 * number of command slots to include after the initial command.
482 */
483 static void ti_cmd_ext(sc, cmd, arg, len)
484 struct ti_softc *sc;
485 struct ti_cmd_desc *cmd;
486 caddr_t arg;
487 int len;
488 {
489 u_int32_t index;
490 int i;
491
492 index = sc->ti_cmd_saved_prodidx;
493 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
494 TI_INC(index, TI_CMD_RING_CNT);
495 for (i = 0; i < len; i++) {
496 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
497 *(u_int32_t *)(&arg[i * 4]));
498 TI_INC(index, TI_CMD_RING_CNT);
499 }
500 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
501 sc->ti_cmd_saved_prodidx = index;
502
503 return;
504 }
505
506 /*
507 * Handle events that have triggered interrupts.
508 */
509 static void ti_handle_events(sc)
510 struct ti_softc *sc;
511 {
512 struct ti_event_desc *e;
513
514 if (sc->ti_rdata->ti_event_ring == NULL)
515 return;
516
517 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
518 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
519 switch(e->ti_event) {
520 case TI_EV_LINKSTAT_CHANGED:
521 sc->ti_linkstat = e->ti_code;
522 if (e->ti_code == TI_EV_CODE_LINK_UP)
523 printf("%s: 10/100 link up\n",
524 sc->sc_dev.dv_xname);
525 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
526 printf("%s: gigabit link up\n",
527 sc->sc_dev.dv_xname);
528 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
529 printf("%s: link down\n",
530 sc->sc_dev.dv_xname);
531 break;
532 case TI_EV_ERROR:
533 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
534 printf("%s: invalid command\n",
535 sc->sc_dev.dv_xname);
536 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
537 printf("%s: unknown command\n",
538 sc->sc_dev.dv_xname);
539 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
540 printf("%s: bad config data\n",
541 sc->sc_dev.dv_xname);
542 break;
543 case TI_EV_FIRMWARE_UP:
544 ti_init2(sc);
545 break;
546 case TI_EV_STATS_UPDATED:
547 ti_stats_update(sc);
548 break;
549 case TI_EV_RESET_JUMBO_RING:
550 case TI_EV_MCAST_UPDATED:
551 /* Who cares. */
552 break;
553 default:
554 printf("%s: unknown event: %d\n",
555 sc->sc_dev.dv_xname, e->ti_event);
556 break;
557 }
558 /* Advance the consumer index. */
559 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
560 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
561 }
562
563 return;
564 }
565
566 /*
567 * Memory management for the jumbo receive ring is a pain in the
568 * butt. We need to allocate at least 9018 bytes of space per frame,
569 * _and_ it has to be contiguous (unless you use the extended
570 * jumbo descriptor format). Using malloc() all the time won't
571 * work: malloc() allocates memory in powers of two, which means we
572 * would end up wasting a considerable amount of space by allocating
573 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
574 * to do our own memory management.
575 *
576 * The driver needs to allocate a contiguous chunk of memory at boot
577 * time. We then chop this up ourselves into 9K pieces and use them
578 * as external mbuf storage.
579 *
580 * One issue here is how much memory to allocate. The jumbo ring has
581 * 256 slots in it, but at 9K per slot than can consume over 2MB of
582 * RAM. This is a bit much, especially considering we also need
583 * RAM for the standard ring and mini ring (on the Tigon 2). To
584 * save space, we only actually allocate enough memory for 64 slots
585 * by default, which works out to between 500 and 600K. This can
586 * be tuned by changing a #define in if_tireg.h.
587 */
588
589 static int ti_alloc_jumbo_mem(sc)
590 struct ti_softc *sc;
591 {
592 caddr_t ptr;
593 int i;
594 struct ti_jpool_entry *entry;
595 bus_dma_segment_t dmaseg;
596 int error, dmanseg;
597
598 /* Grab a big chunk o' storage. */
599 if ((error = bus_dmamem_alloc(sc->sc_dmat,
600 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
601 BUS_DMA_NOWAIT)) != 0) {
602 printf("%s: can't allocate jumbo buffer, error = %d\n",
603 sc->sc_dev.dv_xname, error);
604 return (error);
605 }
606
607 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
608 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
609 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
610 printf("%s: can't map jumbo buffer, error = %d\n",
611 sc->sc_dev.dv_xname, error);
612 return (error);
613 }
614
615 if ((error = bus_dmamap_create(sc->sc_dmat,
616 TI_JMEM, 1,
617 TI_JMEM, 0, BUS_DMA_NOWAIT,
618 &sc->jumbo_dmamap)) != 0) {
619 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
620 sc->sc_dev.dv_xname, error);
621 return (error);
622 }
623
624 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
625 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
626 BUS_DMA_NOWAIT)) != 0) {
627 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
628 sc->sc_dev.dv_xname, error);
629 return (error);
630 }
631 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
632
633 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
634 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
635
636 /*
637 * Now divide it up into 9K pieces and save the addresses
638 * in an array.
639 */
640 ptr = sc->ti_cdata.ti_jumbo_buf;
641 for (i = 0; i < TI_JSLOTS; i++) {
642 sc->ti_cdata.ti_jslots[i] = ptr;
643 ptr += TI_JLEN;
644 entry = malloc(sizeof(struct ti_jpool_entry),
645 M_DEVBUF, M_NOWAIT);
646 if (entry == NULL) {
647 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
648 sc->ti_cdata.ti_jumbo_buf = NULL;
649 printf("%s: no memory for jumbo "
650 "buffer queue!\n", sc->sc_dev.dv_xname);
651 return(ENOBUFS);
652 }
653 entry->slot = i;
654 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
655 jpool_entries);
656 }
657
658 return(0);
659 }
660
661 /*
662 * Allocate a jumbo buffer.
663 */
664 static void *ti_jalloc(sc)
665 struct ti_softc *sc;
666 {
667 struct ti_jpool_entry *entry;
668
669 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
670
671 if (entry == NULL) {
672 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
673 return(NULL);
674 }
675
676 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
677 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
678 return(sc->ti_cdata.ti_jslots[entry->slot]);
679 }
680
681 /*
682 * Release a jumbo buffer.
683 */
684 static void ti_jfree(m, buf, size, arg)
685 struct mbuf *m;
686 caddr_t buf;
687 size_t size;
688 void *arg;
689 {
690 struct ti_softc *sc;
691 int i, s;
692 struct ti_jpool_entry *entry;
693
694 /* Extract the softc struct pointer. */
695 sc = (struct ti_softc *)arg;
696
697 if (sc == NULL)
698 panic("ti_jfree: didn't get softc pointer!");
699
700 /* calculate the slot this buffer belongs to */
701
702 i = ((caddr_t)buf
703 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
704
705 if ((i < 0) || (i >= TI_JSLOTS))
706 panic("ti_jfree: asked to free buffer that we don't manage!");
707
708 s = splvm();
709 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
710 if (entry == NULL)
711 panic("ti_jfree: buffer not in use!");
712 entry->slot = i;
713 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
714 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
715
716 if (__predict_true(m != NULL))
717 pool_cache_put(&mbpool_cache, m);
718 splx(s);
719 }
720
721
722 /*
723 * Intialize a standard receive ring descriptor.
724 */
725 static int ti_newbuf_std(sc, i, m, dmamap)
726 struct ti_softc *sc;
727 int i;
728 struct mbuf *m;
729 bus_dmamap_t dmamap; /* required if (m != NULL) */
730 {
731 struct mbuf *m_new = NULL;
732 struct ti_rx_desc *r;
733 int error;
734
735 if (dmamap == NULL) {
736 /* if (m) panic() */
737
738 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
739 MCLBYTES, 0, BUS_DMA_NOWAIT,
740 &dmamap)) != 0) {
741 printf("%s: can't create recv map, error = %d\n",
742 sc->sc_dev.dv_xname, error);
743 return(ENOMEM);
744 }
745 }
746 sc->std_dmamap[i] = dmamap;
747
748 if (m == NULL) {
749 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
750 if (m_new == NULL) {
751 printf("%s: mbuf allocation failed "
752 "-- packet dropped!\n", sc->sc_dev.dv_xname);
753 return(ENOBUFS);
754 }
755
756 MCLGET(m_new, M_DONTWAIT);
757 if (!(m_new->m_flags & M_EXT)) {
758 printf("%s: cluster allocation failed "
759 "-- packet dropped!\n", sc->sc_dev.dv_xname);
760 m_freem(m_new);
761 return(ENOBUFS);
762 }
763 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
764 m_adj(m_new, ETHER_ALIGN);
765
766 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
767 mtod(m_new, caddr_t), m_new->m_len, NULL,
768 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
769 printf("%s: can't load recv map, error = %d\n",
770 sc->sc_dev.dv_xname, error);
771 return (ENOMEM);
772 }
773 } else {
774 m_new = m;
775 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
776 m_new->m_data = m_new->m_ext.ext_buf;
777 m_adj(m_new, ETHER_ALIGN);
778
779 /* reuse the dmamap */
780 }
781
782 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
783 r = &sc->ti_rdata->ti_rx_std_ring[i];
784 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
785 r->ti_type = TI_BDTYPE_RECV_BD;
786 r->ti_flags = 0;
787 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
788 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
789 if (sc->ethercom.ec_if.if_capenable &
790 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
791 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
792 r->ti_len = m_new->m_len; /* == ds_len */
793 r->ti_idx = i;
794
795 return(0);
796 }
797
798 /*
799 * Intialize a mini receive ring descriptor. This only applies to
800 * the Tigon 2.
801 */
802 static int ti_newbuf_mini(sc, i, m, dmamap)
803 struct ti_softc *sc;
804 int i;
805 struct mbuf *m;
806 bus_dmamap_t dmamap; /* required if (m != NULL) */
807 {
808 struct mbuf *m_new = NULL;
809 struct ti_rx_desc *r;
810 int error;
811
812 if (dmamap == NULL) {
813 /* if (m) panic() */
814
815 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
816 MHLEN, 0, BUS_DMA_NOWAIT,
817 &dmamap)) != 0) {
818 printf("%s: can't create recv map, error = %d\n",
819 sc->sc_dev.dv_xname, error);
820 return(ENOMEM);
821 }
822 }
823 sc->mini_dmamap[i] = dmamap;
824
825 if (m == NULL) {
826 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
827 if (m_new == NULL) {
828 printf("%s: mbuf allocation failed "
829 "-- packet dropped!\n", sc->sc_dev.dv_xname);
830 return(ENOBUFS);
831 }
832 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
833 m_adj(m_new, ETHER_ALIGN);
834
835 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
836 mtod(m_new, caddr_t), m_new->m_len, NULL,
837 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
838 printf("%s: can't load recv map, error = %d\n",
839 sc->sc_dev.dv_xname, error);
840 return (ENOMEM);
841 }
842 } else {
843 m_new = m;
844 m_new->m_data = m_new->m_pktdat;
845 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
846 m_adj(m_new, ETHER_ALIGN);
847
848 /* reuse the dmamap */
849 }
850
851 r = &sc->ti_rdata->ti_rx_mini_ring[i];
852 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
853 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
854 r->ti_type = TI_BDTYPE_RECV_BD;
855 r->ti_flags = TI_BDFLAG_MINI_RING;
856 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
857 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
858 if (sc->ethercom.ec_if.if_capenable &
859 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
860 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
861 r->ti_len = m_new->m_len; /* == ds_len */
862 r->ti_idx = i;
863
864 return(0);
865 }
866
867 /*
868 * Initialize a jumbo receive ring descriptor. This allocates
869 * a jumbo buffer from the pool managed internally by the driver.
870 */
871 static int ti_newbuf_jumbo(sc, i, m)
872 struct ti_softc *sc;
873 int i;
874 struct mbuf *m;
875 {
876 struct mbuf *m_new = NULL;
877 struct ti_rx_desc *r;
878
879 if (m == NULL) {
880 caddr_t *buf = NULL;
881
882 /* Allocate the mbuf. */
883 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
884 if (m_new == NULL) {
885 printf("%s: mbuf allocation failed "
886 "-- packet dropped!\n", sc->sc_dev.dv_xname);
887 return(ENOBUFS);
888 }
889
890 /* Allocate the jumbo buffer */
891 buf = ti_jalloc(sc);
892 if (buf == NULL) {
893 m_freem(m_new);
894 printf("%s: jumbo allocation failed "
895 "-- packet dropped!\n", sc->sc_dev.dv_xname);
896 return(ENOBUFS);
897 }
898
899 /* Attach the buffer to the mbuf. */
900 MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
901 M_DEVBUF, ti_jfree, sc);
902 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
903 } else {
904 m_new = m;
905 m_new->m_data = m_new->m_ext.ext_buf;
906 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
907 }
908
909 m_adj(m_new, ETHER_ALIGN);
910 /* Set up the descriptor. */
911 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
912 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
913 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
914 ((caddr_t)mtod(m_new, caddr_t)
915 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
916 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
917 r->ti_flags = TI_BDFLAG_JUMBO_RING;
918 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
919 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
920 if (sc->ethercom.ec_if.if_capenable &
921 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
922 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
923 r->ti_len = m_new->m_len;
924 r->ti_idx = i;
925
926 return(0);
927 }
928
929 /*
930 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
931 * that's 1MB or memory, which is a lot. For now, we fill only the first
932 * 256 ring entries and hope that our CPU is fast enough to keep up with
933 * the NIC.
934 */
935 static int ti_init_rx_ring_std(sc)
936 struct ti_softc *sc;
937 {
938 int i;
939 struct ti_cmd_desc cmd;
940
941 for (i = 0; i < TI_SSLOTS; i++) {
942 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
943 return(ENOBUFS);
944 };
945
946 TI_UPDATE_STDPROD(sc, i - 1);
947 sc->ti_std = i - 1;
948
949 return(0);
950 }
951
952 static void ti_free_rx_ring_std(sc)
953 struct ti_softc *sc;
954 {
955 int i;
956
957 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
958 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
959 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
960 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
961
962 /* if (sc->std_dmamap[i] == 0) panic() */
963 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
964 sc->std_dmamap[i] = 0;
965 }
966 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
967 sizeof(struct ti_rx_desc));
968 }
969
970 return;
971 }
972
973 static int ti_init_rx_ring_jumbo(sc)
974 struct ti_softc *sc;
975 {
976 int i;
977 struct ti_cmd_desc cmd;
978
979 for (i = 0; i < (TI_JSLOTS - 20); i++) {
980 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
981 return(ENOBUFS);
982 };
983
984 TI_UPDATE_JUMBOPROD(sc, i - 1);
985 sc->ti_jumbo = i - 1;
986
987 return(0);
988 }
989
990 static void ti_free_rx_ring_jumbo(sc)
991 struct ti_softc *sc;
992 {
993 int i;
994
995 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
996 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
997 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
998 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
999 }
1000 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1001 sizeof(struct ti_rx_desc));
1002 }
1003
1004 return;
1005 }
1006
1007 static int ti_init_rx_ring_mini(sc)
1008 struct ti_softc *sc;
1009 {
1010 int i;
1011
1012 for (i = 0; i < TI_MSLOTS; i++) {
1013 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1014 return(ENOBUFS);
1015 };
1016
1017 TI_UPDATE_MINIPROD(sc, i - 1);
1018 sc->ti_mini = i - 1;
1019
1020 return(0);
1021 }
1022
1023 static void ti_free_rx_ring_mini(sc)
1024 struct ti_softc *sc;
1025 {
1026 int i;
1027
1028 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1029 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1030 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1031 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1032
1033 /* if (sc->mini_dmamap[i] == 0) panic() */
1034 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1035 sc->mini_dmamap[i] = 0;
1036 }
1037 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1038 sizeof(struct ti_rx_desc));
1039 }
1040
1041 return;
1042 }
1043
1044 static void ti_free_tx_ring(sc)
1045 struct ti_softc *sc;
1046 {
1047 int i;
1048 struct txdmamap_pool_entry *dma;
1049
1050 if (sc->ti_rdata->ti_tx_ring == NULL)
1051 return;
1052
1053 for (i = 0; i < TI_TX_RING_CNT; i++) {
1054 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1055 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1056 sc->ti_cdata.ti_tx_chain[i] = NULL;
1057
1058 /* if (sc->txdma[i] == 0) panic() */
1059 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1060 link);
1061 sc->txdma[i] = 0;
1062 }
1063 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1064 sizeof(struct ti_tx_desc));
1065 }
1066
1067 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1068 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1069 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1070 free(dma, M_DEVBUF);
1071 }
1072
1073 return;
1074 }
1075
1076 static int ti_init_tx_ring(sc)
1077 struct ti_softc *sc;
1078 {
1079 int i, error;
1080 bus_dmamap_t dmamap;
1081 struct txdmamap_pool_entry *dma;
1082
1083 sc->ti_txcnt = 0;
1084 sc->ti_tx_saved_considx = 0;
1085 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1086
1087 SIMPLEQ_INIT(&sc->txdma_list);
1088 for (i = 0; i < TI_RSLOTS; i++) {
1089 /* I've seen mbufs with 30 fragments. */
1090 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1091 40, ETHER_MAX_LEN_JUMBO, 0,
1092 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1093 printf("%s: can't create tx map, error = %d\n",
1094 sc->sc_dev.dv_xname, error);
1095 return(ENOMEM);
1096 }
1097 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1098 if (!dma) {
1099 printf("%s: can't alloc txdmamap_pool_entry\n",
1100 sc->sc_dev.dv_xname);
1101 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1102 return (ENOMEM);
1103 }
1104 dma->dmamap = dmamap;
1105 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1106 }
1107
1108 return(0);
1109 }
1110
1111 /*
1112 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1113 * but we have to support the old way too so that Tigon 1 cards will
1114 * work.
1115 */
1116 void ti_add_mcast(sc, addr)
1117 struct ti_softc *sc;
1118 struct ether_addr *addr;
1119 {
1120 struct ti_cmd_desc cmd;
1121 u_int16_t *m;
1122 u_int32_t ext[2] = {0, 0};
1123
1124 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1125
1126 switch(sc->ti_hwrev) {
1127 case TI_HWREV_TIGON:
1128 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1129 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1130 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1131 break;
1132 case TI_HWREV_TIGON_II:
1133 ext[0] = htons(m[0]);
1134 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1135 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1136 break;
1137 default:
1138 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1139 break;
1140 }
1141
1142 return;
1143 }
1144
1145 void ti_del_mcast(sc, addr)
1146 struct ti_softc *sc;
1147 struct ether_addr *addr;
1148 {
1149 struct ti_cmd_desc cmd;
1150 u_int16_t *m;
1151 u_int32_t ext[2] = {0, 0};
1152
1153 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1154
1155 switch(sc->ti_hwrev) {
1156 case TI_HWREV_TIGON:
1157 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1158 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1159 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1160 break;
1161 case TI_HWREV_TIGON_II:
1162 ext[0] = htons(m[0]);
1163 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1164 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1165 break;
1166 default:
1167 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1168 break;
1169 }
1170
1171 return;
1172 }
1173
1174 /*
1175 * Configure the Tigon's multicast address filter.
1176 *
1177 * The actual multicast table management is a bit of a pain, thanks to
1178 * slight brain damage on the part of both Alteon and us. With our
1179 * multicast code, we are only alerted when the multicast address table
1180 * changes and at that point we only have the current list of addresses:
1181 * we only know the current state, not the previous state, so we don't
1182 * actually know what addresses were removed or added. The firmware has
1183 * state, but we can't get our grubby mits on it, and there is no 'delete
1184 * all multicast addresses' command. Hence, we have to maintain our own
1185 * state so we know what addresses have been programmed into the NIC at
1186 * any given time.
1187 */
1188 static void ti_setmulti(sc)
1189 struct ti_softc *sc;
1190 {
1191 struct ifnet *ifp;
1192 struct ti_cmd_desc cmd;
1193 struct ti_mc_entry *mc;
1194 u_int32_t intrs;
1195 struct ether_multi *enm;
1196 struct ether_multistep step;
1197
1198 ifp = &sc->ethercom.ec_if;
1199
1200 /* Disable interrupts. */
1201 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1202 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1203
1204 /* First, zot all the existing filters. */
1205 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1206 ti_del_mcast(sc, &mc->mc_addr);
1207 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1208 free(mc, M_DEVBUF);
1209 }
1210
1211 /*
1212 * Remember all multicast addresses so that we can delete them
1213 * later. Punt if there is a range of addresses or memory shortage.
1214 */
1215 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1216 while (enm != NULL) {
1217 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1218 ETHER_ADDR_LEN) != 0)
1219 goto allmulti;
1220 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1221 M_NOWAIT)) == NULL)
1222 goto allmulti;
1223 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1224 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1225 ETHER_NEXT_MULTI(step, enm);
1226 }
1227
1228 /* Accept only programmed multicast addresses */
1229 ifp->if_flags &= ~IFF_ALLMULTI;
1230 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1231
1232 /* Now program new ones. */
1233 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1234 ti_add_mcast(sc, &mc->mc_addr);
1235
1236 /* Re-enable interrupts. */
1237 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1238
1239 return;
1240
1241 allmulti:
1242 /* No need to keep individual multicast addresses */
1243 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1244 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1245 free(mc, M_DEVBUF);
1246 }
1247
1248 /* Accept all multicast addresses */
1249 ifp->if_flags |= IFF_ALLMULTI;
1250 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1251
1252 /* Re-enable interrupts. */
1253 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1254 }
1255
1256 /*
1257 * Check to see if the BIOS has configured us for a 64 bit slot when
1258 * we aren't actually in one. If we detect this condition, we can work
1259 * around it on the Tigon 2 by setting a bit in the PCI state register,
1260 * but for the Tigon 1 we must give up and abort the interface attach.
1261 */
1262 static int ti_64bitslot_war(sc)
1263 struct ti_softc *sc;
1264 {
1265 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1266 CSR_WRITE_4(sc, 0x600, 0);
1267 CSR_WRITE_4(sc, 0x604, 0);
1268 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1269 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1270 if (sc->ti_hwrev == TI_HWREV_TIGON)
1271 return(EINVAL);
1272 else {
1273 TI_SETBIT(sc, TI_PCI_STATE,
1274 TI_PCISTATE_32BIT_BUS);
1275 return(0);
1276 }
1277 }
1278 }
1279
1280 return(0);
1281 }
1282
1283 /*
1284 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1285 * self-test results.
1286 */
1287 static int ti_chipinit(sc)
1288 struct ti_softc *sc;
1289 {
1290 u_int32_t cacheline;
1291 u_int32_t pci_writemax = 0;
1292 u_int32_t rev;
1293
1294 /* Initialize link to down state. */
1295 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1296
1297 /* Set endianness before we access any non-PCI registers. */
1298 #if BYTE_ORDER == BIG_ENDIAN
1299 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1300 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1301 #else
1302 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1304 #endif
1305
1306 /* Check the ROM failed bit to see if self-tests passed. */
1307 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1308 printf("%s: board self-diagnostics failed!\n",
1309 sc->sc_dev.dv_xname);
1310 return(ENODEV);
1311 }
1312
1313 /* Halt the CPU. */
1314 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1315
1316 /* Figure out the hardware revision. */
1317 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1318 switch(rev) {
1319 case TI_REV_TIGON_I:
1320 sc->ti_hwrev = TI_HWREV_TIGON;
1321 break;
1322 case TI_REV_TIGON_II:
1323 sc->ti_hwrev = TI_HWREV_TIGON_II;
1324 break;
1325 default:
1326 printf("%s: unsupported chip revision 0x%x\n",
1327 sc->sc_dev.dv_xname, rev);
1328 return(ENODEV);
1329 }
1330
1331 /* Do special setup for Tigon 2. */
1332 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1333 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1334 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1335 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1336 }
1337
1338 /* Set up the PCI state register. */
1339 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1340 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1341 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1342 }
1343
1344 /* Clear the read/write max DMA parameters. */
1345 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1346 TI_PCISTATE_READ_MAXDMA));
1347
1348 /* Get cache line size. */
1349 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1350
1351 /*
1352 * If the system has set enabled the PCI memory write
1353 * and invalidate command in the command register, set
1354 * the write max parameter accordingly. This is necessary
1355 * to use MWI with the Tigon 2.
1356 */
1357 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1358 & PCI_COMMAND_INVALIDATE_ENABLE) {
1359 switch(cacheline) {
1360 case 1:
1361 case 4:
1362 case 8:
1363 case 16:
1364 case 32:
1365 case 64:
1366 break;
1367 default:
1368 /* Disable PCI memory write and invalidate. */
1369 if (bootverbose)
1370 printf("%s: cache line size %d not "
1371 "supported; disabling PCI MWI\n",
1372 sc->sc_dev.dv_xname, cacheline);
1373 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1374 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1375 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1376 break;
1377 }
1378 }
1379
1380 #ifdef __brokenalpha__
1381 /*
1382 * From the Alteon sample driver:
1383 * Must insure that we do not cross an 8K (bytes) boundary
1384 * for DMA reads. Our highest limit is 1K bytes. This is a
1385 * restriction on some ALPHA platforms with early revision
1386 * 21174 PCI chipsets, such as the AlphaPC 164lx
1387 */
1388 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1389 #else
1390 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1391 #endif
1392
1393 /* This sets the min dma param all the way up (0xff). */
1394 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1395
1396 /* Configure DMA variables. */
1397 #if BYTE_ORDER == BIG_ENDIAN
1398 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1399 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1400 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1401 TI_OPMODE_DONT_FRAG_JUMBO);
1402 #else
1403 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1404 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1405 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1406 #endif
1407
1408 /*
1409 * Only allow 1 DMA channel to be active at a time.
1410 * I don't think this is a good idea, but without it
1411 * the firmware racks up lots of nicDmaReadRingFull
1412 * errors.
1413 * Incompatible with hardware assisted checksums.
1414 */
1415 if ((sc->ethercom.ec_if.if_capenable &
1416 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1417 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1418
1419 /* Recommended settings from Tigon manual. */
1420 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1421 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1422
1423 if (ti_64bitslot_war(sc)) {
1424 printf("%s: bios thinks we're in a 64 bit slot, "
1425 "but we aren't", sc->sc_dev.dv_xname);
1426 return(EINVAL);
1427 }
1428
1429 return(0);
1430 }
1431
1432 /*
1433 * Initialize the general information block and firmware, and
1434 * start the CPU(s) running.
1435 */
1436 static int ti_gibinit(sc)
1437 struct ti_softc *sc;
1438 {
1439 struct ti_rcb *rcb;
1440 int i;
1441 struct ifnet *ifp;
1442
1443 ifp = &sc->ethercom.ec_if;
1444
1445 /* Disable interrupts for now. */
1446 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1447
1448 /* Tell the chip where to find the general information block. */
1449 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1450 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1451
1452 /* Load the firmware into SRAM. */
1453 ti_loadfw(sc);
1454
1455 /* Set up the contents of the general info and ring control blocks. */
1456
1457 /* Set up the event ring and producer pointer. */
1458 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1459
1460 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1461 rcb->ti_flags = 0;
1462 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1463 TI_CDEVPRODADDR(sc);
1464
1465 sc->ti_ev_prodidx.ti_idx = 0;
1466 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1467 sc->ti_ev_saved_considx = 0;
1468
1469 /* Set up the command ring and producer mailbox. */
1470 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1471
1472 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1473 rcb->ti_flags = 0;
1474 rcb->ti_max_len = 0;
1475 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1476 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1477 }
1478 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1479 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1480 sc->ti_cmd_saved_prodidx = 0;
1481
1482 /*
1483 * Assign the address of the stats refresh buffer.
1484 * We re-use the current stats buffer for this to
1485 * conserve memory.
1486 */
1487 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1488 TI_CDSTATSADDR(sc);
1489
1490 /* Set up the standard receive ring. */
1491 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1492 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1493 rcb->ti_max_len = ETHER_MAX_LEN;
1494 rcb->ti_flags = 0;
1495 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1496 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1497 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1498 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1499 if (sc->ethercom.ec_nvlans != 0)
1500 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1501
1502 /* Set up the jumbo receive ring. */
1503 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1504 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1505 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1506 rcb->ti_flags = 0;
1507 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1508 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1509 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1510 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1511 if (sc->ethercom.ec_nvlans != 0)
1512 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1513
1514 /*
1515 * Set up the mini ring. Only activated on the
1516 * Tigon 2 but the slot in the config block is
1517 * still there on the Tigon 1.
1518 */
1519 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1520 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1521 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1522 if (sc->ti_hwrev == TI_HWREV_TIGON)
1523 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1524 else
1525 rcb->ti_flags = 0;
1526 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1527 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1528 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1529 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1530 if (sc->ethercom.ec_nvlans != 0)
1531 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1532
1533 /*
1534 * Set up the receive return ring.
1535 */
1536 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1537 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1538 rcb->ti_flags = 0;
1539 rcb->ti_max_len = TI_RETURN_RING_CNT;
1540 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1541 TI_CDRTNPRODADDR(sc);
1542
1543 /*
1544 * Set up the tx ring. Note: for the Tigon 2, we have the option
1545 * of putting the transmit ring in the host's address space and
1546 * letting the chip DMA it instead of leaving the ring in the NIC's
1547 * memory and accessing it through the shared memory region. We
1548 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1549 * so we have to revert to the shared memory scheme if we detect
1550 * a Tigon 1 chip.
1551 */
1552 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1553 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1554 sc->ti_tx_ring_nic =
1555 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1556 }
1557 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1558 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1559 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1560 if (sc->ti_hwrev == TI_HWREV_TIGON)
1561 rcb->ti_flags = 0;
1562 else
1563 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1564 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1565 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1566 /*
1567 * When we get the packet, there is a pseudo-header seed already
1568 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1569 * compute the pseudo-header checksum again!
1570 */
1571 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1572 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1573 TI_RCB_FLAG_NO_PHDR_CKSUM;
1574 if (sc->ethercom.ec_nvlans != 0)
1575 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1576 rcb->ti_max_len = TI_TX_RING_CNT;
1577 if (sc->ti_hwrev == TI_HWREV_TIGON)
1578 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1579 else
1580 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1581 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1582 TI_CDTXCONSADDR(sc);
1583
1584 /*
1585 * We're done frobbing the General Information Block. Sync
1586 * it. Note we take care of the first stats sync here, as
1587 * well.
1588 */
1589 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590
1591 /* Set up tuneables */
1592 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1593 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1594 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1595 (sc->ti_rx_coal_ticks / 10));
1596 else
1597 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1598 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1599 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1600 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1601 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1602 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1603
1604 /* Turn interrupts on. */
1605 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1606 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1607
1608 /* Start CPU. */
1609 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1610
1611 return(0);
1612 }
1613
1614 /*
1615 * look for id in the device list, returning the first match
1616 */
1617 static const struct ti_type *
1618 ti_type_match(pa)
1619 struct pci_attach_args *pa;
1620 {
1621 const struct ti_type *t;
1622
1623 t = ti_devs;
1624 while(t->ti_name != NULL) {
1625 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1626 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1627 return (t);
1628 }
1629 t++;
1630 }
1631
1632 return(NULL);
1633 }
1634
1635 /*
1636 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1637 * against our list and return its name if we find a match.
1638 */
1639 static int ti_probe(parent, match, aux)
1640 struct device *parent;
1641 struct cfdata *match;
1642 void *aux;
1643 {
1644 struct pci_attach_args *pa = aux;
1645 const struct ti_type *t;
1646
1647 t = ti_type_match(pa);
1648
1649 return((t == NULL) ? 0 : 1);
1650 }
1651
1652 static void ti_attach(parent, self, aux)
1653 struct device *parent, *self;
1654 void *aux;
1655 {
1656 u_int32_t command;
1657 struct ifnet *ifp;
1658 struct ti_softc *sc;
1659 u_char eaddr[ETHER_ADDR_LEN];
1660 struct pci_attach_args *pa = aux;
1661 pci_chipset_tag_t pc = pa->pa_pc;
1662 pci_intr_handle_t ih;
1663 const char *intrstr = NULL;
1664 bus_dma_segment_t dmaseg;
1665 int error, dmanseg, nolinear;
1666 const struct ti_type *t;
1667
1668 t = ti_type_match(pa);
1669 if (t == NULL) {
1670 printf("ti_attach: were did the card go ?\n");
1671 return;
1672 }
1673
1674 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1675
1676 sc = (struct ti_softc *)self;
1677
1678 /*
1679 * Map control/status registers.
1680 */
1681 nolinear = 0;
1682 if (pci_mapreg_map(pa, 0x10,
1683 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1684 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1685 NULL, NULL)) {
1686 nolinear = 1;
1687 if (pci_mapreg_map(pa, 0x10,
1688 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1689 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1690 printf(": can't map memory space\n");
1691 return;
1692 }
1693 }
1694 if (nolinear == 0)
1695 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1696 else
1697 sc->ti_vhandle = NULL;
1698
1699 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1700 command |= PCI_COMMAND_MASTER_ENABLE;
1701 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1702
1703 /* Allocate interrupt */
1704 if (pci_intr_map(pa, &ih)) {
1705 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1706 return;
1707 }
1708 intrstr = pci_intr_string(pc, ih);
1709 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1710 if (sc->sc_ih == NULL) {
1711 printf("%s: couldn't establish interrupt",
1712 sc->sc_dev.dv_xname);
1713 if (intrstr != NULL)
1714 printf(" at %s", intrstr);
1715 printf("\n");
1716 return;
1717 }
1718 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1719 /*
1720 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1721 * doing do could allow DMA to corrupt kernel memory during the
1722 * reboot before the driver initializes.
1723 */
1724 (void) shutdownhook_establish(ti_shutdown, sc);
1725
1726 if (ti_chipinit(sc)) {
1727 printf("%s: chip initialization failed\n", self->dv_xname);
1728 goto fail2;
1729 }
1730
1731 /*
1732 * Deal with some chip diffrences.
1733 */
1734 switch (sc->ti_hwrev) {
1735 case TI_HWREV_TIGON:
1736 sc->sc_tx_encap = ti_encap_tigon1;
1737 sc->sc_tx_eof = ti_txeof_tigon1;
1738 if (nolinear == 1)
1739 printf("%s: memory space not mapped linear\n",
1740 self->dv_xname);
1741 break;
1742
1743 case TI_HWREV_TIGON_II:
1744 sc->sc_tx_encap = ti_encap_tigon2;
1745 sc->sc_tx_eof = ti_txeof_tigon2;
1746 break;
1747
1748 default:
1749 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1750 sc->ti_hwrev);
1751 goto fail2;
1752 }
1753
1754 /* Zero out the NIC's on-board SRAM. */
1755 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1756
1757 /* Init again -- zeroing memory may have clobbered some registers. */
1758 if (ti_chipinit(sc)) {
1759 printf("%s: chip initialization failed\n", self->dv_xname);
1760 goto fail2;
1761 }
1762
1763 /*
1764 * Get station address from the EEPROM. Note: the manual states
1765 * that the MAC address is at offset 0x8c, however the data is
1766 * stored as two longwords (since that's how it's loaded into
1767 * the NIC). This means the MAC address is actually preceded
1768 * by two zero bytes. We need to skip over those.
1769 */
1770 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1771 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1772 printf("%s: failed to read station address\n", self->dv_xname);
1773 goto fail2;
1774 }
1775
1776 /*
1777 * A Tigon chip was detected. Inform the world.
1778 */
1779 printf("%s: Ethernet address: %s\n", self->dv_xname,
1780 ether_sprintf(eaddr));
1781
1782 sc->sc_dmat = pa->pa_dmat;
1783
1784 /* Allocate the general information block and ring buffers. */
1785 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1786 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1787 BUS_DMA_NOWAIT)) != 0) {
1788 printf("%s: can't allocate ring buffer, error = %d\n",
1789 sc->sc_dev.dv_xname, error);
1790 goto fail2;
1791 }
1792
1793 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1794 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1795 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1796 printf("%s: can't map ring buffer, error = %d\n",
1797 sc->sc_dev.dv_xname, error);
1798 goto fail2;
1799 }
1800
1801 if ((error = bus_dmamap_create(sc->sc_dmat,
1802 sizeof(struct ti_ring_data), 1,
1803 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1804 &sc->info_dmamap)) != 0) {
1805 printf("%s: can't create ring buffer DMA map, error = %d\n",
1806 sc->sc_dev.dv_xname, error);
1807 goto fail2;
1808 }
1809
1810 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1811 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1812 BUS_DMA_NOWAIT)) != 0) {
1813 printf("%s: can't load ring buffer DMA map, error = %d\n",
1814 sc->sc_dev.dv_xname, error);
1815 goto fail2;
1816 }
1817
1818 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1819
1820 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1821
1822 /* Try to allocate memory for jumbo buffers. */
1823 if (ti_alloc_jumbo_mem(sc)) {
1824 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1825 goto fail2;
1826 }
1827
1828 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1829
1830 /*
1831 * We really need a better way to tell a 1000baseT card
1832 * from a 1000baseSX one, since in theory there could be
1833 * OEMed 1000baseT cards from lame vendors who aren't
1834 * clever enough to change the PCI ID. For the moment
1835 * though, the AceNIC is the only copper card available.
1836 */
1837 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1838 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1839 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1840 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1841 sc->ti_copper = 1;
1842 else
1843 sc->ti_copper = 0;
1844
1845 /* Set default tuneable values. */
1846 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1847 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1848 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1849 sc->ti_rx_max_coal_bds = 64;
1850 sc->ti_tx_max_coal_bds = 128;
1851 sc->ti_tx_buf_ratio = 21;
1852
1853 /* Set up ifnet structure */
1854 ifp = &sc->ethercom.ec_if;
1855 ifp->if_softc = sc;
1856 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1857 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1858 ifp->if_ioctl = ti_ioctl;
1859 ifp->if_start = ti_start;
1860 ifp->if_watchdog = ti_watchdog;
1861 IFQ_SET_READY(&ifp->if_snd);
1862
1863 #if 0
1864 /*
1865 * XXX This is not really correct -- we don't necessarily
1866 * XXX want to queue up as many as we can transmit at the
1867 * XXX upper layer like that. Someone with a board should
1868 * XXX check to see how this affects performance.
1869 */
1870 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1871 #endif
1872
1873 /*
1874 * We can support 802.1Q VLAN-sized frames.
1875 */
1876 sc->ethercom.ec_capabilities |=
1877 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1878
1879 /*
1880 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1881 */
1882 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1883 IFCAP_CSUM_UDPv4;
1884
1885 /* Set up ifmedia support. */
1886 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1887 if (sc->ti_copper) {
1888 /*
1889 * Copper cards allow manual 10/100 mode selection,
1890 * but not manual 1000baseT mode selection. Why?
1891 * Because currently there's no way to specify the
1892 * master/slave setting through the firmware interface,
1893 * so Alteon decided to just bag it and handle it
1894 * via autonegotiation.
1895 */
1896 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1897 ifmedia_add(&sc->ifmedia,
1898 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1899 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1900 ifmedia_add(&sc->ifmedia,
1901 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1902 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1903 ifmedia_add(&sc->ifmedia,
1904 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1905 } else {
1906 /* Fiber cards don't support 10/100 modes. */
1907 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1908 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1909 }
1910 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1911 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1912
1913 /*
1914 * Call MI attach routines.
1915 */
1916 if_attach(ifp);
1917 ether_ifattach(ifp, eaddr);
1918
1919 return;
1920 fail2:
1921 pci_intr_disestablish(pc, sc->sc_ih);
1922 return;
1923 }
1924
1925 /*
1926 * Frame reception handling. This is called if there's a frame
1927 * on the receive return list.
1928 *
1929 * Note: we have to be able to handle three possibilities here:
1930 * 1) the frame is from the mini receive ring (can only happen)
1931 * on Tigon 2 boards)
1932 * 2) the frame is from the jumbo receive ring
1933 * 3) the frame is from the standard receive ring
1934 */
1935
1936 static void ti_rxeof(sc)
1937 struct ti_softc *sc;
1938 {
1939 struct ifnet *ifp;
1940 struct ti_cmd_desc cmd;
1941
1942 ifp = &sc->ethercom.ec_if;
1943
1944 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1945 struct ti_rx_desc *cur_rx;
1946 u_int32_t rxidx;
1947 struct mbuf *m = NULL;
1948 u_int16_t vlan_tag = 0;
1949 int have_tag = 0;
1950 struct ether_header *eh;
1951 bus_dmamap_t dmamap;
1952
1953 cur_rx =
1954 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1955 rxidx = cur_rx->ti_idx;
1956 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1957
1958 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1959 have_tag = 1;
1960 /* ti_vlan_tag also has the priority, trim it */
1961 vlan_tag = cur_rx->ti_vlan_tag & 4095;
1962 }
1963
1964 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1965 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1966 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1967 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1968 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1969 ifp->if_ierrors++;
1970 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1971 continue;
1972 }
1973 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1974 == ENOBUFS) {
1975 ifp->if_ierrors++;
1976 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1977 continue;
1978 }
1979 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1980 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1981 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1982 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1983 dmamap = sc->mini_dmamap[rxidx];
1984 sc->mini_dmamap[rxidx] = 0;
1985 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1986 ifp->if_ierrors++;
1987 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1988 continue;
1989 }
1990 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1991 == ENOBUFS) {
1992 ifp->if_ierrors++;
1993 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1994 continue;
1995 }
1996 } else {
1997 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1998 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1999 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2000 dmamap = sc->std_dmamap[rxidx];
2001 sc->std_dmamap[rxidx] = 0;
2002 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2003 ifp->if_ierrors++;
2004 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2005 continue;
2006 }
2007 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2008 == ENOBUFS) {
2009 ifp->if_ierrors++;
2010 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2011 continue;
2012 }
2013 }
2014
2015 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2016 ifp->if_ipackets++;
2017 m->m_pkthdr.rcvif = ifp;
2018
2019 #if NBPFILTER > 0
2020 /*
2021 * Handle BPF listeners. Let the BPF user see the packet, but
2022 * don't pass it up to the ether_input() layer unless it's
2023 * a broadcast packet, multicast packet, matches our ethernet
2024 * address or the interface is in promiscuous mode.
2025 */
2026 if (ifp->if_bpf)
2027 bpf_mtap(ifp->if_bpf, m);
2028 #endif
2029
2030 eh = mtod(m, struct ether_header *);
2031 switch (ntohs(eh->ether_type)) {
2032 #ifdef INET
2033 case ETHERTYPE_IP:
2034 {
2035 struct ip *ip = (struct ip *) (eh + 1);
2036
2037 /*
2038 * Note the Tigon firmware does not invert
2039 * the checksum for us, hence the XOR.
2040 */
2041 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2042 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2043 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2044 /*
2045 * ntohs() the constant so the compiler can
2046 * optimize...
2047 *
2048 * XXX Figure out a sane way to deal with
2049 * fragmented packets.
2050 */
2051 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2052 switch (ip->ip_p) {
2053 case IPPROTO_TCP:
2054 m->m_pkthdr.csum_data =
2055 cur_rx->ti_tcp_udp_cksum;
2056 m->m_pkthdr.csum_flags |=
2057 M_CSUM_TCPv4|M_CSUM_DATA;
2058 break;
2059 case IPPROTO_UDP:
2060 m->m_pkthdr.csum_data =
2061 cur_rx->ti_tcp_udp_cksum;
2062 m->m_pkthdr.csum_flags |=
2063 M_CSUM_UDPv4|M_CSUM_DATA;
2064 break;
2065 default:
2066 /* Nothing */;
2067 }
2068 }
2069 break;
2070 }
2071 #endif
2072 default:
2073 /* Nothing. */
2074 break;
2075 }
2076
2077 if (have_tag) {
2078 struct m_tag *mtag;
2079
2080 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2081 M_NOWAIT);
2082 if (mtag) {
2083 *(u_int *)(mtag + 1) = vlan_tag;
2084 m_tag_prepend(m, mtag);
2085 have_tag = vlan_tag = 0;
2086 } else {
2087 printf("%s: no mbuf for tag\n", ifp->if_xname);
2088 m_freem(m);
2089 have_tag = vlan_tag = 0;
2090 continue;
2091 }
2092 }
2093 (*ifp->if_input)(ifp, m);
2094 }
2095
2096 /* Only necessary on the Tigon 1. */
2097 if (sc->ti_hwrev == TI_HWREV_TIGON)
2098 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2099 sc->ti_rx_saved_considx);
2100
2101 TI_UPDATE_STDPROD(sc, sc->ti_std);
2102 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2103 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2104
2105 return;
2106 }
2107
2108 static void ti_txeof_tigon1(sc)
2109 struct ti_softc *sc;
2110 {
2111 struct ti_tx_desc *cur_tx = NULL;
2112 struct ifnet *ifp;
2113 struct txdmamap_pool_entry *dma;
2114
2115 ifp = &sc->ethercom.ec_if;
2116
2117 /*
2118 * Go through our tx ring and free mbufs for those
2119 * frames that have been sent.
2120 */
2121 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2122 u_int32_t idx = 0;
2123
2124 idx = sc->ti_tx_saved_considx;
2125 if (idx > 383)
2126 CSR_WRITE_4(sc, TI_WINBASE,
2127 TI_TX_RING_BASE + 6144);
2128 else if (idx > 255)
2129 CSR_WRITE_4(sc, TI_WINBASE,
2130 TI_TX_RING_BASE + 4096);
2131 else if (idx > 127)
2132 CSR_WRITE_4(sc, TI_WINBASE,
2133 TI_TX_RING_BASE + 2048);
2134 else
2135 CSR_WRITE_4(sc, TI_WINBASE,
2136 TI_TX_RING_BASE);
2137 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2138 if (cur_tx->ti_flags & TI_BDFLAG_END)
2139 ifp->if_opackets++;
2140 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2141 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2142 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2143
2144 dma = sc->txdma[idx];
2145 KDASSERT(dma != NULL);
2146 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2147 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2148 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2149
2150 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2151 sc->txdma[idx] = NULL;
2152 }
2153 sc->ti_txcnt--;
2154 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2155 ifp->if_timer = 0;
2156 }
2157
2158 if (cur_tx != NULL)
2159 ifp->if_flags &= ~IFF_OACTIVE;
2160
2161 return;
2162 }
2163
2164 static void ti_txeof_tigon2(sc)
2165 struct ti_softc *sc;
2166 {
2167 struct ti_tx_desc *cur_tx = NULL;
2168 struct ifnet *ifp;
2169 struct txdmamap_pool_entry *dma;
2170 int firstidx, cnt;
2171
2172 ifp = &sc->ethercom.ec_if;
2173
2174 /*
2175 * Go through our tx ring and free mbufs for those
2176 * frames that have been sent.
2177 */
2178 firstidx = sc->ti_tx_saved_considx;
2179 cnt = 0;
2180 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2181 u_int32_t idx = 0;
2182
2183 idx = sc->ti_tx_saved_considx;
2184 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2185 if (cur_tx->ti_flags & TI_BDFLAG_END)
2186 ifp->if_opackets++;
2187 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2188 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2189 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2190
2191 dma = sc->txdma[idx];
2192 KDASSERT(dma != NULL);
2193 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2194 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2195 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2196
2197 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2198 sc->txdma[idx] = NULL;
2199 }
2200 cnt++;
2201 sc->ti_txcnt--;
2202 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2203 ifp->if_timer = 0;
2204 }
2205
2206 if (cnt != 0)
2207 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2208
2209 if (cur_tx != NULL)
2210 ifp->if_flags &= ~IFF_OACTIVE;
2211
2212 return;
2213 }
2214
2215 static int ti_intr(xsc)
2216 void *xsc;
2217 {
2218 struct ti_softc *sc;
2219 struct ifnet *ifp;
2220
2221 sc = xsc;
2222 ifp = &sc->ethercom.ec_if;
2223
2224 #ifdef notdef
2225 /* Avoid this for now -- checking this register is expensive. */
2226 /* Make sure this is really our interrupt. */
2227 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2228 return (0);
2229 #endif
2230
2231 /* Ack interrupt and stop others from occuring. */
2232 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2233
2234 if (ifp->if_flags & IFF_RUNNING) {
2235 /* Check RX return ring producer/consumer */
2236 ti_rxeof(sc);
2237
2238 /* Check TX ring producer/consumer */
2239 (*sc->sc_tx_eof)(sc);
2240 }
2241
2242 ti_handle_events(sc);
2243
2244 /* Re-enable interrupts. */
2245 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2246
2247 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2248 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2249 ti_start(ifp);
2250
2251 return (1);
2252 }
2253
2254 static void ti_stats_update(sc)
2255 struct ti_softc *sc;
2256 {
2257 struct ifnet *ifp;
2258
2259 ifp = &sc->ethercom.ec_if;
2260
2261 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2262
2263 ifp->if_collisions +=
2264 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2265 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2266 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2267 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2268 ifp->if_collisions;
2269
2270 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2271 }
2272
2273 /*
2274 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2275 * pointers to descriptors.
2276 */
2277 static int ti_encap_tigon1(sc, m_head, txidx)
2278 struct ti_softc *sc;
2279 struct mbuf *m_head;
2280 u_int32_t *txidx;
2281 {
2282 struct ti_tx_desc *f = NULL;
2283 u_int32_t frag, cur, cnt = 0;
2284 struct txdmamap_pool_entry *dma;
2285 bus_dmamap_t dmamap;
2286 int error, i;
2287 struct m_tag *mtag;
2288 u_int16_t csum_flags = 0;
2289
2290 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2291 if (dma == NULL) {
2292 return ENOMEM;
2293 }
2294 dmamap = dma->dmamap;
2295
2296 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2297 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2298 if (error) {
2299 struct mbuf *m;
2300 int i = 0;
2301 for (m = m_head; m; m = m->m_next)
2302 i++;
2303 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2304 "error %d\n", m_head->m_pkthdr.len, i, error);
2305 return (ENOMEM);
2306 }
2307
2308 cur = frag = *txidx;
2309
2310 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2311 /* IP header checksum field must be 0! */
2312 csum_flags |= TI_BDFLAG_IP_CKSUM;
2313 }
2314 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2315 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2316
2317 /* XXX fragmented packet checksum capability? */
2318
2319 /*
2320 * Start packing the mbufs in this chain into
2321 * the fragment pointers. Stop when we run out
2322 * of fragments or hit the end of the mbuf chain.
2323 */
2324 for (i = 0; i < dmamap->dm_nsegs; i++) {
2325 if (frag > 383)
2326 CSR_WRITE_4(sc, TI_WINBASE,
2327 TI_TX_RING_BASE + 6144);
2328 else if (frag > 255)
2329 CSR_WRITE_4(sc, TI_WINBASE,
2330 TI_TX_RING_BASE + 4096);
2331 else if (frag > 127)
2332 CSR_WRITE_4(sc, TI_WINBASE,
2333 TI_TX_RING_BASE + 2048);
2334 else
2335 CSR_WRITE_4(sc, TI_WINBASE,
2336 TI_TX_RING_BASE);
2337 f = &sc->ti_tx_ring_nic[frag % 128];
2338 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2339 break;
2340 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2341 f->ti_len = dmamap->dm_segs[i].ds_len;
2342 f->ti_flags = csum_flags;
2343 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2344 if (mtag) {
2345 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2346 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2347 } else {
2348 f->ti_vlan_tag = 0;
2349 }
2350 /*
2351 * Sanity check: avoid coming within 16 descriptors
2352 * of the end of the ring.
2353 */
2354 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2355 return(ENOBUFS);
2356 cur = frag;
2357 TI_INC(frag, TI_TX_RING_CNT);
2358 cnt++;
2359 }
2360
2361 if (i < dmamap->dm_nsegs)
2362 return(ENOBUFS);
2363
2364 if (frag == sc->ti_tx_saved_considx)
2365 return(ENOBUFS);
2366
2367 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2368 TI_BDFLAG_END;
2369
2370 /* Sync the packet's DMA map. */
2371 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2372 BUS_DMASYNC_PREWRITE);
2373
2374 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2375 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2376 sc->txdma[cur] = dma;
2377 sc->ti_txcnt += cnt;
2378
2379 *txidx = frag;
2380
2381 return(0);
2382 }
2383
2384 static int ti_encap_tigon2(sc, m_head, txidx)
2385 struct ti_softc *sc;
2386 struct mbuf *m_head;
2387 u_int32_t *txidx;
2388 {
2389 struct ti_tx_desc *f = NULL;
2390 u_int32_t frag, firstfrag, cur, cnt = 0;
2391 struct txdmamap_pool_entry *dma;
2392 bus_dmamap_t dmamap;
2393 int error, i;
2394 struct m_tag *mtag;
2395 u_int16_t csum_flags = 0;
2396
2397 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2398 if (dma == NULL) {
2399 return ENOMEM;
2400 }
2401 dmamap = dma->dmamap;
2402
2403 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2404 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2405 if (error) {
2406 struct mbuf *m;
2407 int i = 0;
2408 for (m = m_head; m; m = m->m_next)
2409 i++;
2410 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2411 "error %d\n", m_head->m_pkthdr.len, i, error);
2412 return (ENOMEM);
2413 }
2414
2415 cur = firstfrag = frag = *txidx;
2416
2417 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2418 /* IP header checksum field must be 0! */
2419 csum_flags |= TI_BDFLAG_IP_CKSUM;
2420 }
2421 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2422 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2423
2424 /* XXX fragmented packet checksum capability? */
2425
2426 /*
2427 * Start packing the mbufs in this chain into
2428 * the fragment pointers. Stop when we run out
2429 * of fragments or hit the end of the mbuf chain.
2430 */
2431 for (i = 0; i < dmamap->dm_nsegs; i++) {
2432 f = &sc->ti_rdata->ti_tx_ring[frag];
2433 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2434 break;
2435 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2436 f->ti_len = dmamap->dm_segs[i].ds_len;
2437 f->ti_flags = csum_flags;
2438 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2439 if (mtag) {
2440 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2441 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2442 } else {
2443 f->ti_vlan_tag = 0;
2444 }
2445 /*
2446 * Sanity check: avoid coming within 16 descriptors
2447 * of the end of the ring.
2448 */
2449 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2450 return(ENOBUFS);
2451 cur = frag;
2452 TI_INC(frag, TI_TX_RING_CNT);
2453 cnt++;
2454 }
2455
2456 if (i < dmamap->dm_nsegs)
2457 return(ENOBUFS);
2458
2459 if (frag == sc->ti_tx_saved_considx)
2460 return(ENOBUFS);
2461
2462 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2463
2464 /* Sync the packet's DMA map. */
2465 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2466 BUS_DMASYNC_PREWRITE);
2467
2468 /* Sync the descriptors we are using. */
2469 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2470
2471 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2472 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2473 sc->txdma[cur] = dma;
2474 sc->ti_txcnt += cnt;
2475
2476 *txidx = frag;
2477
2478 return(0);
2479 }
2480
2481 /*
2482 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2483 * to the mbuf data regions directly in the transmit descriptors.
2484 */
2485 static void ti_start(ifp)
2486 struct ifnet *ifp;
2487 {
2488 struct ti_softc *sc;
2489 struct mbuf *m_head = NULL;
2490 u_int32_t prodidx = 0;
2491
2492 sc = ifp->if_softc;
2493
2494 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2495
2496 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2497 IFQ_POLL(&ifp->if_snd, m_head);
2498 if (m_head == NULL)
2499 break;
2500
2501 /*
2502 * Pack the data into the transmit ring. If we
2503 * don't have room, set the OACTIVE flag and wait
2504 * for the NIC to drain the ring.
2505 */
2506 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2507 ifp->if_flags |= IFF_OACTIVE;
2508 break;
2509 }
2510
2511 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2512
2513 /*
2514 * If there's a BPF listener, bounce a copy of this frame
2515 * to him.
2516 */
2517 #if NBPFILTER > 0
2518 if (ifp->if_bpf)
2519 bpf_mtap(ifp->if_bpf, m_head);
2520 #endif
2521 }
2522
2523 /* Transmit */
2524 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2525
2526 /*
2527 * Set a timeout in case the chip goes out to lunch.
2528 */
2529 ifp->if_timer = 5;
2530
2531 return;
2532 }
2533
2534 static void ti_init(xsc)
2535 void *xsc;
2536 {
2537 struct ti_softc *sc = xsc;
2538 int s;
2539
2540 s = splnet();
2541
2542 /* Cancel pending I/O and flush buffers. */
2543 ti_stop(sc);
2544
2545 /* Init the gen info block, ring control blocks and firmware. */
2546 if (ti_gibinit(sc)) {
2547 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2548 splx(s);
2549 return;
2550 }
2551
2552 splx(s);
2553
2554 return;
2555 }
2556
2557 static void ti_init2(sc)
2558 struct ti_softc *sc;
2559 {
2560 struct ti_cmd_desc cmd;
2561 struct ifnet *ifp;
2562 u_int8_t *m;
2563 struct ifmedia *ifm;
2564 int tmp;
2565
2566 ifp = &sc->ethercom.ec_if;
2567
2568 /* Specify MTU and interface index. */
2569 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2570
2571 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2572 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2573 tmp += ETHER_VLAN_ENCAP_LEN;
2574 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2575
2576 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2577
2578 /* Load our MAC address. */
2579 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2580 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2581 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2582 | (m[4] << 8) | m[5]);
2583 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2584
2585 /* Enable or disable promiscuous mode as needed. */
2586 if (ifp->if_flags & IFF_PROMISC) {
2587 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2588 } else {
2589 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2590 }
2591
2592 /* Program multicast filter. */
2593 ti_setmulti(sc);
2594
2595 /*
2596 * If this is a Tigon 1, we should tell the
2597 * firmware to use software packet filtering.
2598 */
2599 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2600 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2601 }
2602
2603 /* Init RX ring. */
2604 ti_init_rx_ring_std(sc);
2605
2606 /* Init jumbo RX ring. */
2607 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2608 ti_init_rx_ring_jumbo(sc);
2609
2610 /*
2611 * If this is a Tigon 2, we can also configure the
2612 * mini ring.
2613 */
2614 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2615 ti_init_rx_ring_mini(sc);
2616
2617 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2618 sc->ti_rx_saved_considx = 0;
2619
2620 /* Init TX ring. */
2621 ti_init_tx_ring(sc);
2622
2623 /* Tell firmware we're alive. */
2624 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2625
2626 /* Enable host interrupts. */
2627 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2628
2629 ifp->if_flags |= IFF_RUNNING;
2630 ifp->if_flags &= ~IFF_OACTIVE;
2631
2632 /*
2633 * Make sure to set media properly. We have to do this
2634 * here since we have to issue commands in order to set
2635 * the link negotiation and we can't issue commands until
2636 * the firmware is running.
2637 */
2638 ifm = &sc->ifmedia;
2639 tmp = ifm->ifm_media;
2640 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2641 ti_ifmedia_upd(ifp);
2642 ifm->ifm_media = tmp;
2643
2644 return;
2645 }
2646
2647 /*
2648 * Set media options.
2649 */
2650 static int ti_ifmedia_upd(ifp)
2651 struct ifnet *ifp;
2652 {
2653 struct ti_softc *sc;
2654 struct ifmedia *ifm;
2655 struct ti_cmd_desc cmd;
2656
2657 sc = ifp->if_softc;
2658 ifm = &sc->ifmedia;
2659
2660 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2661 return(EINVAL);
2662
2663 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2664 case IFM_AUTO:
2665 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2666 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2667 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2668 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2669 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2670 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2671 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2672 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2673 break;
2674 case IFM_1000_SX:
2675 case IFM_1000_T:
2676 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2677 CSR_WRITE_4(sc, TI_GCR_GLINK,
2678 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2679 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2680 } else {
2681 CSR_WRITE_4(sc, TI_GCR_GLINK,
2682 TI_GLNK_PREF|TI_GLNK_1000MB|
2683 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2684 }
2685 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2686 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2687 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2688 break;
2689 case IFM_100_FX:
2690 case IFM_10_FL:
2691 case IFM_100_TX:
2692 case IFM_10_T:
2693 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2694 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2695 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2696 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2697 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2698 } else {
2699 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2700 }
2701 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2702 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2703 } else {
2704 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2705 }
2706 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2707 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2708 break;
2709 }
2710
2711 sc->ethercom.ec_if.if_baudrate =
2712 ifmedia_baudrate(ifm->ifm_media);
2713
2714 return(0);
2715 }
2716
2717 /*
2718 * Report current media status.
2719 */
2720 static void ti_ifmedia_sts(ifp, ifmr)
2721 struct ifnet *ifp;
2722 struct ifmediareq *ifmr;
2723 {
2724 struct ti_softc *sc;
2725 u_int32_t media = 0;
2726
2727 sc = ifp->if_softc;
2728
2729 ifmr->ifm_status = IFM_AVALID;
2730 ifmr->ifm_active = IFM_ETHER;
2731
2732 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2733 return;
2734
2735 ifmr->ifm_status |= IFM_ACTIVE;
2736
2737 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2738 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2739 if (sc->ti_copper)
2740 ifmr->ifm_active |= IFM_1000_T;
2741 else
2742 ifmr->ifm_active |= IFM_1000_SX;
2743 if (media & TI_GLNK_FULL_DUPLEX)
2744 ifmr->ifm_active |= IFM_FDX;
2745 else
2746 ifmr->ifm_active |= IFM_HDX;
2747 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2748 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2749 if (sc->ti_copper) {
2750 if (media & TI_LNK_100MB)
2751 ifmr->ifm_active |= IFM_100_TX;
2752 if (media & TI_LNK_10MB)
2753 ifmr->ifm_active |= IFM_10_T;
2754 } else {
2755 if (media & TI_LNK_100MB)
2756 ifmr->ifm_active |= IFM_100_FX;
2757 if (media & TI_LNK_10MB)
2758 ifmr->ifm_active |= IFM_10_FL;
2759 }
2760 if (media & TI_LNK_FULL_DUPLEX)
2761 ifmr->ifm_active |= IFM_FDX;
2762 if (media & TI_LNK_HALF_DUPLEX)
2763 ifmr->ifm_active |= IFM_HDX;
2764 }
2765
2766 sc->ethercom.ec_if.if_baudrate =
2767 ifmedia_baudrate(sc->ifmedia.ifm_media);
2768
2769 return;
2770 }
2771
2772 static int
2773 ti_ether_ioctl(ifp, cmd, data)
2774 struct ifnet *ifp;
2775 u_long cmd;
2776 caddr_t data;
2777 {
2778 struct ifaddr *ifa = (struct ifaddr *) data;
2779 struct ti_softc *sc = ifp->if_softc;
2780
2781 if ((ifp->if_flags & IFF_UP) == 0) {
2782 ifp->if_flags |= IFF_UP;
2783 ti_init(sc);
2784 }
2785
2786 switch (cmd) {
2787 case SIOCSIFADDR:
2788
2789 switch (ifa->ifa_addr->sa_family) {
2790 #ifdef INET
2791 case AF_INET:
2792 arp_ifinit(ifp, ifa);
2793 break;
2794 #endif
2795 #ifdef NS
2796 case AF_NS:
2797 {
2798 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2799
2800 if (ns_nullhost(*ina))
2801 ina->x_host = *(union ns_host *)
2802 LLADDR(ifp->if_sadl);
2803 else
2804 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2805 ifp->if_addrlen);
2806 break;
2807 }
2808 #endif
2809 default:
2810 break;
2811 }
2812 break;
2813
2814 default:
2815 return (EINVAL);
2816 }
2817
2818 return (0);
2819 }
2820
2821 static int ti_ioctl(ifp, command, data)
2822 struct ifnet *ifp;
2823 u_long command;
2824 caddr_t data;
2825 {
2826 struct ti_softc *sc = ifp->if_softc;
2827 struct ifreq *ifr = (struct ifreq *) data;
2828 int s, error = 0;
2829 struct ti_cmd_desc cmd;
2830
2831 s = splnet();
2832
2833 switch(command) {
2834 case SIOCSIFADDR:
2835 case SIOCGIFADDR:
2836 error = ti_ether_ioctl(ifp, command, data);
2837 break;
2838 case SIOCSIFMTU:
2839 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2840 error = EINVAL;
2841 else {
2842 ifp->if_mtu = ifr->ifr_mtu;
2843 ti_init(sc);
2844 }
2845 break;
2846 case SIOCSIFFLAGS:
2847 if (ifp->if_flags & IFF_UP) {
2848 /*
2849 * If only the state of the PROMISC flag changed,
2850 * then just use the 'set promisc mode' command
2851 * instead of reinitializing the entire NIC. Doing
2852 * a full re-init means reloading the firmware and
2853 * waiting for it to start up, which may take a
2854 * second or two.
2855 */
2856 if (ifp->if_flags & IFF_RUNNING &&
2857 ifp->if_flags & IFF_PROMISC &&
2858 !(sc->ti_if_flags & IFF_PROMISC)) {
2859 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2860 TI_CMD_CODE_PROMISC_ENB, 0);
2861 } else if (ifp->if_flags & IFF_RUNNING &&
2862 !(ifp->if_flags & IFF_PROMISC) &&
2863 sc->ti_if_flags & IFF_PROMISC) {
2864 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2865 TI_CMD_CODE_PROMISC_DIS, 0);
2866 } else
2867 ti_init(sc);
2868 } else {
2869 if (ifp->if_flags & IFF_RUNNING) {
2870 ti_stop(sc);
2871 }
2872 }
2873 sc->ti_if_flags = ifp->if_flags;
2874 error = 0;
2875 break;
2876 case SIOCADDMULTI:
2877 case SIOCDELMULTI:
2878 error = (command == SIOCADDMULTI) ?
2879 ether_addmulti(ifr, &sc->ethercom) :
2880 ether_delmulti(ifr, &sc->ethercom);
2881 if (error == ENETRESET) {
2882 if (ifp->if_flags & IFF_RUNNING)
2883 ti_setmulti(sc);
2884 error = 0;
2885 }
2886 break;
2887 case SIOCSIFMEDIA:
2888 case SIOCGIFMEDIA:
2889 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2890 break;
2891 default:
2892 error = EINVAL;
2893 break;
2894 }
2895
2896 (void)splx(s);
2897
2898 return(error);
2899 }
2900
2901 static void ti_watchdog(ifp)
2902 struct ifnet *ifp;
2903 {
2904 struct ti_softc *sc;
2905
2906 sc = ifp->if_softc;
2907
2908 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2909 ti_stop(sc);
2910 ti_init(sc);
2911
2912 ifp->if_oerrors++;
2913
2914 return;
2915 }
2916
2917 /*
2918 * Stop the adapter and free any mbufs allocated to the
2919 * RX and TX lists.
2920 */
2921 static void ti_stop(sc)
2922 struct ti_softc *sc;
2923 {
2924 struct ifnet *ifp;
2925 struct ti_cmd_desc cmd;
2926
2927 ifp = &sc->ethercom.ec_if;
2928
2929 /* Disable host interrupts. */
2930 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2931 /*
2932 * Tell firmware we're shutting down.
2933 */
2934 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2935
2936 /* Halt and reinitialize. */
2937 ti_chipinit(sc);
2938 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2939 ti_chipinit(sc);
2940
2941 /* Free the RX lists. */
2942 ti_free_rx_ring_std(sc);
2943
2944 /* Free jumbo RX list. */
2945 ti_free_rx_ring_jumbo(sc);
2946
2947 /* Free mini RX list. */
2948 ti_free_rx_ring_mini(sc);
2949
2950 /* Free TX buffers. */
2951 ti_free_tx_ring(sc);
2952
2953 sc->ti_ev_prodidx.ti_idx = 0;
2954 sc->ti_return_prodidx.ti_idx = 0;
2955 sc->ti_tx_considx.ti_idx = 0;
2956 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2957
2958 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2959
2960 return;
2961 }
2962
2963 /*
2964 * Stop all chip I/O so that the kernel's probe routines don't
2965 * get confused by errant DMAs when rebooting.
2966 */
2967 static void ti_shutdown(v)
2968 void *v;
2969 {
2970 struct ti_softc *sc = v;
2971
2972 ti_chipinit(sc);
2973
2974 return;
2975 }
2976