if_ti.c revision 1.61 1 /* $NetBSD: if_ti.c,v 1.61 2004/07/27 07:59:51 he Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.61 2004/07/27 07:59:51 he Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe __P((struct device *, struct cfdata *, void *));
158 static void ti_attach __P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1 __P((struct ti_softc *));
161 static void ti_txeof_tigon2 __P((struct ti_softc *));
162 static void ti_rxeof __P((struct ti_softc *));
163
164 static void ti_stats_update __P((struct ti_softc *));
165 static int ti_encap_tigon1 __P((struct ti_softc *, struct mbuf *,
166 u_int32_t *));
167 static int ti_encap_tigon2 __P((struct ti_softc *, struct mbuf *,
168 u_int32_t *));
169
170 static int ti_intr __P((void *));
171 static void ti_start __P((struct ifnet *));
172 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
173 static void ti_init __P((void *));
174 static void ti_init2 __P((struct ti_softc *));
175 static void ti_stop __P((struct ti_softc *));
176 static void ti_watchdog __P((struct ifnet *));
177 static int ti_ifmedia_upd __P((struct ifnet *));
178 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
179
180 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
181 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
182 int, u_int8_t *));
183 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
184
185 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti __P((struct ti_softc *));
188
189 static void ti_mem __P((struct ti_softc *, u_int32_t,
190 u_int32_t, caddr_t));
191 static void ti_loadfw __P((struct ti_softc *));
192 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
194 caddr_t, int));
195 static void ti_handle_events __P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
197 static void *ti_jalloc __P((struct ti_softc *));
198 static void ti_jfree __P((struct mbuf *, caddr_t, size_t, void *));
199 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std __P((struct ti_softc *));
203 static void ti_free_rx_ring_std __P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
206 static int ti_init_rx_ring_mini __P((struct ti_softc *));
207 static void ti_free_rx_ring_mini __P((struct ti_softc *));
208 static void ti_free_tx_ring __P((struct ti_softc *));
209 static int ti_init_tx_ring __P((struct ti_softc *));
210
211 static int ti_64bitslot_war __P((struct ti_softc *));
212 static int ti_chipinit __P((struct ti_softc *));
213 static int ti_gibinit __P((struct ti_softc *));
214
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216
217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
218 ti_probe, ti_attach, NULL, NULL);
219
220 /*
221 * Send an instruction or address to the EEPROM, check for ACK.
222 */
223 static u_int32_t ti_eeprom_putbyte(sc, byte)
224 struct ti_softc *sc;
225 int byte;
226 {
227 int i, ack = 0;
228
229 /*
230 * Make sure we're in TX mode.
231 */
232 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
233
234 /*
235 * Feed in each bit and stobe the clock.
236 */
237 for (i = 0x80; i; i >>= 1) {
238 if (byte & i) {
239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 } else {
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
242 }
243 DELAY(1);
244 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 DELAY(1);
246 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 }
248
249 /*
250 * Turn off TX mode.
251 */
252 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
253
254 /*
255 * Check for ack.
256 */
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
259 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260
261 return(ack);
262 }
263
264 /*
265 * Read a byte of data stored in the EEPROM at address 'addr.'
266 * We have to send two address bytes since the EEPROM can hold
267 * more than 256 bytes of data.
268 */
269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
270 struct ti_softc *sc;
271 int addr;
272 u_int8_t *dest;
273 {
274 int i;
275 u_int8_t byte = 0;
276
277 EEPROM_START;
278
279 /*
280 * Send write control code to EEPROM.
281 */
282 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
283 printf("%s: failed to send write command, status: %x\n",
284 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
285 return(1);
286 }
287
288 /*
289 * Send first byte of address of byte we want to read.
290 */
291 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
292 printf("%s: failed to send address, status: %x\n",
293 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return(1);
295 }
296 /*
297 * Send second byte address of byte we want to read.
298 */
299 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
300 printf("%s: failed to send address, status: %x\n",
301 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 return(1);
303 }
304
305 EEPROM_STOP;
306 EEPROM_START;
307 /*
308 * Send read control code to EEPROM.
309 */
310 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
311 printf("%s: failed to send read command, status: %x\n",
312 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
313 return(1);
314 }
315
316 /*
317 * Start reading bits from EEPROM.
318 */
319 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
320 for (i = 0x80; i; i >>= 1) {
321 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 DELAY(1);
323 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
324 byte |= i;
325 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 DELAY(1);
327 }
328
329 EEPROM_STOP;
330
331 /*
332 * No ACK generated for read, so just return byte.
333 */
334
335 *dest = byte;
336
337 return(0);
338 }
339
340 /*
341 * Read a sequence of bytes from the EEPROM.
342 */
343 static int ti_read_eeprom(sc, dest, off, cnt)
344 struct ti_softc *sc;
345 caddr_t dest;
346 int off;
347 int cnt;
348 {
349 int err = 0, i;
350 u_int8_t byte = 0;
351
352 for (i = 0; i < cnt; i++) {
353 err = ti_eeprom_getbyte(sc, off + i, &byte);
354 if (err)
355 break;
356 *(dest + i) = byte;
357 }
358
359 return(err ? 1 : 0);
360 }
361
362 /*
363 * NIC memory access function. Can be used to either clear a section
364 * of NIC local memory or (if buf is non-NULL) copy data into it.
365 */
366 static void ti_mem(sc, addr, len, buf)
367 struct ti_softc *sc;
368 u_int32_t addr, len;
369 caddr_t buf;
370 {
371 int segptr, segsize, cnt;
372 caddr_t ptr;
373
374 segptr = addr;
375 cnt = len;
376 ptr = buf;
377
378 while(cnt) {
379 if (cnt < TI_WINLEN)
380 segsize = cnt;
381 else
382 segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 if (buf == NULL) {
385 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
387 segsize / 4);
388 } else {
389 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
390 bus_space_write_region_stream_4(sc->ti_btag,
391 sc->ti_bhandle,
392 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
393 (u_int32_t *)ptr, segsize / 4);
394 #else
395 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
396 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
397 (u_int32_t *)ptr, segsize / 4);
398 #endif
399 ptr += segsize;
400 }
401 segptr += segsize;
402 cnt -= segsize;
403 }
404
405 return;
406 }
407
408 /*
409 * Load firmware image into the NIC. Check that the firmware revision
410 * is acceptable and see if we want the firmware for the Tigon 1 or
411 * Tigon 2.
412 */
413 static void ti_loadfw(sc)
414 struct ti_softc *sc;
415 {
416 switch(sc->ti_hwrev) {
417 case TI_HWREV_TIGON:
418 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 printf("%s: firmware revision mismatch; want "
422 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
423 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 tigonFwReleaseMinor, tigonFwReleaseFix);
426 return;
427 }
428 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 (caddr_t)tigonFwText);
430 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 (caddr_t)tigonFwData);
432 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 (caddr_t)tigonFwRodata);
434 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 break;
438 case TI_HWREV_TIGON_II:
439 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 printf("%s: firmware revision mismatch; want "
443 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
444 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 return;
448 }
449 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 (caddr_t)tigon2FwText);
451 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 (caddr_t)tigon2FwData);
453 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 (caddr_t)tigon2FwRodata);
455 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 break;
459 default:
460 printf("%s: can't load firmware: unknown hardware rev\n",
461 sc->sc_dev.dv_xname);
462 break;
463 }
464
465 return;
466 }
467
468 /*
469 * Send the NIC a command via the command ring.
470 */
471 static void ti_cmd(sc, cmd)
472 struct ti_softc *sc;
473 struct ti_cmd_desc *cmd;
474 {
475 u_int32_t index;
476
477 index = sc->ti_cmd_saved_prodidx;
478 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
479 TI_INC(index, TI_CMD_RING_CNT);
480 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
481 sc->ti_cmd_saved_prodidx = index;
482
483 return;
484 }
485
486 /*
487 * Send the NIC an extended command. The 'len' parameter specifies the
488 * number of command slots to include after the initial command.
489 */
490 static void ti_cmd_ext(sc, cmd, arg, len)
491 struct ti_softc *sc;
492 struct ti_cmd_desc *cmd;
493 caddr_t arg;
494 int len;
495 {
496 u_int32_t index;
497 int i;
498
499 index = sc->ti_cmd_saved_prodidx;
500 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
501 TI_INC(index, TI_CMD_RING_CNT);
502 for (i = 0; i < len; i++) {
503 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
504 *(u_int32_t *)(&arg[i * 4]));
505 TI_INC(index, TI_CMD_RING_CNT);
506 }
507 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
508 sc->ti_cmd_saved_prodidx = index;
509
510 return;
511 }
512
513 /*
514 * Handle events that have triggered interrupts.
515 */
516 static void ti_handle_events(sc)
517 struct ti_softc *sc;
518 {
519 struct ti_event_desc *e;
520
521 if (sc->ti_rdata->ti_event_ring == NULL)
522 return;
523
524 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
525 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
526 switch(e->ti_event) {
527 case TI_EV_LINKSTAT_CHANGED:
528 sc->ti_linkstat = e->ti_code;
529 if (e->ti_code == TI_EV_CODE_LINK_UP)
530 printf("%s: 10/100 link up\n",
531 sc->sc_dev.dv_xname);
532 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533 printf("%s: gigabit link up\n",
534 sc->sc_dev.dv_xname);
535 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
536 printf("%s: link down\n",
537 sc->sc_dev.dv_xname);
538 break;
539 case TI_EV_ERROR:
540 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
541 printf("%s: invalid command\n",
542 sc->sc_dev.dv_xname);
543 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
544 printf("%s: unknown command\n",
545 sc->sc_dev.dv_xname);
546 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
547 printf("%s: bad config data\n",
548 sc->sc_dev.dv_xname);
549 break;
550 case TI_EV_FIRMWARE_UP:
551 ti_init2(sc);
552 break;
553 case TI_EV_STATS_UPDATED:
554 ti_stats_update(sc);
555 break;
556 case TI_EV_RESET_JUMBO_RING:
557 case TI_EV_MCAST_UPDATED:
558 /* Who cares. */
559 break;
560 default:
561 printf("%s: unknown event: %d\n",
562 sc->sc_dev.dv_xname, e->ti_event);
563 break;
564 }
565 /* Advance the consumer index. */
566 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 }
569
570 return;
571 }
572
573 /*
574 * Memory management for the jumbo receive ring is a pain in the
575 * butt. We need to allocate at least 9018 bytes of space per frame,
576 * _and_ it has to be contiguous (unless you use the extended
577 * jumbo descriptor format). Using malloc() all the time won't
578 * work: malloc() allocates memory in powers of two, which means we
579 * would end up wasting a considerable amount of space by allocating
580 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581 * to do our own memory management.
582 *
583 * The driver needs to allocate a contiguous chunk of memory at boot
584 * time. We then chop this up ourselves into 9K pieces and use them
585 * as external mbuf storage.
586 *
587 * One issue here is how much memory to allocate. The jumbo ring has
588 * 256 slots in it, but at 9K per slot than can consume over 2MB of
589 * RAM. This is a bit much, especially considering we also need
590 * RAM for the standard ring and mini ring (on the Tigon 2). To
591 * save space, we only actually allocate enough memory for 64 slots
592 * by default, which works out to between 500 and 600K. This can
593 * be tuned by changing a #define in if_tireg.h.
594 */
595
596 static int ti_alloc_jumbo_mem(sc)
597 struct ti_softc *sc;
598 {
599 caddr_t ptr;
600 int i;
601 struct ti_jpool_entry *entry;
602 bus_dma_segment_t dmaseg;
603 int error, dmanseg;
604
605 /* Grab a big chunk o' storage. */
606 if ((error = bus_dmamem_alloc(sc->sc_dmat,
607 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
608 BUS_DMA_NOWAIT)) != 0) {
609 printf("%s: can't allocate jumbo buffer, error = %d\n",
610 sc->sc_dev.dv_xname, error);
611 return (error);
612 }
613
614 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
615 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
616 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
617 printf("%s: can't map jumbo buffer, error = %d\n",
618 sc->sc_dev.dv_xname, error);
619 return (error);
620 }
621
622 if ((error = bus_dmamap_create(sc->sc_dmat,
623 TI_JMEM, 1,
624 TI_JMEM, 0, BUS_DMA_NOWAIT,
625 &sc->jumbo_dmamap)) != 0) {
626 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
627 sc->sc_dev.dv_xname, error);
628 return (error);
629 }
630
631 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
632 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
633 BUS_DMA_NOWAIT)) != 0) {
634 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
635 sc->sc_dev.dv_xname, error);
636 return (error);
637 }
638 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
639
640 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
641 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
642
643 /*
644 * Now divide it up into 9K pieces and save the addresses
645 * in an array.
646 */
647 ptr = sc->ti_cdata.ti_jumbo_buf;
648 for (i = 0; i < TI_JSLOTS; i++) {
649 sc->ti_cdata.ti_jslots[i] = ptr;
650 ptr += TI_JLEN;
651 entry = malloc(sizeof(struct ti_jpool_entry),
652 M_DEVBUF, M_NOWAIT);
653 if (entry == NULL) {
654 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
655 sc->ti_cdata.ti_jumbo_buf = NULL;
656 printf("%s: no memory for jumbo "
657 "buffer queue!\n", sc->sc_dev.dv_xname);
658 return(ENOBUFS);
659 }
660 entry->slot = i;
661 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
662 jpool_entries);
663 }
664
665 return(0);
666 }
667
668 /*
669 * Allocate a jumbo buffer.
670 */
671 static void *ti_jalloc(sc)
672 struct ti_softc *sc;
673 {
674 struct ti_jpool_entry *entry;
675
676 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
677
678 if (entry == NULL) {
679 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
680 return(NULL);
681 }
682
683 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
684 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
685 return(sc->ti_cdata.ti_jslots[entry->slot]);
686 }
687
688 /*
689 * Release a jumbo buffer.
690 */
691 static void ti_jfree(m, buf, size, arg)
692 struct mbuf *m;
693 caddr_t buf;
694 size_t size;
695 void *arg;
696 {
697 struct ti_softc *sc;
698 int i, s;
699 struct ti_jpool_entry *entry;
700
701 /* Extract the softc struct pointer. */
702 sc = (struct ti_softc *)arg;
703
704 if (sc == NULL)
705 panic("ti_jfree: didn't get softc pointer!");
706
707 /* calculate the slot this buffer belongs to */
708
709 i = ((caddr_t)buf
710 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
711
712 if ((i < 0) || (i >= TI_JSLOTS))
713 panic("ti_jfree: asked to free buffer that we don't manage!");
714
715 s = splvm();
716 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
717 if (entry == NULL)
718 panic("ti_jfree: buffer not in use!");
719 entry->slot = i;
720 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
721 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
722
723 if (__predict_true(m != NULL))
724 pool_cache_put(&mbpool_cache, m);
725 splx(s);
726 }
727
728
729 /*
730 * Intialize a standard receive ring descriptor.
731 */
732 static int ti_newbuf_std(sc, i, m, dmamap)
733 struct ti_softc *sc;
734 int i;
735 struct mbuf *m;
736 bus_dmamap_t dmamap; /* required if (m != NULL) */
737 {
738 struct mbuf *m_new = NULL;
739 struct ti_rx_desc *r;
740 int error;
741
742 if (dmamap == NULL) {
743 /* if (m) panic() */
744
745 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
746 MCLBYTES, 0, BUS_DMA_NOWAIT,
747 &dmamap)) != 0) {
748 printf("%s: can't create recv map, error = %d\n",
749 sc->sc_dev.dv_xname, error);
750 return(ENOMEM);
751 }
752 }
753 sc->std_dmamap[i] = dmamap;
754
755 if (m == NULL) {
756 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
757 if (m_new == NULL) {
758 printf("%s: mbuf allocation failed "
759 "-- packet dropped!\n", sc->sc_dev.dv_xname);
760 return(ENOBUFS);
761 }
762
763 MCLGET(m_new, M_DONTWAIT);
764 if (!(m_new->m_flags & M_EXT)) {
765 printf("%s: cluster allocation failed "
766 "-- packet dropped!\n", sc->sc_dev.dv_xname);
767 m_freem(m_new);
768 return(ENOBUFS);
769 }
770 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
771 m_adj(m_new, ETHER_ALIGN);
772
773 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
774 mtod(m_new, caddr_t), m_new->m_len, NULL,
775 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
776 printf("%s: can't load recv map, error = %d\n",
777 sc->sc_dev.dv_xname, error);
778 return (ENOMEM);
779 }
780 } else {
781 m_new = m;
782 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
783 m_new->m_data = m_new->m_ext.ext_buf;
784 m_adj(m_new, ETHER_ALIGN);
785
786 /* reuse the dmamap */
787 }
788
789 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
790 r = &sc->ti_rdata->ti_rx_std_ring[i];
791 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
792 r->ti_type = TI_BDTYPE_RECV_BD;
793 r->ti_flags = 0;
794 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
795 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
796 if (sc->ethercom.ec_if.if_capenable &
797 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
798 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
799 r->ti_len = m_new->m_len; /* == ds_len */
800 r->ti_idx = i;
801
802 return(0);
803 }
804
805 /*
806 * Intialize a mini receive ring descriptor. This only applies to
807 * the Tigon 2.
808 */
809 static int ti_newbuf_mini(sc, i, m, dmamap)
810 struct ti_softc *sc;
811 int i;
812 struct mbuf *m;
813 bus_dmamap_t dmamap; /* required if (m != NULL) */
814 {
815 struct mbuf *m_new = NULL;
816 struct ti_rx_desc *r;
817 int error;
818
819 if (dmamap == NULL) {
820 /* if (m) panic() */
821
822 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
823 MHLEN, 0, BUS_DMA_NOWAIT,
824 &dmamap)) != 0) {
825 printf("%s: can't create recv map, error = %d\n",
826 sc->sc_dev.dv_xname, error);
827 return(ENOMEM);
828 }
829 }
830 sc->mini_dmamap[i] = dmamap;
831
832 if (m == NULL) {
833 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
834 if (m_new == NULL) {
835 printf("%s: mbuf allocation failed "
836 "-- packet dropped!\n", sc->sc_dev.dv_xname);
837 return(ENOBUFS);
838 }
839 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
840 m_adj(m_new, ETHER_ALIGN);
841
842 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
843 mtod(m_new, caddr_t), m_new->m_len, NULL,
844 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
845 printf("%s: can't load recv map, error = %d\n",
846 sc->sc_dev.dv_xname, error);
847 return (ENOMEM);
848 }
849 } else {
850 m_new = m;
851 m_new->m_data = m_new->m_pktdat;
852 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
853 m_adj(m_new, ETHER_ALIGN);
854
855 /* reuse the dmamap */
856 }
857
858 r = &sc->ti_rdata->ti_rx_mini_ring[i];
859 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
860 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
861 r->ti_type = TI_BDTYPE_RECV_BD;
862 r->ti_flags = TI_BDFLAG_MINI_RING;
863 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
864 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
865 if (sc->ethercom.ec_if.if_capenable &
866 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
867 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
868 r->ti_len = m_new->m_len; /* == ds_len */
869 r->ti_idx = i;
870
871 return(0);
872 }
873
874 /*
875 * Initialize a jumbo receive ring descriptor. This allocates
876 * a jumbo buffer from the pool managed internally by the driver.
877 */
878 static int ti_newbuf_jumbo(sc, i, m)
879 struct ti_softc *sc;
880 int i;
881 struct mbuf *m;
882 {
883 struct mbuf *m_new = NULL;
884 struct ti_rx_desc *r;
885
886 if (m == NULL) {
887 caddr_t *buf = NULL;
888
889 /* Allocate the mbuf. */
890 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
891 if (m_new == NULL) {
892 printf("%s: mbuf allocation failed "
893 "-- packet dropped!\n", sc->sc_dev.dv_xname);
894 return(ENOBUFS);
895 }
896
897 /* Allocate the jumbo buffer */
898 buf = ti_jalloc(sc);
899 if (buf == NULL) {
900 m_freem(m_new);
901 printf("%s: jumbo allocation failed "
902 "-- packet dropped!\n", sc->sc_dev.dv_xname);
903 return(ENOBUFS);
904 }
905
906 /* Attach the buffer to the mbuf. */
907 MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
908 M_DEVBUF, ti_jfree, sc);
909 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
910 } else {
911 m_new = m;
912 m_new->m_data = m_new->m_ext.ext_buf;
913 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
914 }
915
916 m_adj(m_new, ETHER_ALIGN);
917 /* Set up the descriptor. */
918 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
919 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
920 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
921 ((caddr_t)mtod(m_new, caddr_t)
922 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
923 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
924 r->ti_flags = TI_BDFLAG_JUMBO_RING;
925 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
926 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
927 if (sc->ethercom.ec_if.if_capenable &
928 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
929 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
930 r->ti_len = m_new->m_len;
931 r->ti_idx = i;
932
933 return(0);
934 }
935
936 /*
937 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
938 * that's 1MB or memory, which is a lot. For now, we fill only the first
939 * 256 ring entries and hope that our CPU is fast enough to keep up with
940 * the NIC.
941 */
942 static int ti_init_rx_ring_std(sc)
943 struct ti_softc *sc;
944 {
945 int i;
946 struct ti_cmd_desc cmd;
947
948 for (i = 0; i < TI_SSLOTS; i++) {
949 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
950 return(ENOBUFS);
951 };
952
953 TI_UPDATE_STDPROD(sc, i - 1);
954 sc->ti_std = i - 1;
955
956 return(0);
957 }
958
959 static void ti_free_rx_ring_std(sc)
960 struct ti_softc *sc;
961 {
962 int i;
963
964 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
965 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
966 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
967 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
968
969 /* if (sc->std_dmamap[i] == 0) panic() */
970 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
971 sc->std_dmamap[i] = 0;
972 }
973 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
974 sizeof(struct ti_rx_desc));
975 }
976
977 return;
978 }
979
980 static int ti_init_rx_ring_jumbo(sc)
981 struct ti_softc *sc;
982 {
983 int i;
984 struct ti_cmd_desc cmd;
985
986 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
987 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
988 return(ENOBUFS);
989 };
990
991 TI_UPDATE_JUMBOPROD(sc, i - 1);
992 sc->ti_jumbo = i - 1;
993
994 return(0);
995 }
996
997 static void ti_free_rx_ring_jumbo(sc)
998 struct ti_softc *sc;
999 {
1000 int i;
1001
1002 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1003 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1004 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1005 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1006 }
1007 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1008 sizeof(struct ti_rx_desc));
1009 }
1010
1011 return;
1012 }
1013
1014 static int ti_init_rx_ring_mini(sc)
1015 struct ti_softc *sc;
1016 {
1017 int i;
1018
1019 for (i = 0; i < TI_MSLOTS; i++) {
1020 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1021 return(ENOBUFS);
1022 };
1023
1024 TI_UPDATE_MINIPROD(sc, i - 1);
1025 sc->ti_mini = i - 1;
1026
1027 return(0);
1028 }
1029
1030 static void ti_free_rx_ring_mini(sc)
1031 struct ti_softc *sc;
1032 {
1033 int i;
1034
1035 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1036 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1037 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1038 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1039
1040 /* if (sc->mini_dmamap[i] == 0) panic() */
1041 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1042 sc->mini_dmamap[i] = 0;
1043 }
1044 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1045 sizeof(struct ti_rx_desc));
1046 }
1047
1048 return;
1049 }
1050
1051 static void ti_free_tx_ring(sc)
1052 struct ti_softc *sc;
1053 {
1054 int i;
1055 struct txdmamap_pool_entry *dma;
1056
1057 if (sc->ti_rdata->ti_tx_ring == NULL)
1058 return;
1059
1060 for (i = 0; i < TI_TX_RING_CNT; i++) {
1061 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1062 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1063 sc->ti_cdata.ti_tx_chain[i] = NULL;
1064
1065 /* if (sc->txdma[i] == 0) panic() */
1066 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1067 link);
1068 sc->txdma[i] = 0;
1069 }
1070 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1071 sizeof(struct ti_tx_desc));
1072 }
1073
1074 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1075 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1076 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1077 free(dma, M_DEVBUF);
1078 }
1079
1080 return;
1081 }
1082
1083 static int ti_init_tx_ring(sc)
1084 struct ti_softc *sc;
1085 {
1086 int i, error;
1087 bus_dmamap_t dmamap;
1088 struct txdmamap_pool_entry *dma;
1089
1090 sc->ti_txcnt = 0;
1091 sc->ti_tx_saved_considx = 0;
1092 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1093
1094 SIMPLEQ_INIT(&sc->txdma_list);
1095 for (i = 0; i < TI_RSLOTS; i++) {
1096 /* I've seen mbufs with 30 fragments. */
1097 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1098 40, ETHER_MAX_LEN_JUMBO, 0,
1099 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1100 printf("%s: can't create tx map, error = %d\n",
1101 sc->sc_dev.dv_xname, error);
1102 return(ENOMEM);
1103 }
1104 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1105 if (!dma) {
1106 printf("%s: can't alloc txdmamap_pool_entry\n",
1107 sc->sc_dev.dv_xname);
1108 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1109 return (ENOMEM);
1110 }
1111 dma->dmamap = dmamap;
1112 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1113 }
1114
1115 return(0);
1116 }
1117
1118 /*
1119 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1120 * but we have to support the old way too so that Tigon 1 cards will
1121 * work.
1122 */
1123 void ti_add_mcast(sc, addr)
1124 struct ti_softc *sc;
1125 struct ether_addr *addr;
1126 {
1127 struct ti_cmd_desc cmd;
1128 u_int16_t *m;
1129 u_int32_t ext[2] = {0, 0};
1130
1131 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1132
1133 switch(sc->ti_hwrev) {
1134 case TI_HWREV_TIGON:
1135 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1136 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1137 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1138 break;
1139 case TI_HWREV_TIGON_II:
1140 ext[0] = htons(m[0]);
1141 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1142 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1143 break;
1144 default:
1145 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1146 break;
1147 }
1148
1149 return;
1150 }
1151
1152 void ti_del_mcast(sc, addr)
1153 struct ti_softc *sc;
1154 struct ether_addr *addr;
1155 {
1156 struct ti_cmd_desc cmd;
1157 u_int16_t *m;
1158 u_int32_t ext[2] = {0, 0};
1159
1160 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1161
1162 switch(sc->ti_hwrev) {
1163 case TI_HWREV_TIGON:
1164 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1165 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1166 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1167 break;
1168 case TI_HWREV_TIGON_II:
1169 ext[0] = htons(m[0]);
1170 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1171 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1172 break;
1173 default:
1174 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1175 break;
1176 }
1177
1178 return;
1179 }
1180
1181 /*
1182 * Configure the Tigon's multicast address filter.
1183 *
1184 * The actual multicast table management is a bit of a pain, thanks to
1185 * slight brain damage on the part of both Alteon and us. With our
1186 * multicast code, we are only alerted when the multicast address table
1187 * changes and at that point we only have the current list of addresses:
1188 * we only know the current state, not the previous state, so we don't
1189 * actually know what addresses were removed or added. The firmware has
1190 * state, but we can't get our grubby mits on it, and there is no 'delete
1191 * all multicast addresses' command. Hence, we have to maintain our own
1192 * state so we know what addresses have been programmed into the NIC at
1193 * any given time.
1194 */
1195 static void ti_setmulti(sc)
1196 struct ti_softc *sc;
1197 {
1198 struct ifnet *ifp;
1199 struct ti_cmd_desc cmd;
1200 struct ti_mc_entry *mc;
1201 u_int32_t intrs;
1202 struct ether_multi *enm;
1203 struct ether_multistep step;
1204
1205 ifp = &sc->ethercom.ec_if;
1206
1207 /* Disable interrupts. */
1208 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1209 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1210
1211 /* First, zot all the existing filters. */
1212 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1213 ti_del_mcast(sc, &mc->mc_addr);
1214 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1215 free(mc, M_DEVBUF);
1216 }
1217
1218 /*
1219 * Remember all multicast addresses so that we can delete them
1220 * later. Punt if there is a range of addresses or memory shortage.
1221 */
1222 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1223 while (enm != NULL) {
1224 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1225 ETHER_ADDR_LEN) != 0)
1226 goto allmulti;
1227 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1228 M_NOWAIT)) == NULL)
1229 goto allmulti;
1230 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1231 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1232 ETHER_NEXT_MULTI(step, enm);
1233 }
1234
1235 /* Accept only programmed multicast addresses */
1236 ifp->if_flags &= ~IFF_ALLMULTI;
1237 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1238
1239 /* Now program new ones. */
1240 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1241 ti_add_mcast(sc, &mc->mc_addr);
1242
1243 /* Re-enable interrupts. */
1244 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1245
1246 return;
1247
1248 allmulti:
1249 /* No need to keep individual multicast addresses */
1250 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1251 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1252 free(mc, M_DEVBUF);
1253 }
1254
1255 /* Accept all multicast addresses */
1256 ifp->if_flags |= IFF_ALLMULTI;
1257 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1258
1259 /* Re-enable interrupts. */
1260 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1261 }
1262
1263 /*
1264 * Check to see if the BIOS has configured us for a 64 bit slot when
1265 * we aren't actually in one. If we detect this condition, we can work
1266 * around it on the Tigon 2 by setting a bit in the PCI state register,
1267 * but for the Tigon 1 we must give up and abort the interface attach.
1268 */
1269 static int ti_64bitslot_war(sc)
1270 struct ti_softc *sc;
1271 {
1272 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1273 CSR_WRITE_4(sc, 0x600, 0);
1274 CSR_WRITE_4(sc, 0x604, 0);
1275 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1276 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1277 if (sc->ti_hwrev == TI_HWREV_TIGON)
1278 return(EINVAL);
1279 else {
1280 TI_SETBIT(sc, TI_PCI_STATE,
1281 TI_PCISTATE_32BIT_BUS);
1282 return(0);
1283 }
1284 }
1285 }
1286
1287 return(0);
1288 }
1289
1290 /*
1291 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1292 * self-test results.
1293 */
1294 static int ti_chipinit(sc)
1295 struct ti_softc *sc;
1296 {
1297 u_int32_t cacheline;
1298 u_int32_t pci_writemax = 0;
1299 u_int32_t rev;
1300
1301 /* Initialize link to down state. */
1302 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1303
1304 /* Set endianness before we access any non-PCI registers. */
1305 #if BYTE_ORDER == BIG_ENDIAN
1306 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1307 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1308 #else
1309 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1310 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1311 #endif
1312
1313 /* Check the ROM failed bit to see if self-tests passed. */
1314 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1315 printf("%s: board self-diagnostics failed!\n",
1316 sc->sc_dev.dv_xname);
1317 return(ENODEV);
1318 }
1319
1320 /* Halt the CPU. */
1321 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1322
1323 /* Figure out the hardware revision. */
1324 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1325 switch(rev) {
1326 case TI_REV_TIGON_I:
1327 sc->ti_hwrev = TI_HWREV_TIGON;
1328 break;
1329 case TI_REV_TIGON_II:
1330 sc->ti_hwrev = TI_HWREV_TIGON_II;
1331 break;
1332 default:
1333 printf("%s: unsupported chip revision 0x%x\n",
1334 sc->sc_dev.dv_xname, rev);
1335 return(ENODEV);
1336 }
1337
1338 /* Do special setup for Tigon 2. */
1339 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1340 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1341 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1342 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1343 }
1344
1345 /* Set up the PCI state register. */
1346 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1347 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1348 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1349 }
1350
1351 /* Clear the read/write max DMA parameters. */
1352 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1353 TI_PCISTATE_READ_MAXDMA));
1354
1355 /* Get cache line size. */
1356 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1357
1358 /*
1359 * If the system has set enabled the PCI memory write
1360 * and invalidate command in the command register, set
1361 * the write max parameter accordingly. This is necessary
1362 * to use MWI with the Tigon 2.
1363 */
1364 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1365 & PCI_COMMAND_INVALIDATE_ENABLE) {
1366 switch(cacheline) {
1367 case 1:
1368 case 4:
1369 case 8:
1370 case 16:
1371 case 32:
1372 case 64:
1373 break;
1374 default:
1375 /* Disable PCI memory write and invalidate. */
1376 if (bootverbose)
1377 printf("%s: cache line size %d not "
1378 "supported; disabling PCI MWI\n",
1379 sc->sc_dev.dv_xname, cacheline);
1380 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1381 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1382 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1383 break;
1384 }
1385 }
1386
1387 #ifdef __brokenalpha__
1388 /*
1389 * From the Alteon sample driver:
1390 * Must insure that we do not cross an 8K (bytes) boundary
1391 * for DMA reads. Our highest limit is 1K bytes. This is a
1392 * restriction on some ALPHA platforms with early revision
1393 * 21174 PCI chipsets, such as the AlphaPC 164lx
1394 */
1395 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1396 #else
1397 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1398 #endif
1399
1400 /* This sets the min dma param all the way up (0xff). */
1401 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1402
1403 /* Configure DMA variables. */
1404 #if BYTE_ORDER == BIG_ENDIAN
1405 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1406 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1407 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1408 TI_OPMODE_DONT_FRAG_JUMBO);
1409 #else
1410 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1411 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1412 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1413 #endif
1414
1415 /*
1416 * Only allow 1 DMA channel to be active at a time.
1417 * I don't think this is a good idea, but without it
1418 * the firmware racks up lots of nicDmaReadRingFull
1419 * errors.
1420 * Incompatible with hardware assisted checksums.
1421 */
1422 if ((sc->ethercom.ec_if.if_capenable &
1423 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1424 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1425
1426 /* Recommended settings from Tigon manual. */
1427 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1428 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1429
1430 if (ti_64bitslot_war(sc)) {
1431 printf("%s: bios thinks we're in a 64 bit slot, "
1432 "but we aren't", sc->sc_dev.dv_xname);
1433 return(EINVAL);
1434 }
1435
1436 return(0);
1437 }
1438
1439 /*
1440 * Initialize the general information block and firmware, and
1441 * start the CPU(s) running.
1442 */
1443 static int ti_gibinit(sc)
1444 struct ti_softc *sc;
1445 {
1446 struct ti_rcb *rcb;
1447 int i;
1448 struct ifnet *ifp;
1449
1450 ifp = &sc->ethercom.ec_if;
1451
1452 /* Disable interrupts for now. */
1453 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1454
1455 /* Tell the chip where to find the general information block. */
1456 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1457 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1458
1459 /* Load the firmware into SRAM. */
1460 ti_loadfw(sc);
1461
1462 /* Set up the contents of the general info and ring control blocks. */
1463
1464 /* Set up the event ring and producer pointer. */
1465 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1466
1467 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1468 rcb->ti_flags = 0;
1469 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1470 TI_CDEVPRODADDR(sc);
1471
1472 sc->ti_ev_prodidx.ti_idx = 0;
1473 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1474 sc->ti_ev_saved_considx = 0;
1475
1476 /* Set up the command ring and producer mailbox. */
1477 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1478
1479 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1480 rcb->ti_flags = 0;
1481 rcb->ti_max_len = 0;
1482 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1483 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1484 }
1485 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1486 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1487 sc->ti_cmd_saved_prodidx = 0;
1488
1489 /*
1490 * Assign the address of the stats refresh buffer.
1491 * We re-use the current stats buffer for this to
1492 * conserve memory.
1493 */
1494 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1495 TI_CDSTATSADDR(sc);
1496
1497 /* Set up the standard receive ring. */
1498 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1499 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1500 rcb->ti_max_len = ETHER_MAX_LEN;
1501 rcb->ti_flags = 0;
1502 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1503 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1504 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1505 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1506 if (sc->ethercom.ec_nvlans != 0)
1507 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1508
1509 /* Set up the jumbo receive ring. */
1510 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1511 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1512 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1513 rcb->ti_flags = 0;
1514 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1515 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1516 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1517 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1518 if (sc->ethercom.ec_nvlans != 0)
1519 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1520
1521 /*
1522 * Set up the mini ring. Only activated on the
1523 * Tigon 2 but the slot in the config block is
1524 * still there on the Tigon 1.
1525 */
1526 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1527 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1528 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1529 if (sc->ti_hwrev == TI_HWREV_TIGON)
1530 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1531 else
1532 rcb->ti_flags = 0;
1533 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1534 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1535 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1536 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1537 if (sc->ethercom.ec_nvlans != 0)
1538 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1539
1540 /*
1541 * Set up the receive return ring.
1542 */
1543 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1544 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1545 rcb->ti_flags = 0;
1546 rcb->ti_max_len = TI_RETURN_RING_CNT;
1547 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1548 TI_CDRTNPRODADDR(sc);
1549
1550 /*
1551 * Set up the tx ring. Note: for the Tigon 2, we have the option
1552 * of putting the transmit ring in the host's address space and
1553 * letting the chip DMA it instead of leaving the ring in the NIC's
1554 * memory and accessing it through the shared memory region. We
1555 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1556 * so we have to revert to the shared memory scheme if we detect
1557 * a Tigon 1 chip.
1558 */
1559 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1560 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1561 sc->ti_tx_ring_nic =
1562 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1563 }
1564 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1565 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1566 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1567 if (sc->ti_hwrev == TI_HWREV_TIGON)
1568 rcb->ti_flags = 0;
1569 else
1570 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1571 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1572 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1573 /*
1574 * When we get the packet, there is a pseudo-header seed already
1575 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1576 * compute the pseudo-header checksum again!
1577 */
1578 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1579 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1580 TI_RCB_FLAG_NO_PHDR_CKSUM;
1581 if (sc->ethercom.ec_nvlans != 0)
1582 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1583 rcb->ti_max_len = TI_TX_RING_CNT;
1584 if (sc->ti_hwrev == TI_HWREV_TIGON)
1585 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1586 else
1587 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1588 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1589 TI_CDTXCONSADDR(sc);
1590
1591 /*
1592 * We're done frobbing the General Information Block. Sync
1593 * it. Note we take care of the first stats sync here, as
1594 * well.
1595 */
1596 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1597
1598 /* Set up tuneables */
1599 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1600 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1601 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1602 (sc->ti_rx_coal_ticks / 10));
1603 else
1604 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1605 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1606 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1607 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1608 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1609 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1610
1611 /* Turn interrupts on. */
1612 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1613 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1614
1615 /* Start CPU. */
1616 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1617
1618 return(0);
1619 }
1620
1621 /*
1622 * look for id in the device list, returning the first match
1623 */
1624 static const struct ti_type *
1625 ti_type_match(pa)
1626 struct pci_attach_args *pa;
1627 {
1628 const struct ti_type *t;
1629
1630 t = ti_devs;
1631 while(t->ti_name != NULL) {
1632 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1633 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1634 return (t);
1635 }
1636 t++;
1637 }
1638
1639 return(NULL);
1640 }
1641
1642 /*
1643 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1644 * against our list and return its name if we find a match.
1645 */
1646 static int ti_probe(parent, match, aux)
1647 struct device *parent;
1648 struct cfdata *match;
1649 void *aux;
1650 {
1651 struct pci_attach_args *pa = aux;
1652 const struct ti_type *t;
1653
1654 t = ti_type_match(pa);
1655
1656 return((t == NULL) ? 0 : 1);
1657 }
1658
1659 static void ti_attach(parent, self, aux)
1660 struct device *parent, *self;
1661 void *aux;
1662 {
1663 u_int32_t command;
1664 struct ifnet *ifp;
1665 struct ti_softc *sc;
1666 u_char eaddr[ETHER_ADDR_LEN];
1667 struct pci_attach_args *pa = aux;
1668 pci_chipset_tag_t pc = pa->pa_pc;
1669 pci_intr_handle_t ih;
1670 const char *intrstr = NULL;
1671 bus_dma_segment_t dmaseg;
1672 int error, dmanseg, nolinear;
1673 const struct ti_type *t;
1674
1675 t = ti_type_match(pa);
1676 if (t == NULL) {
1677 printf("ti_attach: were did the card go ?\n");
1678 return;
1679 }
1680
1681 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1682
1683 sc = (struct ti_softc *)self;
1684
1685 /*
1686 * Map control/status registers.
1687 */
1688 nolinear = 0;
1689 if (pci_mapreg_map(pa, 0x10,
1690 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1691 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1692 NULL, NULL)) {
1693 nolinear = 1;
1694 if (pci_mapreg_map(pa, 0x10,
1695 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1696 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1697 printf(": can't map memory space\n");
1698 return;
1699 }
1700 }
1701 if (nolinear == 0)
1702 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1703 else
1704 sc->ti_vhandle = NULL;
1705
1706 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1707 command |= PCI_COMMAND_MASTER_ENABLE;
1708 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1709
1710 /* Allocate interrupt */
1711 if (pci_intr_map(pa, &ih)) {
1712 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1713 return;
1714 }
1715 intrstr = pci_intr_string(pc, ih);
1716 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1717 if (sc->sc_ih == NULL) {
1718 printf("%s: couldn't establish interrupt",
1719 sc->sc_dev.dv_xname);
1720 if (intrstr != NULL)
1721 printf(" at %s", intrstr);
1722 printf("\n");
1723 return;
1724 }
1725 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1726 /*
1727 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1728 * doing do could allow DMA to corrupt kernel memory during the
1729 * reboot before the driver initializes.
1730 */
1731 (void) shutdownhook_establish(ti_shutdown, sc);
1732
1733 if (ti_chipinit(sc)) {
1734 printf("%s: chip initialization failed\n", self->dv_xname);
1735 goto fail2;
1736 }
1737
1738 /*
1739 * Deal with some chip diffrences.
1740 */
1741 switch (sc->ti_hwrev) {
1742 case TI_HWREV_TIGON:
1743 sc->sc_tx_encap = ti_encap_tigon1;
1744 sc->sc_tx_eof = ti_txeof_tigon1;
1745 if (nolinear == 1)
1746 printf("%s: memory space not mapped linear\n",
1747 self->dv_xname);
1748 break;
1749
1750 case TI_HWREV_TIGON_II:
1751 sc->sc_tx_encap = ti_encap_tigon2;
1752 sc->sc_tx_eof = ti_txeof_tigon2;
1753 break;
1754
1755 default:
1756 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1757 sc->ti_hwrev);
1758 goto fail2;
1759 }
1760
1761 /* Zero out the NIC's on-board SRAM. */
1762 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1763
1764 /* Init again -- zeroing memory may have clobbered some registers. */
1765 if (ti_chipinit(sc)) {
1766 printf("%s: chip initialization failed\n", self->dv_xname);
1767 goto fail2;
1768 }
1769
1770 /*
1771 * Get station address from the EEPROM. Note: the manual states
1772 * that the MAC address is at offset 0x8c, however the data is
1773 * stored as two longwords (since that's how it's loaded into
1774 * the NIC). This means the MAC address is actually preceded
1775 * by two zero bytes. We need to skip over those.
1776 */
1777 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1778 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1779 printf("%s: failed to read station address\n", self->dv_xname);
1780 goto fail2;
1781 }
1782
1783 /*
1784 * A Tigon chip was detected. Inform the world.
1785 */
1786 printf("%s: Ethernet address: %s\n", self->dv_xname,
1787 ether_sprintf(eaddr));
1788
1789 sc->sc_dmat = pa->pa_dmat;
1790
1791 /* Allocate the general information block and ring buffers. */
1792 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1793 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1794 BUS_DMA_NOWAIT)) != 0) {
1795 printf("%s: can't allocate ring buffer, error = %d\n",
1796 sc->sc_dev.dv_xname, error);
1797 goto fail2;
1798 }
1799
1800 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1801 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1802 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1803 printf("%s: can't map ring buffer, error = %d\n",
1804 sc->sc_dev.dv_xname, error);
1805 goto fail2;
1806 }
1807
1808 if ((error = bus_dmamap_create(sc->sc_dmat,
1809 sizeof(struct ti_ring_data), 1,
1810 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1811 &sc->info_dmamap)) != 0) {
1812 printf("%s: can't create ring buffer DMA map, error = %d\n",
1813 sc->sc_dev.dv_xname, error);
1814 goto fail2;
1815 }
1816
1817 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1818 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1819 BUS_DMA_NOWAIT)) != 0) {
1820 printf("%s: can't load ring buffer DMA map, error = %d\n",
1821 sc->sc_dev.dv_xname, error);
1822 goto fail2;
1823 }
1824
1825 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1826
1827 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1828
1829 /* Try to allocate memory for jumbo buffers. */
1830 if (ti_alloc_jumbo_mem(sc)) {
1831 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1832 goto fail2;
1833 }
1834
1835 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1836
1837 /*
1838 * We really need a better way to tell a 1000baseT card
1839 * from a 1000baseSX one, since in theory there could be
1840 * OEMed 1000baseT cards from lame vendors who aren't
1841 * clever enough to change the PCI ID. For the moment
1842 * though, the AceNIC is the only copper card available.
1843 */
1844 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1845 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1846 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1847 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1848 sc->ti_copper = 1;
1849 else
1850 sc->ti_copper = 0;
1851
1852 /* Set default tuneable values. */
1853 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1854 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1855 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1856 sc->ti_rx_max_coal_bds = 64;
1857 sc->ti_tx_max_coal_bds = 128;
1858 sc->ti_tx_buf_ratio = 21;
1859
1860 /* Set up ifnet structure */
1861 ifp = &sc->ethercom.ec_if;
1862 ifp->if_softc = sc;
1863 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1864 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1865 ifp->if_ioctl = ti_ioctl;
1866 ifp->if_start = ti_start;
1867 ifp->if_watchdog = ti_watchdog;
1868 IFQ_SET_READY(&ifp->if_snd);
1869
1870 #if 0
1871 /*
1872 * XXX This is not really correct -- we don't necessarily
1873 * XXX want to queue up as many as we can transmit at the
1874 * XXX upper layer like that. Someone with a board should
1875 * XXX check to see how this affects performance.
1876 */
1877 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1878 #endif
1879
1880 /*
1881 * We can support 802.1Q VLAN-sized frames.
1882 */
1883 sc->ethercom.ec_capabilities |=
1884 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1885
1886 /*
1887 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1888 */
1889 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1890 IFCAP_CSUM_UDPv4;
1891
1892 /* Set up ifmedia support. */
1893 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1894 if (sc->ti_copper) {
1895 /*
1896 * Copper cards allow manual 10/100 mode selection,
1897 * but not manual 1000baseT mode selection. Why?
1898 * Because currently there's no way to specify the
1899 * master/slave setting through the firmware interface,
1900 * so Alteon decided to just bag it and handle it
1901 * via autonegotiation.
1902 */
1903 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1904 ifmedia_add(&sc->ifmedia,
1905 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1906 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1907 ifmedia_add(&sc->ifmedia,
1908 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1909 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1910 ifmedia_add(&sc->ifmedia,
1911 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1912 } else {
1913 /* Fiber cards don't support 10/100 modes. */
1914 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1915 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1916 }
1917 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1918 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1919
1920 /*
1921 * Call MI attach routines.
1922 */
1923 if_attach(ifp);
1924 ether_ifattach(ifp, eaddr);
1925
1926 return;
1927 fail2:
1928 pci_intr_disestablish(pc, sc->sc_ih);
1929 return;
1930 }
1931
1932 /*
1933 * Frame reception handling. This is called if there's a frame
1934 * on the receive return list.
1935 *
1936 * Note: we have to be able to handle three possibilities here:
1937 * 1) the frame is from the mini receive ring (can only happen)
1938 * on Tigon 2 boards)
1939 * 2) the frame is from the jumbo receive ring
1940 * 3) the frame is from the standard receive ring
1941 */
1942
1943 static void ti_rxeof(sc)
1944 struct ti_softc *sc;
1945 {
1946 struct ifnet *ifp;
1947 struct ti_cmd_desc cmd;
1948
1949 ifp = &sc->ethercom.ec_if;
1950
1951 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1952 struct ti_rx_desc *cur_rx;
1953 u_int32_t rxidx;
1954 struct mbuf *m = NULL;
1955 u_int16_t vlan_tag = 0;
1956 int have_tag = 0;
1957 struct ether_header *eh;
1958 bus_dmamap_t dmamap;
1959
1960 cur_rx =
1961 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1962 rxidx = cur_rx->ti_idx;
1963 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1964
1965 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1966 have_tag = 1;
1967 /* ti_vlan_tag also has the priority, trim it */
1968 vlan_tag = cur_rx->ti_vlan_tag & 4095;
1969 }
1970
1971 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1972 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1973 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1974 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1975 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1976 ifp->if_ierrors++;
1977 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1978 continue;
1979 }
1980 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1981 == ENOBUFS) {
1982 ifp->if_ierrors++;
1983 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1984 continue;
1985 }
1986 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1987 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1988 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1989 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1990 dmamap = sc->mini_dmamap[rxidx];
1991 sc->mini_dmamap[rxidx] = 0;
1992 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1993 ifp->if_ierrors++;
1994 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1995 continue;
1996 }
1997 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1998 == ENOBUFS) {
1999 ifp->if_ierrors++;
2000 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2001 continue;
2002 }
2003 } else {
2004 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2005 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2006 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2007 dmamap = sc->std_dmamap[rxidx];
2008 sc->std_dmamap[rxidx] = 0;
2009 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2010 ifp->if_ierrors++;
2011 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2012 continue;
2013 }
2014 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2015 == ENOBUFS) {
2016 ifp->if_ierrors++;
2017 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2018 continue;
2019 }
2020 }
2021
2022 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2023 ifp->if_ipackets++;
2024 m->m_pkthdr.rcvif = ifp;
2025
2026 #if NBPFILTER > 0
2027 /*
2028 * Handle BPF listeners. Let the BPF user see the packet, but
2029 * don't pass it up to the ether_input() layer unless it's
2030 * a broadcast packet, multicast packet, matches our ethernet
2031 * address or the interface is in promiscuous mode.
2032 */
2033 if (ifp->if_bpf)
2034 bpf_mtap(ifp->if_bpf, m);
2035 #endif
2036
2037 eh = mtod(m, struct ether_header *);
2038 switch (ntohs(eh->ether_type)) {
2039 #ifdef INET
2040 case ETHERTYPE_IP:
2041 {
2042 struct ip *ip = (struct ip *) (eh + 1);
2043
2044 /*
2045 * Note the Tigon firmware does not invert
2046 * the checksum for us, hence the XOR.
2047 */
2048 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2049 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2050 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2051 /*
2052 * ntohs() the constant so the compiler can
2053 * optimize...
2054 *
2055 * XXX Figure out a sane way to deal with
2056 * fragmented packets.
2057 */
2058 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2059 switch (ip->ip_p) {
2060 case IPPROTO_TCP:
2061 m->m_pkthdr.csum_data =
2062 cur_rx->ti_tcp_udp_cksum;
2063 m->m_pkthdr.csum_flags |=
2064 M_CSUM_TCPv4|M_CSUM_DATA;
2065 break;
2066 case IPPROTO_UDP:
2067 m->m_pkthdr.csum_data =
2068 cur_rx->ti_tcp_udp_cksum;
2069 m->m_pkthdr.csum_flags |=
2070 M_CSUM_UDPv4|M_CSUM_DATA;
2071 break;
2072 default:
2073 /* Nothing */;
2074 }
2075 }
2076 break;
2077 }
2078 #endif
2079 default:
2080 /* Nothing. */
2081 break;
2082 }
2083
2084 if (have_tag) {
2085 struct m_tag *mtag;
2086
2087 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2088 M_NOWAIT);
2089 if (mtag) {
2090 *(u_int *)(mtag + 1) = vlan_tag;
2091 m_tag_prepend(m, mtag);
2092 have_tag = vlan_tag = 0;
2093 } else {
2094 printf("%s: no mbuf for tag\n", ifp->if_xname);
2095 m_freem(m);
2096 have_tag = vlan_tag = 0;
2097 continue;
2098 }
2099 }
2100 (*ifp->if_input)(ifp, m);
2101 }
2102
2103 /* Only necessary on the Tigon 1. */
2104 if (sc->ti_hwrev == TI_HWREV_TIGON)
2105 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2106 sc->ti_rx_saved_considx);
2107
2108 TI_UPDATE_STDPROD(sc, sc->ti_std);
2109 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2110 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2111
2112 return;
2113 }
2114
2115 static void ti_txeof_tigon1(sc)
2116 struct ti_softc *sc;
2117 {
2118 struct ti_tx_desc *cur_tx = NULL;
2119 struct ifnet *ifp;
2120 struct txdmamap_pool_entry *dma;
2121
2122 ifp = &sc->ethercom.ec_if;
2123
2124 /*
2125 * Go through our tx ring and free mbufs for those
2126 * frames that have been sent.
2127 */
2128 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2129 u_int32_t idx = 0;
2130
2131 idx = sc->ti_tx_saved_considx;
2132 if (idx > 383)
2133 CSR_WRITE_4(sc, TI_WINBASE,
2134 TI_TX_RING_BASE + 6144);
2135 else if (idx > 255)
2136 CSR_WRITE_4(sc, TI_WINBASE,
2137 TI_TX_RING_BASE + 4096);
2138 else if (idx > 127)
2139 CSR_WRITE_4(sc, TI_WINBASE,
2140 TI_TX_RING_BASE + 2048);
2141 else
2142 CSR_WRITE_4(sc, TI_WINBASE,
2143 TI_TX_RING_BASE);
2144 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2145 if (cur_tx->ti_flags & TI_BDFLAG_END)
2146 ifp->if_opackets++;
2147 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2148 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2149 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2150
2151 dma = sc->txdma[idx];
2152 KDASSERT(dma != NULL);
2153 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2154 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2155 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2156
2157 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2158 sc->txdma[idx] = NULL;
2159 }
2160 sc->ti_txcnt--;
2161 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2162 ifp->if_timer = 0;
2163 }
2164
2165 if (cur_tx != NULL)
2166 ifp->if_flags &= ~IFF_OACTIVE;
2167
2168 return;
2169 }
2170
2171 static void ti_txeof_tigon2(sc)
2172 struct ti_softc *sc;
2173 {
2174 struct ti_tx_desc *cur_tx = NULL;
2175 struct ifnet *ifp;
2176 struct txdmamap_pool_entry *dma;
2177 int firstidx, cnt;
2178
2179 ifp = &sc->ethercom.ec_if;
2180
2181 /*
2182 * Go through our tx ring and free mbufs for those
2183 * frames that have been sent.
2184 */
2185 firstidx = sc->ti_tx_saved_considx;
2186 cnt = 0;
2187 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2188 u_int32_t idx = 0;
2189
2190 idx = sc->ti_tx_saved_considx;
2191 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2192 if (cur_tx->ti_flags & TI_BDFLAG_END)
2193 ifp->if_opackets++;
2194 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2195 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2196 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2197
2198 dma = sc->txdma[idx];
2199 KDASSERT(dma != NULL);
2200 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2201 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2202 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2203
2204 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2205 sc->txdma[idx] = NULL;
2206 }
2207 cnt++;
2208 sc->ti_txcnt--;
2209 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2210 ifp->if_timer = 0;
2211 }
2212
2213 if (cnt != 0)
2214 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2215
2216 if (cur_tx != NULL)
2217 ifp->if_flags &= ~IFF_OACTIVE;
2218
2219 return;
2220 }
2221
2222 static int ti_intr(xsc)
2223 void *xsc;
2224 {
2225 struct ti_softc *sc;
2226 struct ifnet *ifp;
2227
2228 sc = xsc;
2229 ifp = &sc->ethercom.ec_if;
2230
2231 #ifdef notdef
2232 /* Avoid this for now -- checking this register is expensive. */
2233 /* Make sure this is really our interrupt. */
2234 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2235 return (0);
2236 #endif
2237
2238 /* Ack interrupt and stop others from occuring. */
2239 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2240
2241 if (ifp->if_flags & IFF_RUNNING) {
2242 /* Check RX return ring producer/consumer */
2243 ti_rxeof(sc);
2244
2245 /* Check TX ring producer/consumer */
2246 (*sc->sc_tx_eof)(sc);
2247 }
2248
2249 ti_handle_events(sc);
2250
2251 /* Re-enable interrupts. */
2252 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2253
2254 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2255 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2256 ti_start(ifp);
2257
2258 return (1);
2259 }
2260
2261 static void ti_stats_update(sc)
2262 struct ti_softc *sc;
2263 {
2264 struct ifnet *ifp;
2265
2266 ifp = &sc->ethercom.ec_if;
2267
2268 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2269
2270 ifp->if_collisions +=
2271 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2272 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2273 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2274 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2275 ifp->if_collisions;
2276
2277 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2278 }
2279
2280 /*
2281 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2282 * pointers to descriptors.
2283 */
2284 static int ti_encap_tigon1(sc, m_head, txidx)
2285 struct ti_softc *sc;
2286 struct mbuf *m_head;
2287 u_int32_t *txidx;
2288 {
2289 struct ti_tx_desc *f = NULL;
2290 u_int32_t frag, cur, cnt = 0;
2291 struct txdmamap_pool_entry *dma;
2292 bus_dmamap_t dmamap;
2293 int error, i;
2294 struct m_tag *mtag;
2295 u_int16_t csum_flags = 0;
2296
2297 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2298 if (dma == NULL) {
2299 return ENOMEM;
2300 }
2301 dmamap = dma->dmamap;
2302
2303 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2304 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2305 if (error) {
2306 struct mbuf *m;
2307 int i = 0;
2308 for (m = m_head; m; m = m->m_next)
2309 i++;
2310 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2311 "error %d\n", m_head->m_pkthdr.len, i, error);
2312 return (ENOMEM);
2313 }
2314
2315 cur = frag = *txidx;
2316
2317 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2318 /* IP header checksum field must be 0! */
2319 csum_flags |= TI_BDFLAG_IP_CKSUM;
2320 }
2321 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2322 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2323
2324 /* XXX fragmented packet checksum capability? */
2325
2326 /*
2327 * Start packing the mbufs in this chain into
2328 * the fragment pointers. Stop when we run out
2329 * of fragments or hit the end of the mbuf chain.
2330 */
2331 for (i = 0; i < dmamap->dm_nsegs; i++) {
2332 if (frag > 383)
2333 CSR_WRITE_4(sc, TI_WINBASE,
2334 TI_TX_RING_BASE + 6144);
2335 else if (frag > 255)
2336 CSR_WRITE_4(sc, TI_WINBASE,
2337 TI_TX_RING_BASE + 4096);
2338 else if (frag > 127)
2339 CSR_WRITE_4(sc, TI_WINBASE,
2340 TI_TX_RING_BASE + 2048);
2341 else
2342 CSR_WRITE_4(sc, TI_WINBASE,
2343 TI_TX_RING_BASE);
2344 f = &sc->ti_tx_ring_nic[frag % 128];
2345 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2346 break;
2347 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2348 f->ti_len = dmamap->dm_segs[i].ds_len;
2349 f->ti_flags = csum_flags;
2350 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2351 if (mtag) {
2352 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2353 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2354 } else {
2355 f->ti_vlan_tag = 0;
2356 }
2357 /*
2358 * Sanity check: avoid coming within 16 descriptors
2359 * of the end of the ring.
2360 */
2361 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2362 return(ENOBUFS);
2363 cur = frag;
2364 TI_INC(frag, TI_TX_RING_CNT);
2365 cnt++;
2366 }
2367
2368 if (i < dmamap->dm_nsegs)
2369 return(ENOBUFS);
2370
2371 if (frag == sc->ti_tx_saved_considx)
2372 return(ENOBUFS);
2373
2374 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2375 TI_BDFLAG_END;
2376
2377 /* Sync the packet's DMA map. */
2378 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2379 BUS_DMASYNC_PREWRITE);
2380
2381 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2382 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2383 sc->txdma[cur] = dma;
2384 sc->ti_txcnt += cnt;
2385
2386 *txidx = frag;
2387
2388 return(0);
2389 }
2390
2391 static int ti_encap_tigon2(sc, m_head, txidx)
2392 struct ti_softc *sc;
2393 struct mbuf *m_head;
2394 u_int32_t *txidx;
2395 {
2396 struct ti_tx_desc *f = NULL;
2397 u_int32_t frag, firstfrag, cur, cnt = 0;
2398 struct txdmamap_pool_entry *dma;
2399 bus_dmamap_t dmamap;
2400 int error, i;
2401 struct m_tag *mtag;
2402 u_int16_t csum_flags = 0;
2403
2404 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2405 if (dma == NULL) {
2406 return ENOMEM;
2407 }
2408 dmamap = dma->dmamap;
2409
2410 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2411 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2412 if (error) {
2413 struct mbuf *m;
2414 int i = 0;
2415 for (m = m_head; m; m = m->m_next)
2416 i++;
2417 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2418 "error %d\n", m_head->m_pkthdr.len, i, error);
2419 return (ENOMEM);
2420 }
2421
2422 cur = firstfrag = frag = *txidx;
2423
2424 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2425 /* IP header checksum field must be 0! */
2426 csum_flags |= TI_BDFLAG_IP_CKSUM;
2427 }
2428 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2429 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2430
2431 /* XXX fragmented packet checksum capability? */
2432
2433 /*
2434 * Start packing the mbufs in this chain into
2435 * the fragment pointers. Stop when we run out
2436 * of fragments or hit the end of the mbuf chain.
2437 */
2438 for (i = 0; i < dmamap->dm_nsegs; i++) {
2439 f = &sc->ti_rdata->ti_tx_ring[frag];
2440 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2441 break;
2442 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2443 f->ti_len = dmamap->dm_segs[i].ds_len;
2444 f->ti_flags = csum_flags;
2445 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2446 if (mtag) {
2447 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2448 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2449 } else {
2450 f->ti_vlan_tag = 0;
2451 }
2452 /*
2453 * Sanity check: avoid coming within 16 descriptors
2454 * of the end of the ring.
2455 */
2456 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2457 return(ENOBUFS);
2458 cur = frag;
2459 TI_INC(frag, TI_TX_RING_CNT);
2460 cnt++;
2461 }
2462
2463 if (i < dmamap->dm_nsegs)
2464 return(ENOBUFS);
2465
2466 if (frag == sc->ti_tx_saved_considx)
2467 return(ENOBUFS);
2468
2469 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2470
2471 /* Sync the packet's DMA map. */
2472 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2473 BUS_DMASYNC_PREWRITE);
2474
2475 /* Sync the descriptors we are using. */
2476 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2477
2478 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2479 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2480 sc->txdma[cur] = dma;
2481 sc->ti_txcnt += cnt;
2482
2483 *txidx = frag;
2484
2485 return(0);
2486 }
2487
2488 /*
2489 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2490 * to the mbuf data regions directly in the transmit descriptors.
2491 */
2492 static void ti_start(ifp)
2493 struct ifnet *ifp;
2494 {
2495 struct ti_softc *sc;
2496 struct mbuf *m_head = NULL;
2497 u_int32_t prodidx = 0;
2498
2499 sc = ifp->if_softc;
2500
2501 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2502
2503 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2504 IFQ_POLL(&ifp->if_snd, m_head);
2505 if (m_head == NULL)
2506 break;
2507
2508 /*
2509 * Pack the data into the transmit ring. If we
2510 * don't have room, set the OACTIVE flag and wait
2511 * for the NIC to drain the ring.
2512 */
2513 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2514 ifp->if_flags |= IFF_OACTIVE;
2515 break;
2516 }
2517
2518 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2519
2520 /*
2521 * If there's a BPF listener, bounce a copy of this frame
2522 * to him.
2523 */
2524 #if NBPFILTER > 0
2525 if (ifp->if_bpf)
2526 bpf_mtap(ifp->if_bpf, m_head);
2527 #endif
2528 }
2529
2530 /* Transmit */
2531 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2532
2533 /*
2534 * Set a timeout in case the chip goes out to lunch.
2535 */
2536 ifp->if_timer = 5;
2537
2538 return;
2539 }
2540
2541 static void ti_init(xsc)
2542 void *xsc;
2543 {
2544 struct ti_softc *sc = xsc;
2545 int s;
2546
2547 s = splnet();
2548
2549 /* Cancel pending I/O and flush buffers. */
2550 ti_stop(sc);
2551
2552 /* Init the gen info block, ring control blocks and firmware. */
2553 if (ti_gibinit(sc)) {
2554 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2555 splx(s);
2556 return;
2557 }
2558
2559 splx(s);
2560
2561 return;
2562 }
2563
2564 static void ti_init2(sc)
2565 struct ti_softc *sc;
2566 {
2567 struct ti_cmd_desc cmd;
2568 struct ifnet *ifp;
2569 u_int8_t *m;
2570 struct ifmedia *ifm;
2571 int tmp;
2572
2573 ifp = &sc->ethercom.ec_if;
2574
2575 /* Specify MTU and interface index. */
2576 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2577
2578 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2579 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2580 tmp += ETHER_VLAN_ENCAP_LEN;
2581 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2582
2583 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2584
2585 /* Load our MAC address. */
2586 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2587 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2588 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2589 | (m[4] << 8) | m[5]);
2590 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2591
2592 /* Enable or disable promiscuous mode as needed. */
2593 if (ifp->if_flags & IFF_PROMISC) {
2594 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2595 } else {
2596 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2597 }
2598
2599 /* Program multicast filter. */
2600 ti_setmulti(sc);
2601
2602 /*
2603 * If this is a Tigon 1, we should tell the
2604 * firmware to use software packet filtering.
2605 */
2606 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2607 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2608 }
2609
2610 /* Init RX ring. */
2611 ti_init_rx_ring_std(sc);
2612
2613 /* Init jumbo RX ring. */
2614 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2615 ti_init_rx_ring_jumbo(sc);
2616
2617 /*
2618 * If this is a Tigon 2, we can also configure the
2619 * mini ring.
2620 */
2621 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2622 ti_init_rx_ring_mini(sc);
2623
2624 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2625 sc->ti_rx_saved_considx = 0;
2626
2627 /* Init TX ring. */
2628 ti_init_tx_ring(sc);
2629
2630 /* Tell firmware we're alive. */
2631 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2632
2633 /* Enable host interrupts. */
2634 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2635
2636 ifp->if_flags |= IFF_RUNNING;
2637 ifp->if_flags &= ~IFF_OACTIVE;
2638
2639 /*
2640 * Make sure to set media properly. We have to do this
2641 * here since we have to issue commands in order to set
2642 * the link negotiation and we can't issue commands until
2643 * the firmware is running.
2644 */
2645 ifm = &sc->ifmedia;
2646 tmp = ifm->ifm_media;
2647 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2648 ti_ifmedia_upd(ifp);
2649 ifm->ifm_media = tmp;
2650
2651 return;
2652 }
2653
2654 /*
2655 * Set media options.
2656 */
2657 static int ti_ifmedia_upd(ifp)
2658 struct ifnet *ifp;
2659 {
2660 struct ti_softc *sc;
2661 struct ifmedia *ifm;
2662 struct ti_cmd_desc cmd;
2663
2664 sc = ifp->if_softc;
2665 ifm = &sc->ifmedia;
2666
2667 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2668 return(EINVAL);
2669
2670 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2671 case IFM_AUTO:
2672 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2673 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2674 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2675 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2676 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2677 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2678 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2679 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2680 break;
2681 case IFM_1000_SX:
2682 case IFM_1000_T:
2683 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2684 CSR_WRITE_4(sc, TI_GCR_GLINK,
2685 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2686 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2687 } else {
2688 CSR_WRITE_4(sc, TI_GCR_GLINK,
2689 TI_GLNK_PREF|TI_GLNK_1000MB|
2690 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2691 }
2692 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2693 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2694 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2695 break;
2696 case IFM_100_FX:
2697 case IFM_10_FL:
2698 case IFM_100_TX:
2699 case IFM_10_T:
2700 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2701 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2702 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2703 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2704 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2705 } else {
2706 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2707 }
2708 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2709 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2710 } else {
2711 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2712 }
2713 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2714 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2715 break;
2716 }
2717
2718 sc->ethercom.ec_if.if_baudrate =
2719 ifmedia_baudrate(ifm->ifm_media);
2720
2721 return(0);
2722 }
2723
2724 /*
2725 * Report current media status.
2726 */
2727 static void ti_ifmedia_sts(ifp, ifmr)
2728 struct ifnet *ifp;
2729 struct ifmediareq *ifmr;
2730 {
2731 struct ti_softc *sc;
2732 u_int32_t media = 0;
2733
2734 sc = ifp->if_softc;
2735
2736 ifmr->ifm_status = IFM_AVALID;
2737 ifmr->ifm_active = IFM_ETHER;
2738
2739 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2740 return;
2741
2742 ifmr->ifm_status |= IFM_ACTIVE;
2743
2744 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2745 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2746 if (sc->ti_copper)
2747 ifmr->ifm_active |= IFM_1000_T;
2748 else
2749 ifmr->ifm_active |= IFM_1000_SX;
2750 if (media & TI_GLNK_FULL_DUPLEX)
2751 ifmr->ifm_active |= IFM_FDX;
2752 else
2753 ifmr->ifm_active |= IFM_HDX;
2754 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2755 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2756 if (sc->ti_copper) {
2757 if (media & TI_LNK_100MB)
2758 ifmr->ifm_active |= IFM_100_TX;
2759 if (media & TI_LNK_10MB)
2760 ifmr->ifm_active |= IFM_10_T;
2761 } else {
2762 if (media & TI_LNK_100MB)
2763 ifmr->ifm_active |= IFM_100_FX;
2764 if (media & TI_LNK_10MB)
2765 ifmr->ifm_active |= IFM_10_FL;
2766 }
2767 if (media & TI_LNK_FULL_DUPLEX)
2768 ifmr->ifm_active |= IFM_FDX;
2769 if (media & TI_LNK_HALF_DUPLEX)
2770 ifmr->ifm_active |= IFM_HDX;
2771 }
2772
2773 sc->ethercom.ec_if.if_baudrate =
2774 ifmedia_baudrate(sc->ifmedia.ifm_media);
2775
2776 return;
2777 }
2778
2779 static int
2780 ti_ether_ioctl(ifp, cmd, data)
2781 struct ifnet *ifp;
2782 u_long cmd;
2783 caddr_t data;
2784 {
2785 struct ifaddr *ifa = (struct ifaddr *) data;
2786 struct ti_softc *sc = ifp->if_softc;
2787
2788 if ((ifp->if_flags & IFF_UP) == 0) {
2789 ifp->if_flags |= IFF_UP;
2790 ti_init(sc);
2791 }
2792
2793 switch (cmd) {
2794 case SIOCSIFADDR:
2795
2796 switch (ifa->ifa_addr->sa_family) {
2797 #ifdef INET
2798 case AF_INET:
2799 arp_ifinit(ifp, ifa);
2800 break;
2801 #endif
2802 #ifdef NS
2803 case AF_NS:
2804 {
2805 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2806
2807 if (ns_nullhost(*ina))
2808 ina->x_host = *(union ns_host *)
2809 LLADDR(ifp->if_sadl);
2810 else
2811 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2812 ifp->if_addrlen);
2813 break;
2814 }
2815 #endif
2816 default:
2817 break;
2818 }
2819 break;
2820
2821 default:
2822 return (EINVAL);
2823 }
2824
2825 return (0);
2826 }
2827
2828 static int ti_ioctl(ifp, command, data)
2829 struct ifnet *ifp;
2830 u_long command;
2831 caddr_t data;
2832 {
2833 struct ti_softc *sc = ifp->if_softc;
2834 struct ifreq *ifr = (struct ifreq *) data;
2835 int s, error = 0;
2836 struct ti_cmd_desc cmd;
2837
2838 s = splnet();
2839
2840 switch(command) {
2841 case SIOCSIFADDR:
2842 case SIOCGIFADDR:
2843 error = ti_ether_ioctl(ifp, command, data);
2844 break;
2845 case SIOCSIFMTU:
2846 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2847 error = EINVAL;
2848 else {
2849 ifp->if_mtu = ifr->ifr_mtu;
2850 ti_init(sc);
2851 }
2852 break;
2853 case SIOCSIFFLAGS:
2854 if (ifp->if_flags & IFF_UP) {
2855 /*
2856 * If only the state of the PROMISC flag changed,
2857 * then just use the 'set promisc mode' command
2858 * instead of reinitializing the entire NIC. Doing
2859 * a full re-init means reloading the firmware and
2860 * waiting for it to start up, which may take a
2861 * second or two.
2862 */
2863 if (ifp->if_flags & IFF_RUNNING &&
2864 ifp->if_flags & IFF_PROMISC &&
2865 !(sc->ti_if_flags & IFF_PROMISC)) {
2866 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2867 TI_CMD_CODE_PROMISC_ENB, 0);
2868 } else if (ifp->if_flags & IFF_RUNNING &&
2869 !(ifp->if_flags & IFF_PROMISC) &&
2870 sc->ti_if_flags & IFF_PROMISC) {
2871 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2872 TI_CMD_CODE_PROMISC_DIS, 0);
2873 } else
2874 ti_init(sc);
2875 } else {
2876 if (ifp->if_flags & IFF_RUNNING) {
2877 ti_stop(sc);
2878 }
2879 }
2880 sc->ti_if_flags = ifp->if_flags;
2881 error = 0;
2882 break;
2883 case SIOCADDMULTI:
2884 case SIOCDELMULTI:
2885 error = (command == SIOCADDMULTI) ?
2886 ether_addmulti(ifr, &sc->ethercom) :
2887 ether_delmulti(ifr, &sc->ethercom);
2888 if (error == ENETRESET) {
2889 if (ifp->if_flags & IFF_RUNNING)
2890 ti_setmulti(sc);
2891 error = 0;
2892 }
2893 break;
2894 case SIOCSIFMEDIA:
2895 case SIOCGIFMEDIA:
2896 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2897 break;
2898 default:
2899 error = EINVAL;
2900 break;
2901 }
2902
2903 (void)splx(s);
2904
2905 return(error);
2906 }
2907
2908 static void ti_watchdog(ifp)
2909 struct ifnet *ifp;
2910 {
2911 struct ti_softc *sc;
2912
2913 sc = ifp->if_softc;
2914
2915 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2916 ti_stop(sc);
2917 ti_init(sc);
2918
2919 ifp->if_oerrors++;
2920
2921 return;
2922 }
2923
2924 /*
2925 * Stop the adapter and free any mbufs allocated to the
2926 * RX and TX lists.
2927 */
2928 static void ti_stop(sc)
2929 struct ti_softc *sc;
2930 {
2931 struct ifnet *ifp;
2932 struct ti_cmd_desc cmd;
2933
2934 ifp = &sc->ethercom.ec_if;
2935
2936 /* Disable host interrupts. */
2937 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2938 /*
2939 * Tell firmware we're shutting down.
2940 */
2941 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2942
2943 /* Halt and reinitialize. */
2944 ti_chipinit(sc);
2945 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2946 ti_chipinit(sc);
2947
2948 /* Free the RX lists. */
2949 ti_free_rx_ring_std(sc);
2950
2951 /* Free jumbo RX list. */
2952 ti_free_rx_ring_jumbo(sc);
2953
2954 /* Free mini RX list. */
2955 ti_free_rx_ring_mini(sc);
2956
2957 /* Free TX buffers. */
2958 ti_free_tx_ring(sc);
2959
2960 sc->ti_ev_prodidx.ti_idx = 0;
2961 sc->ti_return_prodidx.ti_idx = 0;
2962 sc->ti_tx_considx.ti_idx = 0;
2963 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2964
2965 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2966
2967 return;
2968 }
2969
2970 /*
2971 * Stop all chip I/O so that the kernel's probe routines don't
2972 * get confused by errant DMAs when rebooting.
2973 */
2974 static void ti_shutdown(v)
2975 void *v;
2976 {
2977 struct ti_softc *sc = v;
2978
2979 ti_chipinit(sc);
2980
2981 return;
2982 }
2983