Home | History | Annotate | Line # | Download | only in pci
if_ti.c revision 1.62
      1 /* $NetBSD: if_ti.c,v 1.62 2004/09/21 21:57:30 yamt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997, 1998, 1999
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
     35  */
     36 
     37 /*
     38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
     39  * Manuals, sample driver and firmware source kits are available
     40  * from http://www.alteon.com/support/openkits.
     41  *
     42  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     43  * Electrical Engineering Department
     44  * Columbia University, New York City
     45  */
     46 
     47 /*
     48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
     49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
     50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
     51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
     52  * filtering and jumbo (9014 byte) frames. The hardware is largely
     53  * controlled by firmware, which must be loaded into the NIC during
     54  * initialization.
     55  *
     56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
     57  * revision, which supports new features such as extended commands,
     58  * extended jumbo receive ring desciptors and a mini receive ring.
     59  *
     60  * Alteon Networks is to be commended for releasing such a vast amount
     61  * of development material for the Tigon NIC without requiring an NDA
     62  * (although they really should have done it a long time ago). With
     63  * any luck, the other vendors will finally wise up and follow Alteon's
     64  * stellar example.
     65  *
     66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
     67  * this driver by #including it as a C header file. This bloats the
     68  * driver somewhat, but it's the easiest method considering that the
     69  * driver code and firmware code need to be kept in sync. The source
     70  * for the firmware is not provided with the FreeBSD distribution since
     71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
     72  *
     73  * The following people deserve special thanks:
     74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
     75  *   for testing
     76  * - Raymond Lee of Netgear, for providing a pair of Netgear
     77  *   GA620 Tigon 2 boards for testing
     78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
     79  *   convincing me to write this driver.
     80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.62 2004/09/21 21:57:30 yamt Exp $");
     85 
     86 #include "bpfilter.h"
     87 #include "opt_inet.h"
     88 #include "opt_ns.h"
     89 
     90 #include <sys/param.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 #include <sys/queue.h>
     98 #include <sys/device.h>
     99 #include <sys/reboot.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #include <net/if.h>
    104 #include <net/if_arp.h>
    105 #include <net/if_ether.h>
    106 #include <net/if_dl.h>
    107 #include <net/if_media.h>
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #endif
    112 
    113 #ifdef INET
    114 #include <netinet/in.h>
    115 #include <netinet/if_inarp.h>
    116 #include <netinet/in_systm.h>
    117 #include <netinet/ip.h>
    118 #endif
    119 
    120 #ifdef NS
    121 #include <netns/ns.h>
    122 #include <netns/ns_if.h>
    123 #endif
    124 
    125 #include <machine/bus.h>
    126 
    127 #include <dev/pci/pcireg.h>
    128 #include <dev/pci/pcivar.h>
    129 #include <dev/pci/pcidevs.h>
    130 
    131 #include <dev/pci/if_tireg.h>
    132 
    133 #include <dev/microcode/tigon/ti_fw.h>
    134 #include <dev/microcode/tigon/ti_fw2.h>
    135 
    136 /*
    137  * Various supported device vendors/types and their names.
    138  */
    139 
    140 static const struct ti_type ti_devs[] = {
    141 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
    142 		"Alteon AceNIC 1000BASE-SX Ethernet" },
    143 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
    144 		"Alteon AceNIC 1000BASE-T Ethernet" },
    145 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
    146 		"3Com 3c985-SX Gigabit Ethernet" },
    147 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
    148 		"Netgear GA620 1000BASE-SX Ethernet" },
    149 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
    150 		"Netgear GA620 1000BASE-T Ethernet" },
    151 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
    152 		"Silicon Graphics Gigabit Ethernet" },
    153 	{ 0, 0, NULL }
    154 };
    155 
    156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
    157 static int ti_probe	__P((struct device *, struct cfdata *, void *));
    158 static void ti_attach	__P((struct device *, struct device *, void *));
    159 static void ti_shutdown __P((void *));
    160 static void ti_txeof_tigon1	__P((struct ti_softc *));
    161 static void ti_txeof_tigon2	__P((struct ti_softc *));
    162 static void ti_rxeof		__P((struct ti_softc *));
    163 
    164 static void ti_stats_update	__P((struct ti_softc *));
    165 static int ti_encap_tigon1	__P((struct ti_softc *, struct mbuf *,
    166 					u_int32_t *));
    167 static int ti_encap_tigon2	__P((struct ti_softc *, struct mbuf *,
    168 					u_int32_t *));
    169 
    170 static int ti_intr		__P((void *));
    171 static void ti_start		__P((struct ifnet *));
    172 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
    173 static void ti_init		__P((void *));
    174 static void ti_init2		__P((struct ti_softc *));
    175 static void ti_stop		__P((struct ti_softc *));
    176 static void ti_watchdog		__P((struct ifnet *));
    177 static int ti_ifmedia_upd	__P((struct ifnet *));
    178 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    179 
    180 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
    181 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
    182 						int, u_int8_t *));
    183 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
    184 
    185 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
    186 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
    187 static void ti_setmulti		__P((struct ti_softc *));
    188 
    189 static void ti_mem		__P((struct ti_softc *, u_int32_t,
    190 					u_int32_t, caddr_t));
    191 static void ti_loadfw		__P((struct ti_softc *));
    192 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
    193 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
    194 					caddr_t, int));
    195 static void ti_handle_events	__P((struct ti_softc *));
    196 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
    197 static void *ti_jalloc		__P((struct ti_softc *));
    198 static void ti_jfree		__P((struct mbuf *, caddr_t, size_t, void *));
    199 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
    200 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
    201 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
    202 static int ti_init_rx_ring_std	__P((struct ti_softc *));
    203 static void ti_free_rx_ring_std	__P((struct ti_softc *));
    204 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
    205 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
    206 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
    207 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
    208 static void ti_free_tx_ring	__P((struct ti_softc *));
    209 static int ti_init_tx_ring	__P((struct ti_softc *));
    210 
    211 static int ti_64bitslot_war	__P((struct ti_softc *));
    212 static int ti_chipinit		__P((struct ti_softc *));
    213 static int ti_gibinit		__P((struct ti_softc *));
    214 
    215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
    216 
    217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
    218     ti_probe, ti_attach, NULL, NULL);
    219 
    220 /*
    221  * Send an instruction or address to the EEPROM, check for ACK.
    222  */
    223 static u_int32_t ti_eeprom_putbyte(sc, byte)
    224 	struct ti_softc		*sc;
    225 	int			byte;
    226 {
    227 	int		i, ack = 0;
    228 
    229 	/*
    230 	 * Make sure we're in TX mode.
    231 	 */
    232 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    233 
    234 	/*
    235 	 * Feed in each bit and stobe the clock.
    236 	 */
    237 	for (i = 0x80; i; i >>= 1) {
    238 		if (byte & i) {
    239 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    240 		} else {
    241 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    242 		}
    243 		DELAY(1);
    244 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    245 		DELAY(1);
    246 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    247 	}
    248 
    249 	/*
    250 	 * Turn off TX mode.
    251 	 */
    252 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    253 
    254 	/*
    255 	 * Check for ack.
    256 	 */
    257 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    258 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
    259 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    260 
    261 	return(ack);
    262 }
    263 
    264 /*
    265  * Read a byte of data stored in the EEPROM at address 'addr.'
    266  * We have to send two address bytes since the EEPROM can hold
    267  * more than 256 bytes of data.
    268  */
    269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
    270 	struct ti_softc		*sc;
    271 	int			addr;
    272 	u_int8_t		*dest;
    273 {
    274 	int		i;
    275 	u_int8_t		byte = 0;
    276 
    277 	EEPROM_START;
    278 
    279 	/*
    280 	 * Send write control code to EEPROM.
    281 	 */
    282 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
    283 		printf("%s: failed to send write command, status: %x\n",
    284 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    285 		return(1);
    286 	}
    287 
    288 	/*
    289 	 * Send first byte of address of byte we want to read.
    290 	 */
    291 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
    292 		printf("%s: failed to send address, status: %x\n",
    293 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    294 		return(1);
    295 	}
    296 	/*
    297 	 * Send second byte address of byte we want to read.
    298 	 */
    299 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
    300 		printf("%s: failed to send address, status: %x\n",
    301 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    302 		return(1);
    303 	}
    304 
    305 	EEPROM_STOP;
    306 	EEPROM_START;
    307 	/*
    308 	 * Send read control code to EEPROM.
    309 	 */
    310 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
    311 		printf("%s: failed to send read command, status: %x\n",
    312 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    313 		return(1);
    314 	}
    315 
    316 	/*
    317 	 * Start reading bits from EEPROM.
    318 	 */
    319 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    320 	for (i = 0x80; i; i >>= 1) {
    321 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    322 		DELAY(1);
    323 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
    324 			byte |= i;
    325 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    326 		DELAY(1);
    327 	}
    328 
    329 	EEPROM_STOP;
    330 
    331 	/*
    332 	 * No ACK generated for read, so just return byte.
    333 	 */
    334 
    335 	*dest = byte;
    336 
    337 	return(0);
    338 }
    339 
    340 /*
    341  * Read a sequence of bytes from the EEPROM.
    342  */
    343 static int ti_read_eeprom(sc, dest, off, cnt)
    344 	struct ti_softc		*sc;
    345 	caddr_t			dest;
    346 	int			off;
    347 	int			cnt;
    348 {
    349 	int			err = 0, i;
    350 	u_int8_t		byte = 0;
    351 
    352 	for (i = 0; i < cnt; i++) {
    353 		err = ti_eeprom_getbyte(sc, off + i, &byte);
    354 		if (err)
    355 			break;
    356 		*(dest + i) = byte;
    357 	}
    358 
    359 	return(err ? 1 : 0);
    360 }
    361 
    362 /*
    363  * NIC memory access function. Can be used to either clear a section
    364  * of NIC local memory or (if buf is non-NULL) copy data into it.
    365  */
    366 static void ti_mem(sc, addr, len, buf)
    367 	struct ti_softc		*sc;
    368 	u_int32_t		addr, len;
    369 	caddr_t			buf;
    370 {
    371 	int			segptr, segsize, cnt;
    372 	caddr_t			ptr;
    373 
    374 	segptr = addr;
    375 	cnt = len;
    376 	ptr = buf;
    377 
    378 	while(cnt) {
    379 		if (cnt < TI_WINLEN)
    380 			segsize = cnt;
    381 		else
    382 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
    383 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
    384 		if (buf == NULL) {
    385 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
    386 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
    387 			    segsize / 4);
    388 		} else {
    389 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
    390 			bus_space_write_region_stream_4(sc->ti_btag,
    391 			    sc->ti_bhandle,
    392 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    393 			    (u_int32_t *)ptr, segsize / 4);
    394 #else
    395 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
    396 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    397 			    (u_int32_t *)ptr, segsize / 4);
    398 #endif
    399 			ptr += segsize;
    400 		}
    401 		segptr += segsize;
    402 		cnt -= segsize;
    403 	}
    404 
    405 	return;
    406 }
    407 
    408 /*
    409  * Load firmware image into the NIC. Check that the firmware revision
    410  * is acceptable and see if we want the firmware for the Tigon 1 or
    411  * Tigon 2.
    412  */
    413 static void ti_loadfw(sc)
    414 	struct ti_softc		*sc;
    415 {
    416 	switch(sc->ti_hwrev) {
    417 	case TI_HWREV_TIGON:
    418 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
    419 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
    420 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
    421 			printf("%s: firmware revision mismatch; want "
    422 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
    423 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    424 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
    425 			    tigonFwReleaseMinor, tigonFwReleaseFix);
    426 			return;
    427 		}
    428 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
    429 		    (caddr_t)tigonFwText);
    430 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
    431 		    (caddr_t)tigonFwData);
    432 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
    433 		    (caddr_t)tigonFwRodata);
    434 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
    435 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
    436 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
    437 		break;
    438 	case TI_HWREV_TIGON_II:
    439 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
    440 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
    441 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
    442 			printf("%s: firmware revision mismatch; want "
    443 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
    444 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    445 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
    446 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
    447 			return;
    448 		}
    449 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
    450 		    (caddr_t)tigon2FwText);
    451 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
    452 		    (caddr_t)tigon2FwData);
    453 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
    454 		    (caddr_t)tigon2FwRodata);
    455 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
    456 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
    457 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
    458 		break;
    459 	default:
    460 		printf("%s: can't load firmware: unknown hardware rev\n",
    461 		    sc->sc_dev.dv_xname);
    462 		break;
    463 	}
    464 
    465 	return;
    466 }
    467 
    468 /*
    469  * Send the NIC a command via the command ring.
    470  */
    471 static void ti_cmd(sc, cmd)
    472 	struct ti_softc		*sc;
    473 	struct ti_cmd_desc	*cmd;
    474 {
    475 	u_int32_t		index;
    476 
    477 	index = sc->ti_cmd_saved_prodidx;
    478 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    479 	TI_INC(index, TI_CMD_RING_CNT);
    480 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    481 	sc->ti_cmd_saved_prodidx = index;
    482 
    483 	return;
    484 }
    485 
    486 /*
    487  * Send the NIC an extended command. The 'len' parameter specifies the
    488  * number of command slots to include after the initial command.
    489  */
    490 static void ti_cmd_ext(sc, cmd, arg, len)
    491 	struct ti_softc		*sc;
    492 	struct ti_cmd_desc	*cmd;
    493 	caddr_t			arg;
    494 	int			len;
    495 {
    496 	u_int32_t		index;
    497 	int		i;
    498 
    499 	index = sc->ti_cmd_saved_prodidx;
    500 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    501 	TI_INC(index, TI_CMD_RING_CNT);
    502 	for (i = 0; i < len; i++) {
    503 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
    504 		    *(u_int32_t *)(&arg[i * 4]));
    505 		TI_INC(index, TI_CMD_RING_CNT);
    506 	}
    507 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    508 	sc->ti_cmd_saved_prodidx = index;
    509 
    510 	return;
    511 }
    512 
    513 /*
    514  * Handle events that have triggered interrupts.
    515  */
    516 static void ti_handle_events(sc)
    517 	struct ti_softc		*sc;
    518 {
    519 	struct ti_event_desc	*e;
    520 
    521 	if (sc->ti_rdata->ti_event_ring == NULL)
    522 		return;
    523 
    524 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
    525 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
    526 		switch(e->ti_event) {
    527 		case TI_EV_LINKSTAT_CHANGED:
    528 			sc->ti_linkstat = e->ti_code;
    529 			if (e->ti_code == TI_EV_CODE_LINK_UP)
    530 				printf("%s: 10/100 link up\n",
    531 				       sc->sc_dev.dv_xname);
    532 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
    533 				printf("%s: gigabit link up\n",
    534 				       sc->sc_dev.dv_xname);
    535 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
    536 				printf("%s: link down\n",
    537 				       sc->sc_dev.dv_xname);
    538 			break;
    539 		case TI_EV_ERROR:
    540 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
    541 				printf("%s: invalid command\n",
    542 				       sc->sc_dev.dv_xname);
    543 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
    544 				printf("%s: unknown command\n",
    545 				       sc->sc_dev.dv_xname);
    546 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
    547 				printf("%s: bad config data\n",
    548 				       sc->sc_dev.dv_xname);
    549 			break;
    550 		case TI_EV_FIRMWARE_UP:
    551 			ti_init2(sc);
    552 			break;
    553 		case TI_EV_STATS_UPDATED:
    554 			ti_stats_update(sc);
    555 			break;
    556 		case TI_EV_RESET_JUMBO_RING:
    557 		case TI_EV_MCAST_UPDATED:
    558 			/* Who cares. */
    559 			break;
    560 		default:
    561 			printf("%s: unknown event: %d\n",
    562 			    sc->sc_dev.dv_xname, e->ti_event);
    563 			break;
    564 		}
    565 		/* Advance the consumer index. */
    566 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
    567 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
    568 	}
    569 
    570 	return;
    571 }
    572 
    573 /*
    574  * Memory management for the jumbo receive ring is a pain in the
    575  * butt. We need to allocate at least 9018 bytes of space per frame,
    576  * _and_ it has to be contiguous (unless you use the extended
    577  * jumbo descriptor format). Using malloc() all the time won't
    578  * work: malloc() allocates memory in powers of two, which means we
    579  * would end up wasting a considerable amount of space by allocating
    580  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
    581  * to do our own memory management.
    582  *
    583  * The driver needs to allocate a contiguous chunk of memory at boot
    584  * time. We then chop this up ourselves into 9K pieces and use them
    585  * as external mbuf storage.
    586  *
    587  * One issue here is how much memory to allocate. The jumbo ring has
    588  * 256 slots in it, but at 9K per slot than can consume over 2MB of
    589  * RAM. This is a bit much, especially considering we also need
    590  * RAM for the standard ring and mini ring (on the Tigon 2). To
    591  * save space, we only actually allocate enough memory for 64 slots
    592  * by default, which works out to between 500 and 600K. This can
    593  * be tuned by changing a #define in if_tireg.h.
    594  */
    595 
    596 static int ti_alloc_jumbo_mem(sc)
    597 	struct ti_softc		*sc;
    598 {
    599 	caddr_t			ptr;
    600 	int		i;
    601 	struct ti_jpool_entry   *entry;
    602 	bus_dma_segment_t dmaseg;
    603 	int error, dmanseg;
    604 
    605 	/* Grab a big chunk o' storage. */
    606 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    607 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
    608 	    BUS_DMA_NOWAIT)) != 0) {
    609 		printf("%s: can't allocate jumbo buffer, error = %d\n",
    610 		       sc->sc_dev.dv_xname, error);
    611 		return (error);
    612 	}
    613 
    614 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
    615 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
    616 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    617 		printf("%s: can't map jumbo buffer, error = %d\n",
    618 		       sc->sc_dev.dv_xname, error);
    619 		return (error);
    620 	}
    621 
    622 	if ((error = bus_dmamap_create(sc->sc_dmat,
    623 	    TI_JMEM, 1,
    624 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
    625 	    &sc->jumbo_dmamap)) != 0) {
    626 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
    627 		       sc->sc_dev.dv_xname, error);
    628 		return (error);
    629 	}
    630 
    631 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
    632 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
    633 	    BUS_DMA_NOWAIT)) != 0) {
    634 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
    635 		       sc->sc_dev.dv_xname, error);
    636 		return (error);
    637 	}
    638 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
    639 
    640 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
    641 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
    642 
    643 	/*
    644 	 * Now divide it up into 9K pieces and save the addresses
    645 	 * in an array.
    646 	 */
    647 	ptr = sc->ti_cdata.ti_jumbo_buf;
    648 	for (i = 0; i < TI_JSLOTS; i++) {
    649 		sc->ti_cdata.ti_jslots[i] = ptr;
    650 		ptr += TI_JLEN;
    651 		entry = malloc(sizeof(struct ti_jpool_entry),
    652 			       M_DEVBUF, M_NOWAIT);
    653 		if (entry == NULL) {
    654 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
    655 			sc->ti_cdata.ti_jumbo_buf = NULL;
    656 			printf("%s: no memory for jumbo "
    657 			    "buffer queue!\n", sc->sc_dev.dv_xname);
    658 			return(ENOBUFS);
    659 		}
    660 		entry->slot = i;
    661 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
    662 				    jpool_entries);
    663 	}
    664 
    665 	return(0);
    666 }
    667 
    668 /*
    669  * Allocate a jumbo buffer.
    670  */
    671 static void *ti_jalloc(sc)
    672 	struct ti_softc		*sc;
    673 {
    674 	struct ti_jpool_entry   *entry;
    675 
    676 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
    677 
    678 	if (entry == NULL) {
    679 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
    680 		return(NULL);
    681 	}
    682 
    683 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
    684 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
    685 	return(sc->ti_cdata.ti_jslots[entry->slot]);
    686 }
    687 
    688 /*
    689  * Release a jumbo buffer.
    690  */
    691 static void ti_jfree(m, buf, size, arg)
    692 	struct mbuf		*m;
    693 	caddr_t			buf;
    694 	size_t			size;
    695 	void *arg;
    696 {
    697 	struct ti_softc		*sc;
    698 	int		        i, s;
    699 	struct ti_jpool_entry   *entry;
    700 
    701 	/* Extract the softc struct pointer. */
    702 	sc = (struct ti_softc *)arg;
    703 
    704 	if (sc == NULL)
    705 		panic("ti_jfree: didn't get softc pointer!");
    706 
    707 	/* calculate the slot this buffer belongs to */
    708 
    709 	i = ((caddr_t)buf
    710 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
    711 
    712 	if ((i < 0) || (i >= TI_JSLOTS))
    713 		panic("ti_jfree: asked to free buffer that we don't manage!");
    714 
    715 	s = splvm();
    716 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
    717 	if (entry == NULL)
    718 		panic("ti_jfree: buffer not in use!");
    719 	entry->slot = i;
    720 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
    721 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
    722 
    723 	if (__predict_true(m != NULL))
    724 		pool_cache_put(&mbpool_cache, m);
    725 	splx(s);
    726 }
    727 
    728 
    729 /*
    730  * Intialize a standard receive ring descriptor.
    731  */
    732 static int ti_newbuf_std(sc, i, m, dmamap)
    733 	struct ti_softc		*sc;
    734 	int			i;
    735 	struct mbuf		*m;
    736 	bus_dmamap_t dmamap; /* required if (m != NULL) */
    737 {
    738 	struct mbuf		*m_new = NULL;
    739 	struct ti_rx_desc	*r;
    740 	int error;
    741 
    742 	if (dmamap == NULL) {
    743 		/* if (m) panic() */
    744 
    745 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    746 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
    747 					       &dmamap)) != 0) {
    748 			printf("%s: can't create recv map, error = %d\n",
    749 			       sc->sc_dev.dv_xname, error);
    750 			return(ENOMEM);
    751 		}
    752 	}
    753 	sc->std_dmamap[i] = dmamap;
    754 
    755 	if (m == NULL) {
    756 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    757 		if (m_new == NULL) {
    758 			printf("%s: mbuf allocation failed "
    759 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    760 			return(ENOBUFS);
    761 		}
    762 
    763 		MCLGET(m_new, M_DONTWAIT);
    764 		if (!(m_new->m_flags & M_EXT)) {
    765 			printf("%s: cluster allocation failed "
    766 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    767 			m_freem(m_new);
    768 			return(ENOBUFS);
    769 		}
    770 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    771 		m_adj(m_new, ETHER_ALIGN);
    772 
    773 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    774 				mtod(m_new, caddr_t), m_new->m_len, NULL,
    775 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    776 			printf("%s: can't load recv map, error = %d\n",
    777 			       sc->sc_dev.dv_xname, error);
    778 			return (ENOMEM);
    779 		}
    780 	} else {
    781 		m_new = m;
    782 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    783 		m_new->m_data = m_new->m_ext.ext_buf;
    784 		m_adj(m_new, ETHER_ALIGN);
    785 
    786 		/* reuse the dmamap */
    787 	}
    788 
    789 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
    790 	r = &sc->ti_rdata->ti_rx_std_ring[i];
    791 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    792 	r->ti_type = TI_BDTYPE_RECV_BD;
    793 	r->ti_flags = 0;
    794 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
    795 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    796 	if (sc->ethercom.ec_if.if_capenable &
    797 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
    798 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    799 	r->ti_len = m_new->m_len; /* == ds_len */
    800 	r->ti_idx = i;
    801 
    802 	return(0);
    803 }
    804 
    805 /*
    806  * Intialize a mini receive ring descriptor. This only applies to
    807  * the Tigon 2.
    808  */
    809 static int ti_newbuf_mini(sc, i, m, dmamap)
    810 	struct ti_softc		*sc;
    811 	int			i;
    812 	struct mbuf		*m;
    813 	bus_dmamap_t dmamap; /* required if (m != NULL) */
    814 {
    815 	struct mbuf		*m_new = NULL;
    816 	struct ti_rx_desc	*r;
    817 	int error;
    818 
    819 	if (dmamap == NULL) {
    820 		/* if (m) panic() */
    821 
    822 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
    823 					       MHLEN, 0, BUS_DMA_NOWAIT,
    824 					       &dmamap)) != 0) {
    825 			printf("%s: can't create recv map, error = %d\n",
    826 			       sc->sc_dev.dv_xname, error);
    827 			return(ENOMEM);
    828 		}
    829 	}
    830 	sc->mini_dmamap[i] = dmamap;
    831 
    832 	if (m == NULL) {
    833 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    834 		if (m_new == NULL) {
    835 			printf("%s: mbuf allocation failed "
    836 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    837 			return(ENOBUFS);
    838 		}
    839 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    840 		m_adj(m_new, ETHER_ALIGN);
    841 
    842 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    843 				mtod(m_new, caddr_t), m_new->m_len, NULL,
    844 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    845 			printf("%s: can't load recv map, error = %d\n",
    846 			       sc->sc_dev.dv_xname, error);
    847 			return (ENOMEM);
    848 		}
    849 	} else {
    850 		m_new = m;
    851 		m_new->m_data = m_new->m_pktdat;
    852 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    853 		m_adj(m_new, ETHER_ALIGN);
    854 
    855 		/* reuse the dmamap */
    856 	}
    857 
    858 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
    859 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
    860 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    861 	r->ti_type = TI_BDTYPE_RECV_BD;
    862 	r->ti_flags = TI_BDFLAG_MINI_RING;
    863 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
    864 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    865 	if (sc->ethercom.ec_if.if_capenable &
    866 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
    867 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    868 	r->ti_len = m_new->m_len; /* == ds_len */
    869 	r->ti_idx = i;
    870 
    871 	return(0);
    872 }
    873 
    874 /*
    875  * Initialize a jumbo receive ring descriptor. This allocates
    876  * a jumbo buffer from the pool managed internally by the driver.
    877  */
    878 static int ti_newbuf_jumbo(sc, i, m)
    879 	struct ti_softc		*sc;
    880 	int			i;
    881 	struct mbuf		*m;
    882 {
    883 	struct mbuf		*m_new = NULL;
    884 	struct ti_rx_desc	*r;
    885 
    886 	if (m == NULL) {
    887 		caddr_t			*buf = NULL;
    888 
    889 		/* Allocate the mbuf. */
    890 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    891 		if (m_new == NULL) {
    892 			printf("%s: mbuf allocation failed "
    893 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    894 			return(ENOBUFS);
    895 		}
    896 
    897 		/* Allocate the jumbo buffer */
    898 		buf = ti_jalloc(sc);
    899 		if (buf == NULL) {
    900 			m_freem(m_new);
    901 			printf("%s: jumbo allocation failed "
    902 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    903 			return(ENOBUFS);
    904 		}
    905 
    906 		/* Attach the buffer to the mbuf. */
    907 		MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
    908 		    M_DEVBUF, ti_jfree, sc);
    909 		m_new->m_flags |= M_EXT_RW;
    910 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
    911 	} else {
    912 		m_new = m;
    913 		m_new->m_data = m_new->m_ext.ext_buf;
    914 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
    915 	}
    916 
    917 	m_adj(m_new, ETHER_ALIGN);
    918 	/* Set up the descriptor. */
    919 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
    920 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
    921 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
    922 		((caddr_t)mtod(m_new, caddr_t)
    923 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
    924 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
    925 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
    926 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
    927 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    928 	if (sc->ethercom.ec_if.if_capenable &
    929 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
    930 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    931 	r->ti_len = m_new->m_len;
    932 	r->ti_idx = i;
    933 
    934 	return(0);
    935 }
    936 
    937 /*
    938  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    939  * that's 1MB or memory, which is a lot. For now, we fill only the first
    940  * 256 ring entries and hope that our CPU is fast enough to keep up with
    941  * the NIC.
    942  */
    943 static int ti_init_rx_ring_std(sc)
    944 	struct ti_softc		*sc;
    945 {
    946 	int		i;
    947 	struct ti_cmd_desc	cmd;
    948 
    949 	for (i = 0; i < TI_SSLOTS; i++) {
    950 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    951 			return(ENOBUFS);
    952 	};
    953 
    954 	TI_UPDATE_STDPROD(sc, i - 1);
    955 	sc->ti_std = i - 1;
    956 
    957 	return(0);
    958 }
    959 
    960 static void ti_free_rx_ring_std(sc)
    961 	struct ti_softc		*sc;
    962 {
    963 	int		i;
    964 
    965 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
    966 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
    967 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
    968 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
    969 
    970 			/* if (sc->std_dmamap[i] == 0) panic() */
    971 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
    972 			sc->std_dmamap[i] = 0;
    973 		}
    974 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
    975 		    sizeof(struct ti_rx_desc));
    976 	}
    977 
    978 	return;
    979 }
    980 
    981 static int ti_init_rx_ring_jumbo(sc)
    982 	struct ti_softc		*sc;
    983 {
    984 	int		i;
    985 	struct ti_cmd_desc	cmd;
    986 
    987 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    988 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    989 			return(ENOBUFS);
    990 	};
    991 
    992 	TI_UPDATE_JUMBOPROD(sc, i - 1);
    993 	sc->ti_jumbo = i - 1;
    994 
    995 	return(0);
    996 }
    997 
    998 static void ti_free_rx_ring_jumbo(sc)
    999 	struct ti_softc		*sc;
   1000 {
   1001 	int		i;
   1002 
   1003 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
   1004 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
   1005 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
   1006 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
   1007 		}
   1008 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
   1009 		    sizeof(struct ti_rx_desc));
   1010 	}
   1011 
   1012 	return;
   1013 }
   1014 
   1015 static int ti_init_rx_ring_mini(sc)
   1016 	struct ti_softc		*sc;
   1017 {
   1018 	int		i;
   1019 
   1020 	for (i = 0; i < TI_MSLOTS; i++) {
   1021 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
   1022 			return(ENOBUFS);
   1023 	};
   1024 
   1025 	TI_UPDATE_MINIPROD(sc, i - 1);
   1026 	sc->ti_mini = i - 1;
   1027 
   1028 	return(0);
   1029 }
   1030 
   1031 static void ti_free_rx_ring_mini(sc)
   1032 	struct ti_softc		*sc;
   1033 {
   1034 	int		i;
   1035 
   1036 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
   1037 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
   1038 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
   1039 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
   1040 
   1041 			/* if (sc->mini_dmamap[i] == 0) panic() */
   1042 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
   1043 			sc->mini_dmamap[i] = 0;
   1044 		}
   1045 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
   1046 		    sizeof(struct ti_rx_desc));
   1047 	}
   1048 
   1049 	return;
   1050 }
   1051 
   1052 static void ti_free_tx_ring(sc)
   1053 	struct ti_softc		*sc;
   1054 {
   1055 	int		i;
   1056 	struct txdmamap_pool_entry *dma;
   1057 
   1058 	if (sc->ti_rdata->ti_tx_ring == NULL)
   1059 		return;
   1060 
   1061 	for (i = 0; i < TI_TX_RING_CNT; i++) {
   1062 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
   1063 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
   1064 			sc->ti_cdata.ti_tx_chain[i] = NULL;
   1065 
   1066 			/* if (sc->txdma[i] == 0) panic() */
   1067 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1068 					    link);
   1069 			sc->txdma[i] = 0;
   1070 		}
   1071 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
   1072 		    sizeof(struct ti_tx_desc));
   1073 	}
   1074 
   1075 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
   1076 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   1077 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
   1078 		free(dma, M_DEVBUF);
   1079 	}
   1080 
   1081 	return;
   1082 }
   1083 
   1084 static int ti_init_tx_ring(sc)
   1085 	struct ti_softc		*sc;
   1086 {
   1087 	int i, error;
   1088 	bus_dmamap_t dmamap;
   1089 	struct txdmamap_pool_entry *dma;
   1090 
   1091 	sc->ti_txcnt = 0;
   1092 	sc->ti_tx_saved_considx = 0;
   1093 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
   1094 
   1095 	SIMPLEQ_INIT(&sc->txdma_list);
   1096 	for (i = 0; i < TI_RSLOTS; i++) {
   1097 		/* I've seen mbufs with 30 fragments. */
   1098 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
   1099 					       40, ETHER_MAX_LEN_JUMBO, 0,
   1100 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
   1101 			printf("%s: can't create tx map, error = %d\n",
   1102 			       sc->sc_dev.dv_xname, error);
   1103 			return(ENOMEM);
   1104 		}
   1105 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1106 		if (!dma) {
   1107 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1108 			       sc->sc_dev.dv_xname);
   1109 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
   1110 			return (ENOMEM);
   1111 		}
   1112 		dma->dmamap = dmamap;
   1113 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   1114 	}
   1115 
   1116 	return(0);
   1117 }
   1118 
   1119 /*
   1120  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
   1121  * but we have to support the old way too so that Tigon 1 cards will
   1122  * work.
   1123  */
   1124 void ti_add_mcast(sc, addr)
   1125 	struct ti_softc		*sc;
   1126 	struct ether_addr	*addr;
   1127 {
   1128 	struct ti_cmd_desc	cmd;
   1129 	u_int16_t		*m;
   1130 	u_int32_t		ext[2] = {0, 0};
   1131 
   1132 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1133 
   1134 	switch(sc->ti_hwrev) {
   1135 	case TI_HWREV_TIGON:
   1136 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1137 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1138 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
   1139 		break;
   1140 	case TI_HWREV_TIGON_II:
   1141 		ext[0] = htons(m[0]);
   1142 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1143 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
   1144 		break;
   1145 	default:
   1146 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
   1147 		break;
   1148 	}
   1149 
   1150 	return;
   1151 }
   1152 
   1153 void ti_del_mcast(sc, addr)
   1154 	struct ti_softc		*sc;
   1155 	struct ether_addr	*addr;
   1156 {
   1157 	struct ti_cmd_desc	cmd;
   1158 	u_int16_t		*m;
   1159 	u_int32_t		ext[2] = {0, 0};
   1160 
   1161 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1162 
   1163 	switch(sc->ti_hwrev) {
   1164 	case TI_HWREV_TIGON:
   1165 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1166 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1167 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
   1168 		break;
   1169 	case TI_HWREV_TIGON_II:
   1170 		ext[0] = htons(m[0]);
   1171 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1172 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
   1173 		break;
   1174 	default:
   1175 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
   1176 		break;
   1177 	}
   1178 
   1179 	return;
   1180 }
   1181 
   1182 /*
   1183  * Configure the Tigon's multicast address filter.
   1184  *
   1185  * The actual multicast table management is a bit of a pain, thanks to
   1186  * slight brain damage on the part of both Alteon and us. With our
   1187  * multicast code, we are only alerted when the multicast address table
   1188  * changes and at that point we only have the current list of addresses:
   1189  * we only know the current state, not the previous state, so we don't
   1190  * actually know what addresses were removed or added. The firmware has
   1191  * state, but we can't get our grubby mits on it, and there is no 'delete
   1192  * all multicast addresses' command. Hence, we have to maintain our own
   1193  * state so we know what addresses have been programmed into the NIC at
   1194  * any given time.
   1195  */
   1196 static void ti_setmulti(sc)
   1197 	struct ti_softc		*sc;
   1198 {
   1199 	struct ifnet		*ifp;
   1200 	struct ti_cmd_desc	cmd;
   1201 	struct ti_mc_entry	*mc;
   1202 	u_int32_t		intrs;
   1203 	struct ether_multi *enm;
   1204 	struct ether_multistep step;
   1205 
   1206 	ifp = &sc->ethercom.ec_if;
   1207 
   1208 	/* Disable interrupts. */
   1209 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
   1210 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1211 
   1212 	/* First, zot all the existing filters. */
   1213 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1214 		ti_del_mcast(sc, &mc->mc_addr);
   1215 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1216 		free(mc, M_DEVBUF);
   1217 	}
   1218 
   1219 	/*
   1220 	 * Remember all multicast addresses so that we can delete them
   1221 	 * later.  Punt if there is a range of addresses or memory shortage.
   1222 	 */
   1223 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
   1224 	while (enm != NULL) {
   1225 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1226 		    ETHER_ADDR_LEN) != 0)
   1227 			goto allmulti;
   1228 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
   1229 		    M_NOWAIT)) == NULL)
   1230 			goto allmulti;
   1231 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
   1232 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
   1233 		ETHER_NEXT_MULTI(step, enm);
   1234 	}
   1235 
   1236 	/* Accept only programmed multicast addresses */
   1237 	ifp->if_flags &= ~IFF_ALLMULTI;
   1238 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
   1239 
   1240 	/* Now program new ones. */
   1241 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
   1242 		ti_add_mcast(sc, &mc->mc_addr);
   1243 
   1244 	/* Re-enable interrupts. */
   1245 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1246 
   1247 	return;
   1248 
   1249 allmulti:
   1250 	/* No need to keep individual multicast addresses */
   1251 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1252 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1253 		free(mc, M_DEVBUF);
   1254 	}
   1255 
   1256 	/* Accept all multicast addresses */
   1257 	ifp->if_flags |= IFF_ALLMULTI;
   1258 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
   1259 
   1260 	/* Re-enable interrupts. */
   1261 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1262 }
   1263 
   1264 /*
   1265  * Check to see if the BIOS has configured us for a 64 bit slot when
   1266  * we aren't actually in one. If we detect this condition, we can work
   1267  * around it on the Tigon 2 by setting a bit in the PCI state register,
   1268  * but for the Tigon 1 we must give up and abort the interface attach.
   1269  */
   1270 static int ti_64bitslot_war(sc)
   1271 	struct ti_softc		*sc;
   1272 {
   1273 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
   1274 		CSR_WRITE_4(sc, 0x600, 0);
   1275 		CSR_WRITE_4(sc, 0x604, 0);
   1276 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
   1277 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
   1278 			if (sc->ti_hwrev == TI_HWREV_TIGON)
   1279 				return(EINVAL);
   1280 			else {
   1281 				TI_SETBIT(sc, TI_PCI_STATE,
   1282 				    TI_PCISTATE_32BIT_BUS);
   1283 				return(0);
   1284 			}
   1285 		}
   1286 	}
   1287 
   1288 	return(0);
   1289 }
   1290 
   1291 /*
   1292  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1293  * self-test results.
   1294  */
   1295 static int ti_chipinit(sc)
   1296 	struct ti_softc		*sc;
   1297 {
   1298 	u_int32_t		cacheline;
   1299 	u_int32_t		pci_writemax = 0;
   1300 	u_int32_t		rev;
   1301 
   1302 	/* Initialize link to down state. */
   1303 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
   1304 
   1305 	/* Set endianness before we access any non-PCI registers. */
   1306 #if BYTE_ORDER == BIG_ENDIAN
   1307 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1308 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
   1309 #else
   1310 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1311 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
   1312 #endif
   1313 
   1314 	/* Check the ROM failed bit to see if self-tests passed. */
   1315 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
   1316 		printf("%s: board self-diagnostics failed!\n",
   1317 		       sc->sc_dev.dv_xname);
   1318 		return(ENODEV);
   1319 	}
   1320 
   1321 	/* Halt the CPU. */
   1322 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
   1323 
   1324 	/* Figure out the hardware revision. */
   1325 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
   1326 	switch(rev) {
   1327 	case TI_REV_TIGON_I:
   1328 		sc->ti_hwrev = TI_HWREV_TIGON;
   1329 		break;
   1330 	case TI_REV_TIGON_II:
   1331 		sc->ti_hwrev = TI_HWREV_TIGON_II;
   1332 		break;
   1333 	default:
   1334 		printf("%s: unsupported chip revision 0x%x\n",
   1335 		    sc->sc_dev.dv_xname, rev);
   1336 		return(ENODEV);
   1337 	}
   1338 
   1339 	/* Do special setup for Tigon 2. */
   1340 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1341 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
   1342 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
   1343 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
   1344 	}
   1345 
   1346 	/* Set up the PCI state register. */
   1347 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
   1348 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1349 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
   1350 	}
   1351 
   1352 	/* Clear the read/write max DMA parameters. */
   1353 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
   1354 	    TI_PCISTATE_READ_MAXDMA));
   1355 
   1356 	/* Get cache line size. */
   1357 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
   1358 
   1359 	/*
   1360 	 * If the system has set enabled the PCI memory write
   1361 	 * and invalidate command in the command register, set
   1362 	 * the write max parameter accordingly. This is necessary
   1363 	 * to use MWI with the Tigon 2.
   1364 	 */
   1365 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1366 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
   1367 		switch(cacheline) {
   1368 		case 1:
   1369 		case 4:
   1370 		case 8:
   1371 		case 16:
   1372 		case 32:
   1373 		case 64:
   1374 			break;
   1375 		default:
   1376 		/* Disable PCI memory write and invalidate. */
   1377 			if (bootverbose)
   1378 				printf("%s: cache line size %d not "
   1379 				    "supported; disabling PCI MWI\n",
   1380 				    sc->sc_dev.dv_xname, cacheline);
   1381 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
   1382 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1383 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
   1384 			break;
   1385 		}
   1386 	}
   1387 
   1388 #ifdef __brokenalpha__
   1389 	/*
   1390 	 * From the Alteon sample driver:
   1391 	 * Must insure that we do not cross an 8K (bytes) boundary
   1392 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1393 	 * restriction on some ALPHA platforms with early revision
   1394 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1395 	 */
   1396 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
   1397 #else
   1398 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
   1399 #endif
   1400 
   1401 	/* This sets the min dma param all the way up (0xff). */
   1402 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
   1403 
   1404 	/* Configure DMA variables. */
   1405 #if BYTE_ORDER == BIG_ENDIAN
   1406 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
   1407 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
   1408 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
   1409 	    TI_OPMODE_DONT_FRAG_JUMBO);
   1410 #else
   1411 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
   1412 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
   1413 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
   1414 #endif
   1415 
   1416 	/*
   1417 	 * Only allow 1 DMA channel to be active at a time.
   1418 	 * I don't think this is a good idea, but without it
   1419 	 * the firmware racks up lots of nicDmaReadRingFull
   1420 	 * errors.
   1421 	 * Incompatible with hardware assisted checksums.
   1422 	 */
   1423 	if ((sc->ethercom.ec_if.if_capenable &
   1424 	    (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
   1425 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
   1426 
   1427 	/* Recommended settings from Tigon manual. */
   1428 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
   1429 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
   1430 
   1431 	if (ti_64bitslot_war(sc)) {
   1432 		printf("%s: bios thinks we're in a 64 bit slot, "
   1433 		    "but we aren't", sc->sc_dev.dv_xname);
   1434 		return(EINVAL);
   1435 	}
   1436 
   1437 	return(0);
   1438 }
   1439 
   1440 /*
   1441  * Initialize the general information block and firmware, and
   1442  * start the CPU(s) running.
   1443  */
   1444 static int ti_gibinit(sc)
   1445 	struct ti_softc		*sc;
   1446 {
   1447 	struct ti_rcb		*rcb;
   1448 	int			i;
   1449 	struct ifnet		*ifp;
   1450 
   1451 	ifp = &sc->ethercom.ec_if;
   1452 
   1453 	/* Disable interrupts for now. */
   1454 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1455 
   1456 	/* Tell the chip where to find the general information block. */
   1457 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
   1458 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
   1459 
   1460 	/* Load the firmware into SRAM. */
   1461 	ti_loadfw(sc);
   1462 
   1463 	/* Set up the contents of the general info and ring control blocks. */
   1464 
   1465 	/* Set up the event ring and producer pointer. */
   1466 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
   1467 
   1468 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
   1469 	rcb->ti_flags = 0;
   1470 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
   1471 	    TI_CDEVPRODADDR(sc);
   1472 
   1473 	sc->ti_ev_prodidx.ti_idx = 0;
   1474 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
   1475 	sc->ti_ev_saved_considx = 0;
   1476 
   1477 	/* Set up the command ring and producer mailbox. */
   1478 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
   1479 
   1480 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
   1481 	rcb->ti_flags = 0;
   1482 	rcb->ti_max_len = 0;
   1483 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
   1484 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
   1485 	}
   1486 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
   1487 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
   1488 	sc->ti_cmd_saved_prodidx = 0;
   1489 
   1490 	/*
   1491 	 * Assign the address of the stats refresh buffer.
   1492 	 * We re-use the current stats buffer for this to
   1493 	 * conserve memory.
   1494 	 */
   1495 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
   1496 	    TI_CDSTATSADDR(sc);
   1497 
   1498 	/* Set up the standard receive ring. */
   1499 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
   1500 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
   1501 	rcb->ti_max_len = ETHER_MAX_LEN;
   1502 	rcb->ti_flags = 0;
   1503 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1504 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1505 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   1506 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1507 	if (sc->ethercom.ec_nvlans != 0)
   1508 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1509 
   1510 	/* Set up the jumbo receive ring. */
   1511 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
   1512 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
   1513 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
   1514 	rcb->ti_flags = 0;
   1515 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1516 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1517 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   1518 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1519 	if (sc->ethercom.ec_nvlans != 0)
   1520 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1521 
   1522 	/*
   1523 	 * Set up the mini ring. Only activated on the
   1524 	 * Tigon 2 but the slot in the config block is
   1525 	 * still there on the Tigon 1.
   1526 	 */
   1527 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
   1528 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
   1529 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
   1530 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1531 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
   1532 	else
   1533 		rcb->ti_flags = 0;
   1534 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1535 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1536 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   1537 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1538 	if (sc->ethercom.ec_nvlans != 0)
   1539 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1540 
   1541 	/*
   1542 	 * Set up the receive return ring.
   1543 	 */
   1544 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
   1545 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
   1546 	rcb->ti_flags = 0;
   1547 	rcb->ti_max_len = TI_RETURN_RING_CNT;
   1548 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
   1549 	    TI_CDRTNPRODADDR(sc);
   1550 
   1551 	/*
   1552 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
   1553 	 * of putting the transmit ring in the host's address space and
   1554 	 * letting the chip DMA it instead of leaving the ring in the NIC's
   1555 	 * memory and accessing it through the shared memory region. We
   1556 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
   1557 	 * so we have to revert to the shared memory scheme if we detect
   1558 	 * a Tigon 1 chip.
   1559 	 */
   1560 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
   1561 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   1562 		sc->ti_tx_ring_nic =
   1563 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
   1564 	}
   1565 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
   1566 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
   1567 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
   1568 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1569 		rcb->ti_flags = 0;
   1570 	else
   1571 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
   1572 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1573 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1574 	/*
   1575 	 * When we get the packet, there is a pseudo-header seed already
   1576 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
   1577 	 * compute the pseudo-header checksum again!
   1578 	 */
   1579 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   1580 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
   1581 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
   1582 	if (sc->ethercom.ec_nvlans != 0)
   1583 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1584 	rcb->ti_max_len = TI_TX_RING_CNT;
   1585 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1586 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
   1587 	else
   1588 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
   1589 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
   1590 	    TI_CDTXCONSADDR(sc);
   1591 
   1592 	/*
   1593 	 * We're done frobbing the General Information Block.  Sync
   1594 	 * it.  Note we take care of the first stats sync here, as
   1595 	 * well.
   1596 	 */
   1597 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1598 
   1599 	/* Set up tuneables */
   1600 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
   1601 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   1602 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
   1603 		    (sc->ti_rx_coal_ticks / 10));
   1604 	else
   1605 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
   1606 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
   1607 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
   1608 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
   1609 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
   1610 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
   1611 
   1612 	/* Turn interrupts on. */
   1613 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
   1614 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   1615 
   1616 	/* Start CPU. */
   1617 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
   1618 
   1619 	return(0);
   1620 }
   1621 
   1622 /*
   1623  * look for id in the device list, returning the first match
   1624  */
   1625 static const struct ti_type *
   1626 ti_type_match(pa)
   1627 	struct pci_attach_args *pa;
   1628 {
   1629 	const struct ti_type          *t;
   1630 
   1631 	t = ti_devs;
   1632 	while(t->ti_name != NULL) {
   1633 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
   1634 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
   1635 			return (t);
   1636 		}
   1637 		t++;
   1638 	}
   1639 
   1640 	return(NULL);
   1641 }
   1642 
   1643 /*
   1644  * Probe for a Tigon chip. Check the PCI vendor and device IDs
   1645  * against our list and return its name if we find a match.
   1646  */
   1647 static int ti_probe(parent, match, aux)
   1648 	struct device *parent;
   1649 	struct cfdata *match;
   1650 	void *aux;
   1651 {
   1652 	struct pci_attach_args *pa = aux;
   1653 	const struct ti_type		*t;
   1654 
   1655 	t = ti_type_match(pa);
   1656 
   1657 	return((t == NULL) ? 0 : 1);
   1658 }
   1659 
   1660 static void ti_attach(parent, self, aux)
   1661 	struct device *parent, *self;
   1662 	void *aux;
   1663 {
   1664 	u_int32_t		command;
   1665 	struct ifnet		*ifp;
   1666 	struct ti_softc		*sc;
   1667 	u_char eaddr[ETHER_ADDR_LEN];
   1668 	struct pci_attach_args *pa = aux;
   1669 	pci_chipset_tag_t pc = pa->pa_pc;
   1670 	pci_intr_handle_t ih;
   1671 	const char *intrstr = NULL;
   1672 	bus_dma_segment_t dmaseg;
   1673 	int error, dmanseg, nolinear;
   1674 	const struct ti_type		*t;
   1675 
   1676 	t = ti_type_match(pa);
   1677 	if (t == NULL) {
   1678 		printf("ti_attach: were did the card go ?\n");
   1679 		return;
   1680 	}
   1681 
   1682 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
   1683 
   1684 	sc = (struct ti_softc *)self;
   1685 
   1686 	/*
   1687 	 * Map control/status registers.
   1688 	 */
   1689 	nolinear = 0;
   1690 	if (pci_mapreg_map(pa, 0x10,
   1691 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1692 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
   1693 	    NULL, NULL)) {
   1694 		nolinear = 1;
   1695 		if (pci_mapreg_map(pa, 0x10,
   1696 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1697 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
   1698 			printf(": can't map memory space\n");
   1699 			return;
   1700 		}
   1701 	}
   1702 	if (nolinear == 0)
   1703 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
   1704 	else
   1705 		sc->ti_vhandle = NULL;
   1706 
   1707 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1708 	command |= PCI_COMMAND_MASTER_ENABLE;
   1709 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1710 
   1711 	/* Allocate interrupt */
   1712 	if (pci_intr_map(pa, &ih)) {
   1713 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
   1714 		return;
   1715 	}
   1716 	intrstr = pci_intr_string(pc, ih);
   1717 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
   1718 	if (sc->sc_ih == NULL) {
   1719 		printf("%s: couldn't establish interrupt",
   1720 		    sc->sc_dev.dv_xname);
   1721 		if (intrstr != NULL)
   1722 			printf(" at %s", intrstr);
   1723 		printf("\n");
   1724 		return;
   1725 	}
   1726 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1727 	/*
   1728 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
   1729 	 * doing do could allow DMA to corrupt kernel memory during the
   1730 	 * reboot before the driver initializes.
   1731 	 */
   1732 	(void) shutdownhook_establish(ti_shutdown, sc);
   1733 
   1734 	if (ti_chipinit(sc)) {
   1735 		printf("%s: chip initialization failed\n", self->dv_xname);
   1736 		goto fail2;
   1737 	}
   1738 
   1739 	/*
   1740 	 * Deal with some chip diffrences.
   1741 	 */
   1742 	switch (sc->ti_hwrev) {
   1743 	case TI_HWREV_TIGON:
   1744 		sc->sc_tx_encap = ti_encap_tigon1;
   1745 		sc->sc_tx_eof = ti_txeof_tigon1;
   1746 		if (nolinear == 1)
   1747 			printf("%s: memory space not mapped linear\n",
   1748 			    self->dv_xname);
   1749 		break;
   1750 
   1751 	case TI_HWREV_TIGON_II:
   1752 		sc->sc_tx_encap = ti_encap_tigon2;
   1753 		sc->sc_tx_eof = ti_txeof_tigon2;
   1754 		break;
   1755 
   1756 	default:
   1757 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
   1758 		    sc->ti_hwrev);
   1759 		goto fail2;
   1760 	}
   1761 
   1762 	/* Zero out the NIC's on-board SRAM. */
   1763 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
   1764 
   1765 	/* Init again -- zeroing memory may have clobbered some registers. */
   1766 	if (ti_chipinit(sc)) {
   1767 		printf("%s: chip initialization failed\n", self->dv_xname);
   1768 		goto fail2;
   1769 	}
   1770 
   1771 	/*
   1772 	 * Get station address from the EEPROM. Note: the manual states
   1773 	 * that the MAC address is at offset 0x8c, however the data is
   1774 	 * stored as two longwords (since that's how it's loaded into
   1775 	 * the NIC). This means the MAC address is actually preceded
   1776 	 * by two zero bytes. We need to skip over those.
   1777 	 */
   1778 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
   1779 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1780 		printf("%s: failed to read station address\n", self->dv_xname);
   1781 		goto fail2;
   1782 	}
   1783 
   1784 	/*
   1785 	 * A Tigon chip was detected. Inform the world.
   1786 	 */
   1787 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   1788 				ether_sprintf(eaddr));
   1789 
   1790 	sc->sc_dmat = pa->pa_dmat;
   1791 
   1792 	/* Allocate the general information block and ring buffers. */
   1793 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1794 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
   1795 	    BUS_DMA_NOWAIT)) != 0) {
   1796 		printf("%s: can't allocate ring buffer, error = %d\n",
   1797 		       sc->sc_dev.dv_xname, error);
   1798 		goto fail2;
   1799 	}
   1800 
   1801 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
   1802 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
   1803 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
   1804 		printf("%s: can't map ring buffer, error = %d\n",
   1805 		       sc->sc_dev.dv_xname, error);
   1806 		goto fail2;
   1807 	}
   1808 
   1809 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1810 	    sizeof(struct ti_ring_data), 1,
   1811 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
   1812 	    &sc->info_dmamap)) != 0) {
   1813 		printf("%s: can't create ring buffer DMA map, error = %d\n",
   1814 		       sc->sc_dev.dv_xname, error);
   1815 		goto fail2;
   1816 	}
   1817 
   1818 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
   1819 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
   1820 	    BUS_DMA_NOWAIT)) != 0) {
   1821 		printf("%s: can't load ring buffer DMA map, error = %d\n",
   1822 		       sc->sc_dev.dv_xname, error);
   1823 		goto fail2;
   1824 	}
   1825 
   1826 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
   1827 
   1828 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
   1829 
   1830 	/* Try to allocate memory for jumbo buffers. */
   1831 	if (ti_alloc_jumbo_mem(sc)) {
   1832 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
   1833 		goto fail2;
   1834 	}
   1835 
   1836 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
   1837 
   1838 	/*
   1839 	 * We really need a better way to tell a 1000baseT card
   1840 	 * from a 1000baseSX one, since in theory there could be
   1841 	 * OEMed 1000baseT cards from lame vendors who aren't
   1842 	 * clever enough to change the PCI ID. For the moment
   1843 	 * though, the AceNIC is the only copper card available.
   1844 	 */
   1845 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
   1846 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
   1847 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
   1848 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
   1849 		sc->ti_copper = 1;
   1850 	else
   1851 		sc->ti_copper = 0;
   1852 
   1853 	/* Set default tuneable values. */
   1854 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
   1855 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
   1856 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
   1857 	sc->ti_rx_max_coal_bds = 64;
   1858 	sc->ti_tx_max_coal_bds = 128;
   1859 	sc->ti_tx_buf_ratio = 21;
   1860 
   1861 	/* Set up ifnet structure */
   1862 	ifp = &sc->ethercom.ec_if;
   1863 	ifp->if_softc = sc;
   1864 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1865 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1866 	ifp->if_ioctl = ti_ioctl;
   1867 	ifp->if_start = ti_start;
   1868 	ifp->if_watchdog = ti_watchdog;
   1869 	IFQ_SET_READY(&ifp->if_snd);
   1870 
   1871 #if 0
   1872 	/*
   1873 	 * XXX This is not really correct -- we don't necessarily
   1874 	 * XXX want to queue up as many as we can transmit at the
   1875 	 * XXX upper layer like that.  Someone with a board should
   1876 	 * XXX check to see how this affects performance.
   1877 	 */
   1878 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
   1879 #endif
   1880 
   1881 	/*
   1882 	 * We can support 802.1Q VLAN-sized frames.
   1883 	 */
   1884 	sc->ethercom.ec_capabilities |=
   1885 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
   1886 
   1887 	/*
   1888 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
   1889 	 */
   1890 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
   1891 	    IFCAP_CSUM_UDPv4;
   1892 
   1893 	/* Set up ifmedia support. */
   1894 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
   1895 	if (sc->ti_copper) {
   1896                 /*
   1897                  * Copper cards allow manual 10/100 mode selection,
   1898                  * but not manual 1000baseT mode selection. Why?
   1899                  * Because currently there's no way to specify the
   1900                  * master/slave setting through the firmware interface,
   1901                  * so Alteon decided to just bag it and handle it
   1902                  * via autonegotiation.
   1903                  */
   1904                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
   1905                 ifmedia_add(&sc->ifmedia,
   1906                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
   1907                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
   1908                 ifmedia_add(&sc->ifmedia,
   1909                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
   1910                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
   1911                 ifmedia_add(&sc->ifmedia,
   1912                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
   1913 	} else {
   1914 		/* Fiber cards don't support 10/100 modes. */
   1915 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   1916 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
   1917 	}
   1918 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   1919 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
   1920 
   1921 	/*
   1922 	 * Call MI attach routines.
   1923 	 */
   1924 	if_attach(ifp);
   1925 	ether_ifattach(ifp, eaddr);
   1926 
   1927 	return;
   1928 fail2:
   1929 	pci_intr_disestablish(pc, sc->sc_ih);
   1930 	return;
   1931 }
   1932 
   1933 /*
   1934  * Frame reception handling. This is called if there's a frame
   1935  * on the receive return list.
   1936  *
   1937  * Note: we have to be able to handle three possibilities here:
   1938  * 1) the frame is from the mini receive ring (can only happen)
   1939  *    on Tigon 2 boards)
   1940  * 2) the frame is from the jumbo receive ring
   1941  * 3) the frame is from the standard receive ring
   1942  */
   1943 
   1944 static void ti_rxeof(sc)
   1945 	struct ti_softc		*sc;
   1946 {
   1947 	struct ifnet		*ifp;
   1948 	struct ti_cmd_desc	cmd;
   1949 
   1950 	ifp = &sc->ethercom.ec_if;
   1951 
   1952 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
   1953 		struct ti_rx_desc	*cur_rx;
   1954 		u_int32_t		rxidx;
   1955 		struct mbuf		*m = NULL;
   1956 		u_int16_t		vlan_tag = 0;
   1957 		int			have_tag = 0;
   1958 		struct ether_header	*eh;
   1959 		bus_dmamap_t dmamap;
   1960 
   1961 		cur_rx =
   1962 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
   1963 		rxidx = cur_rx->ti_idx;
   1964 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
   1965 
   1966 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
   1967 			have_tag = 1;
   1968 			/* ti_vlan_tag also has the priority, trim it */
   1969 			vlan_tag = cur_rx->ti_vlan_tag & 4095;
   1970 		}
   1971 
   1972 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
   1973 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
   1974 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
   1975 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
   1976 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1977 				ifp->if_ierrors++;
   1978 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1979 				continue;
   1980 			}
   1981 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
   1982 			    == ENOBUFS) {
   1983 				ifp->if_ierrors++;
   1984 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1985 				continue;
   1986 			}
   1987 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
   1988 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
   1989 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
   1990 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
   1991 			dmamap = sc->mini_dmamap[rxidx];
   1992 			sc->mini_dmamap[rxidx] = 0;
   1993 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1994 				ifp->if_ierrors++;
   1995 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1996 				continue;
   1997 			}
   1998 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
   1999 			    == ENOBUFS) {
   2000 				ifp->if_ierrors++;
   2001 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   2002 				continue;
   2003 			}
   2004 		} else {
   2005 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
   2006 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
   2007 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
   2008 			dmamap = sc->std_dmamap[rxidx];
   2009 			sc->std_dmamap[rxidx] = 0;
   2010 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   2011 				ifp->if_ierrors++;
   2012 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   2013 				continue;
   2014 			}
   2015 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
   2016 			    == ENOBUFS) {
   2017 				ifp->if_ierrors++;
   2018 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   2019 				continue;
   2020 			}
   2021 		}
   2022 
   2023 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
   2024 		ifp->if_ipackets++;
   2025 		m->m_pkthdr.rcvif = ifp;
   2026 
   2027 #if NBPFILTER > 0
   2028 		/*
   2029 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
   2030 	 	 * don't pass it up to the ether_input() layer unless it's
   2031 	 	 * a broadcast packet, multicast packet, matches our ethernet
   2032 	 	 * address or the interface is in promiscuous mode.
   2033 	 	 */
   2034 		if (ifp->if_bpf)
   2035 			bpf_mtap(ifp->if_bpf, m);
   2036 #endif
   2037 
   2038 		eh = mtod(m, struct ether_header *);
   2039 		switch (ntohs(eh->ether_type)) {
   2040 #ifdef INET
   2041 		case ETHERTYPE_IP:
   2042 		    {
   2043 			struct ip *ip = (struct ip *) (eh + 1);
   2044 
   2045 			/*
   2046 			 * Note the Tigon firmware does not invert
   2047 			 * the checksum for us, hence the XOR.
   2048 			 */
   2049 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2050 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
   2051 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2052 			/*
   2053 			 * ntohs() the constant so the compiler can
   2054 			 * optimize...
   2055 			 *
   2056 			 * XXX Figure out a sane way to deal with
   2057 			 * fragmented packets.
   2058 			 */
   2059 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
   2060 				switch (ip->ip_p) {
   2061 				case IPPROTO_TCP:
   2062 					m->m_pkthdr.csum_data =
   2063 					    cur_rx->ti_tcp_udp_cksum;
   2064 					m->m_pkthdr.csum_flags |=
   2065 					    M_CSUM_TCPv4|M_CSUM_DATA;
   2066 					break;
   2067 				case IPPROTO_UDP:
   2068 					m->m_pkthdr.csum_data =
   2069 					    cur_rx->ti_tcp_udp_cksum;
   2070 					m->m_pkthdr.csum_flags |=
   2071 					    M_CSUM_UDPv4|M_CSUM_DATA;
   2072 					break;
   2073 				default:
   2074 					/* Nothing */;
   2075 				}
   2076 			}
   2077 			break;
   2078 		    }
   2079 #endif
   2080 		default:
   2081 			/* Nothing. */
   2082 			break;
   2083 		}
   2084 
   2085 		if (have_tag) {
   2086 			struct m_tag *mtag;
   2087 
   2088 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2089 			    M_NOWAIT);
   2090 			if (mtag) {
   2091 				*(u_int *)(mtag + 1) = vlan_tag;
   2092 				m_tag_prepend(m, mtag);
   2093 				have_tag = vlan_tag = 0;
   2094 			} else {
   2095 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2096 				m_freem(m);
   2097 				have_tag = vlan_tag = 0;
   2098 				continue;
   2099 			}
   2100 		}
   2101 		(*ifp->if_input)(ifp, m);
   2102 	}
   2103 
   2104 	/* Only necessary on the Tigon 1. */
   2105 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   2106 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
   2107 		    sc->ti_rx_saved_considx);
   2108 
   2109 	TI_UPDATE_STDPROD(sc, sc->ti_std);
   2110 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
   2111 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
   2112 
   2113 	return;
   2114 }
   2115 
   2116 static void ti_txeof_tigon1(sc)
   2117 	struct ti_softc		*sc;
   2118 {
   2119 	struct ti_tx_desc	*cur_tx = NULL;
   2120 	struct ifnet		*ifp;
   2121 	struct txdmamap_pool_entry *dma;
   2122 
   2123 	ifp = &sc->ethercom.ec_if;
   2124 
   2125 	/*
   2126 	 * Go through our tx ring and free mbufs for those
   2127 	 * frames that have been sent.
   2128 	 */
   2129 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2130 		u_int32_t		idx = 0;
   2131 
   2132 		idx = sc->ti_tx_saved_considx;
   2133 		if (idx > 383)
   2134 			CSR_WRITE_4(sc, TI_WINBASE,
   2135 			    TI_TX_RING_BASE + 6144);
   2136 		else if (idx > 255)
   2137 			CSR_WRITE_4(sc, TI_WINBASE,
   2138 			    TI_TX_RING_BASE + 4096);
   2139 		else if (idx > 127)
   2140 			CSR_WRITE_4(sc, TI_WINBASE,
   2141 			    TI_TX_RING_BASE + 2048);
   2142 		else
   2143 			CSR_WRITE_4(sc, TI_WINBASE,
   2144 			    TI_TX_RING_BASE);
   2145 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
   2146 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2147 			ifp->if_opackets++;
   2148 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2149 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2150 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2151 
   2152 			dma = sc->txdma[idx];
   2153 			KDASSERT(dma != NULL);
   2154 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2155 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2156 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2157 
   2158 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2159 			sc->txdma[idx] = NULL;
   2160 		}
   2161 		sc->ti_txcnt--;
   2162 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2163 		ifp->if_timer = 0;
   2164 	}
   2165 
   2166 	if (cur_tx != NULL)
   2167 		ifp->if_flags &= ~IFF_OACTIVE;
   2168 
   2169 	return;
   2170 }
   2171 
   2172 static void ti_txeof_tigon2(sc)
   2173 	struct ti_softc		*sc;
   2174 {
   2175 	struct ti_tx_desc	*cur_tx = NULL;
   2176 	struct ifnet		*ifp;
   2177 	struct txdmamap_pool_entry *dma;
   2178 	int firstidx, cnt;
   2179 
   2180 	ifp = &sc->ethercom.ec_if;
   2181 
   2182 	/*
   2183 	 * Go through our tx ring and free mbufs for those
   2184 	 * frames that have been sent.
   2185 	 */
   2186 	firstidx = sc->ti_tx_saved_considx;
   2187 	cnt = 0;
   2188 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2189 		u_int32_t		idx = 0;
   2190 
   2191 		idx = sc->ti_tx_saved_considx;
   2192 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
   2193 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2194 			ifp->if_opackets++;
   2195 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2196 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2197 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2198 
   2199 			dma = sc->txdma[idx];
   2200 			KDASSERT(dma != NULL);
   2201 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2202 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2203 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2204 
   2205 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2206 			sc->txdma[idx] = NULL;
   2207 		}
   2208 		cnt++;
   2209 		sc->ti_txcnt--;
   2210 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2211 		ifp->if_timer = 0;
   2212 	}
   2213 
   2214 	if (cnt != 0)
   2215 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
   2216 
   2217 	if (cur_tx != NULL)
   2218 		ifp->if_flags &= ~IFF_OACTIVE;
   2219 
   2220 	return;
   2221 }
   2222 
   2223 static int ti_intr(xsc)
   2224 	void			*xsc;
   2225 {
   2226 	struct ti_softc		*sc;
   2227 	struct ifnet		*ifp;
   2228 
   2229 	sc = xsc;
   2230 	ifp = &sc->ethercom.ec_if;
   2231 
   2232 #ifdef notdef
   2233 	/* Avoid this for now -- checking this register is expensive. */
   2234 	/* Make sure this is really our interrupt. */
   2235 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
   2236 		return (0);
   2237 #endif
   2238 
   2239 	/* Ack interrupt and stop others from occuring. */
   2240 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2241 
   2242 	if (ifp->if_flags & IFF_RUNNING) {
   2243 		/* Check RX return ring producer/consumer */
   2244 		ti_rxeof(sc);
   2245 
   2246 		/* Check TX ring producer/consumer */
   2247 		(*sc->sc_tx_eof)(sc);
   2248 	}
   2249 
   2250 	ti_handle_events(sc);
   2251 
   2252 	/* Re-enable interrupts. */
   2253 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2254 
   2255 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2256 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   2257 		ti_start(ifp);
   2258 
   2259 	return (1);
   2260 }
   2261 
   2262 static void ti_stats_update(sc)
   2263 	struct ti_softc		*sc;
   2264 {
   2265 	struct ifnet		*ifp;
   2266 
   2267 	ifp = &sc->ethercom.ec_if;
   2268 
   2269 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   2270 
   2271 	ifp->if_collisions +=
   2272 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
   2273 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
   2274 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
   2275 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
   2276 	   ifp->if_collisions;
   2277 
   2278 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   2279 }
   2280 
   2281 /*
   2282  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2283  * pointers to descriptors.
   2284  */
   2285 static int ti_encap_tigon1(sc, m_head, txidx)
   2286 	struct ti_softc		*sc;
   2287 	struct mbuf		*m_head;
   2288 	u_int32_t		*txidx;
   2289 {
   2290 	struct ti_tx_desc	*f = NULL;
   2291 	u_int32_t		frag, cur, cnt = 0;
   2292 	struct txdmamap_pool_entry *dma;
   2293 	bus_dmamap_t dmamap;
   2294 	int error, i;
   2295 	struct m_tag *mtag;
   2296 	u_int16_t csum_flags = 0;
   2297 
   2298 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2299 	if (dma == NULL) {
   2300 		return ENOMEM;
   2301 	}
   2302 	dmamap = dma->dmamap;
   2303 
   2304 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2305 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2306 	if (error) {
   2307 		struct mbuf *m;
   2308 		int i = 0;
   2309 		for (m = m_head; m; m = m->m_next)
   2310 			i++;
   2311 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2312 		       "error %d\n", m_head->m_pkthdr.len, i, error);
   2313 		return (ENOMEM);
   2314 	}
   2315 
   2316 	cur = frag = *txidx;
   2317 
   2318 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2319 		/* IP header checksum field must be 0! */
   2320 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2321 	}
   2322 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2323 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2324 
   2325 	/* XXX fragmented packet checksum capability? */
   2326 
   2327 	/*
   2328  	 * Start packing the mbufs in this chain into
   2329 	 * the fragment pointers. Stop when we run out
   2330  	 * of fragments or hit the end of the mbuf chain.
   2331 	 */
   2332 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2333 		if (frag > 383)
   2334 			CSR_WRITE_4(sc, TI_WINBASE,
   2335 			    TI_TX_RING_BASE + 6144);
   2336 		else if (frag > 255)
   2337 			CSR_WRITE_4(sc, TI_WINBASE,
   2338 			    TI_TX_RING_BASE + 4096);
   2339 		else if (frag > 127)
   2340 			CSR_WRITE_4(sc, TI_WINBASE,
   2341 			    TI_TX_RING_BASE + 2048);
   2342 		else
   2343 			CSR_WRITE_4(sc, TI_WINBASE,
   2344 			    TI_TX_RING_BASE);
   2345 		f = &sc->ti_tx_ring_nic[frag % 128];
   2346 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2347 			break;
   2348 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2349 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2350 		f->ti_flags = csum_flags;
   2351 		mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
   2352 		if (mtag) {
   2353 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2354 			f->ti_vlan_tag = *(u_int *)(mtag + 1);
   2355 		} else {
   2356 			f->ti_vlan_tag = 0;
   2357 		}
   2358 		/*
   2359 		 * Sanity check: avoid coming within 16 descriptors
   2360 		 * of the end of the ring.
   2361 		 */
   2362 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2363 			return(ENOBUFS);
   2364 		cur = frag;
   2365 		TI_INC(frag, TI_TX_RING_CNT);
   2366 		cnt++;
   2367 	}
   2368 
   2369 	if (i < dmamap->dm_nsegs)
   2370 		return(ENOBUFS);
   2371 
   2372 	if (frag == sc->ti_tx_saved_considx)
   2373 		return(ENOBUFS);
   2374 
   2375 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
   2376 	    TI_BDFLAG_END;
   2377 
   2378 	/* Sync the packet's DMA map. */
   2379 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2380 	    BUS_DMASYNC_PREWRITE);
   2381 
   2382 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2383 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2384 	sc->txdma[cur] = dma;
   2385 	sc->ti_txcnt += cnt;
   2386 
   2387 	*txidx = frag;
   2388 
   2389 	return(0);
   2390 }
   2391 
   2392 static int ti_encap_tigon2(sc, m_head, txidx)
   2393 	struct ti_softc		*sc;
   2394 	struct mbuf		*m_head;
   2395 	u_int32_t		*txidx;
   2396 {
   2397 	struct ti_tx_desc	*f = NULL;
   2398 	u_int32_t		frag, firstfrag, cur, cnt = 0;
   2399 	struct txdmamap_pool_entry *dma;
   2400 	bus_dmamap_t dmamap;
   2401 	int error, i;
   2402 	struct m_tag *mtag;
   2403 	u_int16_t csum_flags = 0;
   2404 
   2405 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2406 	if (dma == NULL) {
   2407 		return ENOMEM;
   2408 	}
   2409 	dmamap = dma->dmamap;
   2410 
   2411 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2412 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2413 	if (error) {
   2414 		struct mbuf *m;
   2415 		int i = 0;
   2416 		for (m = m_head; m; m = m->m_next)
   2417 			i++;
   2418 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2419 		       "error %d\n", m_head->m_pkthdr.len, i, error);
   2420 		return (ENOMEM);
   2421 	}
   2422 
   2423 	cur = firstfrag = frag = *txidx;
   2424 
   2425 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2426 		/* IP header checksum field must be 0! */
   2427 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2428 	}
   2429 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2430 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2431 
   2432 	/* XXX fragmented packet checksum capability? */
   2433 
   2434 	/*
   2435  	 * Start packing the mbufs in this chain into
   2436 	 * the fragment pointers. Stop when we run out
   2437  	 * of fragments or hit the end of the mbuf chain.
   2438 	 */
   2439 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2440 		f = &sc->ti_rdata->ti_tx_ring[frag];
   2441 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2442 			break;
   2443 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2444 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2445 		f->ti_flags = csum_flags;
   2446 		mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
   2447 		if (mtag) {
   2448 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2449 			f->ti_vlan_tag = *(u_int *)(mtag + 1);
   2450 		} else {
   2451 			f->ti_vlan_tag = 0;
   2452 		}
   2453 		/*
   2454 		 * Sanity check: avoid coming within 16 descriptors
   2455 		 * of the end of the ring.
   2456 		 */
   2457 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2458 			return(ENOBUFS);
   2459 		cur = frag;
   2460 		TI_INC(frag, TI_TX_RING_CNT);
   2461 		cnt++;
   2462 	}
   2463 
   2464 	if (i < dmamap->dm_nsegs)
   2465 		return(ENOBUFS);
   2466 
   2467 	if (frag == sc->ti_tx_saved_considx)
   2468 		return(ENOBUFS);
   2469 
   2470 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
   2471 
   2472 	/* Sync the packet's DMA map. */
   2473 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2474 	    BUS_DMASYNC_PREWRITE);
   2475 
   2476 	/* Sync the descriptors we are using. */
   2477 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
   2478 
   2479 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2480 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2481 	sc->txdma[cur] = dma;
   2482 	sc->ti_txcnt += cnt;
   2483 
   2484 	*txidx = frag;
   2485 
   2486 	return(0);
   2487 }
   2488 
   2489 /*
   2490  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2491  * to the mbuf data regions directly in the transmit descriptors.
   2492  */
   2493 static void ti_start(ifp)
   2494 	struct ifnet		*ifp;
   2495 {
   2496 	struct ti_softc		*sc;
   2497 	struct mbuf		*m_head = NULL;
   2498 	u_int32_t		prodidx = 0;
   2499 
   2500 	sc = ifp->if_softc;
   2501 
   2502 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
   2503 
   2504 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
   2505 		IFQ_POLL(&ifp->if_snd, m_head);
   2506 		if (m_head == NULL)
   2507 			break;
   2508 
   2509 		/*
   2510 		 * Pack the data into the transmit ring. If we
   2511 		 * don't have room, set the OACTIVE flag and wait
   2512 		 * for the NIC to drain the ring.
   2513 		 */
   2514 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
   2515 			ifp->if_flags |= IFF_OACTIVE;
   2516 			break;
   2517 		}
   2518 
   2519 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2520 
   2521 		/*
   2522 		 * If there's a BPF listener, bounce a copy of this frame
   2523 		 * to him.
   2524 		 */
   2525 #if NBPFILTER > 0
   2526 		if (ifp->if_bpf)
   2527 			bpf_mtap(ifp->if_bpf, m_head);
   2528 #endif
   2529 	}
   2530 
   2531 	/* Transmit */
   2532 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
   2533 
   2534 	/*
   2535 	 * Set a timeout in case the chip goes out to lunch.
   2536 	 */
   2537 	ifp->if_timer = 5;
   2538 
   2539 	return;
   2540 }
   2541 
   2542 static void ti_init(xsc)
   2543 	void			*xsc;
   2544 {
   2545 	struct ti_softc		*sc = xsc;
   2546         int			s;
   2547 
   2548 	s = splnet();
   2549 
   2550 	/* Cancel pending I/O and flush buffers. */
   2551 	ti_stop(sc);
   2552 
   2553 	/* Init the gen info block, ring control blocks and firmware. */
   2554 	if (ti_gibinit(sc)) {
   2555 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
   2556 		splx(s);
   2557 		return;
   2558 	}
   2559 
   2560 	splx(s);
   2561 
   2562 	return;
   2563 }
   2564 
   2565 static void ti_init2(sc)
   2566 	struct ti_softc		*sc;
   2567 {
   2568 	struct ti_cmd_desc	cmd;
   2569 	struct ifnet		*ifp;
   2570 	u_int8_t		*m;
   2571 	struct ifmedia		*ifm;
   2572 	int			tmp;
   2573 
   2574 	ifp = &sc->ethercom.ec_if;
   2575 
   2576 	/* Specify MTU and interface index. */
   2577 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
   2578 
   2579 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
   2580 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2581 		tmp += ETHER_VLAN_ENCAP_LEN;
   2582 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
   2583 
   2584 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
   2585 
   2586 	/* Load our MAC address. */
   2587 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
   2588 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
   2589 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
   2590 		    | (m[4] << 8) | m[5]);
   2591 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
   2592 
   2593 	/* Enable or disable promiscuous mode as needed. */
   2594 	if (ifp->if_flags & IFF_PROMISC) {
   2595 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
   2596 	} else {
   2597 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
   2598 	}
   2599 
   2600 	/* Program multicast filter. */
   2601 	ti_setmulti(sc);
   2602 
   2603 	/*
   2604 	 * If this is a Tigon 1, we should tell the
   2605 	 * firmware to use software packet filtering.
   2606 	 */
   2607 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2608 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
   2609 	}
   2610 
   2611 	/* Init RX ring. */
   2612 	ti_init_rx_ring_std(sc);
   2613 
   2614 	/* Init jumbo RX ring. */
   2615 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
   2616 		ti_init_rx_ring_jumbo(sc);
   2617 
   2618 	/*
   2619 	 * If this is a Tigon 2, we can also configure the
   2620 	 * mini ring.
   2621 	 */
   2622 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
   2623 		ti_init_rx_ring_mini(sc);
   2624 
   2625 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
   2626 	sc->ti_rx_saved_considx = 0;
   2627 
   2628 	/* Init TX ring. */
   2629 	ti_init_tx_ring(sc);
   2630 
   2631 	/* Tell firmware we're alive. */
   2632 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
   2633 
   2634 	/* Enable host interrupts. */
   2635 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2636 
   2637 	ifp->if_flags |= IFF_RUNNING;
   2638 	ifp->if_flags &= ~IFF_OACTIVE;
   2639 
   2640 	/*
   2641 	 * Make sure to set media properly. We have to do this
   2642 	 * here since we have to issue commands in order to set
   2643 	 * the link negotiation and we can't issue commands until
   2644 	 * the firmware is running.
   2645 	 */
   2646 	ifm = &sc->ifmedia;
   2647 	tmp = ifm->ifm_media;
   2648 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
   2649 	ti_ifmedia_upd(ifp);
   2650 	ifm->ifm_media = tmp;
   2651 
   2652 	return;
   2653 }
   2654 
   2655 /*
   2656  * Set media options.
   2657  */
   2658 static int ti_ifmedia_upd(ifp)
   2659 	struct ifnet		*ifp;
   2660 {
   2661 	struct ti_softc		*sc;
   2662 	struct ifmedia		*ifm;
   2663 	struct ti_cmd_desc	cmd;
   2664 
   2665 	sc = ifp->if_softc;
   2666 	ifm = &sc->ifmedia;
   2667 
   2668 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2669 		return(EINVAL);
   2670 
   2671 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2672 	case IFM_AUTO:
   2673 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
   2674 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
   2675 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
   2676 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
   2677 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
   2678 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
   2679 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2680 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
   2681 		break;
   2682 	case IFM_1000_SX:
   2683 	case IFM_1000_T:
   2684 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2685 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2686 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
   2687 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2688 		} else {
   2689 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2690 			    TI_GLNK_PREF|TI_GLNK_1000MB|
   2691 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2692 		}
   2693 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
   2694 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2695 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
   2696 		break;
   2697 	case IFM_100_FX:
   2698 	case IFM_10_FL:
   2699 	case IFM_100_TX:
   2700 	case IFM_10_T:
   2701 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
   2702 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
   2703 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
   2704 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
   2705 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
   2706 		} else {
   2707 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
   2708 		}
   2709 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2710 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
   2711 		} else {
   2712 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
   2713 		}
   2714 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2715 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
   2716 		break;
   2717 	}
   2718 
   2719 	sc->ethercom.ec_if.if_baudrate =
   2720 	    ifmedia_baudrate(ifm->ifm_media);
   2721 
   2722 	return(0);
   2723 }
   2724 
   2725 /*
   2726  * Report current media status.
   2727  */
   2728 static void ti_ifmedia_sts(ifp, ifmr)
   2729 	struct ifnet		*ifp;
   2730 	struct ifmediareq	*ifmr;
   2731 {
   2732 	struct ti_softc		*sc;
   2733 	u_int32_t               media = 0;
   2734 
   2735 	sc = ifp->if_softc;
   2736 
   2737 	ifmr->ifm_status = IFM_AVALID;
   2738 	ifmr->ifm_active = IFM_ETHER;
   2739 
   2740 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
   2741 		return;
   2742 
   2743 	ifmr->ifm_status |= IFM_ACTIVE;
   2744 
   2745 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
   2746 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
   2747 		if (sc->ti_copper)
   2748 			ifmr->ifm_active |= IFM_1000_T;
   2749 		else
   2750 			ifmr->ifm_active |= IFM_1000_SX;
   2751 		if (media & TI_GLNK_FULL_DUPLEX)
   2752 			ifmr->ifm_active |= IFM_FDX;
   2753 		else
   2754 			ifmr->ifm_active |= IFM_HDX;
   2755 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
   2756 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
   2757 		if (sc->ti_copper) {
   2758 			if (media & TI_LNK_100MB)
   2759 				ifmr->ifm_active |= IFM_100_TX;
   2760 			if (media & TI_LNK_10MB)
   2761 				ifmr->ifm_active |= IFM_10_T;
   2762 		} else {
   2763 			if (media & TI_LNK_100MB)
   2764 				ifmr->ifm_active |= IFM_100_FX;
   2765 			if (media & TI_LNK_10MB)
   2766 				ifmr->ifm_active |= IFM_10_FL;
   2767 		}
   2768 		if (media & TI_LNK_FULL_DUPLEX)
   2769 			ifmr->ifm_active |= IFM_FDX;
   2770 		if (media & TI_LNK_HALF_DUPLEX)
   2771 			ifmr->ifm_active |= IFM_HDX;
   2772 	}
   2773 
   2774 	sc->ethercom.ec_if.if_baudrate =
   2775 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
   2776 
   2777 	return;
   2778 }
   2779 
   2780 static int
   2781 ti_ether_ioctl(ifp, cmd, data)
   2782 	struct ifnet *ifp;
   2783 	u_long cmd;
   2784 	caddr_t data;
   2785 {
   2786 	struct ifaddr *ifa = (struct ifaddr *) data;
   2787 	struct ti_softc *sc = ifp->if_softc;
   2788 
   2789 	if ((ifp->if_flags & IFF_UP) == 0) {
   2790 		ifp->if_flags |= IFF_UP;
   2791 		ti_init(sc);
   2792 	}
   2793 
   2794 	switch (cmd) {
   2795 	case SIOCSIFADDR:
   2796 
   2797 		switch (ifa->ifa_addr->sa_family) {
   2798 #ifdef INET
   2799 		case AF_INET:
   2800 			arp_ifinit(ifp, ifa);
   2801 			break;
   2802 #endif
   2803 #ifdef NS
   2804 		case AF_NS:
   2805 		    {
   2806 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   2807 
   2808 			 if (ns_nullhost(*ina))
   2809 				ina->x_host = *(union ns_host *)
   2810 				    LLADDR(ifp->if_sadl);
   2811 			 else
   2812 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
   2813 				    ifp->if_addrlen);
   2814 			 break;
   2815 		    }
   2816 #endif
   2817 		default:
   2818 			break;
   2819 		}
   2820 		break;
   2821 
   2822 	default:
   2823 		return (EINVAL);
   2824 	}
   2825 
   2826 	return (0);
   2827 }
   2828 
   2829 static int ti_ioctl(ifp, command, data)
   2830 	struct ifnet		*ifp;
   2831 	u_long			command;
   2832 	caddr_t			data;
   2833 {
   2834 	struct ti_softc		*sc = ifp->if_softc;
   2835 	struct ifreq		*ifr = (struct ifreq *) data;
   2836 	int			s, error = 0;
   2837 	struct ti_cmd_desc	cmd;
   2838 
   2839 	s = splnet();
   2840 
   2841 	switch(command) {
   2842 	case SIOCSIFADDR:
   2843 	case SIOCGIFADDR:
   2844 		error = ti_ether_ioctl(ifp, command, data);
   2845 		break;
   2846 	case SIOCSIFMTU:
   2847 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
   2848 			error = EINVAL;
   2849 		else {
   2850 			ifp->if_mtu = ifr->ifr_mtu;
   2851 			ti_init(sc);
   2852 		}
   2853 		break;
   2854 	case SIOCSIFFLAGS:
   2855 		if (ifp->if_flags & IFF_UP) {
   2856 			/*
   2857 			 * If only the state of the PROMISC flag changed,
   2858 			 * then just use the 'set promisc mode' command
   2859 			 * instead of reinitializing the entire NIC. Doing
   2860 			 * a full re-init means reloading the firmware and
   2861 			 * waiting for it to start up, which may take a
   2862 			 * second or two.
   2863 			 */
   2864 			if (ifp->if_flags & IFF_RUNNING &&
   2865 			    ifp->if_flags & IFF_PROMISC &&
   2866 			    !(sc->ti_if_flags & IFF_PROMISC)) {
   2867 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2868 				    TI_CMD_CODE_PROMISC_ENB, 0);
   2869 			} else if (ifp->if_flags & IFF_RUNNING &&
   2870 			    !(ifp->if_flags & IFF_PROMISC) &&
   2871 			    sc->ti_if_flags & IFF_PROMISC) {
   2872 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2873 				    TI_CMD_CODE_PROMISC_DIS, 0);
   2874 			} else
   2875 				ti_init(sc);
   2876 		} else {
   2877 			if (ifp->if_flags & IFF_RUNNING) {
   2878 				ti_stop(sc);
   2879 			}
   2880 		}
   2881 		sc->ti_if_flags = ifp->if_flags;
   2882 		error = 0;
   2883 		break;
   2884 	case SIOCADDMULTI:
   2885 	case SIOCDELMULTI:
   2886 		error = (command == SIOCADDMULTI) ?
   2887 		    ether_addmulti(ifr, &sc->ethercom) :
   2888 		    ether_delmulti(ifr, &sc->ethercom);
   2889 		if (error == ENETRESET) {
   2890 			if (ifp->if_flags & IFF_RUNNING)
   2891 				ti_setmulti(sc);
   2892 			error = 0;
   2893 		}
   2894 		break;
   2895 	case SIOCSIFMEDIA:
   2896 	case SIOCGIFMEDIA:
   2897 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
   2898 		break;
   2899 	default:
   2900 		error = EINVAL;
   2901 		break;
   2902 	}
   2903 
   2904 	(void)splx(s);
   2905 
   2906 	return(error);
   2907 }
   2908 
   2909 static void ti_watchdog(ifp)
   2910 	struct ifnet		*ifp;
   2911 {
   2912 	struct ti_softc		*sc;
   2913 
   2914 	sc = ifp->if_softc;
   2915 
   2916 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
   2917 	ti_stop(sc);
   2918 	ti_init(sc);
   2919 
   2920 	ifp->if_oerrors++;
   2921 
   2922 	return;
   2923 }
   2924 
   2925 /*
   2926  * Stop the adapter and free any mbufs allocated to the
   2927  * RX and TX lists.
   2928  */
   2929 static void ti_stop(sc)
   2930 	struct ti_softc		*sc;
   2931 {
   2932 	struct ifnet		*ifp;
   2933 	struct ti_cmd_desc	cmd;
   2934 
   2935 	ifp = &sc->ethercom.ec_if;
   2936 
   2937 	/* Disable host interrupts. */
   2938 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2939 	/*
   2940 	 * Tell firmware we're shutting down.
   2941 	 */
   2942 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
   2943 
   2944 	/* Halt and reinitialize. */
   2945 	ti_chipinit(sc);
   2946 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
   2947 	ti_chipinit(sc);
   2948 
   2949 	/* Free the RX lists. */
   2950 	ti_free_rx_ring_std(sc);
   2951 
   2952 	/* Free jumbo RX list. */
   2953 	ti_free_rx_ring_jumbo(sc);
   2954 
   2955 	/* Free mini RX list. */
   2956 	ti_free_rx_ring_mini(sc);
   2957 
   2958 	/* Free TX buffers. */
   2959 	ti_free_tx_ring(sc);
   2960 
   2961 	sc->ti_ev_prodidx.ti_idx = 0;
   2962 	sc->ti_return_prodidx.ti_idx = 0;
   2963 	sc->ti_tx_considx.ti_idx = 0;
   2964 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
   2965 
   2966 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2967 
   2968 	return;
   2969 }
   2970 
   2971 /*
   2972  * Stop all chip I/O so that the kernel's probe routines don't
   2973  * get confused by errant DMAs when rebooting.
   2974  */
   2975 static void ti_shutdown(v)
   2976 	void *v;
   2977 {
   2978 	struct ti_softc		*sc = v;
   2979 
   2980 	ti_chipinit(sc);
   2981 
   2982 	return;
   2983 }
   2984