if_ti.c revision 1.62 1 /* $NetBSD: if_ti.c,v 1.62 2004/09/21 21:57:30 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.62 2004/09/21 21:57:30 yamt Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
157 static int ti_probe __P((struct device *, struct cfdata *, void *));
158 static void ti_attach __P((struct device *, struct device *, void *));
159 static void ti_shutdown __P((void *));
160 static void ti_txeof_tigon1 __P((struct ti_softc *));
161 static void ti_txeof_tigon2 __P((struct ti_softc *));
162 static void ti_rxeof __P((struct ti_softc *));
163
164 static void ti_stats_update __P((struct ti_softc *));
165 static int ti_encap_tigon1 __P((struct ti_softc *, struct mbuf *,
166 u_int32_t *));
167 static int ti_encap_tigon2 __P((struct ti_softc *, struct mbuf *,
168 u_int32_t *));
169
170 static int ti_intr __P((void *));
171 static void ti_start __P((struct ifnet *));
172 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
173 static void ti_init __P((void *));
174 static void ti_init2 __P((struct ti_softc *));
175 static void ti_stop __P((struct ti_softc *));
176 static void ti_watchdog __P((struct ifnet *));
177 static int ti_ifmedia_upd __P((struct ifnet *));
178 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
179
180 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
181 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
182 int, u_int8_t *));
183 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
184
185 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
186 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
187 static void ti_setmulti __P((struct ti_softc *));
188
189 static void ti_mem __P((struct ti_softc *, u_int32_t,
190 u_int32_t, caddr_t));
191 static void ti_loadfw __P((struct ti_softc *));
192 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
193 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
194 caddr_t, int));
195 static void ti_handle_events __P((struct ti_softc *));
196 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
197 static void *ti_jalloc __P((struct ti_softc *));
198 static void ti_jfree __P((struct mbuf *, caddr_t, size_t, void *));
199 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
200 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
201 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
202 static int ti_init_rx_ring_std __P((struct ti_softc *));
203 static void ti_free_rx_ring_std __P((struct ti_softc *));
204 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
205 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
206 static int ti_init_rx_ring_mini __P((struct ti_softc *));
207 static void ti_free_rx_ring_mini __P((struct ti_softc *));
208 static void ti_free_tx_ring __P((struct ti_softc *));
209 static int ti_init_tx_ring __P((struct ti_softc *));
210
211 static int ti_64bitslot_war __P((struct ti_softc *));
212 static int ti_chipinit __P((struct ti_softc *));
213 static int ti_gibinit __P((struct ti_softc *));
214
215 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
216
217 CFATTACH_DECL(ti, sizeof(struct ti_softc),
218 ti_probe, ti_attach, NULL, NULL);
219
220 /*
221 * Send an instruction or address to the EEPROM, check for ACK.
222 */
223 static u_int32_t ti_eeprom_putbyte(sc, byte)
224 struct ti_softc *sc;
225 int byte;
226 {
227 int i, ack = 0;
228
229 /*
230 * Make sure we're in TX mode.
231 */
232 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
233
234 /*
235 * Feed in each bit and stobe the clock.
236 */
237 for (i = 0x80; i; i >>= 1) {
238 if (byte & i) {
239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
240 } else {
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
242 }
243 DELAY(1);
244 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
245 DELAY(1);
246 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 }
248
249 /*
250 * Turn off TX mode.
251 */
252 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
253
254 /*
255 * Check for ack.
256 */
257 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
258 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
259 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
260
261 return(ack);
262 }
263
264 /*
265 * Read a byte of data stored in the EEPROM at address 'addr.'
266 * We have to send two address bytes since the EEPROM can hold
267 * more than 256 bytes of data.
268 */
269 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
270 struct ti_softc *sc;
271 int addr;
272 u_int8_t *dest;
273 {
274 int i;
275 u_int8_t byte = 0;
276
277 EEPROM_START;
278
279 /*
280 * Send write control code to EEPROM.
281 */
282 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
283 printf("%s: failed to send write command, status: %x\n",
284 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
285 return(1);
286 }
287
288 /*
289 * Send first byte of address of byte we want to read.
290 */
291 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
292 printf("%s: failed to send address, status: %x\n",
293 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return(1);
295 }
296 /*
297 * Send second byte address of byte we want to read.
298 */
299 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
300 printf("%s: failed to send address, status: %x\n",
301 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 return(1);
303 }
304
305 EEPROM_STOP;
306 EEPROM_START;
307 /*
308 * Send read control code to EEPROM.
309 */
310 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
311 printf("%s: failed to send read command, status: %x\n",
312 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
313 return(1);
314 }
315
316 /*
317 * Start reading bits from EEPROM.
318 */
319 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
320 for (i = 0x80; i; i >>= 1) {
321 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 DELAY(1);
323 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
324 byte |= i;
325 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 DELAY(1);
327 }
328
329 EEPROM_STOP;
330
331 /*
332 * No ACK generated for read, so just return byte.
333 */
334
335 *dest = byte;
336
337 return(0);
338 }
339
340 /*
341 * Read a sequence of bytes from the EEPROM.
342 */
343 static int ti_read_eeprom(sc, dest, off, cnt)
344 struct ti_softc *sc;
345 caddr_t dest;
346 int off;
347 int cnt;
348 {
349 int err = 0, i;
350 u_int8_t byte = 0;
351
352 for (i = 0; i < cnt; i++) {
353 err = ti_eeprom_getbyte(sc, off + i, &byte);
354 if (err)
355 break;
356 *(dest + i) = byte;
357 }
358
359 return(err ? 1 : 0);
360 }
361
362 /*
363 * NIC memory access function. Can be used to either clear a section
364 * of NIC local memory or (if buf is non-NULL) copy data into it.
365 */
366 static void ti_mem(sc, addr, len, buf)
367 struct ti_softc *sc;
368 u_int32_t addr, len;
369 caddr_t buf;
370 {
371 int segptr, segsize, cnt;
372 caddr_t ptr;
373
374 segptr = addr;
375 cnt = len;
376 ptr = buf;
377
378 while(cnt) {
379 if (cnt < TI_WINLEN)
380 segsize = cnt;
381 else
382 segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 if (buf == NULL) {
385 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
387 segsize / 4);
388 } else {
389 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
390 bus_space_write_region_stream_4(sc->ti_btag,
391 sc->ti_bhandle,
392 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
393 (u_int32_t *)ptr, segsize / 4);
394 #else
395 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
396 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
397 (u_int32_t *)ptr, segsize / 4);
398 #endif
399 ptr += segsize;
400 }
401 segptr += segsize;
402 cnt -= segsize;
403 }
404
405 return;
406 }
407
408 /*
409 * Load firmware image into the NIC. Check that the firmware revision
410 * is acceptable and see if we want the firmware for the Tigon 1 or
411 * Tigon 2.
412 */
413 static void ti_loadfw(sc)
414 struct ti_softc *sc;
415 {
416 switch(sc->ti_hwrev) {
417 case TI_HWREV_TIGON:
418 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 printf("%s: firmware revision mismatch; want "
422 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
423 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 tigonFwReleaseMinor, tigonFwReleaseFix);
426 return;
427 }
428 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 (caddr_t)tigonFwText);
430 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 (caddr_t)tigonFwData);
432 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 (caddr_t)tigonFwRodata);
434 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 break;
438 case TI_HWREV_TIGON_II:
439 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 printf("%s: firmware revision mismatch; want "
443 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
444 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 return;
448 }
449 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 (caddr_t)tigon2FwText);
451 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 (caddr_t)tigon2FwData);
453 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 (caddr_t)tigon2FwRodata);
455 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 break;
459 default:
460 printf("%s: can't load firmware: unknown hardware rev\n",
461 sc->sc_dev.dv_xname);
462 break;
463 }
464
465 return;
466 }
467
468 /*
469 * Send the NIC a command via the command ring.
470 */
471 static void ti_cmd(sc, cmd)
472 struct ti_softc *sc;
473 struct ti_cmd_desc *cmd;
474 {
475 u_int32_t index;
476
477 index = sc->ti_cmd_saved_prodidx;
478 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
479 TI_INC(index, TI_CMD_RING_CNT);
480 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
481 sc->ti_cmd_saved_prodidx = index;
482
483 return;
484 }
485
486 /*
487 * Send the NIC an extended command. The 'len' parameter specifies the
488 * number of command slots to include after the initial command.
489 */
490 static void ti_cmd_ext(sc, cmd, arg, len)
491 struct ti_softc *sc;
492 struct ti_cmd_desc *cmd;
493 caddr_t arg;
494 int len;
495 {
496 u_int32_t index;
497 int i;
498
499 index = sc->ti_cmd_saved_prodidx;
500 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
501 TI_INC(index, TI_CMD_RING_CNT);
502 for (i = 0; i < len; i++) {
503 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
504 *(u_int32_t *)(&arg[i * 4]));
505 TI_INC(index, TI_CMD_RING_CNT);
506 }
507 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
508 sc->ti_cmd_saved_prodidx = index;
509
510 return;
511 }
512
513 /*
514 * Handle events that have triggered interrupts.
515 */
516 static void ti_handle_events(sc)
517 struct ti_softc *sc;
518 {
519 struct ti_event_desc *e;
520
521 if (sc->ti_rdata->ti_event_ring == NULL)
522 return;
523
524 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
525 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
526 switch(e->ti_event) {
527 case TI_EV_LINKSTAT_CHANGED:
528 sc->ti_linkstat = e->ti_code;
529 if (e->ti_code == TI_EV_CODE_LINK_UP)
530 printf("%s: 10/100 link up\n",
531 sc->sc_dev.dv_xname);
532 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533 printf("%s: gigabit link up\n",
534 sc->sc_dev.dv_xname);
535 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
536 printf("%s: link down\n",
537 sc->sc_dev.dv_xname);
538 break;
539 case TI_EV_ERROR:
540 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
541 printf("%s: invalid command\n",
542 sc->sc_dev.dv_xname);
543 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
544 printf("%s: unknown command\n",
545 sc->sc_dev.dv_xname);
546 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
547 printf("%s: bad config data\n",
548 sc->sc_dev.dv_xname);
549 break;
550 case TI_EV_FIRMWARE_UP:
551 ti_init2(sc);
552 break;
553 case TI_EV_STATS_UPDATED:
554 ti_stats_update(sc);
555 break;
556 case TI_EV_RESET_JUMBO_RING:
557 case TI_EV_MCAST_UPDATED:
558 /* Who cares. */
559 break;
560 default:
561 printf("%s: unknown event: %d\n",
562 sc->sc_dev.dv_xname, e->ti_event);
563 break;
564 }
565 /* Advance the consumer index. */
566 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 }
569
570 return;
571 }
572
573 /*
574 * Memory management for the jumbo receive ring is a pain in the
575 * butt. We need to allocate at least 9018 bytes of space per frame,
576 * _and_ it has to be contiguous (unless you use the extended
577 * jumbo descriptor format). Using malloc() all the time won't
578 * work: malloc() allocates memory in powers of two, which means we
579 * would end up wasting a considerable amount of space by allocating
580 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581 * to do our own memory management.
582 *
583 * The driver needs to allocate a contiguous chunk of memory at boot
584 * time. We then chop this up ourselves into 9K pieces and use them
585 * as external mbuf storage.
586 *
587 * One issue here is how much memory to allocate. The jumbo ring has
588 * 256 slots in it, but at 9K per slot than can consume over 2MB of
589 * RAM. This is a bit much, especially considering we also need
590 * RAM for the standard ring and mini ring (on the Tigon 2). To
591 * save space, we only actually allocate enough memory for 64 slots
592 * by default, which works out to between 500 and 600K. This can
593 * be tuned by changing a #define in if_tireg.h.
594 */
595
596 static int ti_alloc_jumbo_mem(sc)
597 struct ti_softc *sc;
598 {
599 caddr_t ptr;
600 int i;
601 struct ti_jpool_entry *entry;
602 bus_dma_segment_t dmaseg;
603 int error, dmanseg;
604
605 /* Grab a big chunk o' storage. */
606 if ((error = bus_dmamem_alloc(sc->sc_dmat,
607 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
608 BUS_DMA_NOWAIT)) != 0) {
609 printf("%s: can't allocate jumbo buffer, error = %d\n",
610 sc->sc_dev.dv_xname, error);
611 return (error);
612 }
613
614 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
615 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
616 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
617 printf("%s: can't map jumbo buffer, error = %d\n",
618 sc->sc_dev.dv_xname, error);
619 return (error);
620 }
621
622 if ((error = bus_dmamap_create(sc->sc_dmat,
623 TI_JMEM, 1,
624 TI_JMEM, 0, BUS_DMA_NOWAIT,
625 &sc->jumbo_dmamap)) != 0) {
626 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
627 sc->sc_dev.dv_xname, error);
628 return (error);
629 }
630
631 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
632 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
633 BUS_DMA_NOWAIT)) != 0) {
634 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
635 sc->sc_dev.dv_xname, error);
636 return (error);
637 }
638 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
639
640 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
641 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
642
643 /*
644 * Now divide it up into 9K pieces and save the addresses
645 * in an array.
646 */
647 ptr = sc->ti_cdata.ti_jumbo_buf;
648 for (i = 0; i < TI_JSLOTS; i++) {
649 sc->ti_cdata.ti_jslots[i] = ptr;
650 ptr += TI_JLEN;
651 entry = malloc(sizeof(struct ti_jpool_entry),
652 M_DEVBUF, M_NOWAIT);
653 if (entry == NULL) {
654 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
655 sc->ti_cdata.ti_jumbo_buf = NULL;
656 printf("%s: no memory for jumbo "
657 "buffer queue!\n", sc->sc_dev.dv_xname);
658 return(ENOBUFS);
659 }
660 entry->slot = i;
661 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
662 jpool_entries);
663 }
664
665 return(0);
666 }
667
668 /*
669 * Allocate a jumbo buffer.
670 */
671 static void *ti_jalloc(sc)
672 struct ti_softc *sc;
673 {
674 struct ti_jpool_entry *entry;
675
676 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
677
678 if (entry == NULL) {
679 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
680 return(NULL);
681 }
682
683 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
684 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
685 return(sc->ti_cdata.ti_jslots[entry->slot]);
686 }
687
688 /*
689 * Release a jumbo buffer.
690 */
691 static void ti_jfree(m, buf, size, arg)
692 struct mbuf *m;
693 caddr_t buf;
694 size_t size;
695 void *arg;
696 {
697 struct ti_softc *sc;
698 int i, s;
699 struct ti_jpool_entry *entry;
700
701 /* Extract the softc struct pointer. */
702 sc = (struct ti_softc *)arg;
703
704 if (sc == NULL)
705 panic("ti_jfree: didn't get softc pointer!");
706
707 /* calculate the slot this buffer belongs to */
708
709 i = ((caddr_t)buf
710 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
711
712 if ((i < 0) || (i >= TI_JSLOTS))
713 panic("ti_jfree: asked to free buffer that we don't manage!");
714
715 s = splvm();
716 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
717 if (entry == NULL)
718 panic("ti_jfree: buffer not in use!");
719 entry->slot = i;
720 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
721 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
722
723 if (__predict_true(m != NULL))
724 pool_cache_put(&mbpool_cache, m);
725 splx(s);
726 }
727
728
729 /*
730 * Intialize a standard receive ring descriptor.
731 */
732 static int ti_newbuf_std(sc, i, m, dmamap)
733 struct ti_softc *sc;
734 int i;
735 struct mbuf *m;
736 bus_dmamap_t dmamap; /* required if (m != NULL) */
737 {
738 struct mbuf *m_new = NULL;
739 struct ti_rx_desc *r;
740 int error;
741
742 if (dmamap == NULL) {
743 /* if (m) panic() */
744
745 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
746 MCLBYTES, 0, BUS_DMA_NOWAIT,
747 &dmamap)) != 0) {
748 printf("%s: can't create recv map, error = %d\n",
749 sc->sc_dev.dv_xname, error);
750 return(ENOMEM);
751 }
752 }
753 sc->std_dmamap[i] = dmamap;
754
755 if (m == NULL) {
756 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
757 if (m_new == NULL) {
758 printf("%s: mbuf allocation failed "
759 "-- packet dropped!\n", sc->sc_dev.dv_xname);
760 return(ENOBUFS);
761 }
762
763 MCLGET(m_new, M_DONTWAIT);
764 if (!(m_new->m_flags & M_EXT)) {
765 printf("%s: cluster allocation failed "
766 "-- packet dropped!\n", sc->sc_dev.dv_xname);
767 m_freem(m_new);
768 return(ENOBUFS);
769 }
770 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
771 m_adj(m_new, ETHER_ALIGN);
772
773 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
774 mtod(m_new, caddr_t), m_new->m_len, NULL,
775 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
776 printf("%s: can't load recv map, error = %d\n",
777 sc->sc_dev.dv_xname, error);
778 return (ENOMEM);
779 }
780 } else {
781 m_new = m;
782 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
783 m_new->m_data = m_new->m_ext.ext_buf;
784 m_adj(m_new, ETHER_ALIGN);
785
786 /* reuse the dmamap */
787 }
788
789 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
790 r = &sc->ti_rdata->ti_rx_std_ring[i];
791 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
792 r->ti_type = TI_BDTYPE_RECV_BD;
793 r->ti_flags = 0;
794 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
795 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
796 if (sc->ethercom.ec_if.if_capenable &
797 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
798 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
799 r->ti_len = m_new->m_len; /* == ds_len */
800 r->ti_idx = i;
801
802 return(0);
803 }
804
805 /*
806 * Intialize a mini receive ring descriptor. This only applies to
807 * the Tigon 2.
808 */
809 static int ti_newbuf_mini(sc, i, m, dmamap)
810 struct ti_softc *sc;
811 int i;
812 struct mbuf *m;
813 bus_dmamap_t dmamap; /* required if (m != NULL) */
814 {
815 struct mbuf *m_new = NULL;
816 struct ti_rx_desc *r;
817 int error;
818
819 if (dmamap == NULL) {
820 /* if (m) panic() */
821
822 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
823 MHLEN, 0, BUS_DMA_NOWAIT,
824 &dmamap)) != 0) {
825 printf("%s: can't create recv map, error = %d\n",
826 sc->sc_dev.dv_xname, error);
827 return(ENOMEM);
828 }
829 }
830 sc->mini_dmamap[i] = dmamap;
831
832 if (m == NULL) {
833 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
834 if (m_new == NULL) {
835 printf("%s: mbuf allocation failed "
836 "-- packet dropped!\n", sc->sc_dev.dv_xname);
837 return(ENOBUFS);
838 }
839 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
840 m_adj(m_new, ETHER_ALIGN);
841
842 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
843 mtod(m_new, caddr_t), m_new->m_len, NULL,
844 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
845 printf("%s: can't load recv map, error = %d\n",
846 sc->sc_dev.dv_xname, error);
847 return (ENOMEM);
848 }
849 } else {
850 m_new = m;
851 m_new->m_data = m_new->m_pktdat;
852 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
853 m_adj(m_new, ETHER_ALIGN);
854
855 /* reuse the dmamap */
856 }
857
858 r = &sc->ti_rdata->ti_rx_mini_ring[i];
859 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
860 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
861 r->ti_type = TI_BDTYPE_RECV_BD;
862 r->ti_flags = TI_BDFLAG_MINI_RING;
863 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
864 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
865 if (sc->ethercom.ec_if.if_capenable &
866 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
867 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
868 r->ti_len = m_new->m_len; /* == ds_len */
869 r->ti_idx = i;
870
871 return(0);
872 }
873
874 /*
875 * Initialize a jumbo receive ring descriptor. This allocates
876 * a jumbo buffer from the pool managed internally by the driver.
877 */
878 static int ti_newbuf_jumbo(sc, i, m)
879 struct ti_softc *sc;
880 int i;
881 struct mbuf *m;
882 {
883 struct mbuf *m_new = NULL;
884 struct ti_rx_desc *r;
885
886 if (m == NULL) {
887 caddr_t *buf = NULL;
888
889 /* Allocate the mbuf. */
890 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
891 if (m_new == NULL) {
892 printf("%s: mbuf allocation failed "
893 "-- packet dropped!\n", sc->sc_dev.dv_xname);
894 return(ENOBUFS);
895 }
896
897 /* Allocate the jumbo buffer */
898 buf = ti_jalloc(sc);
899 if (buf == NULL) {
900 m_freem(m_new);
901 printf("%s: jumbo allocation failed "
902 "-- packet dropped!\n", sc->sc_dev.dv_xname);
903 return(ENOBUFS);
904 }
905
906 /* Attach the buffer to the mbuf. */
907 MEXTADD(m_new, (void *)buf, ETHER_MAX_LEN_JUMBO,
908 M_DEVBUF, ti_jfree, sc);
909 m_new->m_flags |= M_EXT_RW;
910 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
911 } else {
912 m_new = m;
913 m_new->m_data = m_new->m_ext.ext_buf;
914 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
915 }
916
917 m_adj(m_new, ETHER_ALIGN);
918 /* Set up the descriptor. */
919 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
920 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
921 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
922 ((caddr_t)mtod(m_new, caddr_t)
923 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
924 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
925 r->ti_flags = TI_BDFLAG_JUMBO_RING;
926 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
927 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
928 if (sc->ethercom.ec_if.if_capenable &
929 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
930 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
931 r->ti_len = m_new->m_len;
932 r->ti_idx = i;
933
934 return(0);
935 }
936
937 /*
938 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
939 * that's 1MB or memory, which is a lot. For now, we fill only the first
940 * 256 ring entries and hope that our CPU is fast enough to keep up with
941 * the NIC.
942 */
943 static int ti_init_rx_ring_std(sc)
944 struct ti_softc *sc;
945 {
946 int i;
947 struct ti_cmd_desc cmd;
948
949 for (i = 0; i < TI_SSLOTS; i++) {
950 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
951 return(ENOBUFS);
952 };
953
954 TI_UPDATE_STDPROD(sc, i - 1);
955 sc->ti_std = i - 1;
956
957 return(0);
958 }
959
960 static void ti_free_rx_ring_std(sc)
961 struct ti_softc *sc;
962 {
963 int i;
964
965 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
966 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
967 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
968 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
969
970 /* if (sc->std_dmamap[i] == 0) panic() */
971 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
972 sc->std_dmamap[i] = 0;
973 }
974 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
975 sizeof(struct ti_rx_desc));
976 }
977
978 return;
979 }
980
981 static int ti_init_rx_ring_jumbo(sc)
982 struct ti_softc *sc;
983 {
984 int i;
985 struct ti_cmd_desc cmd;
986
987 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
988 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
989 return(ENOBUFS);
990 };
991
992 TI_UPDATE_JUMBOPROD(sc, i - 1);
993 sc->ti_jumbo = i - 1;
994
995 return(0);
996 }
997
998 static void ti_free_rx_ring_jumbo(sc)
999 struct ti_softc *sc;
1000 {
1001 int i;
1002
1003 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1004 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1005 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1006 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1007 }
1008 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1009 sizeof(struct ti_rx_desc));
1010 }
1011
1012 return;
1013 }
1014
1015 static int ti_init_rx_ring_mini(sc)
1016 struct ti_softc *sc;
1017 {
1018 int i;
1019
1020 for (i = 0; i < TI_MSLOTS; i++) {
1021 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1022 return(ENOBUFS);
1023 };
1024
1025 TI_UPDATE_MINIPROD(sc, i - 1);
1026 sc->ti_mini = i - 1;
1027
1028 return(0);
1029 }
1030
1031 static void ti_free_rx_ring_mini(sc)
1032 struct ti_softc *sc;
1033 {
1034 int i;
1035
1036 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1037 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1038 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1039 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1040
1041 /* if (sc->mini_dmamap[i] == 0) panic() */
1042 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1043 sc->mini_dmamap[i] = 0;
1044 }
1045 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1046 sizeof(struct ti_rx_desc));
1047 }
1048
1049 return;
1050 }
1051
1052 static void ti_free_tx_ring(sc)
1053 struct ti_softc *sc;
1054 {
1055 int i;
1056 struct txdmamap_pool_entry *dma;
1057
1058 if (sc->ti_rdata->ti_tx_ring == NULL)
1059 return;
1060
1061 for (i = 0; i < TI_TX_RING_CNT; i++) {
1062 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1063 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1064 sc->ti_cdata.ti_tx_chain[i] = NULL;
1065
1066 /* if (sc->txdma[i] == 0) panic() */
1067 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1068 link);
1069 sc->txdma[i] = 0;
1070 }
1071 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1072 sizeof(struct ti_tx_desc));
1073 }
1074
1075 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1076 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1077 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1078 free(dma, M_DEVBUF);
1079 }
1080
1081 return;
1082 }
1083
1084 static int ti_init_tx_ring(sc)
1085 struct ti_softc *sc;
1086 {
1087 int i, error;
1088 bus_dmamap_t dmamap;
1089 struct txdmamap_pool_entry *dma;
1090
1091 sc->ti_txcnt = 0;
1092 sc->ti_tx_saved_considx = 0;
1093 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1094
1095 SIMPLEQ_INIT(&sc->txdma_list);
1096 for (i = 0; i < TI_RSLOTS; i++) {
1097 /* I've seen mbufs with 30 fragments. */
1098 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1099 40, ETHER_MAX_LEN_JUMBO, 0,
1100 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1101 printf("%s: can't create tx map, error = %d\n",
1102 sc->sc_dev.dv_xname, error);
1103 return(ENOMEM);
1104 }
1105 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1106 if (!dma) {
1107 printf("%s: can't alloc txdmamap_pool_entry\n",
1108 sc->sc_dev.dv_xname);
1109 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1110 return (ENOMEM);
1111 }
1112 dma->dmamap = dmamap;
1113 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1114 }
1115
1116 return(0);
1117 }
1118
1119 /*
1120 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1121 * but we have to support the old way too so that Tigon 1 cards will
1122 * work.
1123 */
1124 void ti_add_mcast(sc, addr)
1125 struct ti_softc *sc;
1126 struct ether_addr *addr;
1127 {
1128 struct ti_cmd_desc cmd;
1129 u_int16_t *m;
1130 u_int32_t ext[2] = {0, 0};
1131
1132 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1133
1134 switch(sc->ti_hwrev) {
1135 case TI_HWREV_TIGON:
1136 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1137 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1138 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1139 break;
1140 case TI_HWREV_TIGON_II:
1141 ext[0] = htons(m[0]);
1142 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1143 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1144 break;
1145 default:
1146 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1147 break;
1148 }
1149
1150 return;
1151 }
1152
1153 void ti_del_mcast(sc, addr)
1154 struct ti_softc *sc;
1155 struct ether_addr *addr;
1156 {
1157 struct ti_cmd_desc cmd;
1158 u_int16_t *m;
1159 u_int32_t ext[2] = {0, 0};
1160
1161 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1162
1163 switch(sc->ti_hwrev) {
1164 case TI_HWREV_TIGON:
1165 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1166 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1167 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1168 break;
1169 case TI_HWREV_TIGON_II:
1170 ext[0] = htons(m[0]);
1171 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1172 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1173 break;
1174 default:
1175 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1176 break;
1177 }
1178
1179 return;
1180 }
1181
1182 /*
1183 * Configure the Tigon's multicast address filter.
1184 *
1185 * The actual multicast table management is a bit of a pain, thanks to
1186 * slight brain damage on the part of both Alteon and us. With our
1187 * multicast code, we are only alerted when the multicast address table
1188 * changes and at that point we only have the current list of addresses:
1189 * we only know the current state, not the previous state, so we don't
1190 * actually know what addresses were removed or added. The firmware has
1191 * state, but we can't get our grubby mits on it, and there is no 'delete
1192 * all multicast addresses' command. Hence, we have to maintain our own
1193 * state so we know what addresses have been programmed into the NIC at
1194 * any given time.
1195 */
1196 static void ti_setmulti(sc)
1197 struct ti_softc *sc;
1198 {
1199 struct ifnet *ifp;
1200 struct ti_cmd_desc cmd;
1201 struct ti_mc_entry *mc;
1202 u_int32_t intrs;
1203 struct ether_multi *enm;
1204 struct ether_multistep step;
1205
1206 ifp = &sc->ethercom.ec_if;
1207
1208 /* Disable interrupts. */
1209 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1210 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1211
1212 /* First, zot all the existing filters. */
1213 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1214 ti_del_mcast(sc, &mc->mc_addr);
1215 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1216 free(mc, M_DEVBUF);
1217 }
1218
1219 /*
1220 * Remember all multicast addresses so that we can delete them
1221 * later. Punt if there is a range of addresses or memory shortage.
1222 */
1223 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1224 while (enm != NULL) {
1225 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1226 ETHER_ADDR_LEN) != 0)
1227 goto allmulti;
1228 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1229 M_NOWAIT)) == NULL)
1230 goto allmulti;
1231 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1232 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1233 ETHER_NEXT_MULTI(step, enm);
1234 }
1235
1236 /* Accept only programmed multicast addresses */
1237 ifp->if_flags &= ~IFF_ALLMULTI;
1238 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1239
1240 /* Now program new ones. */
1241 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1242 ti_add_mcast(sc, &mc->mc_addr);
1243
1244 /* Re-enable interrupts. */
1245 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1246
1247 return;
1248
1249 allmulti:
1250 /* No need to keep individual multicast addresses */
1251 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1252 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1253 free(mc, M_DEVBUF);
1254 }
1255
1256 /* Accept all multicast addresses */
1257 ifp->if_flags |= IFF_ALLMULTI;
1258 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1259
1260 /* Re-enable interrupts. */
1261 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1262 }
1263
1264 /*
1265 * Check to see if the BIOS has configured us for a 64 bit slot when
1266 * we aren't actually in one. If we detect this condition, we can work
1267 * around it on the Tigon 2 by setting a bit in the PCI state register,
1268 * but for the Tigon 1 we must give up and abort the interface attach.
1269 */
1270 static int ti_64bitslot_war(sc)
1271 struct ti_softc *sc;
1272 {
1273 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1274 CSR_WRITE_4(sc, 0x600, 0);
1275 CSR_WRITE_4(sc, 0x604, 0);
1276 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1277 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1278 if (sc->ti_hwrev == TI_HWREV_TIGON)
1279 return(EINVAL);
1280 else {
1281 TI_SETBIT(sc, TI_PCI_STATE,
1282 TI_PCISTATE_32BIT_BUS);
1283 return(0);
1284 }
1285 }
1286 }
1287
1288 return(0);
1289 }
1290
1291 /*
1292 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1293 * self-test results.
1294 */
1295 static int ti_chipinit(sc)
1296 struct ti_softc *sc;
1297 {
1298 u_int32_t cacheline;
1299 u_int32_t pci_writemax = 0;
1300 u_int32_t rev;
1301
1302 /* Initialize link to down state. */
1303 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1304
1305 /* Set endianness before we access any non-PCI registers. */
1306 #if BYTE_ORDER == BIG_ENDIAN
1307 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1308 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1309 #else
1310 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1311 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1312 #endif
1313
1314 /* Check the ROM failed bit to see if self-tests passed. */
1315 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1316 printf("%s: board self-diagnostics failed!\n",
1317 sc->sc_dev.dv_xname);
1318 return(ENODEV);
1319 }
1320
1321 /* Halt the CPU. */
1322 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1323
1324 /* Figure out the hardware revision. */
1325 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1326 switch(rev) {
1327 case TI_REV_TIGON_I:
1328 sc->ti_hwrev = TI_HWREV_TIGON;
1329 break;
1330 case TI_REV_TIGON_II:
1331 sc->ti_hwrev = TI_HWREV_TIGON_II;
1332 break;
1333 default:
1334 printf("%s: unsupported chip revision 0x%x\n",
1335 sc->sc_dev.dv_xname, rev);
1336 return(ENODEV);
1337 }
1338
1339 /* Do special setup for Tigon 2. */
1340 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1341 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1342 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1343 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1344 }
1345
1346 /* Set up the PCI state register. */
1347 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1348 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1349 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1350 }
1351
1352 /* Clear the read/write max DMA parameters. */
1353 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1354 TI_PCISTATE_READ_MAXDMA));
1355
1356 /* Get cache line size. */
1357 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1358
1359 /*
1360 * If the system has set enabled the PCI memory write
1361 * and invalidate command in the command register, set
1362 * the write max parameter accordingly. This is necessary
1363 * to use MWI with the Tigon 2.
1364 */
1365 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1366 & PCI_COMMAND_INVALIDATE_ENABLE) {
1367 switch(cacheline) {
1368 case 1:
1369 case 4:
1370 case 8:
1371 case 16:
1372 case 32:
1373 case 64:
1374 break;
1375 default:
1376 /* Disable PCI memory write and invalidate. */
1377 if (bootverbose)
1378 printf("%s: cache line size %d not "
1379 "supported; disabling PCI MWI\n",
1380 sc->sc_dev.dv_xname, cacheline);
1381 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1382 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1383 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1384 break;
1385 }
1386 }
1387
1388 #ifdef __brokenalpha__
1389 /*
1390 * From the Alteon sample driver:
1391 * Must insure that we do not cross an 8K (bytes) boundary
1392 * for DMA reads. Our highest limit is 1K bytes. This is a
1393 * restriction on some ALPHA platforms with early revision
1394 * 21174 PCI chipsets, such as the AlphaPC 164lx
1395 */
1396 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1397 #else
1398 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1399 #endif
1400
1401 /* This sets the min dma param all the way up (0xff). */
1402 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1403
1404 /* Configure DMA variables. */
1405 #if BYTE_ORDER == BIG_ENDIAN
1406 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1407 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1408 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1409 TI_OPMODE_DONT_FRAG_JUMBO);
1410 #else
1411 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1412 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1413 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1414 #endif
1415
1416 /*
1417 * Only allow 1 DMA channel to be active at a time.
1418 * I don't think this is a good idea, but without it
1419 * the firmware racks up lots of nicDmaReadRingFull
1420 * errors.
1421 * Incompatible with hardware assisted checksums.
1422 */
1423 if ((sc->ethercom.ec_if.if_capenable &
1424 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1425 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1426
1427 /* Recommended settings from Tigon manual. */
1428 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1429 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1430
1431 if (ti_64bitslot_war(sc)) {
1432 printf("%s: bios thinks we're in a 64 bit slot, "
1433 "but we aren't", sc->sc_dev.dv_xname);
1434 return(EINVAL);
1435 }
1436
1437 return(0);
1438 }
1439
1440 /*
1441 * Initialize the general information block and firmware, and
1442 * start the CPU(s) running.
1443 */
1444 static int ti_gibinit(sc)
1445 struct ti_softc *sc;
1446 {
1447 struct ti_rcb *rcb;
1448 int i;
1449 struct ifnet *ifp;
1450
1451 ifp = &sc->ethercom.ec_if;
1452
1453 /* Disable interrupts for now. */
1454 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1455
1456 /* Tell the chip where to find the general information block. */
1457 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1458 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1459
1460 /* Load the firmware into SRAM. */
1461 ti_loadfw(sc);
1462
1463 /* Set up the contents of the general info and ring control blocks. */
1464
1465 /* Set up the event ring and producer pointer. */
1466 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1467
1468 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1469 rcb->ti_flags = 0;
1470 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1471 TI_CDEVPRODADDR(sc);
1472
1473 sc->ti_ev_prodidx.ti_idx = 0;
1474 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1475 sc->ti_ev_saved_considx = 0;
1476
1477 /* Set up the command ring and producer mailbox. */
1478 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1479
1480 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1481 rcb->ti_flags = 0;
1482 rcb->ti_max_len = 0;
1483 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1484 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1485 }
1486 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1487 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1488 sc->ti_cmd_saved_prodidx = 0;
1489
1490 /*
1491 * Assign the address of the stats refresh buffer.
1492 * We re-use the current stats buffer for this to
1493 * conserve memory.
1494 */
1495 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1496 TI_CDSTATSADDR(sc);
1497
1498 /* Set up the standard receive ring. */
1499 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1500 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1501 rcb->ti_max_len = ETHER_MAX_LEN;
1502 rcb->ti_flags = 0;
1503 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1504 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1505 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1506 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1507 if (sc->ethercom.ec_nvlans != 0)
1508 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1509
1510 /* Set up the jumbo receive ring. */
1511 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1512 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1513 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1514 rcb->ti_flags = 0;
1515 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1516 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1517 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1518 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1519 if (sc->ethercom.ec_nvlans != 0)
1520 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1521
1522 /*
1523 * Set up the mini ring. Only activated on the
1524 * Tigon 2 but the slot in the config block is
1525 * still there on the Tigon 1.
1526 */
1527 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1528 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1529 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1530 if (sc->ti_hwrev == TI_HWREV_TIGON)
1531 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1532 else
1533 rcb->ti_flags = 0;
1534 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1535 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1536 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1537 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1538 if (sc->ethercom.ec_nvlans != 0)
1539 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1540
1541 /*
1542 * Set up the receive return ring.
1543 */
1544 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1545 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1546 rcb->ti_flags = 0;
1547 rcb->ti_max_len = TI_RETURN_RING_CNT;
1548 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1549 TI_CDRTNPRODADDR(sc);
1550
1551 /*
1552 * Set up the tx ring. Note: for the Tigon 2, we have the option
1553 * of putting the transmit ring in the host's address space and
1554 * letting the chip DMA it instead of leaving the ring in the NIC's
1555 * memory and accessing it through the shared memory region. We
1556 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1557 * so we have to revert to the shared memory scheme if we detect
1558 * a Tigon 1 chip.
1559 */
1560 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1561 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1562 sc->ti_tx_ring_nic =
1563 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1564 }
1565 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1566 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1567 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1568 if (sc->ti_hwrev == TI_HWREV_TIGON)
1569 rcb->ti_flags = 0;
1570 else
1571 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1572 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1573 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1574 /*
1575 * When we get the packet, there is a pseudo-header seed already
1576 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1577 * compute the pseudo-header checksum again!
1578 */
1579 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1580 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1581 TI_RCB_FLAG_NO_PHDR_CKSUM;
1582 if (sc->ethercom.ec_nvlans != 0)
1583 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1584 rcb->ti_max_len = TI_TX_RING_CNT;
1585 if (sc->ti_hwrev == TI_HWREV_TIGON)
1586 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1587 else
1588 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1589 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1590 TI_CDTXCONSADDR(sc);
1591
1592 /*
1593 * We're done frobbing the General Information Block. Sync
1594 * it. Note we take care of the first stats sync here, as
1595 * well.
1596 */
1597 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1598
1599 /* Set up tuneables */
1600 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1601 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1602 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1603 (sc->ti_rx_coal_ticks / 10));
1604 else
1605 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1606 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1607 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1608 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1609 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1610 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1611
1612 /* Turn interrupts on. */
1613 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1614 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1615
1616 /* Start CPU. */
1617 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1618
1619 return(0);
1620 }
1621
1622 /*
1623 * look for id in the device list, returning the first match
1624 */
1625 static const struct ti_type *
1626 ti_type_match(pa)
1627 struct pci_attach_args *pa;
1628 {
1629 const struct ti_type *t;
1630
1631 t = ti_devs;
1632 while(t->ti_name != NULL) {
1633 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1634 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1635 return (t);
1636 }
1637 t++;
1638 }
1639
1640 return(NULL);
1641 }
1642
1643 /*
1644 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1645 * against our list and return its name if we find a match.
1646 */
1647 static int ti_probe(parent, match, aux)
1648 struct device *parent;
1649 struct cfdata *match;
1650 void *aux;
1651 {
1652 struct pci_attach_args *pa = aux;
1653 const struct ti_type *t;
1654
1655 t = ti_type_match(pa);
1656
1657 return((t == NULL) ? 0 : 1);
1658 }
1659
1660 static void ti_attach(parent, self, aux)
1661 struct device *parent, *self;
1662 void *aux;
1663 {
1664 u_int32_t command;
1665 struct ifnet *ifp;
1666 struct ti_softc *sc;
1667 u_char eaddr[ETHER_ADDR_LEN];
1668 struct pci_attach_args *pa = aux;
1669 pci_chipset_tag_t pc = pa->pa_pc;
1670 pci_intr_handle_t ih;
1671 const char *intrstr = NULL;
1672 bus_dma_segment_t dmaseg;
1673 int error, dmanseg, nolinear;
1674 const struct ti_type *t;
1675
1676 t = ti_type_match(pa);
1677 if (t == NULL) {
1678 printf("ti_attach: were did the card go ?\n");
1679 return;
1680 }
1681
1682 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1683
1684 sc = (struct ti_softc *)self;
1685
1686 /*
1687 * Map control/status registers.
1688 */
1689 nolinear = 0;
1690 if (pci_mapreg_map(pa, 0x10,
1691 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1692 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1693 NULL, NULL)) {
1694 nolinear = 1;
1695 if (pci_mapreg_map(pa, 0x10,
1696 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1697 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1698 printf(": can't map memory space\n");
1699 return;
1700 }
1701 }
1702 if (nolinear == 0)
1703 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1704 else
1705 sc->ti_vhandle = NULL;
1706
1707 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1708 command |= PCI_COMMAND_MASTER_ENABLE;
1709 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1710
1711 /* Allocate interrupt */
1712 if (pci_intr_map(pa, &ih)) {
1713 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1714 return;
1715 }
1716 intrstr = pci_intr_string(pc, ih);
1717 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1718 if (sc->sc_ih == NULL) {
1719 printf("%s: couldn't establish interrupt",
1720 sc->sc_dev.dv_xname);
1721 if (intrstr != NULL)
1722 printf(" at %s", intrstr);
1723 printf("\n");
1724 return;
1725 }
1726 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1727 /*
1728 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1729 * doing do could allow DMA to corrupt kernel memory during the
1730 * reboot before the driver initializes.
1731 */
1732 (void) shutdownhook_establish(ti_shutdown, sc);
1733
1734 if (ti_chipinit(sc)) {
1735 printf("%s: chip initialization failed\n", self->dv_xname);
1736 goto fail2;
1737 }
1738
1739 /*
1740 * Deal with some chip diffrences.
1741 */
1742 switch (sc->ti_hwrev) {
1743 case TI_HWREV_TIGON:
1744 sc->sc_tx_encap = ti_encap_tigon1;
1745 sc->sc_tx_eof = ti_txeof_tigon1;
1746 if (nolinear == 1)
1747 printf("%s: memory space not mapped linear\n",
1748 self->dv_xname);
1749 break;
1750
1751 case TI_HWREV_TIGON_II:
1752 sc->sc_tx_encap = ti_encap_tigon2;
1753 sc->sc_tx_eof = ti_txeof_tigon2;
1754 break;
1755
1756 default:
1757 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1758 sc->ti_hwrev);
1759 goto fail2;
1760 }
1761
1762 /* Zero out the NIC's on-board SRAM. */
1763 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1764
1765 /* Init again -- zeroing memory may have clobbered some registers. */
1766 if (ti_chipinit(sc)) {
1767 printf("%s: chip initialization failed\n", self->dv_xname);
1768 goto fail2;
1769 }
1770
1771 /*
1772 * Get station address from the EEPROM. Note: the manual states
1773 * that the MAC address is at offset 0x8c, however the data is
1774 * stored as two longwords (since that's how it's loaded into
1775 * the NIC). This means the MAC address is actually preceded
1776 * by two zero bytes. We need to skip over those.
1777 */
1778 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1779 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1780 printf("%s: failed to read station address\n", self->dv_xname);
1781 goto fail2;
1782 }
1783
1784 /*
1785 * A Tigon chip was detected. Inform the world.
1786 */
1787 printf("%s: Ethernet address: %s\n", self->dv_xname,
1788 ether_sprintf(eaddr));
1789
1790 sc->sc_dmat = pa->pa_dmat;
1791
1792 /* Allocate the general information block and ring buffers. */
1793 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1794 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1795 BUS_DMA_NOWAIT)) != 0) {
1796 printf("%s: can't allocate ring buffer, error = %d\n",
1797 sc->sc_dev.dv_xname, error);
1798 goto fail2;
1799 }
1800
1801 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1802 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1803 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1804 printf("%s: can't map ring buffer, error = %d\n",
1805 sc->sc_dev.dv_xname, error);
1806 goto fail2;
1807 }
1808
1809 if ((error = bus_dmamap_create(sc->sc_dmat,
1810 sizeof(struct ti_ring_data), 1,
1811 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1812 &sc->info_dmamap)) != 0) {
1813 printf("%s: can't create ring buffer DMA map, error = %d\n",
1814 sc->sc_dev.dv_xname, error);
1815 goto fail2;
1816 }
1817
1818 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1819 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1820 BUS_DMA_NOWAIT)) != 0) {
1821 printf("%s: can't load ring buffer DMA map, error = %d\n",
1822 sc->sc_dev.dv_xname, error);
1823 goto fail2;
1824 }
1825
1826 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1827
1828 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1829
1830 /* Try to allocate memory for jumbo buffers. */
1831 if (ti_alloc_jumbo_mem(sc)) {
1832 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1833 goto fail2;
1834 }
1835
1836 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1837
1838 /*
1839 * We really need a better way to tell a 1000baseT card
1840 * from a 1000baseSX one, since in theory there could be
1841 * OEMed 1000baseT cards from lame vendors who aren't
1842 * clever enough to change the PCI ID. For the moment
1843 * though, the AceNIC is the only copper card available.
1844 */
1845 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1846 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1847 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1848 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1849 sc->ti_copper = 1;
1850 else
1851 sc->ti_copper = 0;
1852
1853 /* Set default tuneable values. */
1854 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1855 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1856 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1857 sc->ti_rx_max_coal_bds = 64;
1858 sc->ti_tx_max_coal_bds = 128;
1859 sc->ti_tx_buf_ratio = 21;
1860
1861 /* Set up ifnet structure */
1862 ifp = &sc->ethercom.ec_if;
1863 ifp->if_softc = sc;
1864 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1865 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1866 ifp->if_ioctl = ti_ioctl;
1867 ifp->if_start = ti_start;
1868 ifp->if_watchdog = ti_watchdog;
1869 IFQ_SET_READY(&ifp->if_snd);
1870
1871 #if 0
1872 /*
1873 * XXX This is not really correct -- we don't necessarily
1874 * XXX want to queue up as many as we can transmit at the
1875 * XXX upper layer like that. Someone with a board should
1876 * XXX check to see how this affects performance.
1877 */
1878 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1879 #endif
1880
1881 /*
1882 * We can support 802.1Q VLAN-sized frames.
1883 */
1884 sc->ethercom.ec_capabilities |=
1885 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1886
1887 /*
1888 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1889 */
1890 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1891 IFCAP_CSUM_UDPv4;
1892
1893 /* Set up ifmedia support. */
1894 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1895 if (sc->ti_copper) {
1896 /*
1897 * Copper cards allow manual 10/100 mode selection,
1898 * but not manual 1000baseT mode selection. Why?
1899 * Because currently there's no way to specify the
1900 * master/slave setting through the firmware interface,
1901 * so Alteon decided to just bag it and handle it
1902 * via autonegotiation.
1903 */
1904 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1905 ifmedia_add(&sc->ifmedia,
1906 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1907 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1908 ifmedia_add(&sc->ifmedia,
1909 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1910 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1911 ifmedia_add(&sc->ifmedia,
1912 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1913 } else {
1914 /* Fiber cards don't support 10/100 modes. */
1915 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1916 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1917 }
1918 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1919 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1920
1921 /*
1922 * Call MI attach routines.
1923 */
1924 if_attach(ifp);
1925 ether_ifattach(ifp, eaddr);
1926
1927 return;
1928 fail2:
1929 pci_intr_disestablish(pc, sc->sc_ih);
1930 return;
1931 }
1932
1933 /*
1934 * Frame reception handling. This is called if there's a frame
1935 * on the receive return list.
1936 *
1937 * Note: we have to be able to handle three possibilities here:
1938 * 1) the frame is from the mini receive ring (can only happen)
1939 * on Tigon 2 boards)
1940 * 2) the frame is from the jumbo receive ring
1941 * 3) the frame is from the standard receive ring
1942 */
1943
1944 static void ti_rxeof(sc)
1945 struct ti_softc *sc;
1946 {
1947 struct ifnet *ifp;
1948 struct ti_cmd_desc cmd;
1949
1950 ifp = &sc->ethercom.ec_if;
1951
1952 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1953 struct ti_rx_desc *cur_rx;
1954 u_int32_t rxidx;
1955 struct mbuf *m = NULL;
1956 u_int16_t vlan_tag = 0;
1957 int have_tag = 0;
1958 struct ether_header *eh;
1959 bus_dmamap_t dmamap;
1960
1961 cur_rx =
1962 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1963 rxidx = cur_rx->ti_idx;
1964 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1965
1966 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1967 have_tag = 1;
1968 /* ti_vlan_tag also has the priority, trim it */
1969 vlan_tag = cur_rx->ti_vlan_tag & 4095;
1970 }
1971
1972 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1973 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1974 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1975 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1976 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1977 ifp->if_ierrors++;
1978 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1979 continue;
1980 }
1981 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1982 == ENOBUFS) {
1983 ifp->if_ierrors++;
1984 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1985 continue;
1986 }
1987 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1988 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1989 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1990 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1991 dmamap = sc->mini_dmamap[rxidx];
1992 sc->mini_dmamap[rxidx] = 0;
1993 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1994 ifp->if_ierrors++;
1995 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1996 continue;
1997 }
1998 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1999 == ENOBUFS) {
2000 ifp->if_ierrors++;
2001 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
2002 continue;
2003 }
2004 } else {
2005 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2006 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2007 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2008 dmamap = sc->std_dmamap[rxidx];
2009 sc->std_dmamap[rxidx] = 0;
2010 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2011 ifp->if_ierrors++;
2012 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2013 continue;
2014 }
2015 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2016 == ENOBUFS) {
2017 ifp->if_ierrors++;
2018 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2019 continue;
2020 }
2021 }
2022
2023 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2024 ifp->if_ipackets++;
2025 m->m_pkthdr.rcvif = ifp;
2026
2027 #if NBPFILTER > 0
2028 /*
2029 * Handle BPF listeners. Let the BPF user see the packet, but
2030 * don't pass it up to the ether_input() layer unless it's
2031 * a broadcast packet, multicast packet, matches our ethernet
2032 * address or the interface is in promiscuous mode.
2033 */
2034 if (ifp->if_bpf)
2035 bpf_mtap(ifp->if_bpf, m);
2036 #endif
2037
2038 eh = mtod(m, struct ether_header *);
2039 switch (ntohs(eh->ether_type)) {
2040 #ifdef INET
2041 case ETHERTYPE_IP:
2042 {
2043 struct ip *ip = (struct ip *) (eh + 1);
2044
2045 /*
2046 * Note the Tigon firmware does not invert
2047 * the checksum for us, hence the XOR.
2048 */
2049 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2050 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2051 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2052 /*
2053 * ntohs() the constant so the compiler can
2054 * optimize...
2055 *
2056 * XXX Figure out a sane way to deal with
2057 * fragmented packets.
2058 */
2059 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2060 switch (ip->ip_p) {
2061 case IPPROTO_TCP:
2062 m->m_pkthdr.csum_data =
2063 cur_rx->ti_tcp_udp_cksum;
2064 m->m_pkthdr.csum_flags |=
2065 M_CSUM_TCPv4|M_CSUM_DATA;
2066 break;
2067 case IPPROTO_UDP:
2068 m->m_pkthdr.csum_data =
2069 cur_rx->ti_tcp_udp_cksum;
2070 m->m_pkthdr.csum_flags |=
2071 M_CSUM_UDPv4|M_CSUM_DATA;
2072 break;
2073 default:
2074 /* Nothing */;
2075 }
2076 }
2077 break;
2078 }
2079 #endif
2080 default:
2081 /* Nothing. */
2082 break;
2083 }
2084
2085 if (have_tag) {
2086 struct m_tag *mtag;
2087
2088 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2089 M_NOWAIT);
2090 if (mtag) {
2091 *(u_int *)(mtag + 1) = vlan_tag;
2092 m_tag_prepend(m, mtag);
2093 have_tag = vlan_tag = 0;
2094 } else {
2095 printf("%s: no mbuf for tag\n", ifp->if_xname);
2096 m_freem(m);
2097 have_tag = vlan_tag = 0;
2098 continue;
2099 }
2100 }
2101 (*ifp->if_input)(ifp, m);
2102 }
2103
2104 /* Only necessary on the Tigon 1. */
2105 if (sc->ti_hwrev == TI_HWREV_TIGON)
2106 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2107 sc->ti_rx_saved_considx);
2108
2109 TI_UPDATE_STDPROD(sc, sc->ti_std);
2110 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2111 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2112
2113 return;
2114 }
2115
2116 static void ti_txeof_tigon1(sc)
2117 struct ti_softc *sc;
2118 {
2119 struct ti_tx_desc *cur_tx = NULL;
2120 struct ifnet *ifp;
2121 struct txdmamap_pool_entry *dma;
2122
2123 ifp = &sc->ethercom.ec_if;
2124
2125 /*
2126 * Go through our tx ring and free mbufs for those
2127 * frames that have been sent.
2128 */
2129 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2130 u_int32_t idx = 0;
2131
2132 idx = sc->ti_tx_saved_considx;
2133 if (idx > 383)
2134 CSR_WRITE_4(sc, TI_WINBASE,
2135 TI_TX_RING_BASE + 6144);
2136 else if (idx > 255)
2137 CSR_WRITE_4(sc, TI_WINBASE,
2138 TI_TX_RING_BASE + 4096);
2139 else if (idx > 127)
2140 CSR_WRITE_4(sc, TI_WINBASE,
2141 TI_TX_RING_BASE + 2048);
2142 else
2143 CSR_WRITE_4(sc, TI_WINBASE,
2144 TI_TX_RING_BASE);
2145 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2146 if (cur_tx->ti_flags & TI_BDFLAG_END)
2147 ifp->if_opackets++;
2148 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2149 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2150 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2151
2152 dma = sc->txdma[idx];
2153 KDASSERT(dma != NULL);
2154 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2155 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2156 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2157
2158 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2159 sc->txdma[idx] = NULL;
2160 }
2161 sc->ti_txcnt--;
2162 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2163 ifp->if_timer = 0;
2164 }
2165
2166 if (cur_tx != NULL)
2167 ifp->if_flags &= ~IFF_OACTIVE;
2168
2169 return;
2170 }
2171
2172 static void ti_txeof_tigon2(sc)
2173 struct ti_softc *sc;
2174 {
2175 struct ti_tx_desc *cur_tx = NULL;
2176 struct ifnet *ifp;
2177 struct txdmamap_pool_entry *dma;
2178 int firstidx, cnt;
2179
2180 ifp = &sc->ethercom.ec_if;
2181
2182 /*
2183 * Go through our tx ring and free mbufs for those
2184 * frames that have been sent.
2185 */
2186 firstidx = sc->ti_tx_saved_considx;
2187 cnt = 0;
2188 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2189 u_int32_t idx = 0;
2190
2191 idx = sc->ti_tx_saved_considx;
2192 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2193 if (cur_tx->ti_flags & TI_BDFLAG_END)
2194 ifp->if_opackets++;
2195 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2196 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2197 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2198
2199 dma = sc->txdma[idx];
2200 KDASSERT(dma != NULL);
2201 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2202 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2203 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2204
2205 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2206 sc->txdma[idx] = NULL;
2207 }
2208 cnt++;
2209 sc->ti_txcnt--;
2210 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2211 ifp->if_timer = 0;
2212 }
2213
2214 if (cnt != 0)
2215 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2216
2217 if (cur_tx != NULL)
2218 ifp->if_flags &= ~IFF_OACTIVE;
2219
2220 return;
2221 }
2222
2223 static int ti_intr(xsc)
2224 void *xsc;
2225 {
2226 struct ti_softc *sc;
2227 struct ifnet *ifp;
2228
2229 sc = xsc;
2230 ifp = &sc->ethercom.ec_if;
2231
2232 #ifdef notdef
2233 /* Avoid this for now -- checking this register is expensive. */
2234 /* Make sure this is really our interrupt. */
2235 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2236 return (0);
2237 #endif
2238
2239 /* Ack interrupt and stop others from occuring. */
2240 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2241
2242 if (ifp->if_flags & IFF_RUNNING) {
2243 /* Check RX return ring producer/consumer */
2244 ti_rxeof(sc);
2245
2246 /* Check TX ring producer/consumer */
2247 (*sc->sc_tx_eof)(sc);
2248 }
2249
2250 ti_handle_events(sc);
2251
2252 /* Re-enable interrupts. */
2253 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2254
2255 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2256 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2257 ti_start(ifp);
2258
2259 return (1);
2260 }
2261
2262 static void ti_stats_update(sc)
2263 struct ti_softc *sc;
2264 {
2265 struct ifnet *ifp;
2266
2267 ifp = &sc->ethercom.ec_if;
2268
2269 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2270
2271 ifp->if_collisions +=
2272 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2273 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2274 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2275 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2276 ifp->if_collisions;
2277
2278 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2279 }
2280
2281 /*
2282 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2283 * pointers to descriptors.
2284 */
2285 static int ti_encap_tigon1(sc, m_head, txidx)
2286 struct ti_softc *sc;
2287 struct mbuf *m_head;
2288 u_int32_t *txidx;
2289 {
2290 struct ti_tx_desc *f = NULL;
2291 u_int32_t frag, cur, cnt = 0;
2292 struct txdmamap_pool_entry *dma;
2293 bus_dmamap_t dmamap;
2294 int error, i;
2295 struct m_tag *mtag;
2296 u_int16_t csum_flags = 0;
2297
2298 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2299 if (dma == NULL) {
2300 return ENOMEM;
2301 }
2302 dmamap = dma->dmamap;
2303
2304 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2305 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2306 if (error) {
2307 struct mbuf *m;
2308 int i = 0;
2309 for (m = m_head; m; m = m->m_next)
2310 i++;
2311 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2312 "error %d\n", m_head->m_pkthdr.len, i, error);
2313 return (ENOMEM);
2314 }
2315
2316 cur = frag = *txidx;
2317
2318 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2319 /* IP header checksum field must be 0! */
2320 csum_flags |= TI_BDFLAG_IP_CKSUM;
2321 }
2322 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2323 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2324
2325 /* XXX fragmented packet checksum capability? */
2326
2327 /*
2328 * Start packing the mbufs in this chain into
2329 * the fragment pointers. Stop when we run out
2330 * of fragments or hit the end of the mbuf chain.
2331 */
2332 for (i = 0; i < dmamap->dm_nsegs; i++) {
2333 if (frag > 383)
2334 CSR_WRITE_4(sc, TI_WINBASE,
2335 TI_TX_RING_BASE + 6144);
2336 else if (frag > 255)
2337 CSR_WRITE_4(sc, TI_WINBASE,
2338 TI_TX_RING_BASE + 4096);
2339 else if (frag > 127)
2340 CSR_WRITE_4(sc, TI_WINBASE,
2341 TI_TX_RING_BASE + 2048);
2342 else
2343 CSR_WRITE_4(sc, TI_WINBASE,
2344 TI_TX_RING_BASE);
2345 f = &sc->ti_tx_ring_nic[frag % 128];
2346 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2347 break;
2348 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2349 f->ti_len = dmamap->dm_segs[i].ds_len;
2350 f->ti_flags = csum_flags;
2351 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2352 if (mtag) {
2353 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2354 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2355 } else {
2356 f->ti_vlan_tag = 0;
2357 }
2358 /*
2359 * Sanity check: avoid coming within 16 descriptors
2360 * of the end of the ring.
2361 */
2362 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2363 return(ENOBUFS);
2364 cur = frag;
2365 TI_INC(frag, TI_TX_RING_CNT);
2366 cnt++;
2367 }
2368
2369 if (i < dmamap->dm_nsegs)
2370 return(ENOBUFS);
2371
2372 if (frag == sc->ti_tx_saved_considx)
2373 return(ENOBUFS);
2374
2375 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2376 TI_BDFLAG_END;
2377
2378 /* Sync the packet's DMA map. */
2379 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2380 BUS_DMASYNC_PREWRITE);
2381
2382 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2383 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2384 sc->txdma[cur] = dma;
2385 sc->ti_txcnt += cnt;
2386
2387 *txidx = frag;
2388
2389 return(0);
2390 }
2391
2392 static int ti_encap_tigon2(sc, m_head, txidx)
2393 struct ti_softc *sc;
2394 struct mbuf *m_head;
2395 u_int32_t *txidx;
2396 {
2397 struct ti_tx_desc *f = NULL;
2398 u_int32_t frag, firstfrag, cur, cnt = 0;
2399 struct txdmamap_pool_entry *dma;
2400 bus_dmamap_t dmamap;
2401 int error, i;
2402 struct m_tag *mtag;
2403 u_int16_t csum_flags = 0;
2404
2405 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2406 if (dma == NULL) {
2407 return ENOMEM;
2408 }
2409 dmamap = dma->dmamap;
2410
2411 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2412 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2413 if (error) {
2414 struct mbuf *m;
2415 int i = 0;
2416 for (m = m_head; m; m = m->m_next)
2417 i++;
2418 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2419 "error %d\n", m_head->m_pkthdr.len, i, error);
2420 return (ENOMEM);
2421 }
2422
2423 cur = firstfrag = frag = *txidx;
2424
2425 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2426 /* IP header checksum field must be 0! */
2427 csum_flags |= TI_BDFLAG_IP_CKSUM;
2428 }
2429 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2430 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2431
2432 /* XXX fragmented packet checksum capability? */
2433
2434 /*
2435 * Start packing the mbufs in this chain into
2436 * the fragment pointers. Stop when we run out
2437 * of fragments or hit the end of the mbuf chain.
2438 */
2439 for (i = 0; i < dmamap->dm_nsegs; i++) {
2440 f = &sc->ti_rdata->ti_tx_ring[frag];
2441 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2442 break;
2443 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2444 f->ti_len = dmamap->dm_segs[i].ds_len;
2445 f->ti_flags = csum_flags;
2446 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2447 if (mtag) {
2448 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2449 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2450 } else {
2451 f->ti_vlan_tag = 0;
2452 }
2453 /*
2454 * Sanity check: avoid coming within 16 descriptors
2455 * of the end of the ring.
2456 */
2457 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2458 return(ENOBUFS);
2459 cur = frag;
2460 TI_INC(frag, TI_TX_RING_CNT);
2461 cnt++;
2462 }
2463
2464 if (i < dmamap->dm_nsegs)
2465 return(ENOBUFS);
2466
2467 if (frag == sc->ti_tx_saved_considx)
2468 return(ENOBUFS);
2469
2470 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2471
2472 /* Sync the packet's DMA map. */
2473 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2474 BUS_DMASYNC_PREWRITE);
2475
2476 /* Sync the descriptors we are using. */
2477 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2478
2479 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2480 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2481 sc->txdma[cur] = dma;
2482 sc->ti_txcnt += cnt;
2483
2484 *txidx = frag;
2485
2486 return(0);
2487 }
2488
2489 /*
2490 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2491 * to the mbuf data regions directly in the transmit descriptors.
2492 */
2493 static void ti_start(ifp)
2494 struct ifnet *ifp;
2495 {
2496 struct ti_softc *sc;
2497 struct mbuf *m_head = NULL;
2498 u_int32_t prodidx = 0;
2499
2500 sc = ifp->if_softc;
2501
2502 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2503
2504 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2505 IFQ_POLL(&ifp->if_snd, m_head);
2506 if (m_head == NULL)
2507 break;
2508
2509 /*
2510 * Pack the data into the transmit ring. If we
2511 * don't have room, set the OACTIVE flag and wait
2512 * for the NIC to drain the ring.
2513 */
2514 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2515 ifp->if_flags |= IFF_OACTIVE;
2516 break;
2517 }
2518
2519 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2520
2521 /*
2522 * If there's a BPF listener, bounce a copy of this frame
2523 * to him.
2524 */
2525 #if NBPFILTER > 0
2526 if (ifp->if_bpf)
2527 bpf_mtap(ifp->if_bpf, m_head);
2528 #endif
2529 }
2530
2531 /* Transmit */
2532 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2533
2534 /*
2535 * Set a timeout in case the chip goes out to lunch.
2536 */
2537 ifp->if_timer = 5;
2538
2539 return;
2540 }
2541
2542 static void ti_init(xsc)
2543 void *xsc;
2544 {
2545 struct ti_softc *sc = xsc;
2546 int s;
2547
2548 s = splnet();
2549
2550 /* Cancel pending I/O and flush buffers. */
2551 ti_stop(sc);
2552
2553 /* Init the gen info block, ring control blocks and firmware. */
2554 if (ti_gibinit(sc)) {
2555 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2556 splx(s);
2557 return;
2558 }
2559
2560 splx(s);
2561
2562 return;
2563 }
2564
2565 static void ti_init2(sc)
2566 struct ti_softc *sc;
2567 {
2568 struct ti_cmd_desc cmd;
2569 struct ifnet *ifp;
2570 u_int8_t *m;
2571 struct ifmedia *ifm;
2572 int tmp;
2573
2574 ifp = &sc->ethercom.ec_if;
2575
2576 /* Specify MTU and interface index. */
2577 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2578
2579 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2580 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2581 tmp += ETHER_VLAN_ENCAP_LEN;
2582 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2583
2584 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2585
2586 /* Load our MAC address. */
2587 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2588 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2589 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2590 | (m[4] << 8) | m[5]);
2591 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2592
2593 /* Enable or disable promiscuous mode as needed. */
2594 if (ifp->if_flags & IFF_PROMISC) {
2595 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2596 } else {
2597 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2598 }
2599
2600 /* Program multicast filter. */
2601 ti_setmulti(sc);
2602
2603 /*
2604 * If this is a Tigon 1, we should tell the
2605 * firmware to use software packet filtering.
2606 */
2607 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2608 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2609 }
2610
2611 /* Init RX ring. */
2612 ti_init_rx_ring_std(sc);
2613
2614 /* Init jumbo RX ring. */
2615 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2616 ti_init_rx_ring_jumbo(sc);
2617
2618 /*
2619 * If this is a Tigon 2, we can also configure the
2620 * mini ring.
2621 */
2622 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2623 ti_init_rx_ring_mini(sc);
2624
2625 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2626 sc->ti_rx_saved_considx = 0;
2627
2628 /* Init TX ring. */
2629 ti_init_tx_ring(sc);
2630
2631 /* Tell firmware we're alive. */
2632 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2633
2634 /* Enable host interrupts. */
2635 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2636
2637 ifp->if_flags |= IFF_RUNNING;
2638 ifp->if_flags &= ~IFF_OACTIVE;
2639
2640 /*
2641 * Make sure to set media properly. We have to do this
2642 * here since we have to issue commands in order to set
2643 * the link negotiation and we can't issue commands until
2644 * the firmware is running.
2645 */
2646 ifm = &sc->ifmedia;
2647 tmp = ifm->ifm_media;
2648 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2649 ti_ifmedia_upd(ifp);
2650 ifm->ifm_media = tmp;
2651
2652 return;
2653 }
2654
2655 /*
2656 * Set media options.
2657 */
2658 static int ti_ifmedia_upd(ifp)
2659 struct ifnet *ifp;
2660 {
2661 struct ti_softc *sc;
2662 struct ifmedia *ifm;
2663 struct ti_cmd_desc cmd;
2664
2665 sc = ifp->if_softc;
2666 ifm = &sc->ifmedia;
2667
2668 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2669 return(EINVAL);
2670
2671 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2672 case IFM_AUTO:
2673 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2674 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2675 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2676 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2677 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2678 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2679 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2680 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2681 break;
2682 case IFM_1000_SX:
2683 case IFM_1000_T:
2684 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2685 CSR_WRITE_4(sc, TI_GCR_GLINK,
2686 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2687 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2688 } else {
2689 CSR_WRITE_4(sc, TI_GCR_GLINK,
2690 TI_GLNK_PREF|TI_GLNK_1000MB|
2691 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2692 }
2693 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2694 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2695 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2696 break;
2697 case IFM_100_FX:
2698 case IFM_10_FL:
2699 case IFM_100_TX:
2700 case IFM_10_T:
2701 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2702 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2703 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2704 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2705 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2706 } else {
2707 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2708 }
2709 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2710 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2711 } else {
2712 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2713 }
2714 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2715 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2716 break;
2717 }
2718
2719 sc->ethercom.ec_if.if_baudrate =
2720 ifmedia_baudrate(ifm->ifm_media);
2721
2722 return(0);
2723 }
2724
2725 /*
2726 * Report current media status.
2727 */
2728 static void ti_ifmedia_sts(ifp, ifmr)
2729 struct ifnet *ifp;
2730 struct ifmediareq *ifmr;
2731 {
2732 struct ti_softc *sc;
2733 u_int32_t media = 0;
2734
2735 sc = ifp->if_softc;
2736
2737 ifmr->ifm_status = IFM_AVALID;
2738 ifmr->ifm_active = IFM_ETHER;
2739
2740 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2741 return;
2742
2743 ifmr->ifm_status |= IFM_ACTIVE;
2744
2745 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2746 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2747 if (sc->ti_copper)
2748 ifmr->ifm_active |= IFM_1000_T;
2749 else
2750 ifmr->ifm_active |= IFM_1000_SX;
2751 if (media & TI_GLNK_FULL_DUPLEX)
2752 ifmr->ifm_active |= IFM_FDX;
2753 else
2754 ifmr->ifm_active |= IFM_HDX;
2755 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2756 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2757 if (sc->ti_copper) {
2758 if (media & TI_LNK_100MB)
2759 ifmr->ifm_active |= IFM_100_TX;
2760 if (media & TI_LNK_10MB)
2761 ifmr->ifm_active |= IFM_10_T;
2762 } else {
2763 if (media & TI_LNK_100MB)
2764 ifmr->ifm_active |= IFM_100_FX;
2765 if (media & TI_LNK_10MB)
2766 ifmr->ifm_active |= IFM_10_FL;
2767 }
2768 if (media & TI_LNK_FULL_DUPLEX)
2769 ifmr->ifm_active |= IFM_FDX;
2770 if (media & TI_LNK_HALF_DUPLEX)
2771 ifmr->ifm_active |= IFM_HDX;
2772 }
2773
2774 sc->ethercom.ec_if.if_baudrate =
2775 ifmedia_baudrate(sc->ifmedia.ifm_media);
2776
2777 return;
2778 }
2779
2780 static int
2781 ti_ether_ioctl(ifp, cmd, data)
2782 struct ifnet *ifp;
2783 u_long cmd;
2784 caddr_t data;
2785 {
2786 struct ifaddr *ifa = (struct ifaddr *) data;
2787 struct ti_softc *sc = ifp->if_softc;
2788
2789 if ((ifp->if_flags & IFF_UP) == 0) {
2790 ifp->if_flags |= IFF_UP;
2791 ti_init(sc);
2792 }
2793
2794 switch (cmd) {
2795 case SIOCSIFADDR:
2796
2797 switch (ifa->ifa_addr->sa_family) {
2798 #ifdef INET
2799 case AF_INET:
2800 arp_ifinit(ifp, ifa);
2801 break;
2802 #endif
2803 #ifdef NS
2804 case AF_NS:
2805 {
2806 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2807
2808 if (ns_nullhost(*ina))
2809 ina->x_host = *(union ns_host *)
2810 LLADDR(ifp->if_sadl);
2811 else
2812 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2813 ifp->if_addrlen);
2814 break;
2815 }
2816 #endif
2817 default:
2818 break;
2819 }
2820 break;
2821
2822 default:
2823 return (EINVAL);
2824 }
2825
2826 return (0);
2827 }
2828
2829 static int ti_ioctl(ifp, command, data)
2830 struct ifnet *ifp;
2831 u_long command;
2832 caddr_t data;
2833 {
2834 struct ti_softc *sc = ifp->if_softc;
2835 struct ifreq *ifr = (struct ifreq *) data;
2836 int s, error = 0;
2837 struct ti_cmd_desc cmd;
2838
2839 s = splnet();
2840
2841 switch(command) {
2842 case SIOCSIFADDR:
2843 case SIOCGIFADDR:
2844 error = ti_ether_ioctl(ifp, command, data);
2845 break;
2846 case SIOCSIFMTU:
2847 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2848 error = EINVAL;
2849 else {
2850 ifp->if_mtu = ifr->ifr_mtu;
2851 ti_init(sc);
2852 }
2853 break;
2854 case SIOCSIFFLAGS:
2855 if (ifp->if_flags & IFF_UP) {
2856 /*
2857 * If only the state of the PROMISC flag changed,
2858 * then just use the 'set promisc mode' command
2859 * instead of reinitializing the entire NIC. Doing
2860 * a full re-init means reloading the firmware and
2861 * waiting for it to start up, which may take a
2862 * second or two.
2863 */
2864 if (ifp->if_flags & IFF_RUNNING &&
2865 ifp->if_flags & IFF_PROMISC &&
2866 !(sc->ti_if_flags & IFF_PROMISC)) {
2867 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2868 TI_CMD_CODE_PROMISC_ENB, 0);
2869 } else if (ifp->if_flags & IFF_RUNNING &&
2870 !(ifp->if_flags & IFF_PROMISC) &&
2871 sc->ti_if_flags & IFF_PROMISC) {
2872 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2873 TI_CMD_CODE_PROMISC_DIS, 0);
2874 } else
2875 ti_init(sc);
2876 } else {
2877 if (ifp->if_flags & IFF_RUNNING) {
2878 ti_stop(sc);
2879 }
2880 }
2881 sc->ti_if_flags = ifp->if_flags;
2882 error = 0;
2883 break;
2884 case SIOCADDMULTI:
2885 case SIOCDELMULTI:
2886 error = (command == SIOCADDMULTI) ?
2887 ether_addmulti(ifr, &sc->ethercom) :
2888 ether_delmulti(ifr, &sc->ethercom);
2889 if (error == ENETRESET) {
2890 if (ifp->if_flags & IFF_RUNNING)
2891 ti_setmulti(sc);
2892 error = 0;
2893 }
2894 break;
2895 case SIOCSIFMEDIA:
2896 case SIOCGIFMEDIA:
2897 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2898 break;
2899 default:
2900 error = EINVAL;
2901 break;
2902 }
2903
2904 (void)splx(s);
2905
2906 return(error);
2907 }
2908
2909 static void ti_watchdog(ifp)
2910 struct ifnet *ifp;
2911 {
2912 struct ti_softc *sc;
2913
2914 sc = ifp->if_softc;
2915
2916 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2917 ti_stop(sc);
2918 ti_init(sc);
2919
2920 ifp->if_oerrors++;
2921
2922 return;
2923 }
2924
2925 /*
2926 * Stop the adapter and free any mbufs allocated to the
2927 * RX and TX lists.
2928 */
2929 static void ti_stop(sc)
2930 struct ti_softc *sc;
2931 {
2932 struct ifnet *ifp;
2933 struct ti_cmd_desc cmd;
2934
2935 ifp = &sc->ethercom.ec_if;
2936
2937 /* Disable host interrupts. */
2938 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2939 /*
2940 * Tell firmware we're shutting down.
2941 */
2942 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2943
2944 /* Halt and reinitialize. */
2945 ti_chipinit(sc);
2946 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2947 ti_chipinit(sc);
2948
2949 /* Free the RX lists. */
2950 ti_free_rx_ring_std(sc);
2951
2952 /* Free jumbo RX list. */
2953 ti_free_rx_ring_jumbo(sc);
2954
2955 /* Free mini RX list. */
2956 ti_free_rx_ring_mini(sc);
2957
2958 /* Free TX buffers. */
2959 ti_free_tx_ring(sc);
2960
2961 sc->ti_ev_prodidx.ti_idx = 0;
2962 sc->ti_return_prodidx.ti_idx = 0;
2963 sc->ti_tx_considx.ti_idx = 0;
2964 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2965
2966 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2967
2968 return;
2969 }
2970
2971 /*
2972 * Stop all chip I/O so that the kernel's probe routines don't
2973 * get confused by errant DMAs when rebooting.
2974 */
2975 static void ti_shutdown(v)
2976 void *v;
2977 {
2978 struct ti_softc *sc = v;
2979
2980 ti_chipinit(sc);
2981
2982 return;
2983 }
2984