if_ti.c revision 1.64 1 /* $NetBSD: if_ti.c,v 1.64 2005/02/04 02:10:45 perry Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.64 2005/02/04 02:10:45 perry Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match(struct pci_attach_args *);
157 static int ti_probe(struct device *, struct cfdata *, void *);
158 static void ti_attach(struct device *, struct device *, void *);
159 static void ti_shutdown(void *);
160 static void ti_txeof_tigon1(struct ti_softc *);
161 static void ti_txeof_tigon2(struct ti_softc *);
162 static void ti_rxeof(struct ti_softc *);
163
164 static void ti_stats_update(struct ti_softc *);
165 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
166 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
167
168 static int ti_intr(void *);
169 static void ti_start(struct ifnet *);
170 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
171 static void ti_init(void *);
172 static void ti_init2(struct ti_softc *);
173 static void ti_stop(struct ti_softc *);
174 static void ti_watchdog(struct ifnet *);
175 static int ti_ifmedia_upd(struct ifnet *);
176 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
179 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
180 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
181
182 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void ti_setmulti(struct ti_softc *);
185
186 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
187 static void ti_loadfw(struct ti_softc *);
188 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
190 static void ti_handle_events(struct ti_softc *);
191 static int ti_alloc_jumbo_mem(struct ti_softc *);
192 static void *ti_jalloc(struct ti_softc *);
193 static void ti_jfree(struct mbuf *, caddr_t, size_t, void *);
194 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
195 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
196 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
197 static int ti_init_rx_ring_std(struct ti_softc *);
198 static void ti_free_rx_ring_std(struct ti_softc *);
199 static int ti_init_rx_ring_jumbo(struct ti_softc *);
200 static void ti_free_rx_ring_jumbo(struct ti_softc *);
201 static int ti_init_rx_ring_mini(struct ti_softc *);
202 static void ti_free_rx_ring_mini(struct ti_softc *);
203 static void ti_free_tx_ring(struct ti_softc *);
204 static int ti_init_tx_ring(struct ti_softc *);
205
206 static int ti_64bitslot_war(struct ti_softc *);
207 static int ti_chipinit(struct ti_softc *);
208 static int ti_gibinit(struct ti_softc *);
209
210 static int ti_ether_ioctl(struct ifnet *, u_long, caddr_t);
211
212 CFATTACH_DECL(ti, sizeof(struct ti_softc),
213 ti_probe, ti_attach, NULL, NULL);
214
215 /*
216 * Send an instruction or address to the EEPROM, check for ACK.
217 */
218 static u_int32_t ti_eeprom_putbyte(sc, byte)
219 struct ti_softc *sc;
220 int byte;
221 {
222 int i, ack = 0;
223
224 /*
225 * Make sure we're in TX mode.
226 */
227 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
228
229 /*
230 * Feed in each bit and stobe the clock.
231 */
232 for (i = 0x80; i; i >>= 1) {
233 if (byte & i) {
234 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
235 } else {
236 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
237 }
238 DELAY(1);
239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
240 DELAY(1);
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 }
243
244 /*
245 * Turn off TX mode.
246 */
247 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
248
249 /*
250 * Check for ack.
251 */
252 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
254 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255
256 return(ack);
257 }
258
259 /*
260 * Read a byte of data stored in the EEPROM at address 'addr.'
261 * We have to send two address bytes since the EEPROM can hold
262 * more than 256 bytes of data.
263 */
264 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
265 struct ti_softc *sc;
266 int addr;
267 u_int8_t *dest;
268 {
269 int i;
270 u_int8_t byte = 0;
271
272 EEPROM_START;
273
274 /*
275 * Send write control code to EEPROM.
276 */
277 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
278 printf("%s: failed to send write command, status: %x\n",
279 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
280 return(1);
281 }
282
283 /*
284 * Send first byte of address of byte we want to read.
285 */
286 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
287 printf("%s: failed to send address, status: %x\n",
288 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 return(1);
290 }
291 /*
292 * Send second byte address of byte we want to read.
293 */
294 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
295 printf("%s: failed to send address, status: %x\n",
296 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 return(1);
298 }
299
300 EEPROM_STOP;
301 EEPROM_START;
302 /*
303 * Send read control code to EEPROM.
304 */
305 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
306 printf("%s: failed to send read command, status: %x\n",
307 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308 return(1);
309 }
310
311 /*
312 * Start reading bits from EEPROM.
313 */
314 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315 for (i = 0x80; i; i >>= 1) {
316 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317 DELAY(1);
318 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
319 byte |= i;
320 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 DELAY(1);
322 }
323
324 EEPROM_STOP;
325
326 /*
327 * No ACK generated for read, so just return byte.
328 */
329
330 *dest = byte;
331
332 return(0);
333 }
334
335 /*
336 * Read a sequence of bytes from the EEPROM.
337 */
338 static int ti_read_eeprom(sc, dest, off, cnt)
339 struct ti_softc *sc;
340 caddr_t dest;
341 int off;
342 int cnt;
343 {
344 int err = 0, i;
345 u_int8_t byte = 0;
346
347 for (i = 0; i < cnt; i++) {
348 err = ti_eeprom_getbyte(sc, off + i, &byte);
349 if (err)
350 break;
351 *(dest + i) = byte;
352 }
353
354 return(err ? 1 : 0);
355 }
356
357 /*
358 * NIC memory access function. Can be used to either clear a section
359 * of NIC local memory or (if buf is non-NULL) copy data into it.
360 */
361 static void ti_mem(sc, addr, len, buf)
362 struct ti_softc *sc;
363 u_int32_t addr, len;
364 caddr_t buf;
365 {
366 int segptr, segsize, cnt;
367 caddr_t ptr;
368
369 segptr = addr;
370 cnt = len;
371 ptr = buf;
372
373 while(cnt) {
374 if (cnt < TI_WINLEN)
375 segsize = cnt;
376 else
377 segsize = TI_WINLEN - (segptr % TI_WINLEN);
378 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
379 if (buf == NULL) {
380 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
381 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
382 segsize / 4);
383 } else {
384 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
385 bus_space_write_region_stream_4(sc->ti_btag,
386 sc->ti_bhandle,
387 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
388 (u_int32_t *)ptr, segsize / 4);
389 #else
390 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
391 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
392 (u_int32_t *)ptr, segsize / 4);
393 #endif
394 ptr += segsize;
395 }
396 segptr += segsize;
397 cnt -= segsize;
398 }
399
400 return;
401 }
402
403 /*
404 * Load firmware image into the NIC. Check that the firmware revision
405 * is acceptable and see if we want the firmware for the Tigon 1 or
406 * Tigon 2.
407 */
408 static void ti_loadfw(sc)
409 struct ti_softc *sc;
410 {
411 switch(sc->ti_hwrev) {
412 case TI_HWREV_TIGON:
413 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416 printf("%s: firmware revision mismatch; want "
417 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
418 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420 tigonFwReleaseMinor, tigonFwReleaseFix);
421 return;
422 }
423 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424 (caddr_t)tigonFwText);
425 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426 (caddr_t)tigonFwData);
427 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428 (caddr_t)tigonFwRodata);
429 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432 break;
433 case TI_HWREV_TIGON_II:
434 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437 printf("%s: firmware revision mismatch; want "
438 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
439 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441 tigon2FwReleaseMinor, tigon2FwReleaseFix);
442 return;
443 }
444 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445 (caddr_t)tigon2FwText);
446 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447 (caddr_t)tigon2FwData);
448 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449 (caddr_t)tigon2FwRodata);
450 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453 break;
454 default:
455 printf("%s: can't load firmware: unknown hardware rev\n",
456 sc->sc_dev.dv_xname);
457 break;
458 }
459
460 return;
461 }
462
463 /*
464 * Send the NIC a command via the command ring.
465 */
466 static void ti_cmd(sc, cmd)
467 struct ti_softc *sc;
468 struct ti_cmd_desc *cmd;
469 {
470 u_int32_t index;
471
472 index = sc->ti_cmd_saved_prodidx;
473 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
474 TI_INC(index, TI_CMD_RING_CNT);
475 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
476 sc->ti_cmd_saved_prodidx = index;
477
478 return;
479 }
480
481 /*
482 * Send the NIC an extended command. The 'len' parameter specifies the
483 * number of command slots to include after the initial command.
484 */
485 static void ti_cmd_ext(sc, cmd, arg, len)
486 struct ti_softc *sc;
487 struct ti_cmd_desc *cmd;
488 caddr_t arg;
489 int len;
490 {
491 u_int32_t index;
492 int i;
493
494 index = sc->ti_cmd_saved_prodidx;
495 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
496 TI_INC(index, TI_CMD_RING_CNT);
497 for (i = 0; i < len; i++) {
498 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
499 *(u_int32_t *)(&arg[i * 4]));
500 TI_INC(index, TI_CMD_RING_CNT);
501 }
502 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
503 sc->ti_cmd_saved_prodidx = index;
504
505 return;
506 }
507
508 /*
509 * Handle events that have triggered interrupts.
510 */
511 static void ti_handle_events(sc)
512 struct ti_softc *sc;
513 {
514 struct ti_event_desc *e;
515
516 if (sc->ti_rdata->ti_event_ring == NULL)
517 return;
518
519 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
520 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
521 switch(e->ti_event) {
522 case TI_EV_LINKSTAT_CHANGED:
523 sc->ti_linkstat = e->ti_code;
524 if (e->ti_code == TI_EV_CODE_LINK_UP)
525 printf("%s: 10/100 link up\n",
526 sc->sc_dev.dv_xname);
527 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
528 printf("%s: gigabit link up\n",
529 sc->sc_dev.dv_xname);
530 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
531 printf("%s: link down\n",
532 sc->sc_dev.dv_xname);
533 break;
534 case TI_EV_ERROR:
535 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
536 printf("%s: invalid command\n",
537 sc->sc_dev.dv_xname);
538 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
539 printf("%s: unknown command\n",
540 sc->sc_dev.dv_xname);
541 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
542 printf("%s: bad config data\n",
543 sc->sc_dev.dv_xname);
544 break;
545 case TI_EV_FIRMWARE_UP:
546 ti_init2(sc);
547 break;
548 case TI_EV_STATS_UPDATED:
549 ti_stats_update(sc);
550 break;
551 case TI_EV_RESET_JUMBO_RING:
552 case TI_EV_MCAST_UPDATED:
553 /* Who cares. */
554 break;
555 default:
556 printf("%s: unknown event: %d\n",
557 sc->sc_dev.dv_xname, e->ti_event);
558 break;
559 }
560 /* Advance the consumer index. */
561 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563 }
564
565 return;
566 }
567
568 /*
569 * Memory management for the jumbo receive ring is a pain in the
570 * butt. We need to allocate at least 9018 bytes of space per frame,
571 * _and_ it has to be contiguous (unless you use the extended
572 * jumbo descriptor format). Using malloc() all the time won't
573 * work: malloc() allocates memory in powers of two, which means we
574 * would end up wasting a considerable amount of space by allocating
575 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576 * to do our own memory management.
577 *
578 * The driver needs to allocate a contiguous chunk of memory at boot
579 * time. We then chop this up ourselves into 9K pieces and use them
580 * as external mbuf storage.
581 *
582 * One issue here is how much memory to allocate. The jumbo ring has
583 * 256 slots in it, but at 9K per slot than can consume over 2MB of
584 * RAM. This is a bit much, especially considering we also need
585 * RAM for the standard ring and mini ring (on the Tigon 2). To
586 * save space, we only actually allocate enough memory for 64 slots
587 * by default, which works out to between 500 and 600K. This can
588 * be tuned by changing a #define in if_tireg.h.
589 */
590
591 static int ti_alloc_jumbo_mem(sc)
592 struct ti_softc *sc;
593 {
594 caddr_t ptr;
595 int i;
596 struct ti_jpool_entry *entry;
597 bus_dma_segment_t dmaseg;
598 int error, dmanseg;
599
600 /* Grab a big chunk o' storage. */
601 if ((error = bus_dmamem_alloc(sc->sc_dmat,
602 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
603 BUS_DMA_NOWAIT)) != 0) {
604 printf("%s: can't allocate jumbo buffer, error = %d\n",
605 sc->sc_dev.dv_xname, error);
606 return (error);
607 }
608
609 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
610 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
611 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
612 printf("%s: can't map jumbo buffer, error = %d\n",
613 sc->sc_dev.dv_xname, error);
614 return (error);
615 }
616
617 if ((error = bus_dmamap_create(sc->sc_dmat,
618 TI_JMEM, 1,
619 TI_JMEM, 0, BUS_DMA_NOWAIT,
620 &sc->jumbo_dmamap)) != 0) {
621 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
622 sc->sc_dev.dv_xname, error);
623 return (error);
624 }
625
626 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
627 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
628 BUS_DMA_NOWAIT)) != 0) {
629 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
630 sc->sc_dev.dv_xname, error);
631 return (error);
632 }
633 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
634
635 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
636 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
637
638 /*
639 * Now divide it up into 9K pieces and save the addresses
640 * in an array.
641 */
642 ptr = sc->ti_cdata.ti_jumbo_buf;
643 for (i = 0; i < TI_JSLOTS; i++) {
644 sc->ti_cdata.ti_jslots[i] = ptr;
645 ptr += TI_JLEN;
646 entry = malloc(sizeof(struct ti_jpool_entry),
647 M_DEVBUF, M_NOWAIT);
648 if (entry == NULL) {
649 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
650 sc->ti_cdata.ti_jumbo_buf = NULL;
651 printf("%s: no memory for jumbo "
652 "buffer queue!\n", sc->sc_dev.dv_xname);
653 return(ENOBUFS);
654 }
655 entry->slot = i;
656 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
657 jpool_entries);
658 }
659
660 return(0);
661 }
662
663 /*
664 * Allocate a jumbo buffer.
665 */
666 static void *ti_jalloc(sc)
667 struct ti_softc *sc;
668 {
669 struct ti_jpool_entry *entry;
670
671 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
672
673 if (entry == NULL) {
674 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
675 return(NULL);
676 }
677
678 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
679 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
680 return(sc->ti_cdata.ti_jslots[entry->slot]);
681 }
682
683 /*
684 * Release a jumbo buffer.
685 */
686 static void ti_jfree(m, buf, size, arg)
687 struct mbuf *m;
688 caddr_t buf;
689 size_t size;
690 void *arg;
691 {
692 struct ti_softc *sc;
693 int i, s;
694 struct ti_jpool_entry *entry;
695
696 /* Extract the softc struct pointer. */
697 sc = (struct ti_softc *)arg;
698
699 if (sc == NULL)
700 panic("ti_jfree: didn't get softc pointer!");
701
702 /* calculate the slot this buffer belongs to */
703
704 i = ((caddr_t)buf
705 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
706
707 if ((i < 0) || (i >= TI_JSLOTS))
708 panic("ti_jfree: asked to free buffer that we don't manage!");
709
710 s = splvm();
711 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
712 if (entry == NULL)
713 panic("ti_jfree: buffer not in use!");
714 entry->slot = i;
715 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
716 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
717
718 if (__predict_true(m != NULL))
719 pool_cache_put(&mbpool_cache, m);
720 splx(s);
721 }
722
723
724 /*
725 * Intialize a standard receive ring descriptor.
726 */
727 static int ti_newbuf_std(sc, i, m, dmamap)
728 struct ti_softc *sc;
729 int i;
730 struct mbuf *m;
731 bus_dmamap_t dmamap; /* required if (m != NULL) */
732 {
733 struct mbuf *m_new = NULL;
734 struct ti_rx_desc *r;
735 int error;
736
737 if (dmamap == NULL) {
738 /* if (m) panic() */
739
740 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
741 MCLBYTES, 0, BUS_DMA_NOWAIT,
742 &dmamap)) != 0) {
743 printf("%s: can't create recv map, error = %d\n",
744 sc->sc_dev.dv_xname, error);
745 return(ENOMEM);
746 }
747 }
748 sc->std_dmamap[i] = dmamap;
749
750 if (m == NULL) {
751 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
752 if (m_new == NULL) {
753 printf("%s: mbuf allocation failed "
754 "-- packet dropped!\n", sc->sc_dev.dv_xname);
755 return(ENOBUFS);
756 }
757
758 MCLGET(m_new, M_DONTWAIT);
759 if (!(m_new->m_flags & M_EXT)) {
760 printf("%s: cluster allocation failed "
761 "-- packet dropped!\n", sc->sc_dev.dv_xname);
762 m_freem(m_new);
763 return(ENOBUFS);
764 }
765 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
766 m_adj(m_new, ETHER_ALIGN);
767
768 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
769 mtod(m_new, caddr_t), m_new->m_len, NULL,
770 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
771 printf("%s: can't load recv map, error = %d\n",
772 sc->sc_dev.dv_xname, error);
773 return (ENOMEM);
774 }
775 } else {
776 m_new = m;
777 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
778 m_new->m_data = m_new->m_ext.ext_buf;
779 m_adj(m_new, ETHER_ALIGN);
780
781 /* reuse the dmamap */
782 }
783
784 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
785 r = &sc->ti_rdata->ti_rx_std_ring[i];
786 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
787 r->ti_type = TI_BDTYPE_RECV_BD;
788 r->ti_flags = 0;
789 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
790 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
791 if (sc->ethercom.ec_if.if_capenable &
792 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
793 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
794 r->ti_len = m_new->m_len; /* == ds_len */
795 r->ti_idx = i;
796
797 return(0);
798 }
799
800 /*
801 * Intialize a mini receive ring descriptor. This only applies to
802 * the Tigon 2.
803 */
804 static int ti_newbuf_mini(sc, i, m, dmamap)
805 struct ti_softc *sc;
806 int i;
807 struct mbuf *m;
808 bus_dmamap_t dmamap; /* required if (m != NULL) */
809 {
810 struct mbuf *m_new = NULL;
811 struct ti_rx_desc *r;
812 int error;
813
814 if (dmamap == NULL) {
815 /* if (m) panic() */
816
817 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
818 MHLEN, 0, BUS_DMA_NOWAIT,
819 &dmamap)) != 0) {
820 printf("%s: can't create recv map, error = %d\n",
821 sc->sc_dev.dv_xname, error);
822 return(ENOMEM);
823 }
824 }
825 sc->mini_dmamap[i] = dmamap;
826
827 if (m == NULL) {
828 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
829 if (m_new == NULL) {
830 printf("%s: mbuf allocation failed "
831 "-- packet dropped!\n", sc->sc_dev.dv_xname);
832 return(ENOBUFS);
833 }
834 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
835 m_adj(m_new, ETHER_ALIGN);
836
837 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
838 mtod(m_new, caddr_t), m_new->m_len, NULL,
839 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
840 printf("%s: can't load recv map, error = %d\n",
841 sc->sc_dev.dv_xname, error);
842 return (ENOMEM);
843 }
844 } else {
845 m_new = m;
846 m_new->m_data = m_new->m_pktdat;
847 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
848 m_adj(m_new, ETHER_ALIGN);
849
850 /* reuse the dmamap */
851 }
852
853 r = &sc->ti_rdata->ti_rx_mini_ring[i];
854 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
855 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
856 r->ti_type = TI_BDTYPE_RECV_BD;
857 r->ti_flags = TI_BDFLAG_MINI_RING;
858 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
859 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
860 if (sc->ethercom.ec_if.if_capenable &
861 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
862 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
863 r->ti_len = m_new->m_len; /* == ds_len */
864 r->ti_idx = i;
865
866 return(0);
867 }
868
869 /*
870 * Initialize a jumbo receive ring descriptor. This allocates
871 * a jumbo buffer from the pool managed internally by the driver.
872 */
873 static int ti_newbuf_jumbo(sc, i, m)
874 struct ti_softc *sc;
875 int i;
876 struct mbuf *m;
877 {
878 struct mbuf *m_new = NULL;
879 struct ti_rx_desc *r;
880
881 if (m == NULL) {
882 caddr_t buf = NULL;
883
884 /* Allocate the mbuf. */
885 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
886 if (m_new == NULL) {
887 printf("%s: mbuf allocation failed "
888 "-- packet dropped!\n", sc->sc_dev.dv_xname);
889 return(ENOBUFS);
890 }
891
892 /* Allocate the jumbo buffer */
893 buf = ti_jalloc(sc);
894 if (buf == NULL) {
895 m_freem(m_new);
896 printf("%s: jumbo allocation failed "
897 "-- packet dropped!\n", sc->sc_dev.dv_xname);
898 return(ENOBUFS);
899 }
900
901 /* Attach the buffer to the mbuf. */
902 MEXTADD(m_new, buf, ETHER_MAX_LEN_JUMBO,
903 M_DEVBUF, ti_jfree, sc);
904 m_new->m_flags |= M_EXT_RW;
905 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
906 } else {
907 m_new = m;
908 m_new->m_data = m_new->m_ext.ext_buf;
909 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
910 }
911
912 m_adj(m_new, ETHER_ALIGN);
913 /* Set up the descriptor. */
914 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
915 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
916 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
917 ((caddr_t)mtod(m_new, caddr_t)
918 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
919 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
920 r->ti_flags = TI_BDFLAG_JUMBO_RING;
921 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
922 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
923 if (sc->ethercom.ec_if.if_capenable &
924 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
925 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
926 r->ti_len = m_new->m_len;
927 r->ti_idx = i;
928
929 return(0);
930 }
931
932 /*
933 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
934 * that's 1MB or memory, which is a lot. For now, we fill only the first
935 * 256 ring entries and hope that our CPU is fast enough to keep up with
936 * the NIC.
937 */
938 static int ti_init_rx_ring_std(sc)
939 struct ti_softc *sc;
940 {
941 int i;
942 struct ti_cmd_desc cmd;
943
944 for (i = 0; i < TI_SSLOTS; i++) {
945 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
946 return(ENOBUFS);
947 };
948
949 TI_UPDATE_STDPROD(sc, i - 1);
950 sc->ti_std = i - 1;
951
952 return(0);
953 }
954
955 static void ti_free_rx_ring_std(sc)
956 struct ti_softc *sc;
957 {
958 int i;
959
960 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
961 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
962 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
963 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
964
965 /* if (sc->std_dmamap[i] == 0) panic() */
966 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
967 sc->std_dmamap[i] = 0;
968 }
969 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
970 sizeof(struct ti_rx_desc));
971 }
972
973 return;
974 }
975
976 static int ti_init_rx_ring_jumbo(sc)
977 struct ti_softc *sc;
978 {
979 int i;
980 struct ti_cmd_desc cmd;
981
982 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
983 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
984 return(ENOBUFS);
985 };
986
987 TI_UPDATE_JUMBOPROD(sc, i - 1);
988 sc->ti_jumbo = i - 1;
989
990 return(0);
991 }
992
993 static void ti_free_rx_ring_jumbo(sc)
994 struct ti_softc *sc;
995 {
996 int i;
997
998 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
999 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1000 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1001 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1002 }
1003 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
1004 sizeof(struct ti_rx_desc));
1005 }
1006
1007 return;
1008 }
1009
1010 static int ti_init_rx_ring_mini(sc)
1011 struct ti_softc *sc;
1012 {
1013 int i;
1014
1015 for (i = 0; i < TI_MSLOTS; i++) {
1016 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1017 return(ENOBUFS);
1018 };
1019
1020 TI_UPDATE_MINIPROD(sc, i - 1);
1021 sc->ti_mini = i - 1;
1022
1023 return(0);
1024 }
1025
1026 static void ti_free_rx_ring_mini(sc)
1027 struct ti_softc *sc;
1028 {
1029 int i;
1030
1031 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1032 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1033 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1034 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1035
1036 /* if (sc->mini_dmamap[i] == 0) panic() */
1037 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1038 sc->mini_dmamap[i] = 0;
1039 }
1040 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1041 sizeof(struct ti_rx_desc));
1042 }
1043
1044 return;
1045 }
1046
1047 static void ti_free_tx_ring(sc)
1048 struct ti_softc *sc;
1049 {
1050 int i;
1051 struct txdmamap_pool_entry *dma;
1052
1053 if (sc->ti_rdata->ti_tx_ring == NULL)
1054 return;
1055
1056 for (i = 0; i < TI_TX_RING_CNT; i++) {
1057 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1058 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1059 sc->ti_cdata.ti_tx_chain[i] = NULL;
1060
1061 /* if (sc->txdma[i] == 0) panic() */
1062 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1063 link);
1064 sc->txdma[i] = 0;
1065 }
1066 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1067 sizeof(struct ti_tx_desc));
1068 }
1069
1070 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1071 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1072 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1073 free(dma, M_DEVBUF);
1074 }
1075
1076 return;
1077 }
1078
1079 static int ti_init_tx_ring(sc)
1080 struct ti_softc *sc;
1081 {
1082 int i, error;
1083 bus_dmamap_t dmamap;
1084 struct txdmamap_pool_entry *dma;
1085
1086 sc->ti_txcnt = 0;
1087 sc->ti_tx_saved_considx = 0;
1088 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1089
1090 SIMPLEQ_INIT(&sc->txdma_list);
1091 for (i = 0; i < TI_RSLOTS; i++) {
1092 /* I've seen mbufs with 30 fragments. */
1093 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1094 40, ETHER_MAX_LEN_JUMBO, 0,
1095 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1096 printf("%s: can't create tx map, error = %d\n",
1097 sc->sc_dev.dv_xname, error);
1098 return(ENOMEM);
1099 }
1100 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1101 if (!dma) {
1102 printf("%s: can't alloc txdmamap_pool_entry\n",
1103 sc->sc_dev.dv_xname);
1104 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1105 return (ENOMEM);
1106 }
1107 dma->dmamap = dmamap;
1108 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1109 }
1110
1111 return(0);
1112 }
1113
1114 /*
1115 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1116 * but we have to support the old way too so that Tigon 1 cards will
1117 * work.
1118 */
1119 void ti_add_mcast(sc, addr)
1120 struct ti_softc *sc;
1121 struct ether_addr *addr;
1122 {
1123 struct ti_cmd_desc cmd;
1124 u_int16_t *m;
1125 u_int32_t ext[2] = {0, 0};
1126
1127 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1128
1129 switch(sc->ti_hwrev) {
1130 case TI_HWREV_TIGON:
1131 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1132 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1133 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1134 break;
1135 case TI_HWREV_TIGON_II:
1136 ext[0] = htons(m[0]);
1137 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1138 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1139 break;
1140 default:
1141 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1142 break;
1143 }
1144
1145 return;
1146 }
1147
1148 void ti_del_mcast(sc, addr)
1149 struct ti_softc *sc;
1150 struct ether_addr *addr;
1151 {
1152 struct ti_cmd_desc cmd;
1153 u_int16_t *m;
1154 u_int32_t ext[2] = {0, 0};
1155
1156 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1157
1158 switch(sc->ti_hwrev) {
1159 case TI_HWREV_TIGON:
1160 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1161 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1162 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1163 break;
1164 case TI_HWREV_TIGON_II:
1165 ext[0] = htons(m[0]);
1166 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1167 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1168 break;
1169 default:
1170 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1171 break;
1172 }
1173
1174 return;
1175 }
1176
1177 /*
1178 * Configure the Tigon's multicast address filter.
1179 *
1180 * The actual multicast table management is a bit of a pain, thanks to
1181 * slight brain damage on the part of both Alteon and us. With our
1182 * multicast code, we are only alerted when the multicast address table
1183 * changes and at that point we only have the current list of addresses:
1184 * we only know the current state, not the previous state, so we don't
1185 * actually know what addresses were removed or added. The firmware has
1186 * state, but we can't get our grubby mits on it, and there is no 'delete
1187 * all multicast addresses' command. Hence, we have to maintain our own
1188 * state so we know what addresses have been programmed into the NIC at
1189 * any given time.
1190 */
1191 static void ti_setmulti(sc)
1192 struct ti_softc *sc;
1193 {
1194 struct ifnet *ifp;
1195 struct ti_cmd_desc cmd;
1196 struct ti_mc_entry *mc;
1197 u_int32_t intrs;
1198 struct ether_multi *enm;
1199 struct ether_multistep step;
1200
1201 ifp = &sc->ethercom.ec_if;
1202
1203 /* Disable interrupts. */
1204 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1205 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1206
1207 /* First, zot all the existing filters. */
1208 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1209 ti_del_mcast(sc, &mc->mc_addr);
1210 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1211 free(mc, M_DEVBUF);
1212 }
1213
1214 /*
1215 * Remember all multicast addresses so that we can delete them
1216 * later. Punt if there is a range of addresses or memory shortage.
1217 */
1218 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1219 while (enm != NULL) {
1220 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1221 ETHER_ADDR_LEN) != 0)
1222 goto allmulti;
1223 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1224 M_NOWAIT)) == NULL)
1225 goto allmulti;
1226 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1227 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1228 ETHER_NEXT_MULTI(step, enm);
1229 }
1230
1231 /* Accept only programmed multicast addresses */
1232 ifp->if_flags &= ~IFF_ALLMULTI;
1233 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1234
1235 /* Now program new ones. */
1236 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1237 ti_add_mcast(sc, &mc->mc_addr);
1238
1239 /* Re-enable interrupts. */
1240 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1241
1242 return;
1243
1244 allmulti:
1245 /* No need to keep individual multicast addresses */
1246 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1247 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1248 free(mc, M_DEVBUF);
1249 }
1250
1251 /* Accept all multicast addresses */
1252 ifp->if_flags |= IFF_ALLMULTI;
1253 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1254
1255 /* Re-enable interrupts. */
1256 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1257 }
1258
1259 /*
1260 * Check to see if the BIOS has configured us for a 64 bit slot when
1261 * we aren't actually in one. If we detect this condition, we can work
1262 * around it on the Tigon 2 by setting a bit in the PCI state register,
1263 * but for the Tigon 1 we must give up and abort the interface attach.
1264 */
1265 static int ti_64bitslot_war(sc)
1266 struct ti_softc *sc;
1267 {
1268 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1269 CSR_WRITE_4(sc, 0x600, 0);
1270 CSR_WRITE_4(sc, 0x604, 0);
1271 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1272 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1273 if (sc->ti_hwrev == TI_HWREV_TIGON)
1274 return(EINVAL);
1275 else {
1276 TI_SETBIT(sc, TI_PCI_STATE,
1277 TI_PCISTATE_32BIT_BUS);
1278 return(0);
1279 }
1280 }
1281 }
1282
1283 return(0);
1284 }
1285
1286 /*
1287 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1288 * self-test results.
1289 */
1290 static int ti_chipinit(sc)
1291 struct ti_softc *sc;
1292 {
1293 u_int32_t cacheline;
1294 u_int32_t pci_writemax = 0;
1295 u_int32_t rev;
1296
1297 /* Initialize link to down state. */
1298 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1299
1300 /* Set endianness before we access any non-PCI registers. */
1301 #if BYTE_ORDER == BIG_ENDIAN
1302 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1303 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1304 #else
1305 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1306 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1307 #endif
1308
1309 /* Check the ROM failed bit to see if self-tests passed. */
1310 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1311 printf("%s: board self-diagnostics failed!\n",
1312 sc->sc_dev.dv_xname);
1313 return(ENODEV);
1314 }
1315
1316 /* Halt the CPU. */
1317 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1318
1319 /* Figure out the hardware revision. */
1320 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1321 switch(rev) {
1322 case TI_REV_TIGON_I:
1323 sc->ti_hwrev = TI_HWREV_TIGON;
1324 break;
1325 case TI_REV_TIGON_II:
1326 sc->ti_hwrev = TI_HWREV_TIGON_II;
1327 break;
1328 default:
1329 printf("%s: unsupported chip revision 0x%x\n",
1330 sc->sc_dev.dv_xname, rev);
1331 return(ENODEV);
1332 }
1333
1334 /* Do special setup for Tigon 2. */
1335 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1336 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1337 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1338 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1339 }
1340
1341 /* Set up the PCI state register. */
1342 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1343 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1344 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1345 }
1346
1347 /* Clear the read/write max DMA parameters. */
1348 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1349 TI_PCISTATE_READ_MAXDMA));
1350
1351 /* Get cache line size. */
1352 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1353
1354 /*
1355 * If the system has set enabled the PCI memory write
1356 * and invalidate command in the command register, set
1357 * the write max parameter accordingly. This is necessary
1358 * to use MWI with the Tigon 2.
1359 */
1360 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1361 & PCI_COMMAND_INVALIDATE_ENABLE) {
1362 switch(cacheline) {
1363 case 1:
1364 case 4:
1365 case 8:
1366 case 16:
1367 case 32:
1368 case 64:
1369 break;
1370 default:
1371 /* Disable PCI memory write and invalidate. */
1372 if (bootverbose)
1373 printf("%s: cache line size %d not "
1374 "supported; disabling PCI MWI\n",
1375 sc->sc_dev.dv_xname, cacheline);
1376 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1377 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1378 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1379 break;
1380 }
1381 }
1382
1383 #ifdef __brokenalpha__
1384 /*
1385 * From the Alteon sample driver:
1386 * Must insure that we do not cross an 8K (bytes) boundary
1387 * for DMA reads. Our highest limit is 1K bytes. This is a
1388 * restriction on some ALPHA platforms with early revision
1389 * 21174 PCI chipsets, such as the AlphaPC 164lx
1390 */
1391 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1392 #else
1393 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1394 #endif
1395
1396 /* This sets the min dma param all the way up (0xff). */
1397 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1398
1399 /* Configure DMA variables. */
1400 #if BYTE_ORDER == BIG_ENDIAN
1401 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1402 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1403 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1404 TI_OPMODE_DONT_FRAG_JUMBO);
1405 #else
1406 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1407 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1408 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1409 #endif
1410
1411 /*
1412 * Only allow 1 DMA channel to be active at a time.
1413 * I don't think this is a good idea, but without it
1414 * the firmware racks up lots of nicDmaReadRingFull
1415 * errors.
1416 * Incompatible with hardware assisted checksums.
1417 */
1418 if ((sc->ethercom.ec_if.if_capenable &
1419 (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
1420 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1421
1422 /* Recommended settings from Tigon manual. */
1423 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1424 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1425
1426 if (ti_64bitslot_war(sc)) {
1427 printf("%s: bios thinks we're in a 64 bit slot, "
1428 "but we aren't", sc->sc_dev.dv_xname);
1429 return(EINVAL);
1430 }
1431
1432 return(0);
1433 }
1434
1435 /*
1436 * Initialize the general information block and firmware, and
1437 * start the CPU(s) running.
1438 */
1439 static int ti_gibinit(sc)
1440 struct ti_softc *sc;
1441 {
1442 struct ti_rcb *rcb;
1443 int i;
1444 struct ifnet *ifp;
1445
1446 ifp = &sc->ethercom.ec_if;
1447
1448 /* Disable interrupts for now. */
1449 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1450
1451 /* Tell the chip where to find the general information block. */
1452 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1453 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1454
1455 /* Load the firmware into SRAM. */
1456 ti_loadfw(sc);
1457
1458 /* Set up the contents of the general info and ring control blocks. */
1459
1460 /* Set up the event ring and producer pointer. */
1461 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1462
1463 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1464 rcb->ti_flags = 0;
1465 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1466 TI_CDEVPRODADDR(sc);
1467
1468 sc->ti_ev_prodidx.ti_idx = 0;
1469 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1470 sc->ti_ev_saved_considx = 0;
1471
1472 /* Set up the command ring and producer mailbox. */
1473 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1474
1475 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1476 rcb->ti_flags = 0;
1477 rcb->ti_max_len = 0;
1478 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1479 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1480 }
1481 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1482 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1483 sc->ti_cmd_saved_prodidx = 0;
1484
1485 /*
1486 * Assign the address of the stats refresh buffer.
1487 * We re-use the current stats buffer for this to
1488 * conserve memory.
1489 */
1490 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1491 TI_CDSTATSADDR(sc);
1492
1493 /* Set up the standard receive ring. */
1494 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1495 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1496 rcb->ti_max_len = ETHER_MAX_LEN;
1497 rcb->ti_flags = 0;
1498 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1499 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1500 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1501 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1502 if (sc->ethercom.ec_nvlans != 0)
1503 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1504
1505 /* Set up the jumbo receive ring. */
1506 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1507 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1508 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1509 rcb->ti_flags = 0;
1510 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1511 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1512 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1513 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1514 if (sc->ethercom.ec_nvlans != 0)
1515 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1516
1517 /*
1518 * Set up the mini ring. Only activated on the
1519 * Tigon 2 but the slot in the config block is
1520 * still there on the Tigon 1.
1521 */
1522 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1523 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1524 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1525 if (sc->ti_hwrev == TI_HWREV_TIGON)
1526 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1527 else
1528 rcb->ti_flags = 0;
1529 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1530 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1531 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1532 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1533 if (sc->ethercom.ec_nvlans != 0)
1534 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1535
1536 /*
1537 * Set up the receive return ring.
1538 */
1539 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1540 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1541 rcb->ti_flags = 0;
1542 rcb->ti_max_len = TI_RETURN_RING_CNT;
1543 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1544 TI_CDRTNPRODADDR(sc);
1545
1546 /*
1547 * Set up the tx ring. Note: for the Tigon 2, we have the option
1548 * of putting the transmit ring in the host's address space and
1549 * letting the chip DMA it instead of leaving the ring in the NIC's
1550 * memory and accessing it through the shared memory region. We
1551 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1552 * so we have to revert to the shared memory scheme if we detect
1553 * a Tigon 1 chip.
1554 */
1555 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1556 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1557 sc->ti_tx_ring_nic =
1558 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1559 }
1560 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1561 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1562 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1563 if (sc->ti_hwrev == TI_HWREV_TIGON)
1564 rcb->ti_flags = 0;
1565 else
1566 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1567 if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1568 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1569 /*
1570 * When we get the packet, there is a pseudo-header seed already
1571 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1572 * compute the pseudo-header checksum again!
1573 */
1574 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1575 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1576 TI_RCB_FLAG_NO_PHDR_CKSUM;
1577 if (sc->ethercom.ec_nvlans != 0)
1578 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1579 rcb->ti_max_len = TI_TX_RING_CNT;
1580 if (sc->ti_hwrev == TI_HWREV_TIGON)
1581 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1582 else
1583 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1584 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1585 TI_CDTXCONSADDR(sc);
1586
1587 /*
1588 * We're done frobbing the General Information Block. Sync
1589 * it. Note we take care of the first stats sync here, as
1590 * well.
1591 */
1592 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1593
1594 /* Set up tuneables */
1595 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1596 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1597 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1598 (sc->ti_rx_coal_ticks / 10));
1599 else
1600 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1601 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1602 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1603 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1604 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1605 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1606
1607 /* Turn interrupts on. */
1608 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1609 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1610
1611 /* Start CPU. */
1612 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1613
1614 return(0);
1615 }
1616
1617 /*
1618 * look for id in the device list, returning the first match
1619 */
1620 static const struct ti_type *
1621 ti_type_match(pa)
1622 struct pci_attach_args *pa;
1623 {
1624 const struct ti_type *t;
1625
1626 t = ti_devs;
1627 while(t->ti_name != NULL) {
1628 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1629 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1630 return (t);
1631 }
1632 t++;
1633 }
1634
1635 return(NULL);
1636 }
1637
1638 /*
1639 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1640 * against our list and return its name if we find a match.
1641 */
1642 static int ti_probe(parent, match, aux)
1643 struct device *parent;
1644 struct cfdata *match;
1645 void *aux;
1646 {
1647 struct pci_attach_args *pa = aux;
1648 const struct ti_type *t;
1649
1650 t = ti_type_match(pa);
1651
1652 return((t == NULL) ? 0 : 1);
1653 }
1654
1655 static void ti_attach(parent, self, aux)
1656 struct device *parent, *self;
1657 void *aux;
1658 {
1659 u_int32_t command;
1660 struct ifnet *ifp;
1661 struct ti_softc *sc;
1662 u_char eaddr[ETHER_ADDR_LEN];
1663 struct pci_attach_args *pa = aux;
1664 pci_chipset_tag_t pc = pa->pa_pc;
1665 pci_intr_handle_t ih;
1666 const char *intrstr = NULL;
1667 bus_dma_segment_t dmaseg;
1668 int error, dmanseg, nolinear;
1669 const struct ti_type *t;
1670
1671 t = ti_type_match(pa);
1672 if (t == NULL) {
1673 printf("ti_attach: were did the card go ?\n");
1674 return;
1675 }
1676
1677 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1678
1679 sc = (struct ti_softc *)self;
1680
1681 /*
1682 * Map control/status registers.
1683 */
1684 nolinear = 0;
1685 if (pci_mapreg_map(pa, 0x10,
1686 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1687 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1688 NULL, NULL)) {
1689 nolinear = 1;
1690 if (pci_mapreg_map(pa, 0x10,
1691 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1692 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1693 printf(": can't map memory space\n");
1694 return;
1695 }
1696 }
1697 if (nolinear == 0)
1698 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1699 else
1700 sc->ti_vhandle = NULL;
1701
1702 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1703 command |= PCI_COMMAND_MASTER_ENABLE;
1704 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1705
1706 /* Allocate interrupt */
1707 if (pci_intr_map(pa, &ih)) {
1708 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1709 return;
1710 }
1711 intrstr = pci_intr_string(pc, ih);
1712 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1713 if (sc->sc_ih == NULL) {
1714 printf("%s: couldn't establish interrupt",
1715 sc->sc_dev.dv_xname);
1716 if (intrstr != NULL)
1717 printf(" at %s", intrstr);
1718 printf("\n");
1719 return;
1720 }
1721 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1722 /*
1723 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1724 * doing do could allow DMA to corrupt kernel memory during the
1725 * reboot before the driver initializes.
1726 */
1727 (void) shutdownhook_establish(ti_shutdown, sc);
1728
1729 if (ti_chipinit(sc)) {
1730 printf("%s: chip initialization failed\n", self->dv_xname);
1731 goto fail2;
1732 }
1733
1734 /*
1735 * Deal with some chip diffrences.
1736 */
1737 switch (sc->ti_hwrev) {
1738 case TI_HWREV_TIGON:
1739 sc->sc_tx_encap = ti_encap_tigon1;
1740 sc->sc_tx_eof = ti_txeof_tigon1;
1741 if (nolinear == 1)
1742 printf("%s: memory space not mapped linear\n",
1743 self->dv_xname);
1744 break;
1745
1746 case TI_HWREV_TIGON_II:
1747 sc->sc_tx_encap = ti_encap_tigon2;
1748 sc->sc_tx_eof = ti_txeof_tigon2;
1749 break;
1750
1751 default:
1752 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1753 sc->ti_hwrev);
1754 goto fail2;
1755 }
1756
1757 /* Zero out the NIC's on-board SRAM. */
1758 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1759
1760 /* Init again -- zeroing memory may have clobbered some registers. */
1761 if (ti_chipinit(sc)) {
1762 printf("%s: chip initialization failed\n", self->dv_xname);
1763 goto fail2;
1764 }
1765
1766 /*
1767 * Get station address from the EEPROM. Note: the manual states
1768 * that the MAC address is at offset 0x8c, however the data is
1769 * stored as two longwords (since that's how it's loaded into
1770 * the NIC). This means the MAC address is actually preceded
1771 * by two zero bytes. We need to skip over those.
1772 */
1773 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1774 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1775 printf("%s: failed to read station address\n", self->dv_xname);
1776 goto fail2;
1777 }
1778
1779 /*
1780 * A Tigon chip was detected. Inform the world.
1781 */
1782 printf("%s: Ethernet address: %s\n", self->dv_xname,
1783 ether_sprintf(eaddr));
1784
1785 sc->sc_dmat = pa->pa_dmat;
1786
1787 /* Allocate the general information block and ring buffers. */
1788 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1789 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1790 BUS_DMA_NOWAIT)) != 0) {
1791 printf("%s: can't allocate ring buffer, error = %d\n",
1792 sc->sc_dev.dv_xname, error);
1793 goto fail2;
1794 }
1795
1796 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1797 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1798 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1799 printf("%s: can't map ring buffer, error = %d\n",
1800 sc->sc_dev.dv_xname, error);
1801 goto fail2;
1802 }
1803
1804 if ((error = bus_dmamap_create(sc->sc_dmat,
1805 sizeof(struct ti_ring_data), 1,
1806 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1807 &sc->info_dmamap)) != 0) {
1808 printf("%s: can't create ring buffer DMA map, error = %d\n",
1809 sc->sc_dev.dv_xname, error);
1810 goto fail2;
1811 }
1812
1813 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1814 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1815 BUS_DMA_NOWAIT)) != 0) {
1816 printf("%s: can't load ring buffer DMA map, error = %d\n",
1817 sc->sc_dev.dv_xname, error);
1818 goto fail2;
1819 }
1820
1821 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1822
1823 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1824
1825 /* Try to allocate memory for jumbo buffers. */
1826 if (ti_alloc_jumbo_mem(sc)) {
1827 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1828 goto fail2;
1829 }
1830
1831 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1832
1833 /*
1834 * We really need a better way to tell a 1000baseT card
1835 * from a 1000baseSX one, since in theory there could be
1836 * OEMed 1000baseT cards from lame vendors who aren't
1837 * clever enough to change the PCI ID. For the moment
1838 * though, the AceNIC is the only copper card available.
1839 */
1840 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1841 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1842 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1843 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1844 sc->ti_copper = 1;
1845 else
1846 sc->ti_copper = 0;
1847
1848 /* Set default tuneable values. */
1849 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1850 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1851 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1852 sc->ti_rx_max_coal_bds = 64;
1853 sc->ti_tx_max_coal_bds = 128;
1854 sc->ti_tx_buf_ratio = 21;
1855
1856 /* Set up ifnet structure */
1857 ifp = &sc->ethercom.ec_if;
1858 ifp->if_softc = sc;
1859 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1860 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1861 ifp->if_ioctl = ti_ioctl;
1862 ifp->if_start = ti_start;
1863 ifp->if_watchdog = ti_watchdog;
1864 IFQ_SET_READY(&ifp->if_snd);
1865
1866 #if 0
1867 /*
1868 * XXX This is not really correct -- we don't necessarily
1869 * XXX want to queue up as many as we can transmit at the
1870 * XXX upper layer like that. Someone with a board should
1871 * XXX check to see how this affects performance.
1872 */
1873 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1874 #endif
1875
1876 /*
1877 * We can support 802.1Q VLAN-sized frames.
1878 */
1879 sc->ethercom.ec_capabilities |=
1880 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1881
1882 /*
1883 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1884 */
1885 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1886 IFCAP_CSUM_UDPv4;
1887
1888 /* Set up ifmedia support. */
1889 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1890 if (sc->ti_copper) {
1891 /*
1892 * Copper cards allow manual 10/100 mode selection,
1893 * but not manual 1000baseT mode selection. Why?
1894 * Because currently there's no way to specify the
1895 * master/slave setting through the firmware interface,
1896 * so Alteon decided to just bag it and handle it
1897 * via autonegotiation.
1898 */
1899 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1900 ifmedia_add(&sc->ifmedia,
1901 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1902 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1903 ifmedia_add(&sc->ifmedia,
1904 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1905 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1906 ifmedia_add(&sc->ifmedia,
1907 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1908 } else {
1909 /* Fiber cards don't support 10/100 modes. */
1910 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1911 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1912 }
1913 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1914 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1915
1916 /*
1917 * Call MI attach routines.
1918 */
1919 if_attach(ifp);
1920 ether_ifattach(ifp, eaddr);
1921
1922 return;
1923 fail2:
1924 pci_intr_disestablish(pc, sc->sc_ih);
1925 return;
1926 }
1927
1928 /*
1929 * Frame reception handling. This is called if there's a frame
1930 * on the receive return list.
1931 *
1932 * Note: we have to be able to handle three possibilities here:
1933 * 1) the frame is from the mini receive ring (can only happen)
1934 * on Tigon 2 boards)
1935 * 2) the frame is from the jumbo receive ring
1936 * 3) the frame is from the standard receive ring
1937 */
1938
1939 static void ti_rxeof(sc)
1940 struct ti_softc *sc;
1941 {
1942 struct ifnet *ifp;
1943 struct ti_cmd_desc cmd;
1944
1945 ifp = &sc->ethercom.ec_if;
1946
1947 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1948 struct ti_rx_desc *cur_rx;
1949 u_int32_t rxidx;
1950 struct mbuf *m = NULL;
1951 u_int16_t vlan_tag = 0;
1952 int have_tag = 0;
1953 struct ether_header *eh;
1954 bus_dmamap_t dmamap;
1955
1956 cur_rx =
1957 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1958 rxidx = cur_rx->ti_idx;
1959 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1960
1961 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1962 have_tag = 1;
1963 /* ti_vlan_tag also has the priority, trim it */
1964 vlan_tag = cur_rx->ti_vlan_tag & 4095;
1965 }
1966
1967 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1968 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1969 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1970 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1971 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1972 ifp->if_ierrors++;
1973 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1974 continue;
1975 }
1976 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1977 == ENOBUFS) {
1978 ifp->if_ierrors++;
1979 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1980 continue;
1981 }
1982 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1983 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1984 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1985 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1986 dmamap = sc->mini_dmamap[rxidx];
1987 sc->mini_dmamap[rxidx] = 0;
1988 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1989 ifp->if_ierrors++;
1990 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1991 continue;
1992 }
1993 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1994 == ENOBUFS) {
1995 ifp->if_ierrors++;
1996 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1997 continue;
1998 }
1999 } else {
2000 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2001 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2002 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2003 dmamap = sc->std_dmamap[rxidx];
2004 sc->std_dmamap[rxidx] = 0;
2005 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2006 ifp->if_ierrors++;
2007 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2008 continue;
2009 }
2010 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2011 == ENOBUFS) {
2012 ifp->if_ierrors++;
2013 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2014 continue;
2015 }
2016 }
2017
2018 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2019 ifp->if_ipackets++;
2020 m->m_pkthdr.rcvif = ifp;
2021
2022 #if NBPFILTER > 0
2023 /*
2024 * Handle BPF listeners. Let the BPF user see the packet, but
2025 * don't pass it up to the ether_input() layer unless it's
2026 * a broadcast packet, multicast packet, matches our ethernet
2027 * address or the interface is in promiscuous mode.
2028 */
2029 if (ifp->if_bpf)
2030 bpf_mtap(ifp->if_bpf, m);
2031 #endif
2032
2033 eh = mtod(m, struct ether_header *);
2034 switch (ntohs(eh->ether_type)) {
2035 #ifdef INET
2036 case ETHERTYPE_IP:
2037 {
2038 struct ip *ip = (struct ip *) (eh + 1);
2039
2040 /*
2041 * Note the Tigon firmware does not invert
2042 * the checksum for us, hence the XOR.
2043 */
2044 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2045 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2046 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2047 /*
2048 * ntohs() the constant so the compiler can
2049 * optimize...
2050 *
2051 * XXX Figure out a sane way to deal with
2052 * fragmented packets.
2053 */
2054 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2055 switch (ip->ip_p) {
2056 case IPPROTO_TCP:
2057 m->m_pkthdr.csum_data =
2058 cur_rx->ti_tcp_udp_cksum;
2059 m->m_pkthdr.csum_flags |=
2060 M_CSUM_TCPv4|M_CSUM_DATA;
2061 break;
2062 case IPPROTO_UDP:
2063 m->m_pkthdr.csum_data =
2064 cur_rx->ti_tcp_udp_cksum;
2065 m->m_pkthdr.csum_flags |=
2066 M_CSUM_UDPv4|M_CSUM_DATA;
2067 break;
2068 default:
2069 /* Nothing */;
2070 }
2071 }
2072 break;
2073 }
2074 #endif
2075 default:
2076 /* Nothing. */
2077 break;
2078 }
2079
2080 if (have_tag) {
2081 struct m_tag *mtag;
2082
2083 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2084 M_NOWAIT);
2085 if (mtag) {
2086 *(u_int *)(mtag + 1) = vlan_tag;
2087 m_tag_prepend(m, mtag);
2088 have_tag = vlan_tag = 0;
2089 } else {
2090 printf("%s: no mbuf for tag\n", ifp->if_xname);
2091 m_freem(m);
2092 have_tag = vlan_tag = 0;
2093 continue;
2094 }
2095 }
2096 (*ifp->if_input)(ifp, m);
2097 }
2098
2099 /* Only necessary on the Tigon 1. */
2100 if (sc->ti_hwrev == TI_HWREV_TIGON)
2101 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2102 sc->ti_rx_saved_considx);
2103
2104 TI_UPDATE_STDPROD(sc, sc->ti_std);
2105 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2106 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2107
2108 return;
2109 }
2110
2111 static void ti_txeof_tigon1(sc)
2112 struct ti_softc *sc;
2113 {
2114 struct ti_tx_desc *cur_tx = NULL;
2115 struct ifnet *ifp;
2116 struct txdmamap_pool_entry *dma;
2117
2118 ifp = &sc->ethercom.ec_if;
2119
2120 /*
2121 * Go through our tx ring and free mbufs for those
2122 * frames that have been sent.
2123 */
2124 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2125 u_int32_t idx = 0;
2126
2127 idx = sc->ti_tx_saved_considx;
2128 if (idx > 383)
2129 CSR_WRITE_4(sc, TI_WINBASE,
2130 TI_TX_RING_BASE + 6144);
2131 else if (idx > 255)
2132 CSR_WRITE_4(sc, TI_WINBASE,
2133 TI_TX_RING_BASE + 4096);
2134 else if (idx > 127)
2135 CSR_WRITE_4(sc, TI_WINBASE,
2136 TI_TX_RING_BASE + 2048);
2137 else
2138 CSR_WRITE_4(sc, TI_WINBASE,
2139 TI_TX_RING_BASE);
2140 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2141 if (cur_tx->ti_flags & TI_BDFLAG_END)
2142 ifp->if_opackets++;
2143 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2144 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2145 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2146
2147 dma = sc->txdma[idx];
2148 KDASSERT(dma != NULL);
2149 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2150 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2151 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2152
2153 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2154 sc->txdma[idx] = NULL;
2155 }
2156 sc->ti_txcnt--;
2157 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2158 ifp->if_timer = 0;
2159 }
2160
2161 if (cur_tx != NULL)
2162 ifp->if_flags &= ~IFF_OACTIVE;
2163
2164 return;
2165 }
2166
2167 static void ti_txeof_tigon2(sc)
2168 struct ti_softc *sc;
2169 {
2170 struct ti_tx_desc *cur_tx = NULL;
2171 struct ifnet *ifp;
2172 struct txdmamap_pool_entry *dma;
2173 int firstidx, cnt;
2174
2175 ifp = &sc->ethercom.ec_if;
2176
2177 /*
2178 * Go through our tx ring and free mbufs for those
2179 * frames that have been sent.
2180 */
2181 firstidx = sc->ti_tx_saved_considx;
2182 cnt = 0;
2183 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2184 u_int32_t idx = 0;
2185
2186 idx = sc->ti_tx_saved_considx;
2187 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2188 if (cur_tx->ti_flags & TI_BDFLAG_END)
2189 ifp->if_opackets++;
2190 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2191 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2192 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2193
2194 dma = sc->txdma[idx];
2195 KDASSERT(dma != NULL);
2196 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2197 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2198 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2199
2200 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2201 sc->txdma[idx] = NULL;
2202 }
2203 cnt++;
2204 sc->ti_txcnt--;
2205 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2206 ifp->if_timer = 0;
2207 }
2208
2209 if (cnt != 0)
2210 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2211
2212 if (cur_tx != NULL)
2213 ifp->if_flags &= ~IFF_OACTIVE;
2214
2215 return;
2216 }
2217
2218 static int ti_intr(xsc)
2219 void *xsc;
2220 {
2221 struct ti_softc *sc;
2222 struct ifnet *ifp;
2223
2224 sc = xsc;
2225 ifp = &sc->ethercom.ec_if;
2226
2227 #ifdef notdef
2228 /* Avoid this for now -- checking this register is expensive. */
2229 /* Make sure this is really our interrupt. */
2230 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2231 return (0);
2232 #endif
2233
2234 /* Ack interrupt and stop others from occuring. */
2235 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2236
2237 if (ifp->if_flags & IFF_RUNNING) {
2238 /* Check RX return ring producer/consumer */
2239 ti_rxeof(sc);
2240
2241 /* Check TX ring producer/consumer */
2242 (*sc->sc_tx_eof)(sc);
2243 }
2244
2245 ti_handle_events(sc);
2246
2247 /* Re-enable interrupts. */
2248 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2249
2250 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2251 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2252 ti_start(ifp);
2253
2254 return (1);
2255 }
2256
2257 static void ti_stats_update(sc)
2258 struct ti_softc *sc;
2259 {
2260 struct ifnet *ifp;
2261
2262 ifp = &sc->ethercom.ec_if;
2263
2264 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2265
2266 ifp->if_collisions +=
2267 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2268 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2269 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2270 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2271 ifp->if_collisions;
2272
2273 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2274 }
2275
2276 /*
2277 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2278 * pointers to descriptors.
2279 */
2280 static int ti_encap_tigon1(sc, m_head, txidx)
2281 struct ti_softc *sc;
2282 struct mbuf *m_head;
2283 u_int32_t *txidx;
2284 {
2285 struct ti_tx_desc *f = NULL;
2286 u_int32_t frag, cur, cnt = 0;
2287 struct txdmamap_pool_entry *dma;
2288 bus_dmamap_t dmamap;
2289 int error, i;
2290 struct m_tag *mtag;
2291 u_int16_t csum_flags = 0;
2292
2293 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2294 if (dma == NULL) {
2295 return ENOMEM;
2296 }
2297 dmamap = dma->dmamap;
2298
2299 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2300 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2301 if (error) {
2302 struct mbuf *m;
2303 int i = 0;
2304 for (m = m_head; m; m = m->m_next)
2305 i++;
2306 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2307 "error %d\n", m_head->m_pkthdr.len, i, error);
2308 return (ENOMEM);
2309 }
2310
2311 cur = frag = *txidx;
2312
2313 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2314 /* IP header checksum field must be 0! */
2315 csum_flags |= TI_BDFLAG_IP_CKSUM;
2316 }
2317 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2318 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2319
2320 /* XXX fragmented packet checksum capability? */
2321
2322 /*
2323 * Start packing the mbufs in this chain into
2324 * the fragment pointers. Stop when we run out
2325 * of fragments or hit the end of the mbuf chain.
2326 */
2327 for (i = 0; i < dmamap->dm_nsegs; i++) {
2328 if (frag > 383)
2329 CSR_WRITE_4(sc, TI_WINBASE,
2330 TI_TX_RING_BASE + 6144);
2331 else if (frag > 255)
2332 CSR_WRITE_4(sc, TI_WINBASE,
2333 TI_TX_RING_BASE + 4096);
2334 else if (frag > 127)
2335 CSR_WRITE_4(sc, TI_WINBASE,
2336 TI_TX_RING_BASE + 2048);
2337 else
2338 CSR_WRITE_4(sc, TI_WINBASE,
2339 TI_TX_RING_BASE);
2340 f = &sc->ti_tx_ring_nic[frag % 128];
2341 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2342 break;
2343 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2344 f->ti_len = dmamap->dm_segs[i].ds_len;
2345 f->ti_flags = csum_flags;
2346 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2347 if (mtag) {
2348 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2349 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2350 } else {
2351 f->ti_vlan_tag = 0;
2352 }
2353 /*
2354 * Sanity check: avoid coming within 16 descriptors
2355 * of the end of the ring.
2356 */
2357 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2358 return(ENOBUFS);
2359 cur = frag;
2360 TI_INC(frag, TI_TX_RING_CNT);
2361 cnt++;
2362 }
2363
2364 if (i < dmamap->dm_nsegs)
2365 return(ENOBUFS);
2366
2367 if (frag == sc->ti_tx_saved_considx)
2368 return(ENOBUFS);
2369
2370 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2371 TI_BDFLAG_END;
2372
2373 /* Sync the packet's DMA map. */
2374 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2375 BUS_DMASYNC_PREWRITE);
2376
2377 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2378 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2379 sc->txdma[cur] = dma;
2380 sc->ti_txcnt += cnt;
2381
2382 *txidx = frag;
2383
2384 return(0);
2385 }
2386
2387 static int ti_encap_tigon2(sc, m_head, txidx)
2388 struct ti_softc *sc;
2389 struct mbuf *m_head;
2390 u_int32_t *txidx;
2391 {
2392 struct ti_tx_desc *f = NULL;
2393 u_int32_t frag, firstfrag, cur, cnt = 0;
2394 struct txdmamap_pool_entry *dma;
2395 bus_dmamap_t dmamap;
2396 int error, i;
2397 struct m_tag *mtag;
2398 u_int16_t csum_flags = 0;
2399
2400 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2401 if (dma == NULL) {
2402 return ENOMEM;
2403 }
2404 dmamap = dma->dmamap;
2405
2406 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2407 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2408 if (error) {
2409 struct mbuf *m;
2410 int i = 0;
2411 for (m = m_head; m; m = m->m_next)
2412 i++;
2413 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2414 "error %d\n", m_head->m_pkthdr.len, i, error);
2415 return (ENOMEM);
2416 }
2417
2418 cur = firstfrag = frag = *txidx;
2419
2420 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2421 /* IP header checksum field must be 0! */
2422 csum_flags |= TI_BDFLAG_IP_CKSUM;
2423 }
2424 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2425 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2426
2427 /* XXX fragmented packet checksum capability? */
2428
2429 /*
2430 * Start packing the mbufs in this chain into
2431 * the fragment pointers. Stop when we run out
2432 * of fragments or hit the end of the mbuf chain.
2433 */
2434 for (i = 0; i < dmamap->dm_nsegs; i++) {
2435 f = &sc->ti_rdata->ti_tx_ring[frag];
2436 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2437 break;
2438 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2439 f->ti_len = dmamap->dm_segs[i].ds_len;
2440 f->ti_flags = csum_flags;
2441 mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL);
2442 if (mtag) {
2443 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2444 f->ti_vlan_tag = *(u_int *)(mtag + 1);
2445 } else {
2446 f->ti_vlan_tag = 0;
2447 }
2448 /*
2449 * Sanity check: avoid coming within 16 descriptors
2450 * of the end of the ring.
2451 */
2452 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2453 return(ENOBUFS);
2454 cur = frag;
2455 TI_INC(frag, TI_TX_RING_CNT);
2456 cnt++;
2457 }
2458
2459 if (i < dmamap->dm_nsegs)
2460 return(ENOBUFS);
2461
2462 if (frag == sc->ti_tx_saved_considx)
2463 return(ENOBUFS);
2464
2465 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2466
2467 /* Sync the packet's DMA map. */
2468 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2469 BUS_DMASYNC_PREWRITE);
2470
2471 /* Sync the descriptors we are using. */
2472 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2473
2474 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2475 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2476 sc->txdma[cur] = dma;
2477 sc->ti_txcnt += cnt;
2478
2479 *txidx = frag;
2480
2481 return(0);
2482 }
2483
2484 /*
2485 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2486 * to the mbuf data regions directly in the transmit descriptors.
2487 */
2488 static void ti_start(ifp)
2489 struct ifnet *ifp;
2490 {
2491 struct ti_softc *sc;
2492 struct mbuf *m_head = NULL;
2493 u_int32_t prodidx = 0;
2494
2495 sc = ifp->if_softc;
2496
2497 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2498
2499 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2500 IFQ_POLL(&ifp->if_snd, m_head);
2501 if (m_head == NULL)
2502 break;
2503
2504 /*
2505 * Pack the data into the transmit ring. If we
2506 * don't have room, set the OACTIVE flag and wait
2507 * for the NIC to drain the ring.
2508 */
2509 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2510 ifp->if_flags |= IFF_OACTIVE;
2511 break;
2512 }
2513
2514 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2515
2516 /*
2517 * If there's a BPF listener, bounce a copy of this frame
2518 * to him.
2519 */
2520 #if NBPFILTER > 0
2521 if (ifp->if_bpf)
2522 bpf_mtap(ifp->if_bpf, m_head);
2523 #endif
2524 }
2525
2526 /* Transmit */
2527 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2528
2529 /*
2530 * Set a timeout in case the chip goes out to lunch.
2531 */
2532 ifp->if_timer = 5;
2533
2534 return;
2535 }
2536
2537 static void ti_init(xsc)
2538 void *xsc;
2539 {
2540 struct ti_softc *sc = xsc;
2541 int s;
2542
2543 s = splnet();
2544
2545 /* Cancel pending I/O and flush buffers. */
2546 ti_stop(sc);
2547
2548 /* Init the gen info block, ring control blocks and firmware. */
2549 if (ti_gibinit(sc)) {
2550 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2551 splx(s);
2552 return;
2553 }
2554
2555 splx(s);
2556
2557 return;
2558 }
2559
2560 static void ti_init2(sc)
2561 struct ti_softc *sc;
2562 {
2563 struct ti_cmd_desc cmd;
2564 struct ifnet *ifp;
2565 u_int8_t *m;
2566 struct ifmedia *ifm;
2567 int tmp;
2568
2569 ifp = &sc->ethercom.ec_if;
2570
2571 /* Specify MTU and interface index. */
2572 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2573
2574 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2575 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2576 tmp += ETHER_VLAN_ENCAP_LEN;
2577 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2578
2579 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2580
2581 /* Load our MAC address. */
2582 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2583 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2584 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2585 | (m[4] << 8) | m[5]);
2586 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2587
2588 /* Enable or disable promiscuous mode as needed. */
2589 if (ifp->if_flags & IFF_PROMISC) {
2590 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2591 } else {
2592 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2593 }
2594
2595 /* Program multicast filter. */
2596 ti_setmulti(sc);
2597
2598 /*
2599 * If this is a Tigon 1, we should tell the
2600 * firmware to use software packet filtering.
2601 */
2602 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2603 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2604 }
2605
2606 /* Init RX ring. */
2607 ti_init_rx_ring_std(sc);
2608
2609 /* Init jumbo RX ring. */
2610 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2611 ti_init_rx_ring_jumbo(sc);
2612
2613 /*
2614 * If this is a Tigon 2, we can also configure the
2615 * mini ring.
2616 */
2617 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2618 ti_init_rx_ring_mini(sc);
2619
2620 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2621 sc->ti_rx_saved_considx = 0;
2622
2623 /* Init TX ring. */
2624 ti_init_tx_ring(sc);
2625
2626 /* Tell firmware we're alive. */
2627 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2628
2629 /* Enable host interrupts. */
2630 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2631
2632 ifp->if_flags |= IFF_RUNNING;
2633 ifp->if_flags &= ~IFF_OACTIVE;
2634
2635 /*
2636 * Make sure to set media properly. We have to do this
2637 * here since we have to issue commands in order to set
2638 * the link negotiation and we can't issue commands until
2639 * the firmware is running.
2640 */
2641 ifm = &sc->ifmedia;
2642 tmp = ifm->ifm_media;
2643 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2644 ti_ifmedia_upd(ifp);
2645 ifm->ifm_media = tmp;
2646
2647 return;
2648 }
2649
2650 /*
2651 * Set media options.
2652 */
2653 static int ti_ifmedia_upd(ifp)
2654 struct ifnet *ifp;
2655 {
2656 struct ti_softc *sc;
2657 struct ifmedia *ifm;
2658 struct ti_cmd_desc cmd;
2659
2660 sc = ifp->if_softc;
2661 ifm = &sc->ifmedia;
2662
2663 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2664 return(EINVAL);
2665
2666 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2667 case IFM_AUTO:
2668 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2669 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2670 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2671 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2672 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2673 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2674 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2675 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2676 break;
2677 case IFM_1000_SX:
2678 case IFM_1000_T:
2679 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2680 CSR_WRITE_4(sc, TI_GCR_GLINK,
2681 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2682 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2683 } else {
2684 CSR_WRITE_4(sc, TI_GCR_GLINK,
2685 TI_GLNK_PREF|TI_GLNK_1000MB|
2686 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2687 }
2688 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2689 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2690 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2691 break;
2692 case IFM_100_FX:
2693 case IFM_10_FL:
2694 case IFM_100_TX:
2695 case IFM_10_T:
2696 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2697 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2698 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2699 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2700 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2701 } else {
2702 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2703 }
2704 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2705 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2706 } else {
2707 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2708 }
2709 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2710 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2711 break;
2712 }
2713
2714 sc->ethercom.ec_if.if_baudrate =
2715 ifmedia_baudrate(ifm->ifm_media);
2716
2717 return(0);
2718 }
2719
2720 /*
2721 * Report current media status.
2722 */
2723 static void ti_ifmedia_sts(ifp, ifmr)
2724 struct ifnet *ifp;
2725 struct ifmediareq *ifmr;
2726 {
2727 struct ti_softc *sc;
2728 u_int32_t media = 0;
2729
2730 sc = ifp->if_softc;
2731
2732 ifmr->ifm_status = IFM_AVALID;
2733 ifmr->ifm_active = IFM_ETHER;
2734
2735 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2736 return;
2737
2738 ifmr->ifm_status |= IFM_ACTIVE;
2739
2740 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2741 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2742 if (sc->ti_copper)
2743 ifmr->ifm_active |= IFM_1000_T;
2744 else
2745 ifmr->ifm_active |= IFM_1000_SX;
2746 if (media & TI_GLNK_FULL_DUPLEX)
2747 ifmr->ifm_active |= IFM_FDX;
2748 else
2749 ifmr->ifm_active |= IFM_HDX;
2750 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2751 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2752 if (sc->ti_copper) {
2753 if (media & TI_LNK_100MB)
2754 ifmr->ifm_active |= IFM_100_TX;
2755 if (media & TI_LNK_10MB)
2756 ifmr->ifm_active |= IFM_10_T;
2757 } else {
2758 if (media & TI_LNK_100MB)
2759 ifmr->ifm_active |= IFM_100_FX;
2760 if (media & TI_LNK_10MB)
2761 ifmr->ifm_active |= IFM_10_FL;
2762 }
2763 if (media & TI_LNK_FULL_DUPLEX)
2764 ifmr->ifm_active |= IFM_FDX;
2765 if (media & TI_LNK_HALF_DUPLEX)
2766 ifmr->ifm_active |= IFM_HDX;
2767 }
2768
2769 sc->ethercom.ec_if.if_baudrate =
2770 ifmedia_baudrate(sc->ifmedia.ifm_media);
2771
2772 return;
2773 }
2774
2775 static int
2776 ti_ether_ioctl(ifp, cmd, data)
2777 struct ifnet *ifp;
2778 u_long cmd;
2779 caddr_t data;
2780 {
2781 struct ifaddr *ifa = (struct ifaddr *) data;
2782 struct ti_softc *sc = ifp->if_softc;
2783
2784 if ((ifp->if_flags & IFF_UP) == 0) {
2785 ifp->if_flags |= IFF_UP;
2786 ti_init(sc);
2787 }
2788
2789 switch (cmd) {
2790 case SIOCSIFADDR:
2791
2792 switch (ifa->ifa_addr->sa_family) {
2793 #ifdef INET
2794 case AF_INET:
2795 arp_ifinit(ifp, ifa);
2796 break;
2797 #endif
2798 #ifdef NS
2799 case AF_NS:
2800 {
2801 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2802
2803 if (ns_nullhost(*ina))
2804 ina->x_host = *(union ns_host *)
2805 LLADDR(ifp->if_sadl);
2806 else
2807 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2808 ifp->if_addrlen);
2809 break;
2810 }
2811 #endif
2812 default:
2813 break;
2814 }
2815 break;
2816
2817 default:
2818 return (EINVAL);
2819 }
2820
2821 return (0);
2822 }
2823
2824 static int ti_ioctl(ifp, command, data)
2825 struct ifnet *ifp;
2826 u_long command;
2827 caddr_t data;
2828 {
2829 struct ti_softc *sc = ifp->if_softc;
2830 struct ifreq *ifr = (struct ifreq *) data;
2831 int s, error = 0;
2832 struct ti_cmd_desc cmd;
2833
2834 s = splnet();
2835
2836 switch(command) {
2837 case SIOCSIFADDR:
2838 case SIOCGIFADDR:
2839 error = ti_ether_ioctl(ifp, command, data);
2840 break;
2841 case SIOCSIFMTU:
2842 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2843 error = EINVAL;
2844 else {
2845 ifp->if_mtu = ifr->ifr_mtu;
2846 ti_init(sc);
2847 }
2848 break;
2849 case SIOCSIFFLAGS:
2850 if (ifp->if_flags & IFF_UP) {
2851 /*
2852 * If only the state of the PROMISC flag changed,
2853 * then just use the 'set promisc mode' command
2854 * instead of reinitializing the entire NIC. Doing
2855 * a full re-init means reloading the firmware and
2856 * waiting for it to start up, which may take a
2857 * second or two.
2858 */
2859 if (ifp->if_flags & IFF_RUNNING &&
2860 ifp->if_flags & IFF_PROMISC &&
2861 !(sc->ti_if_flags & IFF_PROMISC)) {
2862 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2863 TI_CMD_CODE_PROMISC_ENB, 0);
2864 } else if (ifp->if_flags & IFF_RUNNING &&
2865 !(ifp->if_flags & IFF_PROMISC) &&
2866 sc->ti_if_flags & IFF_PROMISC) {
2867 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2868 TI_CMD_CODE_PROMISC_DIS, 0);
2869 } else
2870 ti_init(sc);
2871 } else {
2872 if (ifp->if_flags & IFF_RUNNING) {
2873 ti_stop(sc);
2874 }
2875 }
2876 sc->ti_if_flags = ifp->if_flags;
2877 error = 0;
2878 break;
2879 case SIOCADDMULTI:
2880 case SIOCDELMULTI:
2881 error = (command == SIOCADDMULTI) ?
2882 ether_addmulti(ifr, &sc->ethercom) :
2883 ether_delmulti(ifr, &sc->ethercom);
2884 if (error == ENETRESET) {
2885 if (ifp->if_flags & IFF_RUNNING)
2886 ti_setmulti(sc);
2887 error = 0;
2888 }
2889 break;
2890 case SIOCSIFMEDIA:
2891 case SIOCGIFMEDIA:
2892 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2893 break;
2894 default:
2895 error = EINVAL;
2896 break;
2897 }
2898
2899 (void)splx(s);
2900
2901 return(error);
2902 }
2903
2904 static void ti_watchdog(ifp)
2905 struct ifnet *ifp;
2906 {
2907 struct ti_softc *sc;
2908
2909 sc = ifp->if_softc;
2910
2911 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2912 ti_stop(sc);
2913 ti_init(sc);
2914
2915 ifp->if_oerrors++;
2916
2917 return;
2918 }
2919
2920 /*
2921 * Stop the adapter and free any mbufs allocated to the
2922 * RX and TX lists.
2923 */
2924 static void ti_stop(sc)
2925 struct ti_softc *sc;
2926 {
2927 struct ifnet *ifp;
2928 struct ti_cmd_desc cmd;
2929
2930 ifp = &sc->ethercom.ec_if;
2931
2932 /* Disable host interrupts. */
2933 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2934 /*
2935 * Tell firmware we're shutting down.
2936 */
2937 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2938
2939 /* Halt and reinitialize. */
2940 ti_chipinit(sc);
2941 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2942 ti_chipinit(sc);
2943
2944 /* Free the RX lists. */
2945 ti_free_rx_ring_std(sc);
2946
2947 /* Free jumbo RX list. */
2948 ti_free_rx_ring_jumbo(sc);
2949
2950 /* Free mini RX list. */
2951 ti_free_rx_ring_mini(sc);
2952
2953 /* Free TX buffers. */
2954 ti_free_tx_ring(sc);
2955
2956 sc->ti_ev_prodidx.ti_idx = 0;
2957 sc->ti_return_prodidx.ti_idx = 0;
2958 sc->ti_tx_considx.ti_idx = 0;
2959 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2960
2961 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2962
2963 return;
2964 }
2965
2966 /*
2967 * Stop all chip I/O so that the kernel's probe routines don't
2968 * get confused by errant DMAs when rebooting.
2969 */
2970 static void ti_shutdown(v)
2971 void *v;
2972 {
2973 struct ti_softc *sc = v;
2974
2975 ti_chipinit(sc);
2976
2977 return;
2978 }
2979