if_ti.c revision 1.70 1 /* $NetBSD: if_ti.c,v 1.70 2006/03/28 17:38:34 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.70 2006/03/28 17:38:34 thorpej Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88 #include "opt_ns.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 #include <sys/device.h>
99 #include <sys/reboot.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_ether.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #ifdef INET
114 #include <netinet/in.h>
115 #include <netinet/if_inarp.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/ip.h>
118 #endif
119
120 #ifdef NS
121 #include <netns/ns.h>
122 #include <netns/ns_if.h>
123 #endif
124
125 #include <machine/bus.h>
126
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130
131 #include <dev/pci/if_tireg.h>
132
133 #include <dev/microcode/tigon/ti_fw.h>
134 #include <dev/microcode/tigon/ti_fw2.h>
135
136 /*
137 * Various supported device vendors/types and their names.
138 */
139
140 static const struct ti_type ti_devs[] = {
141 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
142 "Alteon AceNIC 1000BASE-SX Ethernet" },
143 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
144 "Alteon AceNIC 1000BASE-T Ethernet" },
145 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
146 "3Com 3c985-SX Gigabit Ethernet" },
147 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
148 "Netgear GA620 1000BASE-SX Ethernet" },
149 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
150 "Netgear GA620 1000BASE-T Ethernet" },
151 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
152 "Silicon Graphics Gigabit Ethernet" },
153 { 0, 0, NULL }
154 };
155
156 static const struct ti_type *ti_type_match(struct pci_attach_args *);
157 static int ti_probe(struct device *, struct cfdata *, void *);
158 static void ti_attach(struct device *, struct device *, void *);
159 static void ti_shutdown(void *);
160 static void ti_txeof_tigon1(struct ti_softc *);
161 static void ti_txeof_tigon2(struct ti_softc *);
162 static void ti_rxeof(struct ti_softc *);
163
164 static void ti_stats_update(struct ti_softc *);
165 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
166 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
167
168 static int ti_intr(void *);
169 static void ti_start(struct ifnet *);
170 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
171 static void ti_init(void *);
172 static void ti_init2(struct ti_softc *);
173 static void ti_stop(struct ti_softc *);
174 static void ti_watchdog(struct ifnet *);
175 static int ti_ifmedia_upd(struct ifnet *);
176 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
179 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
180 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
181
182 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
183 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
184 static void ti_setmulti(struct ti_softc *);
185
186 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
187 static void ti_loadfw(struct ti_softc *);
188 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
189 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
190 static void ti_handle_events(struct ti_softc *);
191 static int ti_alloc_jumbo_mem(struct ti_softc *);
192 static void *ti_jalloc(struct ti_softc *);
193 static void ti_jfree(struct mbuf *, caddr_t, size_t, void *);
194 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
195 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
196 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
197 static int ti_init_rx_ring_std(struct ti_softc *);
198 static void ti_free_rx_ring_std(struct ti_softc *);
199 static int ti_init_rx_ring_jumbo(struct ti_softc *);
200 static void ti_free_rx_ring_jumbo(struct ti_softc *);
201 static int ti_init_rx_ring_mini(struct ti_softc *);
202 static void ti_free_rx_ring_mini(struct ti_softc *);
203 static void ti_free_tx_ring(struct ti_softc *);
204 static int ti_init_tx_ring(struct ti_softc *);
205
206 static int ti_64bitslot_war(struct ti_softc *);
207 static int ti_chipinit(struct ti_softc *);
208 static int ti_gibinit(struct ti_softc *);
209
210 static int ti_ether_ioctl(struct ifnet *, u_long, caddr_t);
211
212 CFATTACH_DECL(ti, sizeof(struct ti_softc),
213 ti_probe, ti_attach, NULL, NULL);
214
215 /*
216 * Send an instruction or address to the EEPROM, check for ACK.
217 */
218 static u_int32_t ti_eeprom_putbyte(sc, byte)
219 struct ti_softc *sc;
220 int byte;
221 {
222 int i, ack = 0;
223
224 /*
225 * Make sure we're in TX mode.
226 */
227 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
228
229 /*
230 * Feed in each bit and stobe the clock.
231 */
232 for (i = 0x80; i; i >>= 1) {
233 if (byte & i) {
234 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
235 } else {
236 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
237 }
238 DELAY(1);
239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
240 DELAY(1);
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 }
243
244 /*
245 * Turn off TX mode.
246 */
247 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
248
249 /*
250 * Check for ack.
251 */
252 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
254 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255
256 return(ack);
257 }
258
259 /*
260 * Read a byte of data stored in the EEPROM at address 'addr.'
261 * We have to send two address bytes since the EEPROM can hold
262 * more than 256 bytes of data.
263 */
264 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
265 struct ti_softc *sc;
266 int addr;
267 u_int8_t *dest;
268 {
269 int i;
270 u_int8_t byte = 0;
271
272 EEPROM_START;
273
274 /*
275 * Send write control code to EEPROM.
276 */
277 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
278 printf("%s: failed to send write command, status: %x\n",
279 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
280 return(1);
281 }
282
283 /*
284 * Send first byte of address of byte we want to read.
285 */
286 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
287 printf("%s: failed to send address, status: %x\n",
288 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 return(1);
290 }
291 /*
292 * Send second byte address of byte we want to read.
293 */
294 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
295 printf("%s: failed to send address, status: %x\n",
296 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 return(1);
298 }
299
300 EEPROM_STOP;
301 EEPROM_START;
302 /*
303 * Send read control code to EEPROM.
304 */
305 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
306 printf("%s: failed to send read command, status: %x\n",
307 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308 return(1);
309 }
310
311 /*
312 * Start reading bits from EEPROM.
313 */
314 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315 for (i = 0x80; i; i >>= 1) {
316 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317 DELAY(1);
318 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
319 byte |= i;
320 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 DELAY(1);
322 }
323
324 EEPROM_STOP;
325
326 /*
327 * No ACK generated for read, so just return byte.
328 */
329
330 *dest = byte;
331
332 return(0);
333 }
334
335 /*
336 * Read a sequence of bytes from the EEPROM.
337 */
338 static int ti_read_eeprom(sc, dest, off, cnt)
339 struct ti_softc *sc;
340 caddr_t dest;
341 int off;
342 int cnt;
343 {
344 int err = 0, i;
345 u_int8_t byte = 0;
346
347 for (i = 0; i < cnt; i++) {
348 err = ti_eeprom_getbyte(sc, off + i, &byte);
349 if (err)
350 break;
351 *(dest + i) = byte;
352 }
353
354 return(err ? 1 : 0);
355 }
356
357 /*
358 * NIC memory access function. Can be used to either clear a section
359 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
360 */
361 static void ti_mem(sc, addr, len, xbuf)
362 struct ti_softc *sc;
363 u_int32_t addr, len;
364 const void *xbuf;
365 {
366 int segptr, segsize, cnt;
367 const void *ptr;
368
369 segptr = addr;
370 cnt = len;
371 ptr = xbuf;
372
373 while(cnt) {
374 if (cnt < TI_WINLEN)
375 segsize = cnt;
376 else
377 segsize = TI_WINLEN - (segptr % TI_WINLEN);
378 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
379 if (xbuf == NULL) {
380 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
381 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
382 segsize / 4);
383 } else {
384 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
385 bus_space_write_region_stream_4(sc->ti_btag,
386 sc->ti_bhandle,
387 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
388 (const u_int32_t *)ptr, segsize / 4);
389 #else
390 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
391 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
392 (const u_int32_t *)ptr, segsize / 4);
393 #endif
394 ptr = (const char *)ptr + segsize;
395 }
396 segptr += segsize;
397 cnt -= segsize;
398 }
399
400 return;
401 }
402
403 /*
404 * Load firmware image into the NIC. Check that the firmware revision
405 * is acceptable and see if we want the firmware for the Tigon 1 or
406 * Tigon 2.
407 */
408 static void ti_loadfw(sc)
409 struct ti_softc *sc;
410 {
411 switch(sc->ti_hwrev) {
412 case TI_HWREV_TIGON:
413 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416 printf("%s: firmware revision mismatch; want "
417 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
418 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420 tigonFwReleaseMinor, tigonFwReleaseFix);
421 return;
422 }
423 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
424 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
425 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
426 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
427 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
428 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
429 break;
430 case TI_HWREV_TIGON_II:
431 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
432 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
433 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
434 printf("%s: firmware revision mismatch; want "
435 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
436 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
437 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
438 tigon2FwReleaseMinor, tigon2FwReleaseFix);
439 return;
440 }
441 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
442 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
443 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
444 tigon2FwRodata);
445 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
446 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
447 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
448 break;
449 default:
450 printf("%s: can't load firmware: unknown hardware rev\n",
451 sc->sc_dev.dv_xname);
452 break;
453 }
454
455 return;
456 }
457
458 /*
459 * Send the NIC a command via the command ring.
460 */
461 static void ti_cmd(sc, cmd)
462 struct ti_softc *sc;
463 struct ti_cmd_desc *cmd;
464 {
465 u_int32_t index;
466
467 index = sc->ti_cmd_saved_prodidx;
468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
469 TI_INC(index, TI_CMD_RING_CNT);
470 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
471 sc->ti_cmd_saved_prodidx = index;
472
473 return;
474 }
475
476 /*
477 * Send the NIC an extended command. The 'len' parameter specifies the
478 * number of command slots to include after the initial command.
479 */
480 static void ti_cmd_ext(sc, cmd, arg, len)
481 struct ti_softc *sc;
482 struct ti_cmd_desc *cmd;
483 caddr_t arg;
484 int len;
485 {
486 u_int32_t index;
487 int i;
488
489 index = sc->ti_cmd_saved_prodidx;
490 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
491 TI_INC(index, TI_CMD_RING_CNT);
492 for (i = 0; i < len; i++) {
493 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
494 *(u_int32_t *)(&arg[i * 4]));
495 TI_INC(index, TI_CMD_RING_CNT);
496 }
497 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
498 sc->ti_cmd_saved_prodidx = index;
499
500 return;
501 }
502
503 /*
504 * Handle events that have triggered interrupts.
505 */
506 static void ti_handle_events(sc)
507 struct ti_softc *sc;
508 {
509 struct ti_event_desc *e;
510
511 if (sc->ti_rdata->ti_event_ring == NULL)
512 return;
513
514 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
515 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
516 switch(e->ti_event) {
517 case TI_EV_LINKSTAT_CHANGED:
518 sc->ti_linkstat = e->ti_code;
519 if (e->ti_code == TI_EV_CODE_LINK_UP)
520 printf("%s: 10/100 link up\n",
521 sc->sc_dev.dv_xname);
522 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
523 printf("%s: gigabit link up\n",
524 sc->sc_dev.dv_xname);
525 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
526 printf("%s: link down\n",
527 sc->sc_dev.dv_xname);
528 break;
529 case TI_EV_ERROR:
530 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
531 printf("%s: invalid command\n",
532 sc->sc_dev.dv_xname);
533 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
534 printf("%s: unknown command\n",
535 sc->sc_dev.dv_xname);
536 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
537 printf("%s: bad config data\n",
538 sc->sc_dev.dv_xname);
539 break;
540 case TI_EV_FIRMWARE_UP:
541 ti_init2(sc);
542 break;
543 case TI_EV_STATS_UPDATED:
544 ti_stats_update(sc);
545 break;
546 case TI_EV_RESET_JUMBO_RING:
547 case TI_EV_MCAST_UPDATED:
548 /* Who cares. */
549 break;
550 default:
551 printf("%s: unknown event: %d\n",
552 sc->sc_dev.dv_xname, e->ti_event);
553 break;
554 }
555 /* Advance the consumer index. */
556 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
557 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
558 }
559
560 return;
561 }
562
563 /*
564 * Memory management for the jumbo receive ring is a pain in the
565 * butt. We need to allocate at least 9018 bytes of space per frame,
566 * _and_ it has to be contiguous (unless you use the extended
567 * jumbo descriptor format). Using malloc() all the time won't
568 * work: malloc() allocates memory in powers of two, which means we
569 * would end up wasting a considerable amount of space by allocating
570 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
571 * to do our own memory management.
572 *
573 * The driver needs to allocate a contiguous chunk of memory at boot
574 * time. We then chop this up ourselves into 9K pieces and use them
575 * as external mbuf storage.
576 *
577 * One issue here is how much memory to allocate. The jumbo ring has
578 * 256 slots in it, but at 9K per slot than can consume over 2MB of
579 * RAM. This is a bit much, especially considering we also need
580 * RAM for the standard ring and mini ring (on the Tigon 2). To
581 * save space, we only actually allocate enough memory for 64 slots
582 * by default, which works out to between 500 and 600K. This can
583 * be tuned by changing a #define in if_tireg.h.
584 */
585
586 static int ti_alloc_jumbo_mem(sc)
587 struct ti_softc *sc;
588 {
589 caddr_t ptr;
590 int i;
591 struct ti_jpool_entry *entry;
592 bus_dma_segment_t dmaseg;
593 int error, dmanseg;
594
595 /* Grab a big chunk o' storage. */
596 if ((error = bus_dmamem_alloc(sc->sc_dmat,
597 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
598 BUS_DMA_NOWAIT)) != 0) {
599 printf("%s: can't allocate jumbo buffer, error = %d\n",
600 sc->sc_dev.dv_xname, error);
601 return (error);
602 }
603
604 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
605 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
606 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
607 printf("%s: can't map jumbo buffer, error = %d\n",
608 sc->sc_dev.dv_xname, error);
609 return (error);
610 }
611
612 if ((error = bus_dmamap_create(sc->sc_dmat,
613 TI_JMEM, 1,
614 TI_JMEM, 0, BUS_DMA_NOWAIT,
615 &sc->jumbo_dmamap)) != 0) {
616 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
617 sc->sc_dev.dv_xname, error);
618 return (error);
619 }
620
621 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
622 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
623 BUS_DMA_NOWAIT)) != 0) {
624 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
625 sc->sc_dev.dv_xname, error);
626 return (error);
627 }
628 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
629
630 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
631 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
632
633 /*
634 * Now divide it up into 9K pieces and save the addresses
635 * in an array.
636 */
637 ptr = sc->ti_cdata.ti_jumbo_buf;
638 for (i = 0; i < TI_JSLOTS; i++) {
639 sc->ti_cdata.ti_jslots[i] = ptr;
640 ptr += TI_JLEN;
641 entry = malloc(sizeof(struct ti_jpool_entry),
642 M_DEVBUF, M_NOWAIT);
643 if (entry == NULL) {
644 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
645 sc->ti_cdata.ti_jumbo_buf = NULL;
646 printf("%s: no memory for jumbo "
647 "buffer queue!\n", sc->sc_dev.dv_xname);
648 return(ENOBUFS);
649 }
650 entry->slot = i;
651 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
652 jpool_entries);
653 }
654
655 return(0);
656 }
657
658 /*
659 * Allocate a jumbo buffer.
660 */
661 static void *ti_jalloc(sc)
662 struct ti_softc *sc;
663 {
664 struct ti_jpool_entry *entry;
665
666 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
667
668 if (entry == NULL) {
669 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
670 return(NULL);
671 }
672
673 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
674 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
675 return(sc->ti_cdata.ti_jslots[entry->slot]);
676 }
677
678 /*
679 * Release a jumbo buffer.
680 */
681 static void ti_jfree(m, tbuf, size, arg)
682 struct mbuf *m;
683 caddr_t tbuf;
684 size_t size;
685 void *arg;
686 {
687 struct ti_softc *sc;
688 int i, s;
689 struct ti_jpool_entry *entry;
690
691 /* Extract the softc struct pointer. */
692 sc = (struct ti_softc *)arg;
693
694 if (sc == NULL)
695 panic("ti_jfree: didn't get softc pointer!");
696
697 /* calculate the slot this buffer belongs to */
698
699 i = ((caddr_t)tbuf
700 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
701
702 if ((i < 0) || (i >= TI_JSLOTS))
703 panic("ti_jfree: asked to free buffer that we don't manage!");
704
705 s = splvm();
706 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
707 if (entry == NULL)
708 panic("ti_jfree: buffer not in use!");
709 entry->slot = i;
710 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
711 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
712
713 if (__predict_true(m != NULL))
714 pool_cache_put(&mbpool_cache, m);
715 splx(s);
716 }
717
718
719 /*
720 * Intialize a standard receive ring descriptor.
721 */
722 static int ti_newbuf_std(sc, i, m, dmamap)
723 struct ti_softc *sc;
724 int i;
725 struct mbuf *m;
726 bus_dmamap_t dmamap; /* required if (m != NULL) */
727 {
728 struct mbuf *m_new = NULL;
729 struct ti_rx_desc *r;
730 int error;
731
732 if (dmamap == NULL) {
733 /* if (m) panic() */
734
735 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
736 MCLBYTES, 0, BUS_DMA_NOWAIT,
737 &dmamap)) != 0) {
738 printf("%s: can't create recv map, error = %d\n",
739 sc->sc_dev.dv_xname, error);
740 return(ENOMEM);
741 }
742 }
743 sc->std_dmamap[i] = dmamap;
744
745 if (m == NULL) {
746 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
747 if (m_new == NULL) {
748 printf("%s: mbuf allocation failed "
749 "-- packet dropped!\n", sc->sc_dev.dv_xname);
750 return(ENOBUFS);
751 }
752
753 MCLGET(m_new, M_DONTWAIT);
754 if (!(m_new->m_flags & M_EXT)) {
755 printf("%s: cluster allocation failed "
756 "-- packet dropped!\n", sc->sc_dev.dv_xname);
757 m_freem(m_new);
758 return(ENOBUFS);
759 }
760 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
761 m_adj(m_new, ETHER_ALIGN);
762
763 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
764 mtod(m_new, caddr_t), m_new->m_len, NULL,
765 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
766 printf("%s: can't load recv map, error = %d\n",
767 sc->sc_dev.dv_xname, error);
768 return (ENOMEM);
769 }
770 } else {
771 m_new = m;
772 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
773 m_new->m_data = m_new->m_ext.ext_buf;
774 m_adj(m_new, ETHER_ALIGN);
775
776 /* reuse the dmamap */
777 }
778
779 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
780 r = &sc->ti_rdata->ti_rx_std_ring[i];
781 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
782 r->ti_type = TI_BDTYPE_RECV_BD;
783 r->ti_flags = 0;
784 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
785 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
786 if (sc->ethercom.ec_if.if_capenable &
787 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
788 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
789 r->ti_len = m_new->m_len; /* == ds_len */
790 r->ti_idx = i;
791
792 return(0);
793 }
794
795 /*
796 * Intialize a mini receive ring descriptor. This only applies to
797 * the Tigon 2.
798 */
799 static int ti_newbuf_mini(sc, i, m, dmamap)
800 struct ti_softc *sc;
801 int i;
802 struct mbuf *m;
803 bus_dmamap_t dmamap; /* required if (m != NULL) */
804 {
805 struct mbuf *m_new = NULL;
806 struct ti_rx_desc *r;
807 int error;
808
809 if (dmamap == NULL) {
810 /* if (m) panic() */
811
812 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
813 MHLEN, 0, BUS_DMA_NOWAIT,
814 &dmamap)) != 0) {
815 printf("%s: can't create recv map, error = %d\n",
816 sc->sc_dev.dv_xname, error);
817 return(ENOMEM);
818 }
819 }
820 sc->mini_dmamap[i] = dmamap;
821
822 if (m == NULL) {
823 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
824 if (m_new == NULL) {
825 printf("%s: mbuf allocation failed "
826 "-- packet dropped!\n", sc->sc_dev.dv_xname);
827 return(ENOBUFS);
828 }
829 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
830 m_adj(m_new, ETHER_ALIGN);
831
832 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
833 mtod(m_new, caddr_t), m_new->m_len, NULL,
834 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
835 printf("%s: can't load recv map, error = %d\n",
836 sc->sc_dev.dv_xname, error);
837 return (ENOMEM);
838 }
839 } else {
840 m_new = m;
841 m_new->m_data = m_new->m_pktdat;
842 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
843 m_adj(m_new, ETHER_ALIGN);
844
845 /* reuse the dmamap */
846 }
847
848 r = &sc->ti_rdata->ti_rx_mini_ring[i];
849 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
850 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
851 r->ti_type = TI_BDTYPE_RECV_BD;
852 r->ti_flags = TI_BDFLAG_MINI_RING;
853 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
854 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
855 if (sc->ethercom.ec_if.if_capenable &
856 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
857 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
858 r->ti_len = m_new->m_len; /* == ds_len */
859 r->ti_idx = i;
860
861 return(0);
862 }
863
864 /*
865 * Initialize a jumbo receive ring descriptor. This allocates
866 * a jumbo buffer from the pool managed internally by the driver.
867 */
868 static int ti_newbuf_jumbo(sc, i, m)
869 struct ti_softc *sc;
870 int i;
871 struct mbuf *m;
872 {
873 struct mbuf *m_new = NULL;
874 struct ti_rx_desc *r;
875
876 if (m == NULL) {
877 caddr_t tbuf = NULL;
878
879 /* Allocate the mbuf. */
880 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
881 if (m_new == NULL) {
882 printf("%s: mbuf allocation failed "
883 "-- packet dropped!\n", sc->sc_dev.dv_xname);
884 return(ENOBUFS);
885 }
886
887 /* Allocate the jumbo buffer */
888 tbuf = ti_jalloc(sc);
889 if (tbuf == NULL) {
890 m_freem(m_new);
891 printf("%s: jumbo allocation failed "
892 "-- packet dropped!\n", sc->sc_dev.dv_xname);
893 return(ENOBUFS);
894 }
895
896 /* Attach the buffer to the mbuf. */
897 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
898 M_DEVBUF, ti_jfree, sc);
899 m_new->m_flags |= M_EXT_RW;
900 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
901 } else {
902 m_new = m;
903 m_new->m_data = m_new->m_ext.ext_buf;
904 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
905 }
906
907 m_adj(m_new, ETHER_ALIGN);
908 /* Set up the descriptor. */
909 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
910 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
911 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
912 ((caddr_t)mtod(m_new, caddr_t)
913 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
914 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
915 r->ti_flags = TI_BDFLAG_JUMBO_RING;
916 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
917 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
918 if (sc->ethercom.ec_if.if_capenable &
919 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
920 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
921 r->ti_len = m_new->m_len;
922 r->ti_idx = i;
923
924 return(0);
925 }
926
927 /*
928 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
929 * that's 1MB or memory, which is a lot. For now, we fill only the first
930 * 256 ring entries and hope that our CPU is fast enough to keep up with
931 * the NIC.
932 */
933 static int ti_init_rx_ring_std(sc)
934 struct ti_softc *sc;
935 {
936 int i;
937 struct ti_cmd_desc cmd;
938
939 for (i = 0; i < TI_SSLOTS; i++) {
940 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
941 return(ENOBUFS);
942 };
943
944 TI_UPDATE_STDPROD(sc, i - 1);
945 sc->ti_std = i - 1;
946
947 return(0);
948 }
949
950 static void ti_free_rx_ring_std(sc)
951 struct ti_softc *sc;
952 {
953 int i;
954
955 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
956 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
957 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
958 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
959
960 /* if (sc->std_dmamap[i] == 0) panic() */
961 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
962 sc->std_dmamap[i] = 0;
963 }
964 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
965 sizeof(struct ti_rx_desc));
966 }
967
968 return;
969 }
970
971 static int ti_init_rx_ring_jumbo(sc)
972 struct ti_softc *sc;
973 {
974 int i;
975 struct ti_cmd_desc cmd;
976
977 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
978 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
979 return(ENOBUFS);
980 };
981
982 TI_UPDATE_JUMBOPROD(sc, i - 1);
983 sc->ti_jumbo = i - 1;
984
985 return(0);
986 }
987
988 static void ti_free_rx_ring_jumbo(sc)
989 struct ti_softc *sc;
990 {
991 int i;
992
993 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
994 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
995 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
996 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
997 }
998 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
999 sizeof(struct ti_rx_desc));
1000 }
1001
1002 return;
1003 }
1004
1005 static int ti_init_rx_ring_mini(sc)
1006 struct ti_softc *sc;
1007 {
1008 int i;
1009
1010 for (i = 0; i < TI_MSLOTS; i++) {
1011 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1012 return(ENOBUFS);
1013 };
1014
1015 TI_UPDATE_MINIPROD(sc, i - 1);
1016 sc->ti_mini = i - 1;
1017
1018 return(0);
1019 }
1020
1021 static void ti_free_rx_ring_mini(sc)
1022 struct ti_softc *sc;
1023 {
1024 int i;
1025
1026 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1027 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1028 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1029 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1030
1031 /* if (sc->mini_dmamap[i] == 0) panic() */
1032 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1033 sc->mini_dmamap[i] = 0;
1034 }
1035 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1036 sizeof(struct ti_rx_desc));
1037 }
1038
1039 return;
1040 }
1041
1042 static void ti_free_tx_ring(sc)
1043 struct ti_softc *sc;
1044 {
1045 int i;
1046 struct txdmamap_pool_entry *dma;
1047
1048 if (sc->ti_rdata->ti_tx_ring == NULL)
1049 return;
1050
1051 for (i = 0; i < TI_TX_RING_CNT; i++) {
1052 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1053 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1054 sc->ti_cdata.ti_tx_chain[i] = NULL;
1055
1056 /* if (sc->txdma[i] == 0) panic() */
1057 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1058 link);
1059 sc->txdma[i] = 0;
1060 }
1061 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1062 sizeof(struct ti_tx_desc));
1063 }
1064
1065 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1066 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1067 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1068 free(dma, M_DEVBUF);
1069 }
1070
1071 return;
1072 }
1073
1074 static int ti_init_tx_ring(sc)
1075 struct ti_softc *sc;
1076 {
1077 int i, error;
1078 bus_dmamap_t dmamap;
1079 struct txdmamap_pool_entry *dma;
1080
1081 sc->ti_txcnt = 0;
1082 sc->ti_tx_saved_considx = 0;
1083 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1084
1085 SIMPLEQ_INIT(&sc->txdma_list);
1086 for (i = 0; i < TI_RSLOTS; i++) {
1087 /* I've seen mbufs with 30 fragments. */
1088 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1089 40, ETHER_MAX_LEN_JUMBO, 0,
1090 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1091 printf("%s: can't create tx map, error = %d\n",
1092 sc->sc_dev.dv_xname, error);
1093 return(ENOMEM);
1094 }
1095 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1096 if (!dma) {
1097 printf("%s: can't alloc txdmamap_pool_entry\n",
1098 sc->sc_dev.dv_xname);
1099 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1100 return (ENOMEM);
1101 }
1102 dma->dmamap = dmamap;
1103 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1104 }
1105
1106 return(0);
1107 }
1108
1109 /*
1110 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1111 * but we have to support the old way too so that Tigon 1 cards will
1112 * work.
1113 */
1114 void ti_add_mcast(sc, addr)
1115 struct ti_softc *sc;
1116 struct ether_addr *addr;
1117 {
1118 struct ti_cmd_desc cmd;
1119 u_int16_t *m;
1120 u_int32_t ext[2] = {0, 0};
1121
1122 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1123
1124 switch(sc->ti_hwrev) {
1125 case TI_HWREV_TIGON:
1126 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1127 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1128 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1129 break;
1130 case TI_HWREV_TIGON_II:
1131 ext[0] = htons(m[0]);
1132 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1133 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1134 break;
1135 default:
1136 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1137 break;
1138 }
1139
1140 return;
1141 }
1142
1143 void ti_del_mcast(sc, addr)
1144 struct ti_softc *sc;
1145 struct ether_addr *addr;
1146 {
1147 struct ti_cmd_desc cmd;
1148 u_int16_t *m;
1149 u_int32_t ext[2] = {0, 0};
1150
1151 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1152
1153 switch(sc->ti_hwrev) {
1154 case TI_HWREV_TIGON:
1155 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1156 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1157 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1158 break;
1159 case TI_HWREV_TIGON_II:
1160 ext[0] = htons(m[0]);
1161 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1162 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1163 break;
1164 default:
1165 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1166 break;
1167 }
1168
1169 return;
1170 }
1171
1172 /*
1173 * Configure the Tigon's multicast address filter.
1174 *
1175 * The actual multicast table management is a bit of a pain, thanks to
1176 * slight brain damage on the part of both Alteon and us. With our
1177 * multicast code, we are only alerted when the multicast address table
1178 * changes and at that point we only have the current list of addresses:
1179 * we only know the current state, not the previous state, so we don't
1180 * actually know what addresses were removed or added. The firmware has
1181 * state, but we can't get our grubby mits on it, and there is no 'delete
1182 * all multicast addresses' command. Hence, we have to maintain our own
1183 * state so we know what addresses have been programmed into the NIC at
1184 * any given time.
1185 */
1186 static void ti_setmulti(sc)
1187 struct ti_softc *sc;
1188 {
1189 struct ifnet *ifp;
1190 struct ti_cmd_desc cmd;
1191 struct ti_mc_entry *mc;
1192 u_int32_t intrs;
1193 struct ether_multi *enm;
1194 struct ether_multistep step;
1195
1196 ifp = &sc->ethercom.ec_if;
1197
1198 /* Disable interrupts. */
1199 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1200 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1201
1202 /* First, zot all the existing filters. */
1203 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1204 ti_del_mcast(sc, &mc->mc_addr);
1205 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1206 free(mc, M_DEVBUF);
1207 }
1208
1209 /*
1210 * Remember all multicast addresses so that we can delete them
1211 * later. Punt if there is a range of addresses or memory shortage.
1212 */
1213 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1214 while (enm != NULL) {
1215 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1216 ETHER_ADDR_LEN) != 0)
1217 goto allmulti;
1218 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1219 M_NOWAIT)) == NULL)
1220 goto allmulti;
1221 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1222 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1223 ETHER_NEXT_MULTI(step, enm);
1224 }
1225
1226 /* Accept only programmed multicast addresses */
1227 ifp->if_flags &= ~IFF_ALLMULTI;
1228 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1229
1230 /* Now program new ones. */
1231 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1232 ti_add_mcast(sc, &mc->mc_addr);
1233
1234 /* Re-enable interrupts. */
1235 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1236
1237 return;
1238
1239 allmulti:
1240 /* No need to keep individual multicast addresses */
1241 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1242 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1243 free(mc, M_DEVBUF);
1244 }
1245
1246 /* Accept all multicast addresses */
1247 ifp->if_flags |= IFF_ALLMULTI;
1248 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1249
1250 /* Re-enable interrupts. */
1251 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1252 }
1253
1254 /*
1255 * Check to see if the BIOS has configured us for a 64 bit slot when
1256 * we aren't actually in one. If we detect this condition, we can work
1257 * around it on the Tigon 2 by setting a bit in the PCI state register,
1258 * but for the Tigon 1 we must give up and abort the interface attach.
1259 */
1260 static int ti_64bitslot_war(sc)
1261 struct ti_softc *sc;
1262 {
1263 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1264 CSR_WRITE_4(sc, 0x600, 0);
1265 CSR_WRITE_4(sc, 0x604, 0);
1266 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1267 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1268 if (sc->ti_hwrev == TI_HWREV_TIGON)
1269 return(EINVAL);
1270 else {
1271 TI_SETBIT(sc, TI_PCI_STATE,
1272 TI_PCISTATE_32BIT_BUS);
1273 return(0);
1274 }
1275 }
1276 }
1277
1278 return(0);
1279 }
1280
1281 /*
1282 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1283 * self-test results.
1284 */
1285 static int ti_chipinit(sc)
1286 struct ti_softc *sc;
1287 {
1288 u_int32_t cacheline;
1289 u_int32_t pci_writemax = 0;
1290 u_int32_t rev;
1291
1292 /* Initialize link to down state. */
1293 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1294
1295 /* Set endianness before we access any non-PCI registers. */
1296 #if BYTE_ORDER == BIG_ENDIAN
1297 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1298 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1299 #else
1300 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1301 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1302 #endif
1303
1304 /* Check the ROM failed bit to see if self-tests passed. */
1305 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1306 printf("%s: board self-diagnostics failed!\n",
1307 sc->sc_dev.dv_xname);
1308 return(ENODEV);
1309 }
1310
1311 /* Halt the CPU. */
1312 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1313
1314 /* Figure out the hardware revision. */
1315 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1316 switch(rev) {
1317 case TI_REV_TIGON_I:
1318 sc->ti_hwrev = TI_HWREV_TIGON;
1319 break;
1320 case TI_REV_TIGON_II:
1321 sc->ti_hwrev = TI_HWREV_TIGON_II;
1322 break;
1323 default:
1324 printf("%s: unsupported chip revision 0x%x\n",
1325 sc->sc_dev.dv_xname, rev);
1326 return(ENODEV);
1327 }
1328
1329 /* Do special setup for Tigon 2. */
1330 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1332 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1333 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1334 }
1335
1336 /* Set up the PCI state register. */
1337 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1338 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1339 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1340 }
1341
1342 /* Clear the read/write max DMA parameters. */
1343 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1344 TI_PCISTATE_READ_MAXDMA));
1345
1346 /* Get cache line size. */
1347 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1348
1349 /*
1350 * If the system has set enabled the PCI memory write
1351 * and invalidate command in the command register, set
1352 * the write max parameter accordingly. This is necessary
1353 * to use MWI with the Tigon 2.
1354 */
1355 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1356 & PCI_COMMAND_INVALIDATE_ENABLE) {
1357 switch(cacheline) {
1358 case 1:
1359 case 4:
1360 case 8:
1361 case 16:
1362 case 32:
1363 case 64:
1364 break;
1365 default:
1366 /* Disable PCI memory write and invalidate. */
1367 if (bootverbose)
1368 printf("%s: cache line size %d not "
1369 "supported; disabling PCI MWI\n",
1370 sc->sc_dev.dv_xname, cacheline);
1371 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1372 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1373 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1374 break;
1375 }
1376 }
1377
1378 #ifdef __brokenalpha__
1379 /*
1380 * From the Alteon sample driver:
1381 * Must insure that we do not cross an 8K (bytes) boundary
1382 * for DMA reads. Our highest limit is 1K bytes. This is a
1383 * restriction on some ALPHA platforms with early revision
1384 * 21174 PCI chipsets, such as the AlphaPC 164lx
1385 */
1386 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1387 #else
1388 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1389 #endif
1390
1391 /* This sets the min dma param all the way up (0xff). */
1392 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1393
1394 /* Configure DMA variables. */
1395 #if BYTE_ORDER == BIG_ENDIAN
1396 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1397 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1398 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1399 TI_OPMODE_DONT_FRAG_JUMBO);
1400 #else
1401 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1402 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1403 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1404 #endif
1405
1406 /*
1407 * Only allow 1 DMA channel to be active at a time.
1408 * I don't think this is a good idea, but without it
1409 * the firmware racks up lots of nicDmaReadRingFull
1410 * errors.
1411 * Incompatible with hardware assisted checksums.
1412 */
1413 if ((sc->ethercom.ec_if.if_capenable &
1414 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1415 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1416 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1417 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1418
1419 /* Recommended settings from Tigon manual. */
1420 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1421 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1422
1423 if (ti_64bitslot_war(sc)) {
1424 printf("%s: bios thinks we're in a 64 bit slot, "
1425 "but we aren't", sc->sc_dev.dv_xname);
1426 return(EINVAL);
1427 }
1428
1429 return(0);
1430 }
1431
1432 /*
1433 * Initialize the general information block and firmware, and
1434 * start the CPU(s) running.
1435 */
1436 static int ti_gibinit(sc)
1437 struct ti_softc *sc;
1438 {
1439 struct ti_rcb *rcb;
1440 int i;
1441 struct ifnet *ifp;
1442
1443 ifp = &sc->ethercom.ec_if;
1444
1445 /* Disable interrupts for now. */
1446 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1447
1448 /* Tell the chip where to find the general information block. */
1449 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1450 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1451
1452 /* Load the firmware into SRAM. */
1453 ti_loadfw(sc);
1454
1455 /* Set up the contents of the general info and ring control blocks. */
1456
1457 /* Set up the event ring and producer pointer. */
1458 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1459
1460 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1461 rcb->ti_flags = 0;
1462 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1463 TI_CDEVPRODADDR(sc);
1464
1465 sc->ti_ev_prodidx.ti_idx = 0;
1466 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1467 sc->ti_ev_saved_considx = 0;
1468
1469 /* Set up the command ring and producer mailbox. */
1470 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1471
1472 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1473 rcb->ti_flags = 0;
1474 rcb->ti_max_len = 0;
1475 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1476 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1477 }
1478 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1479 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1480 sc->ti_cmd_saved_prodidx = 0;
1481
1482 /*
1483 * Assign the address of the stats refresh buffer.
1484 * We re-use the current stats buffer for this to
1485 * conserve memory.
1486 */
1487 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1488 TI_CDSTATSADDR(sc);
1489
1490 /* Set up the standard receive ring. */
1491 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1492 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1493 rcb->ti_max_len = ETHER_MAX_LEN;
1494 rcb->ti_flags = 0;
1495 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1496 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1497 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1498 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1499 if (VLAN_ATTACHED(&sc->ethercom))
1500 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1501
1502 /* Set up the jumbo receive ring. */
1503 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1504 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1505 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1506 rcb->ti_flags = 0;
1507 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1508 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1509 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1510 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1511 if (VLAN_ATTACHED(&sc->ethercom))
1512 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1513
1514 /*
1515 * Set up the mini ring. Only activated on the
1516 * Tigon 2 but the slot in the config block is
1517 * still there on the Tigon 1.
1518 */
1519 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1520 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1521 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1522 if (sc->ti_hwrev == TI_HWREV_TIGON)
1523 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1524 else
1525 rcb->ti_flags = 0;
1526 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1527 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1528 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1529 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1530 if (VLAN_ATTACHED(&sc->ethercom))
1531 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1532
1533 /*
1534 * Set up the receive return ring.
1535 */
1536 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1537 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1538 rcb->ti_flags = 0;
1539 rcb->ti_max_len = TI_RETURN_RING_CNT;
1540 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1541 TI_CDRTNPRODADDR(sc);
1542
1543 /*
1544 * Set up the tx ring. Note: for the Tigon 2, we have the option
1545 * of putting the transmit ring in the host's address space and
1546 * letting the chip DMA it instead of leaving the ring in the NIC's
1547 * memory and accessing it through the shared memory region. We
1548 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1549 * so we have to revert to the shared memory scheme if we detect
1550 * a Tigon 1 chip.
1551 */
1552 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1553 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1554 sc->ti_tx_ring_nic =
1555 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1556 }
1557 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1558 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1559 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1560 if (sc->ti_hwrev == TI_HWREV_TIGON)
1561 rcb->ti_flags = 0;
1562 else
1563 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1564 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1565 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1566 /*
1567 * When we get the packet, there is a pseudo-header seed already
1568 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1569 * compute the pseudo-header checksum again!
1570 */
1571 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1572 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1573 TI_RCB_FLAG_NO_PHDR_CKSUM;
1574 if (VLAN_ATTACHED(&sc->ethercom))
1575 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1576 rcb->ti_max_len = TI_TX_RING_CNT;
1577 if (sc->ti_hwrev == TI_HWREV_TIGON)
1578 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1579 else
1580 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1581 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1582 TI_CDTXCONSADDR(sc);
1583
1584 /*
1585 * We're done frobbing the General Information Block. Sync
1586 * it. Note we take care of the first stats sync here, as
1587 * well.
1588 */
1589 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590
1591 /* Set up tuneables */
1592 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1593 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1594 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1595 (sc->ti_rx_coal_ticks / 10));
1596 else
1597 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1598 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1599 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1600 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1601 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1602 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1603
1604 /* Turn interrupts on. */
1605 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1606 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1607
1608 /* Start CPU. */
1609 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1610
1611 return(0);
1612 }
1613
1614 /*
1615 * look for id in the device list, returning the first match
1616 */
1617 static const struct ti_type *
1618 ti_type_match(pa)
1619 struct pci_attach_args *pa;
1620 {
1621 const struct ti_type *t;
1622
1623 t = ti_devs;
1624 while(t->ti_name != NULL) {
1625 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1626 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1627 return (t);
1628 }
1629 t++;
1630 }
1631
1632 return(NULL);
1633 }
1634
1635 /*
1636 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1637 * against our list and return its name if we find a match.
1638 */
1639 static int ti_probe(parent, match, aux)
1640 struct device *parent;
1641 struct cfdata *match;
1642 void *aux;
1643 {
1644 struct pci_attach_args *pa = aux;
1645 const struct ti_type *t;
1646
1647 t = ti_type_match(pa);
1648
1649 return((t == NULL) ? 0 : 1);
1650 }
1651
1652 static void ti_attach(parent, self, aux)
1653 struct device *parent, *self;
1654 void *aux;
1655 {
1656 u_int32_t command;
1657 struct ifnet *ifp;
1658 struct ti_softc *sc;
1659 u_char eaddr[ETHER_ADDR_LEN];
1660 struct pci_attach_args *pa = aux;
1661 pci_chipset_tag_t pc = pa->pa_pc;
1662 pci_intr_handle_t ih;
1663 const char *intrstr = NULL;
1664 bus_dma_segment_t dmaseg;
1665 int error, dmanseg, nolinear;
1666 const struct ti_type *t;
1667
1668 t = ti_type_match(pa);
1669 if (t == NULL) {
1670 printf("ti_attach: were did the card go ?\n");
1671 return;
1672 }
1673
1674 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1675
1676 sc = (struct ti_softc *)self;
1677
1678 /*
1679 * Map control/status registers.
1680 */
1681 nolinear = 0;
1682 if (pci_mapreg_map(pa, 0x10,
1683 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1684 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1685 NULL, NULL)) {
1686 nolinear = 1;
1687 if (pci_mapreg_map(pa, 0x10,
1688 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1689 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1690 printf(": can't map memory space\n");
1691 return;
1692 }
1693 }
1694 if (nolinear == 0)
1695 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1696 else
1697 sc->ti_vhandle = NULL;
1698
1699 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1700 command |= PCI_COMMAND_MASTER_ENABLE;
1701 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1702
1703 /* Allocate interrupt */
1704 if (pci_intr_map(pa, &ih)) {
1705 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1706 return;
1707 }
1708 intrstr = pci_intr_string(pc, ih);
1709 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1710 if (sc->sc_ih == NULL) {
1711 printf("%s: couldn't establish interrupt",
1712 sc->sc_dev.dv_xname);
1713 if (intrstr != NULL)
1714 printf(" at %s", intrstr);
1715 printf("\n");
1716 return;
1717 }
1718 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1719 /*
1720 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1721 * doing do could allow DMA to corrupt kernel memory during the
1722 * reboot before the driver initializes.
1723 */
1724 (void) shutdownhook_establish(ti_shutdown, sc);
1725
1726 if (ti_chipinit(sc)) {
1727 printf("%s: chip initialization failed\n", self->dv_xname);
1728 goto fail2;
1729 }
1730
1731 /*
1732 * Deal with some chip diffrences.
1733 */
1734 switch (sc->ti_hwrev) {
1735 case TI_HWREV_TIGON:
1736 sc->sc_tx_encap = ti_encap_tigon1;
1737 sc->sc_tx_eof = ti_txeof_tigon1;
1738 if (nolinear == 1)
1739 printf("%s: memory space not mapped linear\n",
1740 self->dv_xname);
1741 break;
1742
1743 case TI_HWREV_TIGON_II:
1744 sc->sc_tx_encap = ti_encap_tigon2;
1745 sc->sc_tx_eof = ti_txeof_tigon2;
1746 break;
1747
1748 default:
1749 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1750 sc->ti_hwrev);
1751 goto fail2;
1752 }
1753
1754 /* Zero out the NIC's on-board SRAM. */
1755 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1756
1757 /* Init again -- zeroing memory may have clobbered some registers. */
1758 if (ti_chipinit(sc)) {
1759 printf("%s: chip initialization failed\n", self->dv_xname);
1760 goto fail2;
1761 }
1762
1763 /*
1764 * Get station address from the EEPROM. Note: the manual states
1765 * that the MAC address is at offset 0x8c, however the data is
1766 * stored as two longwords (since that's how it's loaded into
1767 * the NIC). This means the MAC address is actually preceded
1768 * by two zero bytes. We need to skip over those.
1769 */
1770 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1771 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1772 printf("%s: failed to read station address\n", self->dv_xname);
1773 goto fail2;
1774 }
1775
1776 /*
1777 * A Tigon chip was detected. Inform the world.
1778 */
1779 printf("%s: Ethernet address: %s\n", self->dv_xname,
1780 ether_sprintf(eaddr));
1781
1782 sc->sc_dmat = pa->pa_dmat;
1783
1784 /* Allocate the general information block and ring buffers. */
1785 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1786 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1787 BUS_DMA_NOWAIT)) != 0) {
1788 printf("%s: can't allocate ring buffer, error = %d\n",
1789 sc->sc_dev.dv_xname, error);
1790 goto fail2;
1791 }
1792
1793 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1794 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1795 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1796 printf("%s: can't map ring buffer, error = %d\n",
1797 sc->sc_dev.dv_xname, error);
1798 goto fail2;
1799 }
1800
1801 if ((error = bus_dmamap_create(sc->sc_dmat,
1802 sizeof(struct ti_ring_data), 1,
1803 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1804 &sc->info_dmamap)) != 0) {
1805 printf("%s: can't create ring buffer DMA map, error = %d\n",
1806 sc->sc_dev.dv_xname, error);
1807 goto fail2;
1808 }
1809
1810 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1811 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1812 BUS_DMA_NOWAIT)) != 0) {
1813 printf("%s: can't load ring buffer DMA map, error = %d\n",
1814 sc->sc_dev.dv_xname, error);
1815 goto fail2;
1816 }
1817
1818 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1819
1820 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1821
1822 /* Try to allocate memory for jumbo buffers. */
1823 if (ti_alloc_jumbo_mem(sc)) {
1824 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1825 goto fail2;
1826 }
1827
1828 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1829
1830 /*
1831 * We really need a better way to tell a 1000baseT card
1832 * from a 1000baseSX one, since in theory there could be
1833 * OEMed 1000baseT cards from lame vendors who aren't
1834 * clever enough to change the PCI ID. For the moment
1835 * though, the AceNIC is the only copper card available.
1836 */
1837 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1838 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1839 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1840 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1841 sc->ti_copper = 1;
1842 else
1843 sc->ti_copper = 0;
1844
1845 /* Set default tuneable values. */
1846 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1847 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1848 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1849 sc->ti_rx_max_coal_bds = 64;
1850 sc->ti_tx_max_coal_bds = 128;
1851 sc->ti_tx_buf_ratio = 21;
1852
1853 /* Set up ifnet structure */
1854 ifp = &sc->ethercom.ec_if;
1855 ifp->if_softc = sc;
1856 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1857 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1858 ifp->if_ioctl = ti_ioctl;
1859 ifp->if_start = ti_start;
1860 ifp->if_watchdog = ti_watchdog;
1861 IFQ_SET_READY(&ifp->if_snd);
1862
1863 #if 0
1864 /*
1865 * XXX This is not really correct -- we don't necessarily
1866 * XXX want to queue up as many as we can transmit at the
1867 * XXX upper layer like that. Someone with a board should
1868 * XXX check to see how this affects performance.
1869 */
1870 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1871 #endif
1872
1873 /*
1874 * We can support 802.1Q VLAN-sized frames.
1875 */
1876 sc->ethercom.ec_capabilities |=
1877 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1878
1879 /*
1880 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1881 */
1882 ifp->if_capabilities |=
1883 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1884 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1885 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1886
1887 /* Set up ifmedia support. */
1888 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1889 if (sc->ti_copper) {
1890 /*
1891 * Copper cards allow manual 10/100 mode selection,
1892 * but not manual 1000baseT mode selection. Why?
1893 * Because currently there's no way to specify the
1894 * master/slave setting through the firmware interface,
1895 * so Alteon decided to just bag it and handle it
1896 * via autonegotiation.
1897 */
1898 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1899 ifmedia_add(&sc->ifmedia,
1900 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1901 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1902 ifmedia_add(&sc->ifmedia,
1903 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1904 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1905 ifmedia_add(&sc->ifmedia,
1906 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1907 } else {
1908 /* Fiber cards don't support 10/100 modes. */
1909 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1910 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1911 }
1912 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1913 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1914
1915 /*
1916 * Call MI attach routines.
1917 */
1918 if_attach(ifp);
1919 ether_ifattach(ifp, eaddr);
1920
1921 return;
1922 fail2:
1923 pci_intr_disestablish(pc, sc->sc_ih);
1924 return;
1925 }
1926
1927 /*
1928 * Frame reception handling. This is called if there's a frame
1929 * on the receive return list.
1930 *
1931 * Note: we have to be able to handle three possibilities here:
1932 * 1) the frame is from the mini receive ring (can only happen)
1933 * on Tigon 2 boards)
1934 * 2) the frame is from the jumbo receive ring
1935 * 3) the frame is from the standard receive ring
1936 */
1937
1938 static void ti_rxeof(sc)
1939 struct ti_softc *sc;
1940 {
1941 struct ifnet *ifp;
1942 struct ti_cmd_desc cmd;
1943
1944 ifp = &sc->ethercom.ec_if;
1945
1946 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1947 struct ti_rx_desc *cur_rx;
1948 u_int32_t rxidx;
1949 struct mbuf *m = NULL;
1950 struct ether_header *eh;
1951 bus_dmamap_t dmamap;
1952
1953 cur_rx =
1954 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1955 rxidx = cur_rx->ti_idx;
1956 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1957
1958 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1959 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1960 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1961 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1962 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1963 ifp->if_ierrors++;
1964 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1965 continue;
1966 }
1967 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1968 == ENOBUFS) {
1969 ifp->if_ierrors++;
1970 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1971 continue;
1972 }
1973 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1974 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1975 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1976 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1977 dmamap = sc->mini_dmamap[rxidx];
1978 sc->mini_dmamap[rxidx] = 0;
1979 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1980 ifp->if_ierrors++;
1981 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1982 continue;
1983 }
1984 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1985 == ENOBUFS) {
1986 ifp->if_ierrors++;
1987 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1988 continue;
1989 }
1990 } else {
1991 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1992 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1993 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1994 dmamap = sc->std_dmamap[rxidx];
1995 sc->std_dmamap[rxidx] = 0;
1996 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1997 ifp->if_ierrors++;
1998 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1999 continue;
2000 }
2001 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
2002 == ENOBUFS) {
2003 ifp->if_ierrors++;
2004 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
2005 continue;
2006 }
2007 }
2008
2009 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2010 ifp->if_ipackets++;
2011 m->m_pkthdr.rcvif = ifp;
2012
2013 #if NBPFILTER > 0
2014 /*
2015 * Handle BPF listeners. Let the BPF user see the packet, but
2016 * don't pass it up to the ether_input() layer unless it's
2017 * a broadcast packet, multicast packet, matches our ethernet
2018 * address or the interface is in promiscuous mode.
2019 */
2020 if (ifp->if_bpf)
2021 bpf_mtap(ifp->if_bpf, m);
2022 #endif
2023
2024 eh = mtod(m, struct ether_header *);
2025 switch (ntohs(eh->ether_type)) {
2026 #ifdef INET
2027 case ETHERTYPE_IP:
2028 {
2029 struct ip *ip = (struct ip *) (eh + 1);
2030
2031 /*
2032 * Note the Tigon firmware does not invert
2033 * the checksum for us, hence the XOR.
2034 */
2035 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2036 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2037 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2038 /*
2039 * ntohs() the constant so the compiler can
2040 * optimize...
2041 *
2042 * XXX Figure out a sane way to deal with
2043 * fragmented packets.
2044 */
2045 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2046 switch (ip->ip_p) {
2047 case IPPROTO_TCP:
2048 m->m_pkthdr.csum_data =
2049 cur_rx->ti_tcp_udp_cksum;
2050 m->m_pkthdr.csum_flags |=
2051 M_CSUM_TCPv4|M_CSUM_DATA;
2052 break;
2053 case IPPROTO_UDP:
2054 m->m_pkthdr.csum_data =
2055 cur_rx->ti_tcp_udp_cksum;
2056 m->m_pkthdr.csum_flags |=
2057 M_CSUM_UDPv4|M_CSUM_DATA;
2058 break;
2059 default:
2060 /* Nothing */;
2061 }
2062 }
2063 break;
2064 }
2065 #endif
2066 default:
2067 /* Nothing. */
2068 break;
2069 }
2070
2071 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2072 VLAN_INPUT_TAG(ifp, m,
2073 /* ti_vlan_tag also has the priority, trim it */
2074 cur_rx->ti_vlan_tag & 4095,
2075 continue);
2076 }
2077
2078 (*ifp->if_input)(ifp, m);
2079 }
2080
2081 /* Only necessary on the Tigon 1. */
2082 if (sc->ti_hwrev == TI_HWREV_TIGON)
2083 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2084 sc->ti_rx_saved_considx);
2085
2086 TI_UPDATE_STDPROD(sc, sc->ti_std);
2087 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2088 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2089
2090 return;
2091 }
2092
2093 static void ti_txeof_tigon1(sc)
2094 struct ti_softc *sc;
2095 {
2096 struct ti_tx_desc *cur_tx = NULL;
2097 struct ifnet *ifp;
2098 struct txdmamap_pool_entry *dma;
2099
2100 ifp = &sc->ethercom.ec_if;
2101
2102 /*
2103 * Go through our tx ring and free mbufs for those
2104 * frames that have been sent.
2105 */
2106 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2107 u_int32_t idx = 0;
2108
2109 idx = sc->ti_tx_saved_considx;
2110 if (idx > 383)
2111 CSR_WRITE_4(sc, TI_WINBASE,
2112 TI_TX_RING_BASE + 6144);
2113 else if (idx > 255)
2114 CSR_WRITE_4(sc, TI_WINBASE,
2115 TI_TX_RING_BASE + 4096);
2116 else if (idx > 127)
2117 CSR_WRITE_4(sc, TI_WINBASE,
2118 TI_TX_RING_BASE + 2048);
2119 else
2120 CSR_WRITE_4(sc, TI_WINBASE,
2121 TI_TX_RING_BASE);
2122 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2123 if (cur_tx->ti_flags & TI_BDFLAG_END)
2124 ifp->if_opackets++;
2125 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2126 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2127 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2128
2129 dma = sc->txdma[idx];
2130 KDASSERT(dma != NULL);
2131 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2132 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2133 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2134
2135 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2136 sc->txdma[idx] = NULL;
2137 }
2138 sc->ti_txcnt--;
2139 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2140 ifp->if_timer = 0;
2141 }
2142
2143 if (cur_tx != NULL)
2144 ifp->if_flags &= ~IFF_OACTIVE;
2145
2146 return;
2147 }
2148
2149 static void ti_txeof_tigon2(sc)
2150 struct ti_softc *sc;
2151 {
2152 struct ti_tx_desc *cur_tx = NULL;
2153 struct ifnet *ifp;
2154 struct txdmamap_pool_entry *dma;
2155 int firstidx, cnt;
2156
2157 ifp = &sc->ethercom.ec_if;
2158
2159 /*
2160 * Go through our tx ring and free mbufs for those
2161 * frames that have been sent.
2162 */
2163 firstidx = sc->ti_tx_saved_considx;
2164 cnt = 0;
2165 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2166 u_int32_t idx = 0;
2167
2168 idx = sc->ti_tx_saved_considx;
2169 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2170 if (cur_tx->ti_flags & TI_BDFLAG_END)
2171 ifp->if_opackets++;
2172 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2173 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2174 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2175
2176 dma = sc->txdma[idx];
2177 KDASSERT(dma != NULL);
2178 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2179 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2180 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2181
2182 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2183 sc->txdma[idx] = NULL;
2184 }
2185 cnt++;
2186 sc->ti_txcnt--;
2187 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2188 ifp->if_timer = 0;
2189 }
2190
2191 if (cnt != 0)
2192 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2193
2194 if (cur_tx != NULL)
2195 ifp->if_flags &= ~IFF_OACTIVE;
2196
2197 return;
2198 }
2199
2200 static int ti_intr(xsc)
2201 void *xsc;
2202 {
2203 struct ti_softc *sc;
2204 struct ifnet *ifp;
2205
2206 sc = xsc;
2207 ifp = &sc->ethercom.ec_if;
2208
2209 #ifdef notdef
2210 /* Avoid this for now -- checking this register is expensive. */
2211 /* Make sure this is really our interrupt. */
2212 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2213 return (0);
2214 #endif
2215
2216 /* Ack interrupt and stop others from occuring. */
2217 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2218
2219 if (ifp->if_flags & IFF_RUNNING) {
2220 /* Check RX return ring producer/consumer */
2221 ti_rxeof(sc);
2222
2223 /* Check TX ring producer/consumer */
2224 (*sc->sc_tx_eof)(sc);
2225 }
2226
2227 ti_handle_events(sc);
2228
2229 /* Re-enable interrupts. */
2230 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2231
2232 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2233 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2234 ti_start(ifp);
2235
2236 return (1);
2237 }
2238
2239 static void ti_stats_update(sc)
2240 struct ti_softc *sc;
2241 {
2242 struct ifnet *ifp;
2243
2244 ifp = &sc->ethercom.ec_if;
2245
2246 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2247
2248 ifp->if_collisions +=
2249 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2250 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2251 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2252 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2253 ifp->if_collisions;
2254
2255 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2256 }
2257
2258 /*
2259 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2260 * pointers to descriptors.
2261 */
2262 static int ti_encap_tigon1(sc, m_head, txidx)
2263 struct ti_softc *sc;
2264 struct mbuf *m_head;
2265 u_int32_t *txidx;
2266 {
2267 struct ti_tx_desc *f = NULL;
2268 u_int32_t frag, cur, cnt = 0;
2269 struct txdmamap_pool_entry *dma;
2270 bus_dmamap_t dmamap;
2271 int error, i;
2272 struct m_tag *mtag;
2273 u_int16_t csum_flags = 0;
2274
2275 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2276 if (dma == NULL) {
2277 return ENOMEM;
2278 }
2279 dmamap = dma->dmamap;
2280
2281 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2282 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2283 if (error) {
2284 struct mbuf *m;
2285 int j = 0;
2286 for (m = m_head; m; m = m->m_next)
2287 j++;
2288 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2289 "error %d\n", m_head->m_pkthdr.len, j, error);
2290 return (ENOMEM);
2291 }
2292
2293 cur = frag = *txidx;
2294
2295 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2296 /* IP header checksum field must be 0! */
2297 csum_flags |= TI_BDFLAG_IP_CKSUM;
2298 }
2299 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2300 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2301
2302 /* XXX fragmented packet checksum capability? */
2303
2304 /*
2305 * Start packing the mbufs in this chain into
2306 * the fragment pointers. Stop when we run out
2307 * of fragments or hit the end of the mbuf chain.
2308 */
2309 for (i = 0; i < dmamap->dm_nsegs; i++) {
2310 if (frag > 383)
2311 CSR_WRITE_4(sc, TI_WINBASE,
2312 TI_TX_RING_BASE + 6144);
2313 else if (frag > 255)
2314 CSR_WRITE_4(sc, TI_WINBASE,
2315 TI_TX_RING_BASE + 4096);
2316 else if (frag > 127)
2317 CSR_WRITE_4(sc, TI_WINBASE,
2318 TI_TX_RING_BASE + 2048);
2319 else
2320 CSR_WRITE_4(sc, TI_WINBASE,
2321 TI_TX_RING_BASE);
2322 f = &sc->ti_tx_ring_nic[frag % 128];
2323 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2324 break;
2325 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2326 f->ti_len = dmamap->dm_segs[i].ds_len;
2327 f->ti_flags = csum_flags;
2328 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2329 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2330 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2331 } else {
2332 f->ti_vlan_tag = 0;
2333 }
2334 /*
2335 * Sanity check: avoid coming within 16 descriptors
2336 * of the end of the ring.
2337 */
2338 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2339 return(ENOBUFS);
2340 cur = frag;
2341 TI_INC(frag, TI_TX_RING_CNT);
2342 cnt++;
2343 }
2344
2345 if (i < dmamap->dm_nsegs)
2346 return(ENOBUFS);
2347
2348 if (frag == sc->ti_tx_saved_considx)
2349 return(ENOBUFS);
2350
2351 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2352 TI_BDFLAG_END;
2353
2354 /* Sync the packet's DMA map. */
2355 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2356 BUS_DMASYNC_PREWRITE);
2357
2358 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2359 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2360 sc->txdma[cur] = dma;
2361 sc->ti_txcnt += cnt;
2362
2363 *txidx = frag;
2364
2365 return(0);
2366 }
2367
2368 static int ti_encap_tigon2(sc, m_head, txidx)
2369 struct ti_softc *sc;
2370 struct mbuf *m_head;
2371 u_int32_t *txidx;
2372 {
2373 struct ti_tx_desc *f = NULL;
2374 u_int32_t frag, firstfrag, cur, cnt = 0;
2375 struct txdmamap_pool_entry *dma;
2376 bus_dmamap_t dmamap;
2377 int error, i;
2378 struct m_tag *mtag;
2379 u_int16_t csum_flags = 0;
2380
2381 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2382 if (dma == NULL) {
2383 return ENOMEM;
2384 }
2385 dmamap = dma->dmamap;
2386
2387 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2388 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2389 if (error) {
2390 struct mbuf *m;
2391 int j = 0;
2392 for (m = m_head; m; m = m->m_next)
2393 j++;
2394 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2395 "error %d\n", m_head->m_pkthdr.len, j, error);
2396 return (ENOMEM);
2397 }
2398
2399 cur = firstfrag = frag = *txidx;
2400
2401 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2402 /* IP header checksum field must be 0! */
2403 csum_flags |= TI_BDFLAG_IP_CKSUM;
2404 }
2405 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2406 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2407
2408 /* XXX fragmented packet checksum capability? */
2409
2410 /*
2411 * Start packing the mbufs in this chain into
2412 * the fragment pointers. Stop when we run out
2413 * of fragments or hit the end of the mbuf chain.
2414 */
2415 for (i = 0; i < dmamap->dm_nsegs; i++) {
2416 f = &sc->ti_rdata->ti_tx_ring[frag];
2417 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2418 break;
2419 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2420 f->ti_len = dmamap->dm_segs[i].ds_len;
2421 f->ti_flags = csum_flags;
2422 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2423 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2424 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2425 } else {
2426 f->ti_vlan_tag = 0;
2427 }
2428 /*
2429 * Sanity check: avoid coming within 16 descriptors
2430 * of the end of the ring.
2431 */
2432 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2433 return(ENOBUFS);
2434 cur = frag;
2435 TI_INC(frag, TI_TX_RING_CNT);
2436 cnt++;
2437 }
2438
2439 if (i < dmamap->dm_nsegs)
2440 return(ENOBUFS);
2441
2442 if (frag == sc->ti_tx_saved_considx)
2443 return(ENOBUFS);
2444
2445 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2446
2447 /* Sync the packet's DMA map. */
2448 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2449 BUS_DMASYNC_PREWRITE);
2450
2451 /* Sync the descriptors we are using. */
2452 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2453
2454 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2455 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2456 sc->txdma[cur] = dma;
2457 sc->ti_txcnt += cnt;
2458
2459 *txidx = frag;
2460
2461 return(0);
2462 }
2463
2464 /*
2465 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2466 * to the mbuf data regions directly in the transmit descriptors.
2467 */
2468 static void ti_start(ifp)
2469 struct ifnet *ifp;
2470 {
2471 struct ti_softc *sc;
2472 struct mbuf *m_head = NULL;
2473 u_int32_t prodidx = 0;
2474
2475 sc = ifp->if_softc;
2476
2477 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2478
2479 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2480 IFQ_POLL(&ifp->if_snd, m_head);
2481 if (m_head == NULL)
2482 break;
2483
2484 /*
2485 * Pack the data into the transmit ring. If we
2486 * don't have room, set the OACTIVE flag and wait
2487 * for the NIC to drain the ring.
2488 */
2489 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2490 ifp->if_flags |= IFF_OACTIVE;
2491 break;
2492 }
2493
2494 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2495
2496 /*
2497 * If there's a BPF listener, bounce a copy of this frame
2498 * to him.
2499 */
2500 #if NBPFILTER > 0
2501 if (ifp->if_bpf)
2502 bpf_mtap(ifp->if_bpf, m_head);
2503 #endif
2504 }
2505
2506 /* Transmit */
2507 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2508
2509 /*
2510 * Set a timeout in case the chip goes out to lunch.
2511 */
2512 ifp->if_timer = 5;
2513
2514 return;
2515 }
2516
2517 static void ti_init(xsc)
2518 void *xsc;
2519 {
2520 struct ti_softc *sc = xsc;
2521 int s;
2522
2523 s = splnet();
2524
2525 /* Cancel pending I/O and flush buffers. */
2526 ti_stop(sc);
2527
2528 /* Init the gen info block, ring control blocks and firmware. */
2529 if (ti_gibinit(sc)) {
2530 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2531 splx(s);
2532 return;
2533 }
2534
2535 splx(s);
2536
2537 return;
2538 }
2539
2540 static void ti_init2(sc)
2541 struct ti_softc *sc;
2542 {
2543 struct ti_cmd_desc cmd;
2544 struct ifnet *ifp;
2545 u_int8_t *m;
2546 struct ifmedia *ifm;
2547 int tmp;
2548
2549 ifp = &sc->ethercom.ec_if;
2550
2551 /* Specify MTU and interface index. */
2552 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
2553
2554 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2555 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2556 tmp += ETHER_VLAN_ENCAP_LEN;
2557 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2558
2559 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2560
2561 /* Load our MAC address. */
2562 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2563 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2564 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2565 | (m[4] << 8) | m[5]);
2566 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2567
2568 /* Enable or disable promiscuous mode as needed. */
2569 if (ifp->if_flags & IFF_PROMISC) {
2570 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2571 } else {
2572 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2573 }
2574
2575 /* Program multicast filter. */
2576 ti_setmulti(sc);
2577
2578 /*
2579 * If this is a Tigon 1, we should tell the
2580 * firmware to use software packet filtering.
2581 */
2582 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2583 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2584 }
2585
2586 /* Init RX ring. */
2587 ti_init_rx_ring_std(sc);
2588
2589 /* Init jumbo RX ring. */
2590 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2591 ti_init_rx_ring_jumbo(sc);
2592
2593 /*
2594 * If this is a Tigon 2, we can also configure the
2595 * mini ring.
2596 */
2597 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2598 ti_init_rx_ring_mini(sc);
2599
2600 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2601 sc->ti_rx_saved_considx = 0;
2602
2603 /* Init TX ring. */
2604 ti_init_tx_ring(sc);
2605
2606 /* Tell firmware we're alive. */
2607 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2608
2609 /* Enable host interrupts. */
2610 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2611
2612 ifp->if_flags |= IFF_RUNNING;
2613 ifp->if_flags &= ~IFF_OACTIVE;
2614
2615 /*
2616 * Make sure to set media properly. We have to do this
2617 * here since we have to issue commands in order to set
2618 * the link negotiation and we can't issue commands until
2619 * the firmware is running.
2620 */
2621 ifm = &sc->ifmedia;
2622 tmp = ifm->ifm_media;
2623 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2624 ti_ifmedia_upd(ifp);
2625 ifm->ifm_media = tmp;
2626
2627 return;
2628 }
2629
2630 /*
2631 * Set media options.
2632 */
2633 static int ti_ifmedia_upd(ifp)
2634 struct ifnet *ifp;
2635 {
2636 struct ti_softc *sc;
2637 struct ifmedia *ifm;
2638 struct ti_cmd_desc cmd;
2639
2640 sc = ifp->if_softc;
2641 ifm = &sc->ifmedia;
2642
2643 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2644 return(EINVAL);
2645
2646 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2647 case IFM_AUTO:
2648 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2649 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2650 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2651 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2652 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2653 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2654 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2655 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2656 break;
2657 case IFM_1000_SX:
2658 case IFM_1000_T:
2659 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2660 CSR_WRITE_4(sc, TI_GCR_GLINK,
2661 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2662 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2663 } else {
2664 CSR_WRITE_4(sc, TI_GCR_GLINK,
2665 TI_GLNK_PREF|TI_GLNK_1000MB|
2666 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2667 }
2668 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2669 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2670 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2671 break;
2672 case IFM_100_FX:
2673 case IFM_10_FL:
2674 case IFM_100_TX:
2675 case IFM_10_T:
2676 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2677 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2678 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2679 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2680 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2681 } else {
2682 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2683 }
2684 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2685 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2686 } else {
2687 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2688 }
2689 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2690 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2691 break;
2692 }
2693
2694 sc->ethercom.ec_if.if_baudrate =
2695 ifmedia_baudrate(ifm->ifm_media);
2696
2697 return(0);
2698 }
2699
2700 /*
2701 * Report current media status.
2702 */
2703 static void ti_ifmedia_sts(ifp, ifmr)
2704 struct ifnet *ifp;
2705 struct ifmediareq *ifmr;
2706 {
2707 struct ti_softc *sc;
2708 u_int32_t media = 0;
2709
2710 sc = ifp->if_softc;
2711
2712 ifmr->ifm_status = IFM_AVALID;
2713 ifmr->ifm_active = IFM_ETHER;
2714
2715 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2716 return;
2717
2718 ifmr->ifm_status |= IFM_ACTIVE;
2719
2720 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2721 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2722 if (sc->ti_copper)
2723 ifmr->ifm_active |= IFM_1000_T;
2724 else
2725 ifmr->ifm_active |= IFM_1000_SX;
2726 if (media & TI_GLNK_FULL_DUPLEX)
2727 ifmr->ifm_active |= IFM_FDX;
2728 else
2729 ifmr->ifm_active |= IFM_HDX;
2730 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2731 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2732 if (sc->ti_copper) {
2733 if (media & TI_LNK_100MB)
2734 ifmr->ifm_active |= IFM_100_TX;
2735 if (media & TI_LNK_10MB)
2736 ifmr->ifm_active |= IFM_10_T;
2737 } else {
2738 if (media & TI_LNK_100MB)
2739 ifmr->ifm_active |= IFM_100_FX;
2740 if (media & TI_LNK_10MB)
2741 ifmr->ifm_active |= IFM_10_FL;
2742 }
2743 if (media & TI_LNK_FULL_DUPLEX)
2744 ifmr->ifm_active |= IFM_FDX;
2745 if (media & TI_LNK_HALF_DUPLEX)
2746 ifmr->ifm_active |= IFM_HDX;
2747 }
2748
2749 sc->ethercom.ec_if.if_baudrate =
2750 ifmedia_baudrate(sc->ifmedia.ifm_media);
2751
2752 return;
2753 }
2754
2755 static int
2756 ti_ether_ioctl(ifp, cmd, data)
2757 struct ifnet *ifp;
2758 u_long cmd;
2759 caddr_t data;
2760 {
2761 struct ifaddr *ifa = (struct ifaddr *) data;
2762 struct ti_softc *sc = ifp->if_softc;
2763
2764 if ((ifp->if_flags & IFF_UP) == 0) {
2765 ifp->if_flags |= IFF_UP;
2766 ti_init(sc);
2767 }
2768
2769 switch (cmd) {
2770 case SIOCSIFADDR:
2771
2772 switch (ifa->ifa_addr->sa_family) {
2773 #ifdef INET
2774 case AF_INET:
2775 arp_ifinit(ifp, ifa);
2776 break;
2777 #endif
2778 #ifdef NS
2779 case AF_NS:
2780 {
2781 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2782
2783 if (ns_nullhost(*ina))
2784 ina->x_host = *(union ns_host *)
2785 LLADDR(ifp->if_sadl);
2786 else
2787 memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
2788 ifp->if_addrlen);
2789 break;
2790 }
2791 #endif
2792 default:
2793 break;
2794 }
2795 break;
2796
2797 default:
2798 return (EINVAL);
2799 }
2800
2801 return (0);
2802 }
2803
2804 static int ti_ioctl(ifp, command, data)
2805 struct ifnet *ifp;
2806 u_long command;
2807 caddr_t data;
2808 {
2809 struct ti_softc *sc = ifp->if_softc;
2810 struct ifreq *ifr = (struct ifreq *) data;
2811 int s, error = 0;
2812 struct ti_cmd_desc cmd;
2813
2814 s = splnet();
2815
2816 switch(command) {
2817 case SIOCSIFADDR:
2818 case SIOCGIFADDR:
2819 error = ti_ether_ioctl(ifp, command, data);
2820 break;
2821 case SIOCSIFMTU:
2822 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2823 error = EINVAL;
2824 else {
2825 ifp->if_mtu = ifr->ifr_mtu;
2826 ti_init(sc);
2827 }
2828 break;
2829 case SIOCSIFFLAGS:
2830 if (ifp->if_flags & IFF_UP) {
2831 /*
2832 * If only the state of the PROMISC flag changed,
2833 * then just use the 'set promisc mode' command
2834 * instead of reinitializing the entire NIC. Doing
2835 * a full re-init means reloading the firmware and
2836 * waiting for it to start up, which may take a
2837 * second or two.
2838 */
2839 if (ifp->if_flags & IFF_RUNNING &&
2840 ifp->if_flags & IFF_PROMISC &&
2841 !(sc->ti_if_flags & IFF_PROMISC)) {
2842 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2843 TI_CMD_CODE_PROMISC_ENB, 0);
2844 } else if (ifp->if_flags & IFF_RUNNING &&
2845 !(ifp->if_flags & IFF_PROMISC) &&
2846 sc->ti_if_flags & IFF_PROMISC) {
2847 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2848 TI_CMD_CODE_PROMISC_DIS, 0);
2849 } else
2850 ti_init(sc);
2851 } else {
2852 if (ifp->if_flags & IFF_RUNNING) {
2853 ti_stop(sc);
2854 }
2855 }
2856 sc->ti_if_flags = ifp->if_flags;
2857 error = 0;
2858 break;
2859 case SIOCADDMULTI:
2860 case SIOCDELMULTI:
2861 error = (command == SIOCADDMULTI) ?
2862 ether_addmulti(ifr, &sc->ethercom) :
2863 ether_delmulti(ifr, &sc->ethercom);
2864 if (error == ENETRESET) {
2865 if (ifp->if_flags & IFF_RUNNING)
2866 ti_setmulti(sc);
2867 error = 0;
2868 }
2869 break;
2870 case SIOCSIFMEDIA:
2871 case SIOCGIFMEDIA:
2872 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2873 break;
2874 default:
2875 error = EINVAL;
2876 break;
2877 }
2878
2879 (void)splx(s);
2880
2881 return(error);
2882 }
2883
2884 static void ti_watchdog(ifp)
2885 struct ifnet *ifp;
2886 {
2887 struct ti_softc *sc;
2888
2889 sc = ifp->if_softc;
2890
2891 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2892 ti_stop(sc);
2893 ti_init(sc);
2894
2895 ifp->if_oerrors++;
2896
2897 return;
2898 }
2899
2900 /*
2901 * Stop the adapter and free any mbufs allocated to the
2902 * RX and TX lists.
2903 */
2904 static void ti_stop(sc)
2905 struct ti_softc *sc;
2906 {
2907 struct ifnet *ifp;
2908 struct ti_cmd_desc cmd;
2909
2910 ifp = &sc->ethercom.ec_if;
2911
2912 /* Disable host interrupts. */
2913 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2914 /*
2915 * Tell firmware we're shutting down.
2916 */
2917 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2918
2919 /* Halt and reinitialize. */
2920 ti_chipinit(sc);
2921 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2922 ti_chipinit(sc);
2923
2924 /* Free the RX lists. */
2925 ti_free_rx_ring_std(sc);
2926
2927 /* Free jumbo RX list. */
2928 ti_free_rx_ring_jumbo(sc);
2929
2930 /* Free mini RX list. */
2931 ti_free_rx_ring_mini(sc);
2932
2933 /* Free TX buffers. */
2934 ti_free_tx_ring(sc);
2935
2936 sc->ti_ev_prodidx.ti_idx = 0;
2937 sc->ti_return_prodidx.ti_idx = 0;
2938 sc->ti_tx_considx.ti_idx = 0;
2939 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2940
2941 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2942
2943 return;
2944 }
2945
2946 /*
2947 * Stop all chip I/O so that the kernel's probe routines don't
2948 * get confused by errant DMAs when rebooting.
2949 */
2950 static void ti_shutdown(v)
2951 void *v;
2952 {
2953 struct ti_softc *sc = v;
2954
2955 ti_chipinit(sc);
2956
2957 return;
2958 }
2959