Home | History | Annotate | Line # | Download | only in pci
if_ti.c revision 1.72
      1 /* $NetBSD: if_ti.c,v 1.72 2006/10/12 01:31:30 christos Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997, 1998, 1999
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
     35  */
     36 
     37 /*
     38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
     39  * Manuals, sample driver and firmware source kits are available
     40  * from http://www.alteon.com/support/openkits.
     41  *
     42  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     43  * Electrical Engineering Department
     44  * Columbia University, New York City
     45  */
     46 
     47 /*
     48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
     49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
     50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
     51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
     52  * filtering and jumbo (9014 byte) frames. The hardware is largely
     53  * controlled by firmware, which must be loaded into the NIC during
     54  * initialization.
     55  *
     56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
     57  * revision, which supports new features such as extended commands,
     58  * extended jumbo receive ring desciptors and a mini receive ring.
     59  *
     60  * Alteon Networks is to be commended for releasing such a vast amount
     61  * of development material for the Tigon NIC without requiring an NDA
     62  * (although they really should have done it a long time ago). With
     63  * any luck, the other vendors will finally wise up and follow Alteon's
     64  * stellar example.
     65  *
     66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
     67  * this driver by #including it as a C header file. This bloats the
     68  * driver somewhat, but it's the easiest method considering that the
     69  * driver code and firmware code need to be kept in sync. The source
     70  * for the firmware is not provided with the FreeBSD distribution since
     71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
     72  *
     73  * The following people deserve special thanks:
     74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
     75  *   for testing
     76  * - Raymond Lee of Netgear, for providing a pair of Netgear
     77  *   GA620 Tigon 2 boards for testing
     78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
     79  *   convincing me to write this driver.
     80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.72 2006/10/12 01:31:30 christos Exp $");
     85 
     86 #include "bpfilter.h"
     87 #include "opt_inet.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/sockio.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/queue.h>
     97 #include <sys/device.h>
     98 #include <sys/reboot.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 #include <net/if.h>
    103 #include <net/if_arp.h>
    104 #include <net/if_ether.h>
    105 #include <net/if_dl.h>
    106 #include <net/if_media.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #ifdef INET
    113 #include <netinet/in.h>
    114 #include <netinet/if_inarp.h>
    115 #include <netinet/in_systm.h>
    116 #include <netinet/ip.h>
    117 #endif
    118 
    119 
    120 #include <machine/bus.h>
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_tireg.h>
    127 
    128 #include <dev/microcode/tigon/ti_fw.h>
    129 #include <dev/microcode/tigon/ti_fw2.h>
    130 
    131 /*
    132  * Various supported device vendors/types and their names.
    133  */
    134 
    135 static const struct ti_type ti_devs[] = {
    136 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
    137 		"Alteon AceNIC 1000BASE-SX Ethernet" },
    138 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
    139 		"Alteon AceNIC 1000BASE-T Ethernet" },
    140 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
    141 		"3Com 3c985-SX Gigabit Ethernet" },
    142 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
    143 		"Netgear GA620 1000BASE-SX Ethernet" },
    144 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
    145 		"Netgear GA620 1000BASE-T Ethernet" },
    146 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
    147 		"Silicon Graphics Gigabit Ethernet" },
    148 	{ 0, 0, NULL }
    149 };
    150 
    151 static const struct ti_type *ti_type_match(struct pci_attach_args *);
    152 static int ti_probe(struct device *, struct cfdata *, void *);
    153 static void ti_attach(struct device *, struct device *, void *);
    154 static void ti_shutdown(void *);
    155 static void ti_txeof_tigon1(struct ti_softc *);
    156 static void ti_txeof_tigon2(struct ti_softc *);
    157 static void ti_rxeof(struct ti_softc *);
    158 
    159 static void ti_stats_update(struct ti_softc *);
    160 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
    161 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
    162 
    163 static int ti_intr(void *);
    164 static void ti_start(struct ifnet *);
    165 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
    166 static void ti_init(void *);
    167 static void ti_init2(struct ti_softc *);
    168 static void ti_stop(struct ti_softc *);
    169 static void ti_watchdog(struct ifnet *);
    170 static int ti_ifmedia_upd(struct ifnet *);
    171 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    172 
    173 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
    174 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
    175 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
    176 
    177 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
    178 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
    179 static void ti_setmulti(struct ti_softc *);
    180 
    181 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
    182 static void ti_loadfw(struct ti_softc *);
    183 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
    184 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
    185 static void ti_handle_events(struct ti_softc *);
    186 static int ti_alloc_jumbo_mem(struct ti_softc *);
    187 static void *ti_jalloc(struct ti_softc *);
    188 static void ti_jfree(struct mbuf *, caddr_t, size_t, void *);
    189 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
    190 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
    191 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
    192 static int ti_init_rx_ring_std(struct ti_softc *);
    193 static void ti_free_rx_ring_std(struct ti_softc *);
    194 static int ti_init_rx_ring_jumbo(struct ti_softc *);
    195 static void ti_free_rx_ring_jumbo(struct ti_softc *);
    196 static int ti_init_rx_ring_mini(struct ti_softc *);
    197 static void ti_free_rx_ring_mini(struct ti_softc *);
    198 static void ti_free_tx_ring(struct ti_softc *);
    199 static int ti_init_tx_ring(struct ti_softc *);
    200 
    201 static int ti_64bitslot_war(struct ti_softc *);
    202 static int ti_chipinit(struct ti_softc *);
    203 static int ti_gibinit(struct ti_softc *);
    204 
    205 static int ti_ether_ioctl(struct ifnet *, u_long, caddr_t);
    206 
    207 CFATTACH_DECL(ti, sizeof(struct ti_softc),
    208     ti_probe, ti_attach, NULL, NULL);
    209 
    210 /*
    211  * Send an instruction or address to the EEPROM, check for ACK.
    212  */
    213 static u_int32_t ti_eeprom_putbyte(sc, byte)
    214 	struct ti_softc	*sc;
    215 	int byte;
    216 {
    217 	int i, ack = 0;
    218 
    219 	/*
    220 	 * Make sure we're in TX mode.
    221 	 */
    222 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    223 
    224 	/*
    225 	 * Feed in each bit and stobe the clock.
    226 	 */
    227 	for (i = 0x80; i; i >>= 1) {
    228 		if (byte & i) {
    229 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    230 		} else {
    231 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    232 		}
    233 		DELAY(1);
    234 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    235 		DELAY(1);
    236 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    237 	}
    238 
    239 	/*
    240 	 * Turn off TX mode.
    241 	 */
    242 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    243 
    244 	/*
    245 	 * Check for ack.
    246 	 */
    247 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    248 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
    249 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    250 
    251 	return(ack);
    252 }
    253 
    254 /*
    255  * Read a byte of data stored in the EEPROM at address 'addr.'
    256  * We have to send two address bytes since the EEPROM can hold
    257  * more than 256 bytes of data.
    258  */
    259 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
    260 	struct ti_softc		*sc;
    261 	int			addr;
    262 	u_int8_t		*dest;
    263 {
    264 	int		i;
    265 	u_int8_t		byte = 0;
    266 
    267 	EEPROM_START;
    268 
    269 	/*
    270 	 * Send write control code to EEPROM.
    271 	 */
    272 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
    273 		printf("%s: failed to send write command, status: %x\n",
    274 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    275 		return(1);
    276 	}
    277 
    278 	/*
    279 	 * Send first byte of address of byte we want to read.
    280 	 */
    281 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
    282 		printf("%s: failed to send address, status: %x\n",
    283 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    284 		return(1);
    285 	}
    286 	/*
    287 	 * Send second byte address of byte we want to read.
    288 	 */
    289 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
    290 		printf("%s: failed to send address, status: %x\n",
    291 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    292 		return(1);
    293 	}
    294 
    295 	EEPROM_STOP;
    296 	EEPROM_START;
    297 	/*
    298 	 * Send read control code to EEPROM.
    299 	 */
    300 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
    301 		printf("%s: failed to send read command, status: %x\n",
    302 		    sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    303 		return(1);
    304 	}
    305 
    306 	/*
    307 	 * Start reading bits from EEPROM.
    308 	 */
    309 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    310 	for (i = 0x80; i; i >>= 1) {
    311 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    312 		DELAY(1);
    313 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
    314 			byte |= i;
    315 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    316 		DELAY(1);
    317 	}
    318 
    319 	EEPROM_STOP;
    320 
    321 	/*
    322 	 * No ACK generated for read, so just return byte.
    323 	 */
    324 
    325 	*dest = byte;
    326 
    327 	return(0);
    328 }
    329 
    330 /*
    331  * Read a sequence of bytes from the EEPROM.
    332  */
    333 static int ti_read_eeprom(sc, dest, off, cnt)
    334 	struct ti_softc		*sc;
    335 	caddr_t			dest;
    336 	int			off;
    337 	int			cnt;
    338 {
    339 	int			err = 0, i;
    340 	u_int8_t		byte = 0;
    341 
    342 	for (i = 0; i < cnt; i++) {
    343 		err = ti_eeprom_getbyte(sc, off + i, &byte);
    344 		if (err)
    345 			break;
    346 		*(dest + i) = byte;
    347 	}
    348 
    349 	return(err ? 1 : 0);
    350 }
    351 
    352 /*
    353  * NIC memory access function. Can be used to either clear a section
    354  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
    355  */
    356 static void ti_mem(sc, addr, len, xbuf)
    357 	struct ti_softc		*sc;
    358 	u_int32_t		addr, len;
    359 	const void 		*xbuf;
    360 {
    361 	int			segptr, segsize, cnt;
    362 	const void		*ptr;
    363 
    364 	segptr = addr;
    365 	cnt = len;
    366 	ptr = xbuf;
    367 
    368 	while(cnt) {
    369 		if (cnt < TI_WINLEN)
    370 			segsize = cnt;
    371 		else
    372 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
    373 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
    374 		if (xbuf == NULL) {
    375 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
    376 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
    377 			    segsize / 4);
    378 		} else {
    379 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
    380 			bus_space_write_region_stream_4(sc->ti_btag,
    381 			    sc->ti_bhandle,
    382 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    383 			    (const u_int32_t *)ptr, segsize / 4);
    384 #else
    385 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
    386 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    387 			    (const u_int32_t *)ptr, segsize / 4);
    388 #endif
    389 			ptr = (const char *)ptr + segsize;
    390 		}
    391 		segptr += segsize;
    392 		cnt -= segsize;
    393 	}
    394 
    395 	return;
    396 }
    397 
    398 /*
    399  * Load firmware image into the NIC. Check that the firmware revision
    400  * is acceptable and see if we want the firmware for the Tigon 1 or
    401  * Tigon 2.
    402  */
    403 static void ti_loadfw(sc)
    404 	struct ti_softc		*sc;
    405 {
    406 	switch(sc->ti_hwrev) {
    407 	case TI_HWREV_TIGON:
    408 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
    409 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
    410 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
    411 			printf("%s: firmware revision mismatch; want "
    412 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
    413 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    414 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
    415 			    tigonFwReleaseMinor, tigonFwReleaseFix);
    416 			return;
    417 		}
    418 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
    419 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
    420 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
    421 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
    422 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
    423 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
    424 		break;
    425 	case TI_HWREV_TIGON_II:
    426 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
    427 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
    428 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
    429 			printf("%s: firmware revision mismatch; want "
    430 			    "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
    431 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    432 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
    433 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
    434 			return;
    435 		}
    436 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
    437 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
    438 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
    439 		    tigon2FwRodata);
    440 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
    441 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
    442 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
    443 		break;
    444 	default:
    445 		printf("%s: can't load firmware: unknown hardware rev\n",
    446 		    sc->sc_dev.dv_xname);
    447 		break;
    448 	}
    449 
    450 	return;
    451 }
    452 
    453 /*
    454  * Send the NIC a command via the command ring.
    455  */
    456 static void ti_cmd(sc, cmd)
    457 	struct ti_softc		*sc;
    458 	struct ti_cmd_desc	*cmd;
    459 {
    460 	u_int32_t		index;
    461 
    462 	index = sc->ti_cmd_saved_prodidx;
    463 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    464 	TI_INC(index, TI_CMD_RING_CNT);
    465 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    466 	sc->ti_cmd_saved_prodidx = index;
    467 
    468 	return;
    469 }
    470 
    471 /*
    472  * Send the NIC an extended command. The 'len' parameter specifies the
    473  * number of command slots to include after the initial command.
    474  */
    475 static void ti_cmd_ext(sc, cmd, arg, len)
    476 	struct ti_softc		*sc;
    477 	struct ti_cmd_desc	*cmd;
    478 	caddr_t			arg;
    479 	int			len;
    480 {
    481 	u_int32_t		index;
    482 	int		i;
    483 
    484 	index = sc->ti_cmd_saved_prodidx;
    485 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    486 	TI_INC(index, TI_CMD_RING_CNT);
    487 	for (i = 0; i < len; i++) {
    488 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
    489 		    *(u_int32_t *)(&arg[i * 4]));
    490 		TI_INC(index, TI_CMD_RING_CNT);
    491 	}
    492 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    493 	sc->ti_cmd_saved_prodidx = index;
    494 
    495 	return;
    496 }
    497 
    498 /*
    499  * Handle events that have triggered interrupts.
    500  */
    501 static void ti_handle_events(sc)
    502 	struct ti_softc		*sc;
    503 {
    504 	struct ti_event_desc	*e;
    505 
    506 	if (sc->ti_rdata->ti_event_ring == NULL)
    507 		return;
    508 
    509 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
    510 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
    511 		switch(e->ti_event) {
    512 		case TI_EV_LINKSTAT_CHANGED:
    513 			sc->ti_linkstat = e->ti_code;
    514 			if (e->ti_code == TI_EV_CODE_LINK_UP)
    515 				printf("%s: 10/100 link up\n",
    516 				       sc->sc_dev.dv_xname);
    517 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
    518 				printf("%s: gigabit link up\n",
    519 				       sc->sc_dev.dv_xname);
    520 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
    521 				printf("%s: link down\n",
    522 				       sc->sc_dev.dv_xname);
    523 			break;
    524 		case TI_EV_ERROR:
    525 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
    526 				printf("%s: invalid command\n",
    527 				       sc->sc_dev.dv_xname);
    528 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
    529 				printf("%s: unknown command\n",
    530 				       sc->sc_dev.dv_xname);
    531 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
    532 				printf("%s: bad config data\n",
    533 				       sc->sc_dev.dv_xname);
    534 			break;
    535 		case TI_EV_FIRMWARE_UP:
    536 			ti_init2(sc);
    537 			break;
    538 		case TI_EV_STATS_UPDATED:
    539 			ti_stats_update(sc);
    540 			break;
    541 		case TI_EV_RESET_JUMBO_RING:
    542 		case TI_EV_MCAST_UPDATED:
    543 			/* Who cares. */
    544 			break;
    545 		default:
    546 			printf("%s: unknown event: %d\n",
    547 			    sc->sc_dev.dv_xname, e->ti_event);
    548 			break;
    549 		}
    550 		/* Advance the consumer index. */
    551 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
    552 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
    553 	}
    554 
    555 	return;
    556 }
    557 
    558 /*
    559  * Memory management for the jumbo receive ring is a pain in the
    560  * butt. We need to allocate at least 9018 bytes of space per frame,
    561  * _and_ it has to be contiguous (unless you use the extended
    562  * jumbo descriptor format). Using malloc() all the time won't
    563  * work: malloc() allocates memory in powers of two, which means we
    564  * would end up wasting a considerable amount of space by allocating
    565  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
    566  * to do our own memory management.
    567  *
    568  * The driver needs to allocate a contiguous chunk of memory at boot
    569  * time. We then chop this up ourselves into 9K pieces and use them
    570  * as external mbuf storage.
    571  *
    572  * One issue here is how much memory to allocate. The jumbo ring has
    573  * 256 slots in it, but at 9K per slot than can consume over 2MB of
    574  * RAM. This is a bit much, especially considering we also need
    575  * RAM for the standard ring and mini ring (on the Tigon 2). To
    576  * save space, we only actually allocate enough memory for 64 slots
    577  * by default, which works out to between 500 and 600K. This can
    578  * be tuned by changing a #define in if_tireg.h.
    579  */
    580 
    581 static int ti_alloc_jumbo_mem(sc)
    582 	struct ti_softc		*sc;
    583 {
    584 	caddr_t			ptr;
    585 	int		i;
    586 	struct ti_jpool_entry   *entry;
    587 	bus_dma_segment_t dmaseg;
    588 	int error, dmanseg;
    589 
    590 	/* Grab a big chunk o' storage. */
    591 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    592 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
    593 	    BUS_DMA_NOWAIT)) != 0) {
    594 		printf("%s: can't allocate jumbo buffer, error = %d\n",
    595 		       sc->sc_dev.dv_xname, error);
    596 		return (error);
    597 	}
    598 
    599 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
    600 	    TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
    601 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    602 		printf("%s: can't map jumbo buffer, error = %d\n",
    603 		       sc->sc_dev.dv_xname, error);
    604 		return (error);
    605 	}
    606 
    607 	if ((error = bus_dmamap_create(sc->sc_dmat,
    608 	    TI_JMEM, 1,
    609 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
    610 	    &sc->jumbo_dmamap)) != 0) {
    611 		printf("%s: can't create jumbo buffer DMA map, error = %d\n",
    612 		       sc->sc_dev.dv_xname, error);
    613 		return (error);
    614 	}
    615 
    616 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
    617 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
    618 	    BUS_DMA_NOWAIT)) != 0) {
    619 		printf("%s: can't load jumbo buffer DMA map, error = %d\n",
    620 		       sc->sc_dev.dv_xname, error);
    621 		return (error);
    622 	}
    623 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
    624 
    625 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
    626 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
    627 
    628 	/*
    629 	 * Now divide it up into 9K pieces and save the addresses
    630 	 * in an array.
    631 	 */
    632 	ptr = sc->ti_cdata.ti_jumbo_buf;
    633 	for (i = 0; i < TI_JSLOTS; i++) {
    634 		sc->ti_cdata.ti_jslots[i] = ptr;
    635 		ptr += TI_JLEN;
    636 		entry = malloc(sizeof(struct ti_jpool_entry),
    637 			       M_DEVBUF, M_NOWAIT);
    638 		if (entry == NULL) {
    639 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
    640 			sc->ti_cdata.ti_jumbo_buf = NULL;
    641 			printf("%s: no memory for jumbo "
    642 			    "buffer queue!\n", sc->sc_dev.dv_xname);
    643 			return(ENOBUFS);
    644 		}
    645 		entry->slot = i;
    646 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
    647 				    jpool_entries);
    648 	}
    649 
    650 	return(0);
    651 }
    652 
    653 /*
    654  * Allocate a jumbo buffer.
    655  */
    656 static void *ti_jalloc(sc)
    657 	struct ti_softc		*sc;
    658 {
    659 	struct ti_jpool_entry   *entry;
    660 
    661 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
    662 
    663 	if (entry == NULL) {
    664 		printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
    665 		return(NULL);
    666 	}
    667 
    668 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
    669 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
    670 	return(sc->ti_cdata.ti_jslots[entry->slot]);
    671 }
    672 
    673 /*
    674  * Release a jumbo buffer.
    675  */
    676 static void ti_jfree(struct mbuf *m, caddr_t tbuf, size_t size __unused,
    677     void *arg)
    678 {
    679 	struct ti_softc		*sc;
    680 	int		        i, s;
    681 	struct ti_jpool_entry   *entry;
    682 
    683 	/* Extract the softc struct pointer. */
    684 	sc = (struct ti_softc *)arg;
    685 
    686 	if (sc == NULL)
    687 		panic("ti_jfree: didn't get softc pointer!");
    688 
    689 	/* calculate the slot this buffer belongs to */
    690 
    691 	i = ((caddr_t)tbuf
    692 	     - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
    693 
    694 	if ((i < 0) || (i >= TI_JSLOTS))
    695 		panic("ti_jfree: asked to free buffer that we don't manage!");
    696 
    697 	s = splvm();
    698 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
    699 	if (entry == NULL)
    700 		panic("ti_jfree: buffer not in use!");
    701 	entry->slot = i;
    702 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
    703 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
    704 
    705 	if (__predict_true(m != NULL))
    706 		pool_cache_put(&mbpool_cache, m);
    707 	splx(s);
    708 }
    709 
    710 
    711 /*
    712  * Intialize a standard receive ring descriptor.
    713  */
    714 static int ti_newbuf_std(sc, i, m, dmamap)
    715 	struct ti_softc		*sc;
    716 	int			i;
    717 	struct mbuf		*m;
    718 	bus_dmamap_t dmamap; /* required if (m != NULL) */
    719 {
    720 	struct mbuf		*m_new = NULL;
    721 	struct ti_rx_desc	*r;
    722 	int error;
    723 
    724 	if (dmamap == NULL) {
    725 		/* if (m) panic() */
    726 
    727 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    728 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
    729 					       &dmamap)) != 0) {
    730 			printf("%s: can't create recv map, error = %d\n",
    731 			       sc->sc_dev.dv_xname, error);
    732 			return(ENOMEM);
    733 		}
    734 	}
    735 	sc->std_dmamap[i] = dmamap;
    736 
    737 	if (m == NULL) {
    738 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    739 		if (m_new == NULL) {
    740 			printf("%s: mbuf allocation failed "
    741 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    742 			return(ENOBUFS);
    743 		}
    744 
    745 		MCLGET(m_new, M_DONTWAIT);
    746 		if (!(m_new->m_flags & M_EXT)) {
    747 			printf("%s: cluster allocation failed "
    748 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    749 			m_freem(m_new);
    750 			return(ENOBUFS);
    751 		}
    752 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    753 		m_adj(m_new, ETHER_ALIGN);
    754 
    755 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    756 				mtod(m_new, caddr_t), m_new->m_len, NULL,
    757 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    758 			printf("%s: can't load recv map, error = %d\n",
    759 			       sc->sc_dev.dv_xname, error);
    760 			return (ENOMEM);
    761 		}
    762 	} else {
    763 		m_new = m;
    764 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    765 		m_new->m_data = m_new->m_ext.ext_buf;
    766 		m_adj(m_new, ETHER_ALIGN);
    767 
    768 		/* reuse the dmamap */
    769 	}
    770 
    771 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
    772 	r = &sc->ti_rdata->ti_rx_std_ring[i];
    773 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    774 	r->ti_type = TI_BDTYPE_RECV_BD;
    775 	r->ti_flags = 0;
    776 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    777 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    778 	if (sc->ethercom.ec_if.if_capenable &
    779 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    780 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    781 	r->ti_len = m_new->m_len; /* == ds_len */
    782 	r->ti_idx = i;
    783 
    784 	return(0);
    785 }
    786 
    787 /*
    788  * Intialize a mini receive ring descriptor. This only applies to
    789  * the Tigon 2.
    790  */
    791 static int ti_newbuf_mini(sc, i, m, dmamap)
    792 	struct ti_softc		*sc;
    793 	int			i;
    794 	struct mbuf		*m;
    795 	bus_dmamap_t dmamap; /* required if (m != NULL) */
    796 {
    797 	struct mbuf		*m_new = NULL;
    798 	struct ti_rx_desc	*r;
    799 	int error;
    800 
    801 	if (dmamap == NULL) {
    802 		/* if (m) panic() */
    803 
    804 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
    805 					       MHLEN, 0, BUS_DMA_NOWAIT,
    806 					       &dmamap)) != 0) {
    807 			printf("%s: can't create recv map, error = %d\n",
    808 			       sc->sc_dev.dv_xname, error);
    809 			return(ENOMEM);
    810 		}
    811 	}
    812 	sc->mini_dmamap[i] = dmamap;
    813 
    814 	if (m == NULL) {
    815 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    816 		if (m_new == NULL) {
    817 			printf("%s: mbuf allocation failed "
    818 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    819 			return(ENOBUFS);
    820 		}
    821 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    822 		m_adj(m_new, ETHER_ALIGN);
    823 
    824 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    825 				mtod(m_new, caddr_t), m_new->m_len, NULL,
    826 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    827 			printf("%s: can't load recv map, error = %d\n",
    828 			       sc->sc_dev.dv_xname, error);
    829 			return (ENOMEM);
    830 		}
    831 	} else {
    832 		m_new = m;
    833 		m_new->m_data = m_new->m_pktdat;
    834 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    835 		m_adj(m_new, ETHER_ALIGN);
    836 
    837 		/* reuse the dmamap */
    838 	}
    839 
    840 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
    841 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
    842 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    843 	r->ti_type = TI_BDTYPE_RECV_BD;
    844 	r->ti_flags = TI_BDFLAG_MINI_RING;
    845 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    846 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    847 	if (sc->ethercom.ec_if.if_capenable &
    848 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    849 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    850 	r->ti_len = m_new->m_len; /* == ds_len */
    851 	r->ti_idx = i;
    852 
    853 	return(0);
    854 }
    855 
    856 /*
    857  * Initialize a jumbo receive ring descriptor. This allocates
    858  * a jumbo buffer from the pool managed internally by the driver.
    859  */
    860 static int ti_newbuf_jumbo(sc, i, m)
    861 	struct ti_softc		*sc;
    862 	int			i;
    863 	struct mbuf		*m;
    864 {
    865 	struct mbuf		*m_new = NULL;
    866 	struct ti_rx_desc	*r;
    867 
    868 	if (m == NULL) {
    869 		caddr_t			tbuf = NULL;
    870 
    871 		/* Allocate the mbuf. */
    872 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    873 		if (m_new == NULL) {
    874 			printf("%s: mbuf allocation failed "
    875 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    876 			return(ENOBUFS);
    877 		}
    878 
    879 		/* Allocate the jumbo buffer */
    880 		tbuf = ti_jalloc(sc);
    881 		if (tbuf == NULL) {
    882 			m_freem(m_new);
    883 			printf("%s: jumbo allocation failed "
    884 			    "-- packet dropped!\n", sc->sc_dev.dv_xname);
    885 			return(ENOBUFS);
    886 		}
    887 
    888 		/* Attach the buffer to the mbuf. */
    889 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
    890 		    M_DEVBUF, ti_jfree, sc);
    891 		m_new->m_flags |= M_EXT_RW;
    892 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
    893 	} else {
    894 		m_new = m;
    895 		m_new->m_data = m_new->m_ext.ext_buf;
    896 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
    897 	}
    898 
    899 	m_adj(m_new, ETHER_ALIGN);
    900 	/* Set up the descriptor. */
    901 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
    902 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
    903 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
    904 		((caddr_t)mtod(m_new, caddr_t)
    905 		 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
    906 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
    907 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
    908 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    909 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    910 	if (sc->ethercom.ec_if.if_capenable &
    911 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    912 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    913 	r->ti_len = m_new->m_len;
    914 	r->ti_idx = i;
    915 
    916 	return(0);
    917 }
    918 
    919 /*
    920  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    921  * that's 1MB or memory, which is a lot. For now, we fill only the first
    922  * 256 ring entries and hope that our CPU is fast enough to keep up with
    923  * the NIC.
    924  */
    925 static int ti_init_rx_ring_std(sc)
    926 	struct ti_softc		*sc;
    927 {
    928 	int		i;
    929 	struct ti_cmd_desc	cmd;
    930 
    931 	for (i = 0; i < TI_SSLOTS; i++) {
    932 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    933 			return(ENOBUFS);
    934 	};
    935 
    936 	TI_UPDATE_STDPROD(sc, i - 1);
    937 	sc->ti_std = i - 1;
    938 
    939 	return(0);
    940 }
    941 
    942 static void ti_free_rx_ring_std(sc)
    943 	struct ti_softc		*sc;
    944 {
    945 	int		i;
    946 
    947 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
    948 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
    949 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
    950 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
    951 
    952 			/* if (sc->std_dmamap[i] == 0) panic() */
    953 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
    954 			sc->std_dmamap[i] = 0;
    955 		}
    956 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
    957 		    sizeof(struct ti_rx_desc));
    958 	}
    959 
    960 	return;
    961 }
    962 
    963 static int ti_init_rx_ring_jumbo(sc)
    964 	struct ti_softc		*sc;
    965 {
    966 	int		i;
    967 	struct ti_cmd_desc	cmd;
    968 
    969 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    970 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    971 			return(ENOBUFS);
    972 	};
    973 
    974 	TI_UPDATE_JUMBOPROD(sc, i - 1);
    975 	sc->ti_jumbo = i - 1;
    976 
    977 	return(0);
    978 }
    979 
    980 static void ti_free_rx_ring_jumbo(sc)
    981 	struct ti_softc		*sc;
    982 {
    983 	int		i;
    984 
    985 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    986 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
    987 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
    988 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
    989 		}
    990 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
    991 		    sizeof(struct ti_rx_desc));
    992 	}
    993 
    994 	return;
    995 }
    996 
    997 static int ti_init_rx_ring_mini(sc)
    998 	struct ti_softc		*sc;
    999 {
   1000 	int		i;
   1001 
   1002 	for (i = 0; i < TI_MSLOTS; i++) {
   1003 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
   1004 			return(ENOBUFS);
   1005 	};
   1006 
   1007 	TI_UPDATE_MINIPROD(sc, i - 1);
   1008 	sc->ti_mini = i - 1;
   1009 
   1010 	return(0);
   1011 }
   1012 
   1013 static void ti_free_rx_ring_mini(sc)
   1014 	struct ti_softc		*sc;
   1015 {
   1016 	int		i;
   1017 
   1018 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
   1019 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
   1020 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
   1021 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
   1022 
   1023 			/* if (sc->mini_dmamap[i] == 0) panic() */
   1024 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
   1025 			sc->mini_dmamap[i] = 0;
   1026 		}
   1027 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
   1028 		    sizeof(struct ti_rx_desc));
   1029 	}
   1030 
   1031 	return;
   1032 }
   1033 
   1034 static void ti_free_tx_ring(sc)
   1035 	struct ti_softc		*sc;
   1036 {
   1037 	int		i;
   1038 	struct txdmamap_pool_entry *dma;
   1039 
   1040 	if (sc->ti_rdata->ti_tx_ring == NULL)
   1041 		return;
   1042 
   1043 	for (i = 0; i < TI_TX_RING_CNT; i++) {
   1044 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
   1045 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
   1046 			sc->ti_cdata.ti_tx_chain[i] = NULL;
   1047 
   1048 			/* if (sc->txdma[i] == 0) panic() */
   1049 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1050 					    link);
   1051 			sc->txdma[i] = 0;
   1052 		}
   1053 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
   1054 		    sizeof(struct ti_tx_desc));
   1055 	}
   1056 
   1057 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
   1058 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   1059 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
   1060 		free(dma, M_DEVBUF);
   1061 	}
   1062 
   1063 	return;
   1064 }
   1065 
   1066 static int ti_init_tx_ring(sc)
   1067 	struct ti_softc		*sc;
   1068 {
   1069 	int i, error;
   1070 	bus_dmamap_t dmamap;
   1071 	struct txdmamap_pool_entry *dma;
   1072 
   1073 	sc->ti_txcnt = 0;
   1074 	sc->ti_tx_saved_considx = 0;
   1075 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
   1076 
   1077 	SIMPLEQ_INIT(&sc->txdma_list);
   1078 	for (i = 0; i < TI_RSLOTS; i++) {
   1079 		/* I've seen mbufs with 30 fragments. */
   1080 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
   1081 					       40, ETHER_MAX_LEN_JUMBO, 0,
   1082 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
   1083 			printf("%s: can't create tx map, error = %d\n",
   1084 			       sc->sc_dev.dv_xname, error);
   1085 			return(ENOMEM);
   1086 		}
   1087 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1088 		if (!dma) {
   1089 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1090 			       sc->sc_dev.dv_xname);
   1091 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
   1092 			return (ENOMEM);
   1093 		}
   1094 		dma->dmamap = dmamap;
   1095 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   1096 	}
   1097 
   1098 	return(0);
   1099 }
   1100 
   1101 /*
   1102  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
   1103  * but we have to support the old way too so that Tigon 1 cards will
   1104  * work.
   1105  */
   1106 void ti_add_mcast(sc, addr)
   1107 	struct ti_softc		*sc;
   1108 	struct ether_addr	*addr;
   1109 {
   1110 	struct ti_cmd_desc	cmd;
   1111 	u_int16_t		*m;
   1112 	u_int32_t		ext[2] = {0, 0};
   1113 
   1114 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1115 
   1116 	switch(sc->ti_hwrev) {
   1117 	case TI_HWREV_TIGON:
   1118 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1119 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1120 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
   1121 		break;
   1122 	case TI_HWREV_TIGON_II:
   1123 		ext[0] = htons(m[0]);
   1124 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1125 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
   1126 		break;
   1127 	default:
   1128 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
   1129 		break;
   1130 	}
   1131 
   1132 	return;
   1133 }
   1134 
   1135 void ti_del_mcast(sc, addr)
   1136 	struct ti_softc		*sc;
   1137 	struct ether_addr	*addr;
   1138 {
   1139 	struct ti_cmd_desc	cmd;
   1140 	u_int16_t		*m;
   1141 	u_int32_t		ext[2] = {0, 0};
   1142 
   1143 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1144 
   1145 	switch(sc->ti_hwrev) {
   1146 	case TI_HWREV_TIGON:
   1147 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1148 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1149 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
   1150 		break;
   1151 	case TI_HWREV_TIGON_II:
   1152 		ext[0] = htons(m[0]);
   1153 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1154 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
   1155 		break;
   1156 	default:
   1157 		printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
   1158 		break;
   1159 	}
   1160 
   1161 	return;
   1162 }
   1163 
   1164 /*
   1165  * Configure the Tigon's multicast address filter.
   1166  *
   1167  * The actual multicast table management is a bit of a pain, thanks to
   1168  * slight brain damage on the part of both Alteon and us. With our
   1169  * multicast code, we are only alerted when the multicast address table
   1170  * changes and at that point we only have the current list of addresses:
   1171  * we only know the current state, not the previous state, so we don't
   1172  * actually know what addresses were removed or added. The firmware has
   1173  * state, but we can't get our grubby mits on it, and there is no 'delete
   1174  * all multicast addresses' command. Hence, we have to maintain our own
   1175  * state so we know what addresses have been programmed into the NIC at
   1176  * any given time.
   1177  */
   1178 static void ti_setmulti(sc)
   1179 	struct ti_softc		*sc;
   1180 {
   1181 	struct ifnet		*ifp;
   1182 	struct ti_cmd_desc	cmd;
   1183 	struct ti_mc_entry	*mc;
   1184 	u_int32_t		intrs;
   1185 	struct ether_multi *enm;
   1186 	struct ether_multistep step;
   1187 
   1188 	ifp = &sc->ethercom.ec_if;
   1189 
   1190 	/* Disable interrupts. */
   1191 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
   1192 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1193 
   1194 	/* First, zot all the existing filters. */
   1195 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1196 		ti_del_mcast(sc, &mc->mc_addr);
   1197 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1198 		free(mc, M_DEVBUF);
   1199 	}
   1200 
   1201 	/*
   1202 	 * Remember all multicast addresses so that we can delete them
   1203 	 * later.  Punt if there is a range of addresses or memory shortage.
   1204 	 */
   1205 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
   1206 	while (enm != NULL) {
   1207 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1208 		    ETHER_ADDR_LEN) != 0)
   1209 			goto allmulti;
   1210 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
   1211 		    M_NOWAIT)) == NULL)
   1212 			goto allmulti;
   1213 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
   1214 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
   1215 		ETHER_NEXT_MULTI(step, enm);
   1216 	}
   1217 
   1218 	/* Accept only programmed multicast addresses */
   1219 	ifp->if_flags &= ~IFF_ALLMULTI;
   1220 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
   1221 
   1222 	/* Now program new ones. */
   1223 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
   1224 		ti_add_mcast(sc, &mc->mc_addr);
   1225 
   1226 	/* Re-enable interrupts. */
   1227 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1228 
   1229 	return;
   1230 
   1231 allmulti:
   1232 	/* No need to keep individual multicast addresses */
   1233 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1234 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1235 		free(mc, M_DEVBUF);
   1236 	}
   1237 
   1238 	/* Accept all multicast addresses */
   1239 	ifp->if_flags |= IFF_ALLMULTI;
   1240 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
   1241 
   1242 	/* Re-enable interrupts. */
   1243 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1244 }
   1245 
   1246 /*
   1247  * Check to see if the BIOS has configured us for a 64 bit slot when
   1248  * we aren't actually in one. If we detect this condition, we can work
   1249  * around it on the Tigon 2 by setting a bit in the PCI state register,
   1250  * but for the Tigon 1 we must give up and abort the interface attach.
   1251  */
   1252 static int ti_64bitslot_war(sc)
   1253 	struct ti_softc		*sc;
   1254 {
   1255 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
   1256 		CSR_WRITE_4(sc, 0x600, 0);
   1257 		CSR_WRITE_4(sc, 0x604, 0);
   1258 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
   1259 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
   1260 			if (sc->ti_hwrev == TI_HWREV_TIGON)
   1261 				return(EINVAL);
   1262 			else {
   1263 				TI_SETBIT(sc, TI_PCI_STATE,
   1264 				    TI_PCISTATE_32BIT_BUS);
   1265 				return(0);
   1266 			}
   1267 		}
   1268 	}
   1269 
   1270 	return(0);
   1271 }
   1272 
   1273 /*
   1274  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1275  * self-test results.
   1276  */
   1277 static int ti_chipinit(sc)
   1278 	struct ti_softc		*sc;
   1279 {
   1280 	u_int32_t		cacheline;
   1281 	u_int32_t		pci_writemax = 0;
   1282 	u_int32_t		rev;
   1283 
   1284 	/* Initialize link to down state. */
   1285 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
   1286 
   1287 	/* Set endianness before we access any non-PCI registers. */
   1288 #if BYTE_ORDER == BIG_ENDIAN
   1289 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1290 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
   1291 #else
   1292 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1293 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
   1294 #endif
   1295 
   1296 	/* Check the ROM failed bit to see if self-tests passed. */
   1297 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
   1298 		printf("%s: board self-diagnostics failed!\n",
   1299 		       sc->sc_dev.dv_xname);
   1300 		return(ENODEV);
   1301 	}
   1302 
   1303 	/* Halt the CPU. */
   1304 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
   1305 
   1306 	/* Figure out the hardware revision. */
   1307 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
   1308 	switch(rev) {
   1309 	case TI_REV_TIGON_I:
   1310 		sc->ti_hwrev = TI_HWREV_TIGON;
   1311 		break;
   1312 	case TI_REV_TIGON_II:
   1313 		sc->ti_hwrev = TI_HWREV_TIGON_II;
   1314 		break;
   1315 	default:
   1316 		printf("%s: unsupported chip revision 0x%x\n",
   1317 		    sc->sc_dev.dv_xname, rev);
   1318 		return(ENODEV);
   1319 	}
   1320 
   1321 	/* Do special setup for Tigon 2. */
   1322 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1323 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
   1324 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
   1325 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
   1326 	}
   1327 
   1328 	/* Set up the PCI state register. */
   1329 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
   1330 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1331 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
   1332 	}
   1333 
   1334 	/* Clear the read/write max DMA parameters. */
   1335 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
   1336 	    TI_PCISTATE_READ_MAXDMA));
   1337 
   1338 	/* Get cache line size. */
   1339 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
   1340 
   1341 	/*
   1342 	 * If the system has set enabled the PCI memory write
   1343 	 * and invalidate command in the command register, set
   1344 	 * the write max parameter accordingly. This is necessary
   1345 	 * to use MWI with the Tigon 2.
   1346 	 */
   1347 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1348 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
   1349 		switch(cacheline) {
   1350 		case 1:
   1351 		case 4:
   1352 		case 8:
   1353 		case 16:
   1354 		case 32:
   1355 		case 64:
   1356 			break;
   1357 		default:
   1358 		/* Disable PCI memory write and invalidate. */
   1359 			if (bootverbose)
   1360 				printf("%s: cache line size %d not "
   1361 				    "supported; disabling PCI MWI\n",
   1362 				    sc->sc_dev.dv_xname, cacheline);
   1363 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
   1364 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1365 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
   1366 			break;
   1367 		}
   1368 	}
   1369 
   1370 #ifdef __brokenalpha__
   1371 	/*
   1372 	 * From the Alteon sample driver:
   1373 	 * Must insure that we do not cross an 8K (bytes) boundary
   1374 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1375 	 * restriction on some ALPHA platforms with early revision
   1376 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1377 	 */
   1378 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
   1379 #else
   1380 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
   1381 #endif
   1382 
   1383 	/* This sets the min dma param all the way up (0xff). */
   1384 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
   1385 
   1386 	/* Configure DMA variables. */
   1387 #if BYTE_ORDER == BIG_ENDIAN
   1388 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
   1389 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
   1390 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
   1391 	    TI_OPMODE_DONT_FRAG_JUMBO);
   1392 #else
   1393 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
   1394 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
   1395 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
   1396 #endif
   1397 
   1398 	/*
   1399 	 * Only allow 1 DMA channel to be active at a time.
   1400 	 * I don't think this is a good idea, but without it
   1401 	 * the firmware racks up lots of nicDmaReadRingFull
   1402 	 * errors.
   1403 	 * Incompatible with hardware assisted checksums.
   1404 	 */
   1405 	if ((sc->ethercom.ec_if.if_capenable &
   1406 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1407 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1408 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
   1409 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
   1410 
   1411 	/* Recommended settings from Tigon manual. */
   1412 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
   1413 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
   1414 
   1415 	if (ti_64bitslot_war(sc)) {
   1416 		printf("%s: bios thinks we're in a 64 bit slot, "
   1417 		    "but we aren't", sc->sc_dev.dv_xname);
   1418 		return(EINVAL);
   1419 	}
   1420 
   1421 	return(0);
   1422 }
   1423 
   1424 /*
   1425  * Initialize the general information block and firmware, and
   1426  * start the CPU(s) running.
   1427  */
   1428 static int ti_gibinit(sc)
   1429 	struct ti_softc		*sc;
   1430 {
   1431 	struct ti_rcb		*rcb;
   1432 	int			i;
   1433 	struct ifnet		*ifp;
   1434 
   1435 	ifp = &sc->ethercom.ec_if;
   1436 
   1437 	/* Disable interrupts for now. */
   1438 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1439 
   1440 	/* Tell the chip where to find the general information block. */
   1441 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
   1442 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
   1443 
   1444 	/* Load the firmware into SRAM. */
   1445 	ti_loadfw(sc);
   1446 
   1447 	/* Set up the contents of the general info and ring control blocks. */
   1448 
   1449 	/* Set up the event ring and producer pointer. */
   1450 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
   1451 
   1452 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
   1453 	rcb->ti_flags = 0;
   1454 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
   1455 	    TI_CDEVPRODADDR(sc);
   1456 
   1457 	sc->ti_ev_prodidx.ti_idx = 0;
   1458 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
   1459 	sc->ti_ev_saved_considx = 0;
   1460 
   1461 	/* Set up the command ring and producer mailbox. */
   1462 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
   1463 
   1464 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
   1465 	rcb->ti_flags = 0;
   1466 	rcb->ti_max_len = 0;
   1467 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
   1468 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
   1469 	}
   1470 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
   1471 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
   1472 	sc->ti_cmd_saved_prodidx = 0;
   1473 
   1474 	/*
   1475 	 * Assign the address of the stats refresh buffer.
   1476 	 * We re-use the current stats buffer for this to
   1477 	 * conserve memory.
   1478 	 */
   1479 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
   1480 	    TI_CDSTATSADDR(sc);
   1481 
   1482 	/* Set up the standard receive ring. */
   1483 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
   1484 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
   1485 	rcb->ti_max_len = ETHER_MAX_LEN;
   1486 	rcb->ti_flags = 0;
   1487 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1488 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1489 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   1490 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1491 	if (VLAN_ATTACHED(&sc->ethercom))
   1492 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1493 
   1494 	/* Set up the jumbo receive ring. */
   1495 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
   1496 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
   1497 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
   1498 	rcb->ti_flags = 0;
   1499 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1500 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1501 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   1502 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1503 	if (VLAN_ATTACHED(&sc->ethercom))
   1504 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1505 
   1506 	/*
   1507 	 * Set up the mini ring. Only activated on the
   1508 	 * Tigon 2 but the slot in the config block is
   1509 	 * still there on the Tigon 1.
   1510 	 */
   1511 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
   1512 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
   1513 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
   1514 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1515 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
   1516 	else
   1517 		rcb->ti_flags = 0;
   1518 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1519 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1520 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   1521 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1522 	if (VLAN_ATTACHED(&sc->ethercom))
   1523 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1524 
   1525 	/*
   1526 	 * Set up the receive return ring.
   1527 	 */
   1528 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
   1529 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
   1530 	rcb->ti_flags = 0;
   1531 	rcb->ti_max_len = TI_RETURN_RING_CNT;
   1532 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
   1533 	    TI_CDRTNPRODADDR(sc);
   1534 
   1535 	/*
   1536 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
   1537 	 * of putting the transmit ring in the host's address space and
   1538 	 * letting the chip DMA it instead of leaving the ring in the NIC's
   1539 	 * memory and accessing it through the shared memory region. We
   1540 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
   1541 	 * so we have to revert to the shared memory scheme if we detect
   1542 	 * a Tigon 1 chip.
   1543 	 */
   1544 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
   1545 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   1546 		sc->ti_tx_ring_nic =
   1547 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
   1548 	}
   1549 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
   1550 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
   1551 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
   1552 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1553 		rcb->ti_flags = 0;
   1554 	else
   1555 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
   1556 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   1557 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1558 	/*
   1559 	 * When we get the packet, there is a pseudo-header seed already
   1560 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
   1561 	 * compute the pseudo-header checksum again!
   1562 	 */
   1563 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   1564 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
   1565 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
   1566 	if (VLAN_ATTACHED(&sc->ethercom))
   1567 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1568 	rcb->ti_max_len = TI_TX_RING_CNT;
   1569 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1570 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
   1571 	else
   1572 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
   1573 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
   1574 	    TI_CDTXCONSADDR(sc);
   1575 
   1576 	/*
   1577 	 * We're done frobbing the General Information Block.  Sync
   1578 	 * it.  Note we take care of the first stats sync here, as
   1579 	 * well.
   1580 	 */
   1581 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1582 
   1583 	/* Set up tuneables */
   1584 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
   1585 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   1586 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
   1587 		    (sc->ti_rx_coal_ticks / 10));
   1588 	else
   1589 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
   1590 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
   1591 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
   1592 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
   1593 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
   1594 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
   1595 
   1596 	/* Turn interrupts on. */
   1597 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
   1598 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   1599 
   1600 	/* Start CPU. */
   1601 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
   1602 
   1603 	return(0);
   1604 }
   1605 
   1606 /*
   1607  * look for id in the device list, returning the first match
   1608  */
   1609 static const struct ti_type *
   1610 ti_type_match(pa)
   1611 	struct pci_attach_args *pa;
   1612 {
   1613 	const struct ti_type          *t;
   1614 
   1615 	t = ti_devs;
   1616 	while(t->ti_name != NULL) {
   1617 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
   1618 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
   1619 			return (t);
   1620 		}
   1621 		t++;
   1622 	}
   1623 
   1624 	return(NULL);
   1625 }
   1626 
   1627 /*
   1628  * Probe for a Tigon chip. Check the PCI vendor and device IDs
   1629  * against our list and return its name if we find a match.
   1630  */
   1631 static int
   1632 ti_probe(struct device *parent __unused, struct cfdata *match __unused,
   1633     void *aux)
   1634 {
   1635 	struct pci_attach_args *pa = aux;
   1636 	const struct ti_type		*t;
   1637 
   1638 	t = ti_type_match(pa);
   1639 
   1640 	return((t == NULL) ? 0 : 1);
   1641 }
   1642 
   1643 static void
   1644 ti_attach(struct device *parent __unused, struct device *self, void *aux)
   1645 {
   1646 	u_int32_t		command;
   1647 	struct ifnet		*ifp;
   1648 	struct ti_softc		*sc;
   1649 	u_char eaddr[ETHER_ADDR_LEN];
   1650 	struct pci_attach_args *pa = aux;
   1651 	pci_chipset_tag_t pc = pa->pa_pc;
   1652 	pci_intr_handle_t ih;
   1653 	const char *intrstr = NULL;
   1654 	bus_dma_segment_t dmaseg;
   1655 	int error, dmanseg, nolinear;
   1656 	const struct ti_type		*t;
   1657 
   1658 	t = ti_type_match(pa);
   1659 	if (t == NULL) {
   1660 		printf("ti_attach: were did the card go ?\n");
   1661 		return;
   1662 	}
   1663 
   1664 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
   1665 
   1666 	sc = (struct ti_softc *)self;
   1667 
   1668 	/*
   1669 	 * Map control/status registers.
   1670 	 */
   1671 	nolinear = 0;
   1672 	if (pci_mapreg_map(pa, 0x10,
   1673 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1674 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
   1675 	    NULL, NULL)) {
   1676 		nolinear = 1;
   1677 		if (pci_mapreg_map(pa, 0x10,
   1678 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1679 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
   1680 			printf(": can't map memory space\n");
   1681 			return;
   1682 		}
   1683 	}
   1684 	if (nolinear == 0)
   1685 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
   1686 	else
   1687 		sc->ti_vhandle = NULL;
   1688 
   1689 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1690 	command |= PCI_COMMAND_MASTER_ENABLE;
   1691 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1692 
   1693 	/* Allocate interrupt */
   1694 	if (pci_intr_map(pa, &ih)) {
   1695 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
   1696 		return;
   1697 	}
   1698 	intrstr = pci_intr_string(pc, ih);
   1699 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
   1700 	if (sc->sc_ih == NULL) {
   1701 		printf("%s: couldn't establish interrupt",
   1702 		    sc->sc_dev.dv_xname);
   1703 		if (intrstr != NULL)
   1704 			printf(" at %s", intrstr);
   1705 		printf("\n");
   1706 		return;
   1707 	}
   1708 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
   1709 	/*
   1710 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
   1711 	 * doing do could allow DMA to corrupt kernel memory during the
   1712 	 * reboot before the driver initializes.
   1713 	 */
   1714 	(void) shutdownhook_establish(ti_shutdown, sc);
   1715 
   1716 	if (ti_chipinit(sc)) {
   1717 		printf("%s: chip initialization failed\n", self->dv_xname);
   1718 		goto fail2;
   1719 	}
   1720 
   1721 	/*
   1722 	 * Deal with some chip diffrences.
   1723 	 */
   1724 	switch (sc->ti_hwrev) {
   1725 	case TI_HWREV_TIGON:
   1726 		sc->sc_tx_encap = ti_encap_tigon1;
   1727 		sc->sc_tx_eof = ti_txeof_tigon1;
   1728 		if (nolinear == 1)
   1729 			printf("%s: memory space not mapped linear\n",
   1730 			    self->dv_xname);
   1731 		break;
   1732 
   1733 	case TI_HWREV_TIGON_II:
   1734 		sc->sc_tx_encap = ti_encap_tigon2;
   1735 		sc->sc_tx_eof = ti_txeof_tigon2;
   1736 		break;
   1737 
   1738 	default:
   1739 		printf("%s: Unknown chip version: %d\n", self->dv_xname,
   1740 		    sc->ti_hwrev);
   1741 		goto fail2;
   1742 	}
   1743 
   1744 	/* Zero out the NIC's on-board SRAM. */
   1745 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
   1746 
   1747 	/* Init again -- zeroing memory may have clobbered some registers. */
   1748 	if (ti_chipinit(sc)) {
   1749 		printf("%s: chip initialization failed\n", self->dv_xname);
   1750 		goto fail2;
   1751 	}
   1752 
   1753 	/*
   1754 	 * Get station address from the EEPROM. Note: the manual states
   1755 	 * that the MAC address is at offset 0x8c, however the data is
   1756 	 * stored as two longwords (since that's how it's loaded into
   1757 	 * the NIC). This means the MAC address is actually preceded
   1758 	 * by two zero bytes. We need to skip over those.
   1759 	 */
   1760 	if (ti_read_eeprom(sc, (caddr_t)&eaddr,
   1761 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1762 		printf("%s: failed to read station address\n", self->dv_xname);
   1763 		goto fail2;
   1764 	}
   1765 
   1766 	/*
   1767 	 * A Tigon chip was detected. Inform the world.
   1768 	 */
   1769 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   1770 				ether_sprintf(eaddr));
   1771 
   1772 	sc->sc_dmat = pa->pa_dmat;
   1773 
   1774 	/* Allocate the general information block and ring buffers. */
   1775 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1776 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
   1777 	    BUS_DMA_NOWAIT)) != 0) {
   1778 		printf("%s: can't allocate ring buffer, error = %d\n",
   1779 		       sc->sc_dev.dv_xname, error);
   1780 		goto fail2;
   1781 	}
   1782 
   1783 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
   1784 	    sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
   1785 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
   1786 		printf("%s: can't map ring buffer, error = %d\n",
   1787 		       sc->sc_dev.dv_xname, error);
   1788 		goto fail2;
   1789 	}
   1790 
   1791 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1792 	    sizeof(struct ti_ring_data), 1,
   1793 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
   1794 	    &sc->info_dmamap)) != 0) {
   1795 		printf("%s: can't create ring buffer DMA map, error = %d\n",
   1796 		       sc->sc_dev.dv_xname, error);
   1797 		goto fail2;
   1798 	}
   1799 
   1800 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
   1801 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
   1802 	    BUS_DMA_NOWAIT)) != 0) {
   1803 		printf("%s: can't load ring buffer DMA map, error = %d\n",
   1804 		       sc->sc_dev.dv_xname, error);
   1805 		goto fail2;
   1806 	}
   1807 
   1808 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
   1809 
   1810 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
   1811 
   1812 	/* Try to allocate memory for jumbo buffers. */
   1813 	if (ti_alloc_jumbo_mem(sc)) {
   1814 		printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
   1815 		goto fail2;
   1816 	}
   1817 
   1818 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
   1819 
   1820 	/*
   1821 	 * We really need a better way to tell a 1000baseT card
   1822 	 * from a 1000baseSX one, since in theory there could be
   1823 	 * OEMed 1000baseT cards from lame vendors who aren't
   1824 	 * clever enough to change the PCI ID. For the moment
   1825 	 * though, the AceNIC is the only copper card available.
   1826 	 */
   1827 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
   1828 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
   1829 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
   1830 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
   1831 		sc->ti_copper = 1;
   1832 	else
   1833 		sc->ti_copper = 0;
   1834 
   1835 	/* Set default tuneable values. */
   1836 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
   1837 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
   1838 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
   1839 	sc->ti_rx_max_coal_bds = 64;
   1840 	sc->ti_tx_max_coal_bds = 128;
   1841 	sc->ti_tx_buf_ratio = 21;
   1842 
   1843 	/* Set up ifnet structure */
   1844 	ifp = &sc->ethercom.ec_if;
   1845 	ifp->if_softc = sc;
   1846 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
   1847 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1848 	ifp->if_ioctl = ti_ioctl;
   1849 	ifp->if_start = ti_start;
   1850 	ifp->if_watchdog = ti_watchdog;
   1851 	IFQ_SET_READY(&ifp->if_snd);
   1852 
   1853 #if 0
   1854 	/*
   1855 	 * XXX This is not really correct -- we don't necessarily
   1856 	 * XXX want to queue up as many as we can transmit at the
   1857 	 * XXX upper layer like that.  Someone with a board should
   1858 	 * XXX check to see how this affects performance.
   1859 	 */
   1860 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
   1861 #endif
   1862 
   1863 	/*
   1864 	 * We can support 802.1Q VLAN-sized frames.
   1865 	 */
   1866 	sc->ethercom.ec_capabilities |=
   1867 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
   1868 
   1869 	/*
   1870 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
   1871 	 */
   1872 	ifp->if_capabilities |=
   1873 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1874 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1875 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1876 
   1877 	/* Set up ifmedia support. */
   1878 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
   1879 	if (sc->ti_copper) {
   1880                 /*
   1881                  * Copper cards allow manual 10/100 mode selection,
   1882                  * but not manual 1000baseT mode selection. Why?
   1883                  * Because currently there's no way to specify the
   1884                  * master/slave setting through the firmware interface,
   1885                  * so Alteon decided to just bag it and handle it
   1886                  * via autonegotiation.
   1887                  */
   1888                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
   1889                 ifmedia_add(&sc->ifmedia,
   1890                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
   1891                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
   1892                 ifmedia_add(&sc->ifmedia,
   1893                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
   1894                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
   1895                 ifmedia_add(&sc->ifmedia,
   1896                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
   1897 	} else {
   1898 		/* Fiber cards don't support 10/100 modes. */
   1899 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   1900 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
   1901 	}
   1902 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   1903 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
   1904 
   1905 	/*
   1906 	 * Call MI attach routines.
   1907 	 */
   1908 	if_attach(ifp);
   1909 	ether_ifattach(ifp, eaddr);
   1910 
   1911 	return;
   1912 fail2:
   1913 	pci_intr_disestablish(pc, sc->sc_ih);
   1914 	return;
   1915 }
   1916 
   1917 /*
   1918  * Frame reception handling. This is called if there's a frame
   1919  * on the receive return list.
   1920  *
   1921  * Note: we have to be able to handle three possibilities here:
   1922  * 1) the frame is from the mini receive ring (can only happen)
   1923  *    on Tigon 2 boards)
   1924  * 2) the frame is from the jumbo receive ring
   1925  * 3) the frame is from the standard receive ring
   1926  */
   1927 
   1928 static void ti_rxeof(sc)
   1929 	struct ti_softc		*sc;
   1930 {
   1931 	struct ifnet		*ifp;
   1932 	struct ti_cmd_desc	cmd;
   1933 
   1934 	ifp = &sc->ethercom.ec_if;
   1935 
   1936 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
   1937 		struct ti_rx_desc	*cur_rx;
   1938 		u_int32_t		rxidx;
   1939 		struct mbuf		*m = NULL;
   1940 		struct ether_header	*eh;
   1941 		bus_dmamap_t dmamap;
   1942 
   1943 		cur_rx =
   1944 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
   1945 		rxidx = cur_rx->ti_idx;
   1946 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
   1947 
   1948 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
   1949 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
   1950 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
   1951 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
   1952 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1953 				ifp->if_ierrors++;
   1954 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1955 				continue;
   1956 			}
   1957 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
   1958 			    == ENOBUFS) {
   1959 				ifp->if_ierrors++;
   1960 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1961 				continue;
   1962 			}
   1963 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
   1964 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
   1965 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
   1966 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
   1967 			dmamap = sc->mini_dmamap[rxidx];
   1968 			sc->mini_dmamap[rxidx] = 0;
   1969 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1970 				ifp->if_ierrors++;
   1971 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1972 				continue;
   1973 			}
   1974 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
   1975 			    == ENOBUFS) {
   1976 				ifp->if_ierrors++;
   1977 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1978 				continue;
   1979 			}
   1980 		} else {
   1981 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
   1982 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
   1983 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
   1984 			dmamap = sc->std_dmamap[rxidx];
   1985 			sc->std_dmamap[rxidx] = 0;
   1986 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1987 				ifp->if_ierrors++;
   1988 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1989 				continue;
   1990 			}
   1991 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
   1992 			    == ENOBUFS) {
   1993 				ifp->if_ierrors++;
   1994 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1995 				continue;
   1996 			}
   1997 		}
   1998 
   1999 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
   2000 		ifp->if_ipackets++;
   2001 		m->m_pkthdr.rcvif = ifp;
   2002 
   2003 #if NBPFILTER > 0
   2004 		/*
   2005 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
   2006 	 	 * don't pass it up to the ether_input() layer unless it's
   2007 	 	 * a broadcast packet, multicast packet, matches our ethernet
   2008 	 	 * address or the interface is in promiscuous mode.
   2009 	 	 */
   2010 		if (ifp->if_bpf)
   2011 			bpf_mtap(ifp->if_bpf, m);
   2012 #endif
   2013 
   2014 		eh = mtod(m, struct ether_header *);
   2015 		switch (ntohs(eh->ether_type)) {
   2016 #ifdef INET
   2017 		case ETHERTYPE_IP:
   2018 		    {
   2019 			struct ip *ip = (struct ip *) (eh + 1);
   2020 
   2021 			/*
   2022 			 * Note the Tigon firmware does not invert
   2023 			 * the checksum for us, hence the XOR.
   2024 			 */
   2025 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2026 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
   2027 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2028 			/*
   2029 			 * ntohs() the constant so the compiler can
   2030 			 * optimize...
   2031 			 *
   2032 			 * XXX Figure out a sane way to deal with
   2033 			 * fragmented packets.
   2034 			 */
   2035 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
   2036 				switch (ip->ip_p) {
   2037 				case IPPROTO_TCP:
   2038 					m->m_pkthdr.csum_data =
   2039 					    cur_rx->ti_tcp_udp_cksum;
   2040 					m->m_pkthdr.csum_flags |=
   2041 					    M_CSUM_TCPv4|M_CSUM_DATA;
   2042 					break;
   2043 				case IPPROTO_UDP:
   2044 					m->m_pkthdr.csum_data =
   2045 					    cur_rx->ti_tcp_udp_cksum;
   2046 					m->m_pkthdr.csum_flags |=
   2047 					    M_CSUM_UDPv4|M_CSUM_DATA;
   2048 					break;
   2049 				default:
   2050 					/* Nothing */;
   2051 				}
   2052 			}
   2053 			break;
   2054 		    }
   2055 #endif
   2056 		default:
   2057 			/* Nothing. */
   2058 			break;
   2059 		}
   2060 
   2061 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
   2062 			VLAN_INPUT_TAG(ifp, m,
   2063 			    /* ti_vlan_tag also has the priority, trim it */
   2064 			    cur_rx->ti_vlan_tag & 4095,
   2065 			    continue);
   2066 		}
   2067 
   2068 		(*ifp->if_input)(ifp, m);
   2069 	}
   2070 
   2071 	/* Only necessary on the Tigon 1. */
   2072 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   2073 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
   2074 		    sc->ti_rx_saved_considx);
   2075 
   2076 	TI_UPDATE_STDPROD(sc, sc->ti_std);
   2077 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
   2078 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
   2079 
   2080 	return;
   2081 }
   2082 
   2083 static void ti_txeof_tigon1(sc)
   2084 	struct ti_softc		*sc;
   2085 {
   2086 	struct ti_tx_desc	*cur_tx = NULL;
   2087 	struct ifnet		*ifp;
   2088 	struct txdmamap_pool_entry *dma;
   2089 
   2090 	ifp = &sc->ethercom.ec_if;
   2091 
   2092 	/*
   2093 	 * Go through our tx ring and free mbufs for those
   2094 	 * frames that have been sent.
   2095 	 */
   2096 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2097 		u_int32_t		idx = 0;
   2098 
   2099 		idx = sc->ti_tx_saved_considx;
   2100 		if (idx > 383)
   2101 			CSR_WRITE_4(sc, TI_WINBASE,
   2102 			    TI_TX_RING_BASE + 6144);
   2103 		else if (idx > 255)
   2104 			CSR_WRITE_4(sc, TI_WINBASE,
   2105 			    TI_TX_RING_BASE + 4096);
   2106 		else if (idx > 127)
   2107 			CSR_WRITE_4(sc, TI_WINBASE,
   2108 			    TI_TX_RING_BASE + 2048);
   2109 		else
   2110 			CSR_WRITE_4(sc, TI_WINBASE,
   2111 			    TI_TX_RING_BASE);
   2112 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
   2113 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2114 			ifp->if_opackets++;
   2115 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2116 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2117 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2118 
   2119 			dma = sc->txdma[idx];
   2120 			KDASSERT(dma != NULL);
   2121 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2122 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2123 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2124 
   2125 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2126 			sc->txdma[idx] = NULL;
   2127 		}
   2128 		sc->ti_txcnt--;
   2129 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2130 		ifp->if_timer = 0;
   2131 	}
   2132 
   2133 	if (cur_tx != NULL)
   2134 		ifp->if_flags &= ~IFF_OACTIVE;
   2135 
   2136 	return;
   2137 }
   2138 
   2139 static void ti_txeof_tigon2(sc)
   2140 	struct ti_softc		*sc;
   2141 {
   2142 	struct ti_tx_desc	*cur_tx = NULL;
   2143 	struct ifnet		*ifp;
   2144 	struct txdmamap_pool_entry *dma;
   2145 	int firstidx, cnt;
   2146 
   2147 	ifp = &sc->ethercom.ec_if;
   2148 
   2149 	/*
   2150 	 * Go through our tx ring and free mbufs for those
   2151 	 * frames that have been sent.
   2152 	 */
   2153 	firstidx = sc->ti_tx_saved_considx;
   2154 	cnt = 0;
   2155 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2156 		u_int32_t		idx = 0;
   2157 
   2158 		idx = sc->ti_tx_saved_considx;
   2159 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
   2160 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2161 			ifp->if_opackets++;
   2162 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2163 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2164 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2165 
   2166 			dma = sc->txdma[idx];
   2167 			KDASSERT(dma != NULL);
   2168 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2169 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2170 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2171 
   2172 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2173 			sc->txdma[idx] = NULL;
   2174 		}
   2175 		cnt++;
   2176 		sc->ti_txcnt--;
   2177 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2178 		ifp->if_timer = 0;
   2179 	}
   2180 
   2181 	if (cnt != 0)
   2182 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
   2183 
   2184 	if (cur_tx != NULL)
   2185 		ifp->if_flags &= ~IFF_OACTIVE;
   2186 
   2187 	return;
   2188 }
   2189 
   2190 static int ti_intr(xsc)
   2191 	void			*xsc;
   2192 {
   2193 	struct ti_softc		*sc;
   2194 	struct ifnet		*ifp;
   2195 
   2196 	sc = xsc;
   2197 	ifp = &sc->ethercom.ec_if;
   2198 
   2199 #ifdef notdef
   2200 	/* Avoid this for now -- checking this register is expensive. */
   2201 	/* Make sure this is really our interrupt. */
   2202 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
   2203 		return (0);
   2204 #endif
   2205 
   2206 	/* Ack interrupt and stop others from occuring. */
   2207 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2208 
   2209 	if (ifp->if_flags & IFF_RUNNING) {
   2210 		/* Check RX return ring producer/consumer */
   2211 		ti_rxeof(sc);
   2212 
   2213 		/* Check TX ring producer/consumer */
   2214 		(*sc->sc_tx_eof)(sc);
   2215 	}
   2216 
   2217 	ti_handle_events(sc);
   2218 
   2219 	/* Re-enable interrupts. */
   2220 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2221 
   2222 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2223 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   2224 		ti_start(ifp);
   2225 
   2226 	return (1);
   2227 }
   2228 
   2229 static void ti_stats_update(sc)
   2230 	struct ti_softc		*sc;
   2231 {
   2232 	struct ifnet		*ifp;
   2233 
   2234 	ifp = &sc->ethercom.ec_if;
   2235 
   2236 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   2237 
   2238 	ifp->if_collisions +=
   2239 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
   2240 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
   2241 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
   2242 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
   2243 	   ifp->if_collisions;
   2244 
   2245 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   2246 }
   2247 
   2248 /*
   2249  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2250  * pointers to descriptors.
   2251  */
   2252 static int ti_encap_tigon1(sc, m_head, txidx)
   2253 	struct ti_softc		*sc;
   2254 	struct mbuf		*m_head;
   2255 	u_int32_t		*txidx;
   2256 {
   2257 	struct ti_tx_desc	*f = NULL;
   2258 	u_int32_t		frag, cur, cnt = 0;
   2259 	struct txdmamap_pool_entry *dma;
   2260 	bus_dmamap_t dmamap;
   2261 	int error, i;
   2262 	struct m_tag *mtag;
   2263 	u_int16_t csum_flags = 0;
   2264 
   2265 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2266 	if (dma == NULL) {
   2267 		return ENOMEM;
   2268 	}
   2269 	dmamap = dma->dmamap;
   2270 
   2271 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2272 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2273 	if (error) {
   2274 		struct mbuf *m;
   2275 		int j = 0;
   2276 		for (m = m_head; m; m = m->m_next)
   2277 			j++;
   2278 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2279 		       "error %d\n", m_head->m_pkthdr.len, j, error);
   2280 		return (ENOMEM);
   2281 	}
   2282 
   2283 	cur = frag = *txidx;
   2284 
   2285 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2286 		/* IP header checksum field must be 0! */
   2287 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2288 	}
   2289 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2290 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2291 
   2292 	/* XXX fragmented packet checksum capability? */
   2293 
   2294 	/*
   2295  	 * Start packing the mbufs in this chain into
   2296 	 * the fragment pointers. Stop when we run out
   2297  	 * of fragments or hit the end of the mbuf chain.
   2298 	 */
   2299 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2300 		if (frag > 383)
   2301 			CSR_WRITE_4(sc, TI_WINBASE,
   2302 			    TI_TX_RING_BASE + 6144);
   2303 		else if (frag > 255)
   2304 			CSR_WRITE_4(sc, TI_WINBASE,
   2305 			    TI_TX_RING_BASE + 4096);
   2306 		else if (frag > 127)
   2307 			CSR_WRITE_4(sc, TI_WINBASE,
   2308 			    TI_TX_RING_BASE + 2048);
   2309 		else
   2310 			CSR_WRITE_4(sc, TI_WINBASE,
   2311 			    TI_TX_RING_BASE);
   2312 		f = &sc->ti_tx_ring_nic[frag % 128];
   2313 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2314 			break;
   2315 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2316 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2317 		f->ti_flags = csum_flags;
   2318 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
   2319 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2320 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
   2321 		} else {
   2322 			f->ti_vlan_tag = 0;
   2323 		}
   2324 		/*
   2325 		 * Sanity check: avoid coming within 16 descriptors
   2326 		 * of the end of the ring.
   2327 		 */
   2328 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2329 			return(ENOBUFS);
   2330 		cur = frag;
   2331 		TI_INC(frag, TI_TX_RING_CNT);
   2332 		cnt++;
   2333 	}
   2334 
   2335 	if (i < dmamap->dm_nsegs)
   2336 		return(ENOBUFS);
   2337 
   2338 	if (frag == sc->ti_tx_saved_considx)
   2339 		return(ENOBUFS);
   2340 
   2341 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
   2342 	    TI_BDFLAG_END;
   2343 
   2344 	/* Sync the packet's DMA map. */
   2345 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2346 	    BUS_DMASYNC_PREWRITE);
   2347 
   2348 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2349 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2350 	sc->txdma[cur] = dma;
   2351 	sc->ti_txcnt += cnt;
   2352 
   2353 	*txidx = frag;
   2354 
   2355 	return(0);
   2356 }
   2357 
   2358 static int ti_encap_tigon2(sc, m_head, txidx)
   2359 	struct ti_softc		*sc;
   2360 	struct mbuf		*m_head;
   2361 	u_int32_t		*txidx;
   2362 {
   2363 	struct ti_tx_desc	*f = NULL;
   2364 	u_int32_t		frag, firstfrag, cur, cnt = 0;
   2365 	struct txdmamap_pool_entry *dma;
   2366 	bus_dmamap_t dmamap;
   2367 	int error, i;
   2368 	struct m_tag *mtag;
   2369 	u_int16_t csum_flags = 0;
   2370 
   2371 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2372 	if (dma == NULL) {
   2373 		return ENOMEM;
   2374 	}
   2375 	dmamap = dma->dmamap;
   2376 
   2377 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2378 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2379 	if (error) {
   2380 		struct mbuf *m;
   2381 		int j = 0;
   2382 		for (m = m_head; m; m = m->m_next)
   2383 			j++;
   2384 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2385 		       "error %d\n", m_head->m_pkthdr.len, j, error);
   2386 		return (ENOMEM);
   2387 	}
   2388 
   2389 	cur = firstfrag = frag = *txidx;
   2390 
   2391 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2392 		/* IP header checksum field must be 0! */
   2393 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2394 	}
   2395 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2396 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2397 
   2398 	/* XXX fragmented packet checksum capability? */
   2399 
   2400 	/*
   2401  	 * Start packing the mbufs in this chain into
   2402 	 * the fragment pointers. Stop when we run out
   2403  	 * of fragments or hit the end of the mbuf chain.
   2404 	 */
   2405 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2406 		f = &sc->ti_rdata->ti_tx_ring[frag];
   2407 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2408 			break;
   2409 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2410 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2411 		f->ti_flags = csum_flags;
   2412 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
   2413 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2414 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
   2415 		} else {
   2416 			f->ti_vlan_tag = 0;
   2417 		}
   2418 		/*
   2419 		 * Sanity check: avoid coming within 16 descriptors
   2420 		 * of the end of the ring.
   2421 		 */
   2422 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2423 			return(ENOBUFS);
   2424 		cur = frag;
   2425 		TI_INC(frag, TI_TX_RING_CNT);
   2426 		cnt++;
   2427 	}
   2428 
   2429 	if (i < dmamap->dm_nsegs)
   2430 		return(ENOBUFS);
   2431 
   2432 	if (frag == sc->ti_tx_saved_considx)
   2433 		return(ENOBUFS);
   2434 
   2435 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
   2436 
   2437 	/* Sync the packet's DMA map. */
   2438 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2439 	    BUS_DMASYNC_PREWRITE);
   2440 
   2441 	/* Sync the descriptors we are using. */
   2442 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
   2443 
   2444 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2445 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2446 	sc->txdma[cur] = dma;
   2447 	sc->ti_txcnt += cnt;
   2448 
   2449 	*txidx = frag;
   2450 
   2451 	return(0);
   2452 }
   2453 
   2454 /*
   2455  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2456  * to the mbuf data regions directly in the transmit descriptors.
   2457  */
   2458 static void ti_start(ifp)
   2459 	struct ifnet		*ifp;
   2460 {
   2461 	struct ti_softc		*sc;
   2462 	struct mbuf		*m_head = NULL;
   2463 	u_int32_t		prodidx = 0;
   2464 
   2465 	sc = ifp->if_softc;
   2466 
   2467 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
   2468 
   2469 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
   2470 		IFQ_POLL(&ifp->if_snd, m_head);
   2471 		if (m_head == NULL)
   2472 			break;
   2473 
   2474 		/*
   2475 		 * Pack the data into the transmit ring. If we
   2476 		 * don't have room, set the OACTIVE flag and wait
   2477 		 * for the NIC to drain the ring.
   2478 		 */
   2479 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
   2480 			ifp->if_flags |= IFF_OACTIVE;
   2481 			break;
   2482 		}
   2483 
   2484 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2485 
   2486 		/*
   2487 		 * If there's a BPF listener, bounce a copy of this frame
   2488 		 * to him.
   2489 		 */
   2490 #if NBPFILTER > 0
   2491 		if (ifp->if_bpf)
   2492 			bpf_mtap(ifp->if_bpf, m_head);
   2493 #endif
   2494 	}
   2495 
   2496 	/* Transmit */
   2497 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
   2498 
   2499 	/*
   2500 	 * Set a timeout in case the chip goes out to lunch.
   2501 	 */
   2502 	ifp->if_timer = 5;
   2503 
   2504 	return;
   2505 }
   2506 
   2507 static void ti_init(xsc)
   2508 	void			*xsc;
   2509 {
   2510 	struct ti_softc		*sc = xsc;
   2511         int			s;
   2512 
   2513 	s = splnet();
   2514 
   2515 	/* Cancel pending I/O and flush buffers. */
   2516 	ti_stop(sc);
   2517 
   2518 	/* Init the gen info block, ring control blocks and firmware. */
   2519 	if (ti_gibinit(sc)) {
   2520 		printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
   2521 		splx(s);
   2522 		return;
   2523 	}
   2524 
   2525 	splx(s);
   2526 
   2527 	return;
   2528 }
   2529 
   2530 static void ti_init2(sc)
   2531 	struct ti_softc		*sc;
   2532 {
   2533 	struct ti_cmd_desc	cmd;
   2534 	struct ifnet		*ifp;
   2535 	u_int8_t		*m;
   2536 	struct ifmedia		*ifm;
   2537 	int			tmp;
   2538 
   2539 	ifp = &sc->ethercom.ec_if;
   2540 
   2541 	/* Specify MTU and interface index. */
   2542 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
   2543 
   2544 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
   2545 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2546 		tmp += ETHER_VLAN_ENCAP_LEN;
   2547 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
   2548 
   2549 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
   2550 
   2551 	/* Load our MAC address. */
   2552 	m = (u_int8_t *)LLADDR(ifp->if_sadl);
   2553 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
   2554 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
   2555 		    | (m[4] << 8) | m[5]);
   2556 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
   2557 
   2558 	/* Enable or disable promiscuous mode as needed. */
   2559 	if (ifp->if_flags & IFF_PROMISC) {
   2560 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
   2561 	} else {
   2562 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
   2563 	}
   2564 
   2565 	/* Program multicast filter. */
   2566 	ti_setmulti(sc);
   2567 
   2568 	/*
   2569 	 * If this is a Tigon 1, we should tell the
   2570 	 * firmware to use software packet filtering.
   2571 	 */
   2572 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2573 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
   2574 	}
   2575 
   2576 	/* Init RX ring. */
   2577 	ti_init_rx_ring_std(sc);
   2578 
   2579 	/* Init jumbo RX ring. */
   2580 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
   2581 		ti_init_rx_ring_jumbo(sc);
   2582 
   2583 	/*
   2584 	 * If this is a Tigon 2, we can also configure the
   2585 	 * mini ring.
   2586 	 */
   2587 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
   2588 		ti_init_rx_ring_mini(sc);
   2589 
   2590 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
   2591 	sc->ti_rx_saved_considx = 0;
   2592 
   2593 	/* Init TX ring. */
   2594 	ti_init_tx_ring(sc);
   2595 
   2596 	/* Tell firmware we're alive. */
   2597 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
   2598 
   2599 	/* Enable host interrupts. */
   2600 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2601 
   2602 	ifp->if_flags |= IFF_RUNNING;
   2603 	ifp->if_flags &= ~IFF_OACTIVE;
   2604 
   2605 	/*
   2606 	 * Make sure to set media properly. We have to do this
   2607 	 * here since we have to issue commands in order to set
   2608 	 * the link negotiation and we can't issue commands until
   2609 	 * the firmware is running.
   2610 	 */
   2611 	ifm = &sc->ifmedia;
   2612 	tmp = ifm->ifm_media;
   2613 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
   2614 	ti_ifmedia_upd(ifp);
   2615 	ifm->ifm_media = tmp;
   2616 
   2617 	return;
   2618 }
   2619 
   2620 /*
   2621  * Set media options.
   2622  */
   2623 static int ti_ifmedia_upd(ifp)
   2624 	struct ifnet		*ifp;
   2625 {
   2626 	struct ti_softc		*sc;
   2627 	struct ifmedia		*ifm;
   2628 	struct ti_cmd_desc	cmd;
   2629 
   2630 	sc = ifp->if_softc;
   2631 	ifm = &sc->ifmedia;
   2632 
   2633 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2634 		return(EINVAL);
   2635 
   2636 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2637 	case IFM_AUTO:
   2638 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
   2639 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
   2640 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
   2641 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
   2642 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
   2643 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
   2644 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2645 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
   2646 		break;
   2647 	case IFM_1000_SX:
   2648 	case IFM_1000_T:
   2649 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2650 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2651 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
   2652 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2653 		} else {
   2654 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2655 			    TI_GLNK_PREF|TI_GLNK_1000MB|
   2656 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2657 		}
   2658 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
   2659 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2660 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
   2661 		break;
   2662 	case IFM_100_FX:
   2663 	case IFM_10_FL:
   2664 	case IFM_100_TX:
   2665 	case IFM_10_T:
   2666 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
   2667 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
   2668 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
   2669 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
   2670 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
   2671 		} else {
   2672 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
   2673 		}
   2674 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2675 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
   2676 		} else {
   2677 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
   2678 		}
   2679 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2680 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
   2681 		break;
   2682 	}
   2683 
   2684 	sc->ethercom.ec_if.if_baudrate =
   2685 	    ifmedia_baudrate(ifm->ifm_media);
   2686 
   2687 	return(0);
   2688 }
   2689 
   2690 /*
   2691  * Report current media status.
   2692  */
   2693 static void ti_ifmedia_sts(ifp, ifmr)
   2694 	struct ifnet		*ifp;
   2695 	struct ifmediareq	*ifmr;
   2696 {
   2697 	struct ti_softc		*sc;
   2698 	u_int32_t               media = 0;
   2699 
   2700 	sc = ifp->if_softc;
   2701 
   2702 	ifmr->ifm_status = IFM_AVALID;
   2703 	ifmr->ifm_active = IFM_ETHER;
   2704 
   2705 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
   2706 		return;
   2707 
   2708 	ifmr->ifm_status |= IFM_ACTIVE;
   2709 
   2710 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
   2711 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
   2712 		if (sc->ti_copper)
   2713 			ifmr->ifm_active |= IFM_1000_T;
   2714 		else
   2715 			ifmr->ifm_active |= IFM_1000_SX;
   2716 		if (media & TI_GLNK_FULL_DUPLEX)
   2717 			ifmr->ifm_active |= IFM_FDX;
   2718 		else
   2719 			ifmr->ifm_active |= IFM_HDX;
   2720 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
   2721 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
   2722 		if (sc->ti_copper) {
   2723 			if (media & TI_LNK_100MB)
   2724 				ifmr->ifm_active |= IFM_100_TX;
   2725 			if (media & TI_LNK_10MB)
   2726 				ifmr->ifm_active |= IFM_10_T;
   2727 		} else {
   2728 			if (media & TI_LNK_100MB)
   2729 				ifmr->ifm_active |= IFM_100_FX;
   2730 			if (media & TI_LNK_10MB)
   2731 				ifmr->ifm_active |= IFM_10_FL;
   2732 		}
   2733 		if (media & TI_LNK_FULL_DUPLEX)
   2734 			ifmr->ifm_active |= IFM_FDX;
   2735 		if (media & TI_LNK_HALF_DUPLEX)
   2736 			ifmr->ifm_active |= IFM_HDX;
   2737 	}
   2738 
   2739 	sc->ethercom.ec_if.if_baudrate =
   2740 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
   2741 
   2742 	return;
   2743 }
   2744 
   2745 static int
   2746 ti_ether_ioctl(ifp, cmd, data)
   2747 	struct ifnet *ifp;
   2748 	u_long cmd;
   2749 	caddr_t data;
   2750 {
   2751 	struct ifaddr *ifa = (struct ifaddr *) data;
   2752 	struct ti_softc *sc = ifp->if_softc;
   2753 
   2754 	if ((ifp->if_flags & IFF_UP) == 0) {
   2755 		ifp->if_flags |= IFF_UP;
   2756 		ti_init(sc);
   2757 	}
   2758 
   2759 	switch (cmd) {
   2760 	case SIOCSIFADDR:
   2761 
   2762 		switch (ifa->ifa_addr->sa_family) {
   2763 #ifdef INET
   2764 		case AF_INET:
   2765 			arp_ifinit(ifp, ifa);
   2766 			break;
   2767 #endif
   2768 		default:
   2769 			break;
   2770 		}
   2771 		break;
   2772 
   2773 	default:
   2774 		return (EINVAL);
   2775 	}
   2776 
   2777 	return (0);
   2778 }
   2779 
   2780 static int ti_ioctl(ifp, command, data)
   2781 	struct ifnet		*ifp;
   2782 	u_long			command;
   2783 	caddr_t			data;
   2784 {
   2785 	struct ti_softc		*sc = ifp->if_softc;
   2786 	struct ifreq		*ifr = (struct ifreq *) data;
   2787 	int			s, error = 0;
   2788 	struct ti_cmd_desc	cmd;
   2789 
   2790 	s = splnet();
   2791 
   2792 	switch(command) {
   2793 	case SIOCSIFADDR:
   2794 	case SIOCGIFADDR:
   2795 		error = ti_ether_ioctl(ifp, command, data);
   2796 		break;
   2797 	case SIOCSIFMTU:
   2798 		if (ifr->ifr_mtu > ETHERMTU_JUMBO)
   2799 			error = EINVAL;
   2800 		else {
   2801 			ifp->if_mtu = ifr->ifr_mtu;
   2802 			ti_init(sc);
   2803 		}
   2804 		break;
   2805 	case SIOCSIFFLAGS:
   2806 		if (ifp->if_flags & IFF_UP) {
   2807 			/*
   2808 			 * If only the state of the PROMISC flag changed,
   2809 			 * then just use the 'set promisc mode' command
   2810 			 * instead of reinitializing the entire NIC. Doing
   2811 			 * a full re-init means reloading the firmware and
   2812 			 * waiting for it to start up, which may take a
   2813 			 * second or two.
   2814 			 */
   2815 			if (ifp->if_flags & IFF_RUNNING &&
   2816 			    ifp->if_flags & IFF_PROMISC &&
   2817 			    !(sc->ti_if_flags & IFF_PROMISC)) {
   2818 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2819 				    TI_CMD_CODE_PROMISC_ENB, 0);
   2820 			} else if (ifp->if_flags & IFF_RUNNING &&
   2821 			    !(ifp->if_flags & IFF_PROMISC) &&
   2822 			    sc->ti_if_flags & IFF_PROMISC) {
   2823 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2824 				    TI_CMD_CODE_PROMISC_DIS, 0);
   2825 			} else
   2826 				ti_init(sc);
   2827 		} else {
   2828 			if (ifp->if_flags & IFF_RUNNING) {
   2829 				ti_stop(sc);
   2830 			}
   2831 		}
   2832 		sc->ti_if_flags = ifp->if_flags;
   2833 		error = 0;
   2834 		break;
   2835 	case SIOCADDMULTI:
   2836 	case SIOCDELMULTI:
   2837 		error = (command == SIOCADDMULTI) ?
   2838 		    ether_addmulti(ifr, &sc->ethercom) :
   2839 		    ether_delmulti(ifr, &sc->ethercom);
   2840 		if (error == ENETRESET) {
   2841 			if (ifp->if_flags & IFF_RUNNING)
   2842 				ti_setmulti(sc);
   2843 			error = 0;
   2844 		}
   2845 		break;
   2846 	case SIOCSIFMEDIA:
   2847 	case SIOCGIFMEDIA:
   2848 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
   2849 		break;
   2850 	default:
   2851 		error = EINVAL;
   2852 		break;
   2853 	}
   2854 
   2855 	(void)splx(s);
   2856 
   2857 	return(error);
   2858 }
   2859 
   2860 static void ti_watchdog(ifp)
   2861 	struct ifnet		*ifp;
   2862 {
   2863 	struct ti_softc		*sc;
   2864 
   2865 	sc = ifp->if_softc;
   2866 
   2867 	printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
   2868 	ti_stop(sc);
   2869 	ti_init(sc);
   2870 
   2871 	ifp->if_oerrors++;
   2872 
   2873 	return;
   2874 }
   2875 
   2876 /*
   2877  * Stop the adapter and free any mbufs allocated to the
   2878  * RX and TX lists.
   2879  */
   2880 static void ti_stop(sc)
   2881 	struct ti_softc		*sc;
   2882 {
   2883 	struct ifnet		*ifp;
   2884 	struct ti_cmd_desc	cmd;
   2885 
   2886 	ifp = &sc->ethercom.ec_if;
   2887 
   2888 	/* Disable host interrupts. */
   2889 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2890 	/*
   2891 	 * Tell firmware we're shutting down.
   2892 	 */
   2893 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
   2894 
   2895 	/* Halt and reinitialize. */
   2896 	ti_chipinit(sc);
   2897 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
   2898 	ti_chipinit(sc);
   2899 
   2900 	/* Free the RX lists. */
   2901 	ti_free_rx_ring_std(sc);
   2902 
   2903 	/* Free jumbo RX list. */
   2904 	ti_free_rx_ring_jumbo(sc);
   2905 
   2906 	/* Free mini RX list. */
   2907 	ti_free_rx_ring_mini(sc);
   2908 
   2909 	/* Free TX buffers. */
   2910 	ti_free_tx_ring(sc);
   2911 
   2912 	sc->ti_ev_prodidx.ti_idx = 0;
   2913 	sc->ti_return_prodidx.ti_idx = 0;
   2914 	sc->ti_tx_considx.ti_idx = 0;
   2915 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
   2916 
   2917 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2918 
   2919 	return;
   2920 }
   2921 
   2922 /*
   2923  * Stop all chip I/O so that the kernel's probe routines don't
   2924  * get confused by errant DMAs when rebooting.
   2925  */
   2926 static void ti_shutdown(v)
   2927 	void *v;
   2928 {
   2929 	struct ti_softc		*sc = v;
   2930 
   2931 	ti_chipinit(sc);
   2932 
   2933 	return;
   2934 }
   2935