if_ti.c revision 1.72 1 /* $NetBSD: if_ti.c,v 1.72 2006/10/12 01:31:30 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.72 2006/10/12 01:31:30 christos Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/device.h>
98 #include <sys/reboot.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/if_ether.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #endif
118
119
120 #include <machine/bus.h>
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_tireg.h>
127
128 #include <dev/microcode/tigon/ti_fw.h>
129 #include <dev/microcode/tigon/ti_fw2.h>
130
131 /*
132 * Various supported device vendors/types and their names.
133 */
134
135 static const struct ti_type ti_devs[] = {
136 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
137 "Alteon AceNIC 1000BASE-SX Ethernet" },
138 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
139 "Alteon AceNIC 1000BASE-T Ethernet" },
140 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
141 "3Com 3c985-SX Gigabit Ethernet" },
142 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
143 "Netgear GA620 1000BASE-SX Ethernet" },
144 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
145 "Netgear GA620 1000BASE-T Ethernet" },
146 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
147 "Silicon Graphics Gigabit Ethernet" },
148 { 0, 0, NULL }
149 };
150
151 static const struct ti_type *ti_type_match(struct pci_attach_args *);
152 static int ti_probe(struct device *, struct cfdata *, void *);
153 static void ti_attach(struct device *, struct device *, void *);
154 static void ti_shutdown(void *);
155 static void ti_txeof_tigon1(struct ti_softc *);
156 static void ti_txeof_tigon2(struct ti_softc *);
157 static void ti_rxeof(struct ti_softc *);
158
159 static void ti_stats_update(struct ti_softc *);
160 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
161 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
162
163 static int ti_intr(void *);
164 static void ti_start(struct ifnet *);
165 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
166 static void ti_init(void *);
167 static void ti_init2(struct ti_softc *);
168 static void ti_stop(struct ti_softc *);
169 static void ti_watchdog(struct ifnet *);
170 static int ti_ifmedia_upd(struct ifnet *);
171 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
174 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
175 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
176
177 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
178 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
179 static void ti_setmulti(struct ti_softc *);
180
181 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
182 static void ti_loadfw(struct ti_softc *);
183 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
184 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
185 static void ti_handle_events(struct ti_softc *);
186 static int ti_alloc_jumbo_mem(struct ti_softc *);
187 static void *ti_jalloc(struct ti_softc *);
188 static void ti_jfree(struct mbuf *, caddr_t, size_t, void *);
189 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
190 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
191 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
192 static int ti_init_rx_ring_std(struct ti_softc *);
193 static void ti_free_rx_ring_std(struct ti_softc *);
194 static int ti_init_rx_ring_jumbo(struct ti_softc *);
195 static void ti_free_rx_ring_jumbo(struct ti_softc *);
196 static int ti_init_rx_ring_mini(struct ti_softc *);
197 static void ti_free_rx_ring_mini(struct ti_softc *);
198 static void ti_free_tx_ring(struct ti_softc *);
199 static int ti_init_tx_ring(struct ti_softc *);
200
201 static int ti_64bitslot_war(struct ti_softc *);
202 static int ti_chipinit(struct ti_softc *);
203 static int ti_gibinit(struct ti_softc *);
204
205 static int ti_ether_ioctl(struct ifnet *, u_long, caddr_t);
206
207 CFATTACH_DECL(ti, sizeof(struct ti_softc),
208 ti_probe, ti_attach, NULL, NULL);
209
210 /*
211 * Send an instruction or address to the EEPROM, check for ACK.
212 */
213 static u_int32_t ti_eeprom_putbyte(sc, byte)
214 struct ti_softc *sc;
215 int byte;
216 {
217 int i, ack = 0;
218
219 /*
220 * Make sure we're in TX mode.
221 */
222 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
223
224 /*
225 * Feed in each bit and stobe the clock.
226 */
227 for (i = 0x80; i; i >>= 1) {
228 if (byte & i) {
229 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
230 } else {
231 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
232 }
233 DELAY(1);
234 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
235 DELAY(1);
236 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
237 }
238
239 /*
240 * Turn off TX mode.
241 */
242 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
243
244 /*
245 * Check for ack.
246 */
247 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
249 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250
251 return(ack);
252 }
253
254 /*
255 * Read a byte of data stored in the EEPROM at address 'addr.'
256 * We have to send two address bytes since the EEPROM can hold
257 * more than 256 bytes of data.
258 */
259 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
260 struct ti_softc *sc;
261 int addr;
262 u_int8_t *dest;
263 {
264 int i;
265 u_int8_t byte = 0;
266
267 EEPROM_START;
268
269 /*
270 * Send write control code to EEPROM.
271 */
272 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
273 printf("%s: failed to send write command, status: %x\n",
274 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
275 return(1);
276 }
277
278 /*
279 * Send first byte of address of byte we want to read.
280 */
281 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
282 printf("%s: failed to send address, status: %x\n",
283 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
284 return(1);
285 }
286 /*
287 * Send second byte address of byte we want to read.
288 */
289 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
290 printf("%s: failed to send address, status: %x\n",
291 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
292 return(1);
293 }
294
295 EEPROM_STOP;
296 EEPROM_START;
297 /*
298 * Send read control code to EEPROM.
299 */
300 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
301 printf("%s: failed to send read command, status: %x\n",
302 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 return(1);
304 }
305
306 /*
307 * Start reading bits from EEPROM.
308 */
309 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
310 for (i = 0x80; i; i >>= 1) {
311 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
312 DELAY(1);
313 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
314 byte |= i;
315 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316 DELAY(1);
317 }
318
319 EEPROM_STOP;
320
321 /*
322 * No ACK generated for read, so just return byte.
323 */
324
325 *dest = byte;
326
327 return(0);
328 }
329
330 /*
331 * Read a sequence of bytes from the EEPROM.
332 */
333 static int ti_read_eeprom(sc, dest, off, cnt)
334 struct ti_softc *sc;
335 caddr_t dest;
336 int off;
337 int cnt;
338 {
339 int err = 0, i;
340 u_int8_t byte = 0;
341
342 for (i = 0; i < cnt; i++) {
343 err = ti_eeprom_getbyte(sc, off + i, &byte);
344 if (err)
345 break;
346 *(dest + i) = byte;
347 }
348
349 return(err ? 1 : 0);
350 }
351
352 /*
353 * NIC memory access function. Can be used to either clear a section
354 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
355 */
356 static void ti_mem(sc, addr, len, xbuf)
357 struct ti_softc *sc;
358 u_int32_t addr, len;
359 const void *xbuf;
360 {
361 int segptr, segsize, cnt;
362 const void *ptr;
363
364 segptr = addr;
365 cnt = len;
366 ptr = xbuf;
367
368 while(cnt) {
369 if (cnt < TI_WINLEN)
370 segsize = cnt;
371 else
372 segsize = TI_WINLEN - (segptr % TI_WINLEN);
373 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
374 if (xbuf == NULL) {
375 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
376 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
377 segsize / 4);
378 } else {
379 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
380 bus_space_write_region_stream_4(sc->ti_btag,
381 sc->ti_bhandle,
382 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
383 (const u_int32_t *)ptr, segsize / 4);
384 #else
385 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
386 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
387 (const u_int32_t *)ptr, segsize / 4);
388 #endif
389 ptr = (const char *)ptr + segsize;
390 }
391 segptr += segsize;
392 cnt -= segsize;
393 }
394
395 return;
396 }
397
398 /*
399 * Load firmware image into the NIC. Check that the firmware revision
400 * is acceptable and see if we want the firmware for the Tigon 1 or
401 * Tigon 2.
402 */
403 static void ti_loadfw(sc)
404 struct ti_softc *sc;
405 {
406 switch(sc->ti_hwrev) {
407 case TI_HWREV_TIGON:
408 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
409 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
410 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
411 printf("%s: firmware revision mismatch; want "
412 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
413 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
414 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
415 tigonFwReleaseMinor, tigonFwReleaseFix);
416 return;
417 }
418 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
419 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
420 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
421 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
422 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
423 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
424 break;
425 case TI_HWREV_TIGON_II:
426 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
427 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
428 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
429 printf("%s: firmware revision mismatch; want "
430 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
431 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
432 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
433 tigon2FwReleaseMinor, tigon2FwReleaseFix);
434 return;
435 }
436 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
437 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
438 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
439 tigon2FwRodata);
440 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
441 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
442 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
443 break;
444 default:
445 printf("%s: can't load firmware: unknown hardware rev\n",
446 sc->sc_dev.dv_xname);
447 break;
448 }
449
450 return;
451 }
452
453 /*
454 * Send the NIC a command via the command ring.
455 */
456 static void ti_cmd(sc, cmd)
457 struct ti_softc *sc;
458 struct ti_cmd_desc *cmd;
459 {
460 u_int32_t index;
461
462 index = sc->ti_cmd_saved_prodidx;
463 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
464 TI_INC(index, TI_CMD_RING_CNT);
465 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
466 sc->ti_cmd_saved_prodidx = index;
467
468 return;
469 }
470
471 /*
472 * Send the NIC an extended command. The 'len' parameter specifies the
473 * number of command slots to include after the initial command.
474 */
475 static void ti_cmd_ext(sc, cmd, arg, len)
476 struct ti_softc *sc;
477 struct ti_cmd_desc *cmd;
478 caddr_t arg;
479 int len;
480 {
481 u_int32_t index;
482 int i;
483
484 index = sc->ti_cmd_saved_prodidx;
485 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
486 TI_INC(index, TI_CMD_RING_CNT);
487 for (i = 0; i < len; i++) {
488 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
489 *(u_int32_t *)(&arg[i * 4]));
490 TI_INC(index, TI_CMD_RING_CNT);
491 }
492 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
493 sc->ti_cmd_saved_prodidx = index;
494
495 return;
496 }
497
498 /*
499 * Handle events that have triggered interrupts.
500 */
501 static void ti_handle_events(sc)
502 struct ti_softc *sc;
503 {
504 struct ti_event_desc *e;
505
506 if (sc->ti_rdata->ti_event_ring == NULL)
507 return;
508
509 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
510 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
511 switch(e->ti_event) {
512 case TI_EV_LINKSTAT_CHANGED:
513 sc->ti_linkstat = e->ti_code;
514 if (e->ti_code == TI_EV_CODE_LINK_UP)
515 printf("%s: 10/100 link up\n",
516 sc->sc_dev.dv_xname);
517 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
518 printf("%s: gigabit link up\n",
519 sc->sc_dev.dv_xname);
520 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
521 printf("%s: link down\n",
522 sc->sc_dev.dv_xname);
523 break;
524 case TI_EV_ERROR:
525 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
526 printf("%s: invalid command\n",
527 sc->sc_dev.dv_xname);
528 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
529 printf("%s: unknown command\n",
530 sc->sc_dev.dv_xname);
531 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
532 printf("%s: bad config data\n",
533 sc->sc_dev.dv_xname);
534 break;
535 case TI_EV_FIRMWARE_UP:
536 ti_init2(sc);
537 break;
538 case TI_EV_STATS_UPDATED:
539 ti_stats_update(sc);
540 break;
541 case TI_EV_RESET_JUMBO_RING:
542 case TI_EV_MCAST_UPDATED:
543 /* Who cares. */
544 break;
545 default:
546 printf("%s: unknown event: %d\n",
547 sc->sc_dev.dv_xname, e->ti_event);
548 break;
549 }
550 /* Advance the consumer index. */
551 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
552 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
553 }
554
555 return;
556 }
557
558 /*
559 * Memory management for the jumbo receive ring is a pain in the
560 * butt. We need to allocate at least 9018 bytes of space per frame,
561 * _and_ it has to be contiguous (unless you use the extended
562 * jumbo descriptor format). Using malloc() all the time won't
563 * work: malloc() allocates memory in powers of two, which means we
564 * would end up wasting a considerable amount of space by allocating
565 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
566 * to do our own memory management.
567 *
568 * The driver needs to allocate a contiguous chunk of memory at boot
569 * time. We then chop this up ourselves into 9K pieces and use them
570 * as external mbuf storage.
571 *
572 * One issue here is how much memory to allocate. The jumbo ring has
573 * 256 slots in it, but at 9K per slot than can consume over 2MB of
574 * RAM. This is a bit much, especially considering we also need
575 * RAM for the standard ring and mini ring (on the Tigon 2). To
576 * save space, we only actually allocate enough memory for 64 slots
577 * by default, which works out to between 500 and 600K. This can
578 * be tuned by changing a #define in if_tireg.h.
579 */
580
581 static int ti_alloc_jumbo_mem(sc)
582 struct ti_softc *sc;
583 {
584 caddr_t ptr;
585 int i;
586 struct ti_jpool_entry *entry;
587 bus_dma_segment_t dmaseg;
588 int error, dmanseg;
589
590 /* Grab a big chunk o' storage. */
591 if ((error = bus_dmamem_alloc(sc->sc_dmat,
592 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
593 BUS_DMA_NOWAIT)) != 0) {
594 printf("%s: can't allocate jumbo buffer, error = %d\n",
595 sc->sc_dev.dv_xname, error);
596 return (error);
597 }
598
599 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
600 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
601 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
602 printf("%s: can't map jumbo buffer, error = %d\n",
603 sc->sc_dev.dv_xname, error);
604 return (error);
605 }
606
607 if ((error = bus_dmamap_create(sc->sc_dmat,
608 TI_JMEM, 1,
609 TI_JMEM, 0, BUS_DMA_NOWAIT,
610 &sc->jumbo_dmamap)) != 0) {
611 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
612 sc->sc_dev.dv_xname, error);
613 return (error);
614 }
615
616 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
617 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
618 BUS_DMA_NOWAIT)) != 0) {
619 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
620 sc->sc_dev.dv_xname, error);
621 return (error);
622 }
623 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
624
625 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
626 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
627
628 /*
629 * Now divide it up into 9K pieces and save the addresses
630 * in an array.
631 */
632 ptr = sc->ti_cdata.ti_jumbo_buf;
633 for (i = 0; i < TI_JSLOTS; i++) {
634 sc->ti_cdata.ti_jslots[i] = ptr;
635 ptr += TI_JLEN;
636 entry = malloc(sizeof(struct ti_jpool_entry),
637 M_DEVBUF, M_NOWAIT);
638 if (entry == NULL) {
639 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
640 sc->ti_cdata.ti_jumbo_buf = NULL;
641 printf("%s: no memory for jumbo "
642 "buffer queue!\n", sc->sc_dev.dv_xname);
643 return(ENOBUFS);
644 }
645 entry->slot = i;
646 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
647 jpool_entries);
648 }
649
650 return(0);
651 }
652
653 /*
654 * Allocate a jumbo buffer.
655 */
656 static void *ti_jalloc(sc)
657 struct ti_softc *sc;
658 {
659 struct ti_jpool_entry *entry;
660
661 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
662
663 if (entry == NULL) {
664 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
665 return(NULL);
666 }
667
668 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
669 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
670 return(sc->ti_cdata.ti_jslots[entry->slot]);
671 }
672
673 /*
674 * Release a jumbo buffer.
675 */
676 static void ti_jfree(struct mbuf *m, caddr_t tbuf, size_t size __unused,
677 void *arg)
678 {
679 struct ti_softc *sc;
680 int i, s;
681 struct ti_jpool_entry *entry;
682
683 /* Extract the softc struct pointer. */
684 sc = (struct ti_softc *)arg;
685
686 if (sc == NULL)
687 panic("ti_jfree: didn't get softc pointer!");
688
689 /* calculate the slot this buffer belongs to */
690
691 i = ((caddr_t)tbuf
692 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
693
694 if ((i < 0) || (i >= TI_JSLOTS))
695 panic("ti_jfree: asked to free buffer that we don't manage!");
696
697 s = splvm();
698 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
699 if (entry == NULL)
700 panic("ti_jfree: buffer not in use!");
701 entry->slot = i;
702 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
703 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
704
705 if (__predict_true(m != NULL))
706 pool_cache_put(&mbpool_cache, m);
707 splx(s);
708 }
709
710
711 /*
712 * Intialize a standard receive ring descriptor.
713 */
714 static int ti_newbuf_std(sc, i, m, dmamap)
715 struct ti_softc *sc;
716 int i;
717 struct mbuf *m;
718 bus_dmamap_t dmamap; /* required if (m != NULL) */
719 {
720 struct mbuf *m_new = NULL;
721 struct ti_rx_desc *r;
722 int error;
723
724 if (dmamap == NULL) {
725 /* if (m) panic() */
726
727 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
728 MCLBYTES, 0, BUS_DMA_NOWAIT,
729 &dmamap)) != 0) {
730 printf("%s: can't create recv map, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 return(ENOMEM);
733 }
734 }
735 sc->std_dmamap[i] = dmamap;
736
737 if (m == NULL) {
738 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
739 if (m_new == NULL) {
740 printf("%s: mbuf allocation failed "
741 "-- packet dropped!\n", sc->sc_dev.dv_xname);
742 return(ENOBUFS);
743 }
744
745 MCLGET(m_new, M_DONTWAIT);
746 if (!(m_new->m_flags & M_EXT)) {
747 printf("%s: cluster allocation failed "
748 "-- packet dropped!\n", sc->sc_dev.dv_xname);
749 m_freem(m_new);
750 return(ENOBUFS);
751 }
752 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
753 m_adj(m_new, ETHER_ALIGN);
754
755 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
756 mtod(m_new, caddr_t), m_new->m_len, NULL,
757 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
758 printf("%s: can't load recv map, error = %d\n",
759 sc->sc_dev.dv_xname, error);
760 return (ENOMEM);
761 }
762 } else {
763 m_new = m;
764 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
765 m_new->m_data = m_new->m_ext.ext_buf;
766 m_adj(m_new, ETHER_ALIGN);
767
768 /* reuse the dmamap */
769 }
770
771 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
772 r = &sc->ti_rdata->ti_rx_std_ring[i];
773 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
774 r->ti_type = TI_BDTYPE_RECV_BD;
775 r->ti_flags = 0;
776 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
777 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
778 if (sc->ethercom.ec_if.if_capenable &
779 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
780 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
781 r->ti_len = m_new->m_len; /* == ds_len */
782 r->ti_idx = i;
783
784 return(0);
785 }
786
787 /*
788 * Intialize a mini receive ring descriptor. This only applies to
789 * the Tigon 2.
790 */
791 static int ti_newbuf_mini(sc, i, m, dmamap)
792 struct ti_softc *sc;
793 int i;
794 struct mbuf *m;
795 bus_dmamap_t dmamap; /* required if (m != NULL) */
796 {
797 struct mbuf *m_new = NULL;
798 struct ti_rx_desc *r;
799 int error;
800
801 if (dmamap == NULL) {
802 /* if (m) panic() */
803
804 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
805 MHLEN, 0, BUS_DMA_NOWAIT,
806 &dmamap)) != 0) {
807 printf("%s: can't create recv map, error = %d\n",
808 sc->sc_dev.dv_xname, error);
809 return(ENOMEM);
810 }
811 }
812 sc->mini_dmamap[i] = dmamap;
813
814 if (m == NULL) {
815 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
816 if (m_new == NULL) {
817 printf("%s: mbuf allocation failed "
818 "-- packet dropped!\n", sc->sc_dev.dv_xname);
819 return(ENOBUFS);
820 }
821 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
822 m_adj(m_new, ETHER_ALIGN);
823
824 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
825 mtod(m_new, caddr_t), m_new->m_len, NULL,
826 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
827 printf("%s: can't load recv map, error = %d\n",
828 sc->sc_dev.dv_xname, error);
829 return (ENOMEM);
830 }
831 } else {
832 m_new = m;
833 m_new->m_data = m_new->m_pktdat;
834 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
835 m_adj(m_new, ETHER_ALIGN);
836
837 /* reuse the dmamap */
838 }
839
840 r = &sc->ti_rdata->ti_rx_mini_ring[i];
841 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
842 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
843 r->ti_type = TI_BDTYPE_RECV_BD;
844 r->ti_flags = TI_BDFLAG_MINI_RING;
845 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
846 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
847 if (sc->ethercom.ec_if.if_capenable &
848 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
849 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
850 r->ti_len = m_new->m_len; /* == ds_len */
851 r->ti_idx = i;
852
853 return(0);
854 }
855
856 /*
857 * Initialize a jumbo receive ring descriptor. This allocates
858 * a jumbo buffer from the pool managed internally by the driver.
859 */
860 static int ti_newbuf_jumbo(sc, i, m)
861 struct ti_softc *sc;
862 int i;
863 struct mbuf *m;
864 {
865 struct mbuf *m_new = NULL;
866 struct ti_rx_desc *r;
867
868 if (m == NULL) {
869 caddr_t tbuf = NULL;
870
871 /* Allocate the mbuf. */
872 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
873 if (m_new == NULL) {
874 printf("%s: mbuf allocation failed "
875 "-- packet dropped!\n", sc->sc_dev.dv_xname);
876 return(ENOBUFS);
877 }
878
879 /* Allocate the jumbo buffer */
880 tbuf = ti_jalloc(sc);
881 if (tbuf == NULL) {
882 m_freem(m_new);
883 printf("%s: jumbo allocation failed "
884 "-- packet dropped!\n", sc->sc_dev.dv_xname);
885 return(ENOBUFS);
886 }
887
888 /* Attach the buffer to the mbuf. */
889 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
890 M_DEVBUF, ti_jfree, sc);
891 m_new->m_flags |= M_EXT_RW;
892 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
893 } else {
894 m_new = m;
895 m_new->m_data = m_new->m_ext.ext_buf;
896 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
897 }
898
899 m_adj(m_new, ETHER_ALIGN);
900 /* Set up the descriptor. */
901 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
902 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
903 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
904 ((caddr_t)mtod(m_new, caddr_t)
905 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
906 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
907 r->ti_flags = TI_BDFLAG_JUMBO_RING;
908 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
909 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
910 if (sc->ethercom.ec_if.if_capenable &
911 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
912 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
913 r->ti_len = m_new->m_len;
914 r->ti_idx = i;
915
916 return(0);
917 }
918
919 /*
920 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
921 * that's 1MB or memory, which is a lot. For now, we fill only the first
922 * 256 ring entries and hope that our CPU is fast enough to keep up with
923 * the NIC.
924 */
925 static int ti_init_rx_ring_std(sc)
926 struct ti_softc *sc;
927 {
928 int i;
929 struct ti_cmd_desc cmd;
930
931 for (i = 0; i < TI_SSLOTS; i++) {
932 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
933 return(ENOBUFS);
934 };
935
936 TI_UPDATE_STDPROD(sc, i - 1);
937 sc->ti_std = i - 1;
938
939 return(0);
940 }
941
942 static void ti_free_rx_ring_std(sc)
943 struct ti_softc *sc;
944 {
945 int i;
946
947 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
948 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
949 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
950 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
951
952 /* if (sc->std_dmamap[i] == 0) panic() */
953 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
954 sc->std_dmamap[i] = 0;
955 }
956 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
957 sizeof(struct ti_rx_desc));
958 }
959
960 return;
961 }
962
963 static int ti_init_rx_ring_jumbo(sc)
964 struct ti_softc *sc;
965 {
966 int i;
967 struct ti_cmd_desc cmd;
968
969 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
970 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
971 return(ENOBUFS);
972 };
973
974 TI_UPDATE_JUMBOPROD(sc, i - 1);
975 sc->ti_jumbo = i - 1;
976
977 return(0);
978 }
979
980 static void ti_free_rx_ring_jumbo(sc)
981 struct ti_softc *sc;
982 {
983 int i;
984
985 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
986 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
987 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
988 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
989 }
990 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
991 sizeof(struct ti_rx_desc));
992 }
993
994 return;
995 }
996
997 static int ti_init_rx_ring_mini(sc)
998 struct ti_softc *sc;
999 {
1000 int i;
1001
1002 for (i = 0; i < TI_MSLOTS; i++) {
1003 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1004 return(ENOBUFS);
1005 };
1006
1007 TI_UPDATE_MINIPROD(sc, i - 1);
1008 sc->ti_mini = i - 1;
1009
1010 return(0);
1011 }
1012
1013 static void ti_free_rx_ring_mini(sc)
1014 struct ti_softc *sc;
1015 {
1016 int i;
1017
1018 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1019 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1020 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1021 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1022
1023 /* if (sc->mini_dmamap[i] == 0) panic() */
1024 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1025 sc->mini_dmamap[i] = 0;
1026 }
1027 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1028 sizeof(struct ti_rx_desc));
1029 }
1030
1031 return;
1032 }
1033
1034 static void ti_free_tx_ring(sc)
1035 struct ti_softc *sc;
1036 {
1037 int i;
1038 struct txdmamap_pool_entry *dma;
1039
1040 if (sc->ti_rdata->ti_tx_ring == NULL)
1041 return;
1042
1043 for (i = 0; i < TI_TX_RING_CNT; i++) {
1044 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1045 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1046 sc->ti_cdata.ti_tx_chain[i] = NULL;
1047
1048 /* if (sc->txdma[i] == 0) panic() */
1049 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1050 link);
1051 sc->txdma[i] = 0;
1052 }
1053 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1054 sizeof(struct ti_tx_desc));
1055 }
1056
1057 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1058 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1059 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1060 free(dma, M_DEVBUF);
1061 }
1062
1063 return;
1064 }
1065
1066 static int ti_init_tx_ring(sc)
1067 struct ti_softc *sc;
1068 {
1069 int i, error;
1070 bus_dmamap_t dmamap;
1071 struct txdmamap_pool_entry *dma;
1072
1073 sc->ti_txcnt = 0;
1074 sc->ti_tx_saved_considx = 0;
1075 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1076
1077 SIMPLEQ_INIT(&sc->txdma_list);
1078 for (i = 0; i < TI_RSLOTS; i++) {
1079 /* I've seen mbufs with 30 fragments. */
1080 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1081 40, ETHER_MAX_LEN_JUMBO, 0,
1082 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1083 printf("%s: can't create tx map, error = %d\n",
1084 sc->sc_dev.dv_xname, error);
1085 return(ENOMEM);
1086 }
1087 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1088 if (!dma) {
1089 printf("%s: can't alloc txdmamap_pool_entry\n",
1090 sc->sc_dev.dv_xname);
1091 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1092 return (ENOMEM);
1093 }
1094 dma->dmamap = dmamap;
1095 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1096 }
1097
1098 return(0);
1099 }
1100
1101 /*
1102 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1103 * but we have to support the old way too so that Tigon 1 cards will
1104 * work.
1105 */
1106 void ti_add_mcast(sc, addr)
1107 struct ti_softc *sc;
1108 struct ether_addr *addr;
1109 {
1110 struct ti_cmd_desc cmd;
1111 u_int16_t *m;
1112 u_int32_t ext[2] = {0, 0};
1113
1114 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1115
1116 switch(sc->ti_hwrev) {
1117 case TI_HWREV_TIGON:
1118 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1119 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1120 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1121 break;
1122 case TI_HWREV_TIGON_II:
1123 ext[0] = htons(m[0]);
1124 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1125 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1126 break;
1127 default:
1128 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1129 break;
1130 }
1131
1132 return;
1133 }
1134
1135 void ti_del_mcast(sc, addr)
1136 struct ti_softc *sc;
1137 struct ether_addr *addr;
1138 {
1139 struct ti_cmd_desc cmd;
1140 u_int16_t *m;
1141 u_int32_t ext[2] = {0, 0};
1142
1143 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1144
1145 switch(sc->ti_hwrev) {
1146 case TI_HWREV_TIGON:
1147 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1148 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1149 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1150 break;
1151 case TI_HWREV_TIGON_II:
1152 ext[0] = htons(m[0]);
1153 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1154 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1155 break;
1156 default:
1157 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1158 break;
1159 }
1160
1161 return;
1162 }
1163
1164 /*
1165 * Configure the Tigon's multicast address filter.
1166 *
1167 * The actual multicast table management is a bit of a pain, thanks to
1168 * slight brain damage on the part of both Alteon and us. With our
1169 * multicast code, we are only alerted when the multicast address table
1170 * changes and at that point we only have the current list of addresses:
1171 * we only know the current state, not the previous state, so we don't
1172 * actually know what addresses were removed or added. The firmware has
1173 * state, but we can't get our grubby mits on it, and there is no 'delete
1174 * all multicast addresses' command. Hence, we have to maintain our own
1175 * state so we know what addresses have been programmed into the NIC at
1176 * any given time.
1177 */
1178 static void ti_setmulti(sc)
1179 struct ti_softc *sc;
1180 {
1181 struct ifnet *ifp;
1182 struct ti_cmd_desc cmd;
1183 struct ti_mc_entry *mc;
1184 u_int32_t intrs;
1185 struct ether_multi *enm;
1186 struct ether_multistep step;
1187
1188 ifp = &sc->ethercom.ec_if;
1189
1190 /* Disable interrupts. */
1191 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1192 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1193
1194 /* First, zot all the existing filters. */
1195 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1196 ti_del_mcast(sc, &mc->mc_addr);
1197 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1198 free(mc, M_DEVBUF);
1199 }
1200
1201 /*
1202 * Remember all multicast addresses so that we can delete them
1203 * later. Punt if there is a range of addresses or memory shortage.
1204 */
1205 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1206 while (enm != NULL) {
1207 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1208 ETHER_ADDR_LEN) != 0)
1209 goto allmulti;
1210 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1211 M_NOWAIT)) == NULL)
1212 goto allmulti;
1213 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1214 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1215 ETHER_NEXT_MULTI(step, enm);
1216 }
1217
1218 /* Accept only programmed multicast addresses */
1219 ifp->if_flags &= ~IFF_ALLMULTI;
1220 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1221
1222 /* Now program new ones. */
1223 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1224 ti_add_mcast(sc, &mc->mc_addr);
1225
1226 /* Re-enable interrupts. */
1227 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1228
1229 return;
1230
1231 allmulti:
1232 /* No need to keep individual multicast addresses */
1233 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1234 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1235 free(mc, M_DEVBUF);
1236 }
1237
1238 /* Accept all multicast addresses */
1239 ifp->if_flags |= IFF_ALLMULTI;
1240 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1241
1242 /* Re-enable interrupts. */
1243 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1244 }
1245
1246 /*
1247 * Check to see if the BIOS has configured us for a 64 bit slot when
1248 * we aren't actually in one. If we detect this condition, we can work
1249 * around it on the Tigon 2 by setting a bit in the PCI state register,
1250 * but for the Tigon 1 we must give up and abort the interface attach.
1251 */
1252 static int ti_64bitslot_war(sc)
1253 struct ti_softc *sc;
1254 {
1255 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1256 CSR_WRITE_4(sc, 0x600, 0);
1257 CSR_WRITE_4(sc, 0x604, 0);
1258 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1259 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1260 if (sc->ti_hwrev == TI_HWREV_TIGON)
1261 return(EINVAL);
1262 else {
1263 TI_SETBIT(sc, TI_PCI_STATE,
1264 TI_PCISTATE_32BIT_BUS);
1265 return(0);
1266 }
1267 }
1268 }
1269
1270 return(0);
1271 }
1272
1273 /*
1274 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1275 * self-test results.
1276 */
1277 static int ti_chipinit(sc)
1278 struct ti_softc *sc;
1279 {
1280 u_int32_t cacheline;
1281 u_int32_t pci_writemax = 0;
1282 u_int32_t rev;
1283
1284 /* Initialize link to down state. */
1285 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1286
1287 /* Set endianness before we access any non-PCI registers. */
1288 #if BYTE_ORDER == BIG_ENDIAN
1289 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1290 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1291 #else
1292 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1293 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1294 #endif
1295
1296 /* Check the ROM failed bit to see if self-tests passed. */
1297 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1298 printf("%s: board self-diagnostics failed!\n",
1299 sc->sc_dev.dv_xname);
1300 return(ENODEV);
1301 }
1302
1303 /* Halt the CPU. */
1304 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1305
1306 /* Figure out the hardware revision. */
1307 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1308 switch(rev) {
1309 case TI_REV_TIGON_I:
1310 sc->ti_hwrev = TI_HWREV_TIGON;
1311 break;
1312 case TI_REV_TIGON_II:
1313 sc->ti_hwrev = TI_HWREV_TIGON_II;
1314 break;
1315 default:
1316 printf("%s: unsupported chip revision 0x%x\n",
1317 sc->sc_dev.dv_xname, rev);
1318 return(ENODEV);
1319 }
1320
1321 /* Do special setup for Tigon 2. */
1322 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1323 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1324 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1325 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1326 }
1327
1328 /* Set up the PCI state register. */
1329 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1330 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1331 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1332 }
1333
1334 /* Clear the read/write max DMA parameters. */
1335 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1336 TI_PCISTATE_READ_MAXDMA));
1337
1338 /* Get cache line size. */
1339 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1340
1341 /*
1342 * If the system has set enabled the PCI memory write
1343 * and invalidate command in the command register, set
1344 * the write max parameter accordingly. This is necessary
1345 * to use MWI with the Tigon 2.
1346 */
1347 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1348 & PCI_COMMAND_INVALIDATE_ENABLE) {
1349 switch(cacheline) {
1350 case 1:
1351 case 4:
1352 case 8:
1353 case 16:
1354 case 32:
1355 case 64:
1356 break;
1357 default:
1358 /* Disable PCI memory write and invalidate. */
1359 if (bootverbose)
1360 printf("%s: cache line size %d not "
1361 "supported; disabling PCI MWI\n",
1362 sc->sc_dev.dv_xname, cacheline);
1363 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1364 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1365 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1366 break;
1367 }
1368 }
1369
1370 #ifdef __brokenalpha__
1371 /*
1372 * From the Alteon sample driver:
1373 * Must insure that we do not cross an 8K (bytes) boundary
1374 * for DMA reads. Our highest limit is 1K bytes. This is a
1375 * restriction on some ALPHA platforms with early revision
1376 * 21174 PCI chipsets, such as the AlphaPC 164lx
1377 */
1378 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1379 #else
1380 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1381 #endif
1382
1383 /* This sets the min dma param all the way up (0xff). */
1384 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1385
1386 /* Configure DMA variables. */
1387 #if BYTE_ORDER == BIG_ENDIAN
1388 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1389 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1390 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1391 TI_OPMODE_DONT_FRAG_JUMBO);
1392 #else
1393 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1394 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1395 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1396 #endif
1397
1398 /*
1399 * Only allow 1 DMA channel to be active at a time.
1400 * I don't think this is a good idea, but without it
1401 * the firmware racks up lots of nicDmaReadRingFull
1402 * errors.
1403 * Incompatible with hardware assisted checksums.
1404 */
1405 if ((sc->ethercom.ec_if.if_capenable &
1406 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1407 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1408 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1409 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1410
1411 /* Recommended settings from Tigon manual. */
1412 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1413 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1414
1415 if (ti_64bitslot_war(sc)) {
1416 printf("%s: bios thinks we're in a 64 bit slot, "
1417 "but we aren't", sc->sc_dev.dv_xname);
1418 return(EINVAL);
1419 }
1420
1421 return(0);
1422 }
1423
1424 /*
1425 * Initialize the general information block and firmware, and
1426 * start the CPU(s) running.
1427 */
1428 static int ti_gibinit(sc)
1429 struct ti_softc *sc;
1430 {
1431 struct ti_rcb *rcb;
1432 int i;
1433 struct ifnet *ifp;
1434
1435 ifp = &sc->ethercom.ec_if;
1436
1437 /* Disable interrupts for now. */
1438 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1439
1440 /* Tell the chip where to find the general information block. */
1441 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1442 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1443
1444 /* Load the firmware into SRAM. */
1445 ti_loadfw(sc);
1446
1447 /* Set up the contents of the general info and ring control blocks. */
1448
1449 /* Set up the event ring and producer pointer. */
1450 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1451
1452 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1453 rcb->ti_flags = 0;
1454 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1455 TI_CDEVPRODADDR(sc);
1456
1457 sc->ti_ev_prodidx.ti_idx = 0;
1458 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1459 sc->ti_ev_saved_considx = 0;
1460
1461 /* Set up the command ring and producer mailbox. */
1462 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1463
1464 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1465 rcb->ti_flags = 0;
1466 rcb->ti_max_len = 0;
1467 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1469 }
1470 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1471 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1472 sc->ti_cmd_saved_prodidx = 0;
1473
1474 /*
1475 * Assign the address of the stats refresh buffer.
1476 * We re-use the current stats buffer for this to
1477 * conserve memory.
1478 */
1479 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1480 TI_CDSTATSADDR(sc);
1481
1482 /* Set up the standard receive ring. */
1483 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1484 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1485 rcb->ti_max_len = ETHER_MAX_LEN;
1486 rcb->ti_flags = 0;
1487 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1488 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1489 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1490 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1491 if (VLAN_ATTACHED(&sc->ethercom))
1492 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1493
1494 /* Set up the jumbo receive ring. */
1495 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1496 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1497 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1498 rcb->ti_flags = 0;
1499 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1500 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1501 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1502 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1503 if (VLAN_ATTACHED(&sc->ethercom))
1504 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1505
1506 /*
1507 * Set up the mini ring. Only activated on the
1508 * Tigon 2 but the slot in the config block is
1509 * still there on the Tigon 1.
1510 */
1511 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1512 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1513 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1514 if (sc->ti_hwrev == TI_HWREV_TIGON)
1515 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1516 else
1517 rcb->ti_flags = 0;
1518 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1519 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1520 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1521 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1522 if (VLAN_ATTACHED(&sc->ethercom))
1523 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1524
1525 /*
1526 * Set up the receive return ring.
1527 */
1528 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1529 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1530 rcb->ti_flags = 0;
1531 rcb->ti_max_len = TI_RETURN_RING_CNT;
1532 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1533 TI_CDRTNPRODADDR(sc);
1534
1535 /*
1536 * Set up the tx ring. Note: for the Tigon 2, we have the option
1537 * of putting the transmit ring in the host's address space and
1538 * letting the chip DMA it instead of leaving the ring in the NIC's
1539 * memory and accessing it through the shared memory region. We
1540 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1541 * so we have to revert to the shared memory scheme if we detect
1542 * a Tigon 1 chip.
1543 */
1544 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1545 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1546 sc->ti_tx_ring_nic =
1547 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1548 }
1549 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1550 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1551 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1552 if (sc->ti_hwrev == TI_HWREV_TIGON)
1553 rcb->ti_flags = 0;
1554 else
1555 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1556 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1557 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1558 /*
1559 * When we get the packet, there is a pseudo-header seed already
1560 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1561 * compute the pseudo-header checksum again!
1562 */
1563 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1564 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1565 TI_RCB_FLAG_NO_PHDR_CKSUM;
1566 if (VLAN_ATTACHED(&sc->ethercom))
1567 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1568 rcb->ti_max_len = TI_TX_RING_CNT;
1569 if (sc->ti_hwrev == TI_HWREV_TIGON)
1570 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1571 else
1572 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1573 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1574 TI_CDTXCONSADDR(sc);
1575
1576 /*
1577 * We're done frobbing the General Information Block. Sync
1578 * it. Note we take care of the first stats sync here, as
1579 * well.
1580 */
1581 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1582
1583 /* Set up tuneables */
1584 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1585 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1586 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1587 (sc->ti_rx_coal_ticks / 10));
1588 else
1589 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1590 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1591 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1592 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1593 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1594 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1595
1596 /* Turn interrupts on. */
1597 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1598 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1599
1600 /* Start CPU. */
1601 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1602
1603 return(0);
1604 }
1605
1606 /*
1607 * look for id in the device list, returning the first match
1608 */
1609 static const struct ti_type *
1610 ti_type_match(pa)
1611 struct pci_attach_args *pa;
1612 {
1613 const struct ti_type *t;
1614
1615 t = ti_devs;
1616 while(t->ti_name != NULL) {
1617 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1618 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1619 return (t);
1620 }
1621 t++;
1622 }
1623
1624 return(NULL);
1625 }
1626
1627 /*
1628 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1629 * against our list and return its name if we find a match.
1630 */
1631 static int
1632 ti_probe(struct device *parent __unused, struct cfdata *match __unused,
1633 void *aux)
1634 {
1635 struct pci_attach_args *pa = aux;
1636 const struct ti_type *t;
1637
1638 t = ti_type_match(pa);
1639
1640 return((t == NULL) ? 0 : 1);
1641 }
1642
1643 static void
1644 ti_attach(struct device *parent __unused, struct device *self, void *aux)
1645 {
1646 u_int32_t command;
1647 struct ifnet *ifp;
1648 struct ti_softc *sc;
1649 u_char eaddr[ETHER_ADDR_LEN];
1650 struct pci_attach_args *pa = aux;
1651 pci_chipset_tag_t pc = pa->pa_pc;
1652 pci_intr_handle_t ih;
1653 const char *intrstr = NULL;
1654 bus_dma_segment_t dmaseg;
1655 int error, dmanseg, nolinear;
1656 const struct ti_type *t;
1657
1658 t = ti_type_match(pa);
1659 if (t == NULL) {
1660 printf("ti_attach: were did the card go ?\n");
1661 return;
1662 }
1663
1664 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1665
1666 sc = (struct ti_softc *)self;
1667
1668 /*
1669 * Map control/status registers.
1670 */
1671 nolinear = 0;
1672 if (pci_mapreg_map(pa, 0x10,
1673 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1674 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1675 NULL, NULL)) {
1676 nolinear = 1;
1677 if (pci_mapreg_map(pa, 0x10,
1678 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1679 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1680 printf(": can't map memory space\n");
1681 return;
1682 }
1683 }
1684 if (nolinear == 0)
1685 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1686 else
1687 sc->ti_vhandle = NULL;
1688
1689 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1690 command |= PCI_COMMAND_MASTER_ENABLE;
1691 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1692
1693 /* Allocate interrupt */
1694 if (pci_intr_map(pa, &ih)) {
1695 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1696 return;
1697 }
1698 intrstr = pci_intr_string(pc, ih);
1699 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1700 if (sc->sc_ih == NULL) {
1701 printf("%s: couldn't establish interrupt",
1702 sc->sc_dev.dv_xname);
1703 if (intrstr != NULL)
1704 printf(" at %s", intrstr);
1705 printf("\n");
1706 return;
1707 }
1708 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1709 /*
1710 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1711 * doing do could allow DMA to corrupt kernel memory during the
1712 * reboot before the driver initializes.
1713 */
1714 (void) shutdownhook_establish(ti_shutdown, sc);
1715
1716 if (ti_chipinit(sc)) {
1717 printf("%s: chip initialization failed\n", self->dv_xname);
1718 goto fail2;
1719 }
1720
1721 /*
1722 * Deal with some chip diffrences.
1723 */
1724 switch (sc->ti_hwrev) {
1725 case TI_HWREV_TIGON:
1726 sc->sc_tx_encap = ti_encap_tigon1;
1727 sc->sc_tx_eof = ti_txeof_tigon1;
1728 if (nolinear == 1)
1729 printf("%s: memory space not mapped linear\n",
1730 self->dv_xname);
1731 break;
1732
1733 case TI_HWREV_TIGON_II:
1734 sc->sc_tx_encap = ti_encap_tigon2;
1735 sc->sc_tx_eof = ti_txeof_tigon2;
1736 break;
1737
1738 default:
1739 printf("%s: Unknown chip version: %d\n", self->dv_xname,
1740 sc->ti_hwrev);
1741 goto fail2;
1742 }
1743
1744 /* Zero out the NIC's on-board SRAM. */
1745 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1746
1747 /* Init again -- zeroing memory may have clobbered some registers. */
1748 if (ti_chipinit(sc)) {
1749 printf("%s: chip initialization failed\n", self->dv_xname);
1750 goto fail2;
1751 }
1752
1753 /*
1754 * Get station address from the EEPROM. Note: the manual states
1755 * that the MAC address is at offset 0x8c, however the data is
1756 * stored as two longwords (since that's how it's loaded into
1757 * the NIC). This means the MAC address is actually preceded
1758 * by two zero bytes. We need to skip over those.
1759 */
1760 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1761 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1762 printf("%s: failed to read station address\n", self->dv_xname);
1763 goto fail2;
1764 }
1765
1766 /*
1767 * A Tigon chip was detected. Inform the world.
1768 */
1769 printf("%s: Ethernet address: %s\n", self->dv_xname,
1770 ether_sprintf(eaddr));
1771
1772 sc->sc_dmat = pa->pa_dmat;
1773
1774 /* Allocate the general information block and ring buffers. */
1775 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1776 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1777 BUS_DMA_NOWAIT)) != 0) {
1778 printf("%s: can't allocate ring buffer, error = %d\n",
1779 sc->sc_dev.dv_xname, error);
1780 goto fail2;
1781 }
1782
1783 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1784 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1785 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1786 printf("%s: can't map ring buffer, error = %d\n",
1787 sc->sc_dev.dv_xname, error);
1788 goto fail2;
1789 }
1790
1791 if ((error = bus_dmamap_create(sc->sc_dmat,
1792 sizeof(struct ti_ring_data), 1,
1793 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1794 &sc->info_dmamap)) != 0) {
1795 printf("%s: can't create ring buffer DMA map, error = %d\n",
1796 sc->sc_dev.dv_xname, error);
1797 goto fail2;
1798 }
1799
1800 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1801 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1802 BUS_DMA_NOWAIT)) != 0) {
1803 printf("%s: can't load ring buffer DMA map, error = %d\n",
1804 sc->sc_dev.dv_xname, error);
1805 goto fail2;
1806 }
1807
1808 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1809
1810 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1811
1812 /* Try to allocate memory for jumbo buffers. */
1813 if (ti_alloc_jumbo_mem(sc)) {
1814 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1815 goto fail2;
1816 }
1817
1818 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1819
1820 /*
1821 * We really need a better way to tell a 1000baseT card
1822 * from a 1000baseSX one, since in theory there could be
1823 * OEMed 1000baseT cards from lame vendors who aren't
1824 * clever enough to change the PCI ID. For the moment
1825 * though, the AceNIC is the only copper card available.
1826 */
1827 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1828 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1829 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1830 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1831 sc->ti_copper = 1;
1832 else
1833 sc->ti_copper = 0;
1834
1835 /* Set default tuneable values. */
1836 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1837 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1838 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1839 sc->ti_rx_max_coal_bds = 64;
1840 sc->ti_tx_max_coal_bds = 128;
1841 sc->ti_tx_buf_ratio = 21;
1842
1843 /* Set up ifnet structure */
1844 ifp = &sc->ethercom.ec_if;
1845 ifp->if_softc = sc;
1846 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1847 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1848 ifp->if_ioctl = ti_ioctl;
1849 ifp->if_start = ti_start;
1850 ifp->if_watchdog = ti_watchdog;
1851 IFQ_SET_READY(&ifp->if_snd);
1852
1853 #if 0
1854 /*
1855 * XXX This is not really correct -- we don't necessarily
1856 * XXX want to queue up as many as we can transmit at the
1857 * XXX upper layer like that. Someone with a board should
1858 * XXX check to see how this affects performance.
1859 */
1860 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1861 #endif
1862
1863 /*
1864 * We can support 802.1Q VLAN-sized frames.
1865 */
1866 sc->ethercom.ec_capabilities |=
1867 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1868
1869 /*
1870 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1871 */
1872 ifp->if_capabilities |=
1873 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1874 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1875 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1876
1877 /* Set up ifmedia support. */
1878 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1879 if (sc->ti_copper) {
1880 /*
1881 * Copper cards allow manual 10/100 mode selection,
1882 * but not manual 1000baseT mode selection. Why?
1883 * Because currently there's no way to specify the
1884 * master/slave setting through the firmware interface,
1885 * so Alteon decided to just bag it and handle it
1886 * via autonegotiation.
1887 */
1888 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1889 ifmedia_add(&sc->ifmedia,
1890 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1891 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1892 ifmedia_add(&sc->ifmedia,
1893 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1894 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1895 ifmedia_add(&sc->ifmedia,
1896 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1897 } else {
1898 /* Fiber cards don't support 10/100 modes. */
1899 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1900 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1901 }
1902 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1903 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1904
1905 /*
1906 * Call MI attach routines.
1907 */
1908 if_attach(ifp);
1909 ether_ifattach(ifp, eaddr);
1910
1911 return;
1912 fail2:
1913 pci_intr_disestablish(pc, sc->sc_ih);
1914 return;
1915 }
1916
1917 /*
1918 * Frame reception handling. This is called if there's a frame
1919 * on the receive return list.
1920 *
1921 * Note: we have to be able to handle three possibilities here:
1922 * 1) the frame is from the mini receive ring (can only happen)
1923 * on Tigon 2 boards)
1924 * 2) the frame is from the jumbo receive ring
1925 * 3) the frame is from the standard receive ring
1926 */
1927
1928 static void ti_rxeof(sc)
1929 struct ti_softc *sc;
1930 {
1931 struct ifnet *ifp;
1932 struct ti_cmd_desc cmd;
1933
1934 ifp = &sc->ethercom.ec_if;
1935
1936 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1937 struct ti_rx_desc *cur_rx;
1938 u_int32_t rxidx;
1939 struct mbuf *m = NULL;
1940 struct ether_header *eh;
1941 bus_dmamap_t dmamap;
1942
1943 cur_rx =
1944 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1945 rxidx = cur_rx->ti_idx;
1946 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1947
1948 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1949 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1950 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1951 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1952 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1953 ifp->if_ierrors++;
1954 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1955 continue;
1956 }
1957 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1958 == ENOBUFS) {
1959 ifp->if_ierrors++;
1960 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1961 continue;
1962 }
1963 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1964 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1965 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1966 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1967 dmamap = sc->mini_dmamap[rxidx];
1968 sc->mini_dmamap[rxidx] = 0;
1969 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1970 ifp->if_ierrors++;
1971 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1972 continue;
1973 }
1974 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1975 == ENOBUFS) {
1976 ifp->if_ierrors++;
1977 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1978 continue;
1979 }
1980 } else {
1981 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1982 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1983 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1984 dmamap = sc->std_dmamap[rxidx];
1985 sc->std_dmamap[rxidx] = 0;
1986 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1987 ifp->if_ierrors++;
1988 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1989 continue;
1990 }
1991 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1992 == ENOBUFS) {
1993 ifp->if_ierrors++;
1994 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1995 continue;
1996 }
1997 }
1998
1999 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
2000 ifp->if_ipackets++;
2001 m->m_pkthdr.rcvif = ifp;
2002
2003 #if NBPFILTER > 0
2004 /*
2005 * Handle BPF listeners. Let the BPF user see the packet, but
2006 * don't pass it up to the ether_input() layer unless it's
2007 * a broadcast packet, multicast packet, matches our ethernet
2008 * address or the interface is in promiscuous mode.
2009 */
2010 if (ifp->if_bpf)
2011 bpf_mtap(ifp->if_bpf, m);
2012 #endif
2013
2014 eh = mtod(m, struct ether_header *);
2015 switch (ntohs(eh->ether_type)) {
2016 #ifdef INET
2017 case ETHERTYPE_IP:
2018 {
2019 struct ip *ip = (struct ip *) (eh + 1);
2020
2021 /*
2022 * Note the Tigon firmware does not invert
2023 * the checksum for us, hence the XOR.
2024 */
2025 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2026 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2027 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2028 /*
2029 * ntohs() the constant so the compiler can
2030 * optimize...
2031 *
2032 * XXX Figure out a sane way to deal with
2033 * fragmented packets.
2034 */
2035 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2036 switch (ip->ip_p) {
2037 case IPPROTO_TCP:
2038 m->m_pkthdr.csum_data =
2039 cur_rx->ti_tcp_udp_cksum;
2040 m->m_pkthdr.csum_flags |=
2041 M_CSUM_TCPv4|M_CSUM_DATA;
2042 break;
2043 case IPPROTO_UDP:
2044 m->m_pkthdr.csum_data =
2045 cur_rx->ti_tcp_udp_cksum;
2046 m->m_pkthdr.csum_flags |=
2047 M_CSUM_UDPv4|M_CSUM_DATA;
2048 break;
2049 default:
2050 /* Nothing */;
2051 }
2052 }
2053 break;
2054 }
2055 #endif
2056 default:
2057 /* Nothing. */
2058 break;
2059 }
2060
2061 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2062 VLAN_INPUT_TAG(ifp, m,
2063 /* ti_vlan_tag also has the priority, trim it */
2064 cur_rx->ti_vlan_tag & 4095,
2065 continue);
2066 }
2067
2068 (*ifp->if_input)(ifp, m);
2069 }
2070
2071 /* Only necessary on the Tigon 1. */
2072 if (sc->ti_hwrev == TI_HWREV_TIGON)
2073 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2074 sc->ti_rx_saved_considx);
2075
2076 TI_UPDATE_STDPROD(sc, sc->ti_std);
2077 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2078 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2079
2080 return;
2081 }
2082
2083 static void ti_txeof_tigon1(sc)
2084 struct ti_softc *sc;
2085 {
2086 struct ti_tx_desc *cur_tx = NULL;
2087 struct ifnet *ifp;
2088 struct txdmamap_pool_entry *dma;
2089
2090 ifp = &sc->ethercom.ec_if;
2091
2092 /*
2093 * Go through our tx ring and free mbufs for those
2094 * frames that have been sent.
2095 */
2096 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2097 u_int32_t idx = 0;
2098
2099 idx = sc->ti_tx_saved_considx;
2100 if (idx > 383)
2101 CSR_WRITE_4(sc, TI_WINBASE,
2102 TI_TX_RING_BASE + 6144);
2103 else if (idx > 255)
2104 CSR_WRITE_4(sc, TI_WINBASE,
2105 TI_TX_RING_BASE + 4096);
2106 else if (idx > 127)
2107 CSR_WRITE_4(sc, TI_WINBASE,
2108 TI_TX_RING_BASE + 2048);
2109 else
2110 CSR_WRITE_4(sc, TI_WINBASE,
2111 TI_TX_RING_BASE);
2112 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2113 if (cur_tx->ti_flags & TI_BDFLAG_END)
2114 ifp->if_opackets++;
2115 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2116 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2117 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2118
2119 dma = sc->txdma[idx];
2120 KDASSERT(dma != NULL);
2121 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2122 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2123 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2124
2125 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2126 sc->txdma[idx] = NULL;
2127 }
2128 sc->ti_txcnt--;
2129 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2130 ifp->if_timer = 0;
2131 }
2132
2133 if (cur_tx != NULL)
2134 ifp->if_flags &= ~IFF_OACTIVE;
2135
2136 return;
2137 }
2138
2139 static void ti_txeof_tigon2(sc)
2140 struct ti_softc *sc;
2141 {
2142 struct ti_tx_desc *cur_tx = NULL;
2143 struct ifnet *ifp;
2144 struct txdmamap_pool_entry *dma;
2145 int firstidx, cnt;
2146
2147 ifp = &sc->ethercom.ec_if;
2148
2149 /*
2150 * Go through our tx ring and free mbufs for those
2151 * frames that have been sent.
2152 */
2153 firstidx = sc->ti_tx_saved_considx;
2154 cnt = 0;
2155 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2156 u_int32_t idx = 0;
2157
2158 idx = sc->ti_tx_saved_considx;
2159 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2160 if (cur_tx->ti_flags & TI_BDFLAG_END)
2161 ifp->if_opackets++;
2162 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2163 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2164 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2165
2166 dma = sc->txdma[idx];
2167 KDASSERT(dma != NULL);
2168 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2169 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2170 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2171
2172 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2173 sc->txdma[idx] = NULL;
2174 }
2175 cnt++;
2176 sc->ti_txcnt--;
2177 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2178 ifp->if_timer = 0;
2179 }
2180
2181 if (cnt != 0)
2182 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2183
2184 if (cur_tx != NULL)
2185 ifp->if_flags &= ~IFF_OACTIVE;
2186
2187 return;
2188 }
2189
2190 static int ti_intr(xsc)
2191 void *xsc;
2192 {
2193 struct ti_softc *sc;
2194 struct ifnet *ifp;
2195
2196 sc = xsc;
2197 ifp = &sc->ethercom.ec_if;
2198
2199 #ifdef notdef
2200 /* Avoid this for now -- checking this register is expensive. */
2201 /* Make sure this is really our interrupt. */
2202 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2203 return (0);
2204 #endif
2205
2206 /* Ack interrupt and stop others from occuring. */
2207 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2208
2209 if (ifp->if_flags & IFF_RUNNING) {
2210 /* Check RX return ring producer/consumer */
2211 ti_rxeof(sc);
2212
2213 /* Check TX ring producer/consumer */
2214 (*sc->sc_tx_eof)(sc);
2215 }
2216
2217 ti_handle_events(sc);
2218
2219 /* Re-enable interrupts. */
2220 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2221
2222 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2223 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2224 ti_start(ifp);
2225
2226 return (1);
2227 }
2228
2229 static void ti_stats_update(sc)
2230 struct ti_softc *sc;
2231 {
2232 struct ifnet *ifp;
2233
2234 ifp = &sc->ethercom.ec_if;
2235
2236 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2237
2238 ifp->if_collisions +=
2239 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2240 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2241 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2242 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2243 ifp->if_collisions;
2244
2245 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2246 }
2247
2248 /*
2249 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2250 * pointers to descriptors.
2251 */
2252 static int ti_encap_tigon1(sc, m_head, txidx)
2253 struct ti_softc *sc;
2254 struct mbuf *m_head;
2255 u_int32_t *txidx;
2256 {
2257 struct ti_tx_desc *f = NULL;
2258 u_int32_t frag, cur, cnt = 0;
2259 struct txdmamap_pool_entry *dma;
2260 bus_dmamap_t dmamap;
2261 int error, i;
2262 struct m_tag *mtag;
2263 u_int16_t csum_flags = 0;
2264
2265 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2266 if (dma == NULL) {
2267 return ENOMEM;
2268 }
2269 dmamap = dma->dmamap;
2270
2271 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2272 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2273 if (error) {
2274 struct mbuf *m;
2275 int j = 0;
2276 for (m = m_head; m; m = m->m_next)
2277 j++;
2278 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2279 "error %d\n", m_head->m_pkthdr.len, j, error);
2280 return (ENOMEM);
2281 }
2282
2283 cur = frag = *txidx;
2284
2285 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2286 /* IP header checksum field must be 0! */
2287 csum_flags |= TI_BDFLAG_IP_CKSUM;
2288 }
2289 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2290 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2291
2292 /* XXX fragmented packet checksum capability? */
2293
2294 /*
2295 * Start packing the mbufs in this chain into
2296 * the fragment pointers. Stop when we run out
2297 * of fragments or hit the end of the mbuf chain.
2298 */
2299 for (i = 0; i < dmamap->dm_nsegs; i++) {
2300 if (frag > 383)
2301 CSR_WRITE_4(sc, TI_WINBASE,
2302 TI_TX_RING_BASE + 6144);
2303 else if (frag > 255)
2304 CSR_WRITE_4(sc, TI_WINBASE,
2305 TI_TX_RING_BASE + 4096);
2306 else if (frag > 127)
2307 CSR_WRITE_4(sc, TI_WINBASE,
2308 TI_TX_RING_BASE + 2048);
2309 else
2310 CSR_WRITE_4(sc, TI_WINBASE,
2311 TI_TX_RING_BASE);
2312 f = &sc->ti_tx_ring_nic[frag % 128];
2313 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2314 break;
2315 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2316 f->ti_len = dmamap->dm_segs[i].ds_len;
2317 f->ti_flags = csum_flags;
2318 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2319 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2320 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2321 } else {
2322 f->ti_vlan_tag = 0;
2323 }
2324 /*
2325 * Sanity check: avoid coming within 16 descriptors
2326 * of the end of the ring.
2327 */
2328 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2329 return(ENOBUFS);
2330 cur = frag;
2331 TI_INC(frag, TI_TX_RING_CNT);
2332 cnt++;
2333 }
2334
2335 if (i < dmamap->dm_nsegs)
2336 return(ENOBUFS);
2337
2338 if (frag == sc->ti_tx_saved_considx)
2339 return(ENOBUFS);
2340
2341 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2342 TI_BDFLAG_END;
2343
2344 /* Sync the packet's DMA map. */
2345 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2346 BUS_DMASYNC_PREWRITE);
2347
2348 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2349 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2350 sc->txdma[cur] = dma;
2351 sc->ti_txcnt += cnt;
2352
2353 *txidx = frag;
2354
2355 return(0);
2356 }
2357
2358 static int ti_encap_tigon2(sc, m_head, txidx)
2359 struct ti_softc *sc;
2360 struct mbuf *m_head;
2361 u_int32_t *txidx;
2362 {
2363 struct ti_tx_desc *f = NULL;
2364 u_int32_t frag, firstfrag, cur, cnt = 0;
2365 struct txdmamap_pool_entry *dma;
2366 bus_dmamap_t dmamap;
2367 int error, i;
2368 struct m_tag *mtag;
2369 u_int16_t csum_flags = 0;
2370
2371 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2372 if (dma == NULL) {
2373 return ENOMEM;
2374 }
2375 dmamap = dma->dmamap;
2376
2377 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2378 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2379 if (error) {
2380 struct mbuf *m;
2381 int j = 0;
2382 for (m = m_head; m; m = m->m_next)
2383 j++;
2384 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2385 "error %d\n", m_head->m_pkthdr.len, j, error);
2386 return (ENOMEM);
2387 }
2388
2389 cur = firstfrag = frag = *txidx;
2390
2391 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2392 /* IP header checksum field must be 0! */
2393 csum_flags |= TI_BDFLAG_IP_CKSUM;
2394 }
2395 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2396 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2397
2398 /* XXX fragmented packet checksum capability? */
2399
2400 /*
2401 * Start packing the mbufs in this chain into
2402 * the fragment pointers. Stop when we run out
2403 * of fragments or hit the end of the mbuf chain.
2404 */
2405 for (i = 0; i < dmamap->dm_nsegs; i++) {
2406 f = &sc->ti_rdata->ti_tx_ring[frag];
2407 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2408 break;
2409 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2410 f->ti_len = dmamap->dm_segs[i].ds_len;
2411 f->ti_flags = csum_flags;
2412 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2413 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2414 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2415 } else {
2416 f->ti_vlan_tag = 0;
2417 }
2418 /*
2419 * Sanity check: avoid coming within 16 descriptors
2420 * of the end of the ring.
2421 */
2422 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2423 return(ENOBUFS);
2424 cur = frag;
2425 TI_INC(frag, TI_TX_RING_CNT);
2426 cnt++;
2427 }
2428
2429 if (i < dmamap->dm_nsegs)
2430 return(ENOBUFS);
2431
2432 if (frag == sc->ti_tx_saved_considx)
2433 return(ENOBUFS);
2434
2435 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2436
2437 /* Sync the packet's DMA map. */
2438 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2439 BUS_DMASYNC_PREWRITE);
2440
2441 /* Sync the descriptors we are using. */
2442 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2443
2444 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2445 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2446 sc->txdma[cur] = dma;
2447 sc->ti_txcnt += cnt;
2448
2449 *txidx = frag;
2450
2451 return(0);
2452 }
2453
2454 /*
2455 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2456 * to the mbuf data regions directly in the transmit descriptors.
2457 */
2458 static void ti_start(ifp)
2459 struct ifnet *ifp;
2460 {
2461 struct ti_softc *sc;
2462 struct mbuf *m_head = NULL;
2463 u_int32_t prodidx = 0;
2464
2465 sc = ifp->if_softc;
2466
2467 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2468
2469 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2470 IFQ_POLL(&ifp->if_snd, m_head);
2471 if (m_head == NULL)
2472 break;
2473
2474 /*
2475 * Pack the data into the transmit ring. If we
2476 * don't have room, set the OACTIVE flag and wait
2477 * for the NIC to drain the ring.
2478 */
2479 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2480 ifp->if_flags |= IFF_OACTIVE;
2481 break;
2482 }
2483
2484 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2485
2486 /*
2487 * If there's a BPF listener, bounce a copy of this frame
2488 * to him.
2489 */
2490 #if NBPFILTER > 0
2491 if (ifp->if_bpf)
2492 bpf_mtap(ifp->if_bpf, m_head);
2493 #endif
2494 }
2495
2496 /* Transmit */
2497 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2498
2499 /*
2500 * Set a timeout in case the chip goes out to lunch.
2501 */
2502 ifp->if_timer = 5;
2503
2504 return;
2505 }
2506
2507 static void ti_init(xsc)
2508 void *xsc;
2509 {
2510 struct ti_softc *sc = xsc;
2511 int s;
2512
2513 s = splnet();
2514
2515 /* Cancel pending I/O and flush buffers. */
2516 ti_stop(sc);
2517
2518 /* Init the gen info block, ring control blocks and firmware. */
2519 if (ti_gibinit(sc)) {
2520 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2521 splx(s);
2522 return;
2523 }
2524
2525 splx(s);
2526
2527 return;
2528 }
2529
2530 static void ti_init2(sc)
2531 struct ti_softc *sc;
2532 {
2533 struct ti_cmd_desc cmd;
2534 struct ifnet *ifp;
2535 u_int8_t *m;
2536 struct ifmedia *ifm;
2537 int tmp;
2538
2539 ifp = &sc->ethercom.ec_if;
2540
2541 /* Specify MTU and interface index. */
2542 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
2543
2544 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2545 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2546 tmp += ETHER_VLAN_ENCAP_LEN;
2547 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2548
2549 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2550
2551 /* Load our MAC address. */
2552 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2553 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2554 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2555 | (m[4] << 8) | m[5]);
2556 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2557
2558 /* Enable or disable promiscuous mode as needed. */
2559 if (ifp->if_flags & IFF_PROMISC) {
2560 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2561 } else {
2562 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2563 }
2564
2565 /* Program multicast filter. */
2566 ti_setmulti(sc);
2567
2568 /*
2569 * If this is a Tigon 1, we should tell the
2570 * firmware to use software packet filtering.
2571 */
2572 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2573 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2574 }
2575
2576 /* Init RX ring. */
2577 ti_init_rx_ring_std(sc);
2578
2579 /* Init jumbo RX ring. */
2580 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2581 ti_init_rx_ring_jumbo(sc);
2582
2583 /*
2584 * If this is a Tigon 2, we can also configure the
2585 * mini ring.
2586 */
2587 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2588 ti_init_rx_ring_mini(sc);
2589
2590 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2591 sc->ti_rx_saved_considx = 0;
2592
2593 /* Init TX ring. */
2594 ti_init_tx_ring(sc);
2595
2596 /* Tell firmware we're alive. */
2597 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2598
2599 /* Enable host interrupts. */
2600 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2601
2602 ifp->if_flags |= IFF_RUNNING;
2603 ifp->if_flags &= ~IFF_OACTIVE;
2604
2605 /*
2606 * Make sure to set media properly. We have to do this
2607 * here since we have to issue commands in order to set
2608 * the link negotiation and we can't issue commands until
2609 * the firmware is running.
2610 */
2611 ifm = &sc->ifmedia;
2612 tmp = ifm->ifm_media;
2613 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2614 ti_ifmedia_upd(ifp);
2615 ifm->ifm_media = tmp;
2616
2617 return;
2618 }
2619
2620 /*
2621 * Set media options.
2622 */
2623 static int ti_ifmedia_upd(ifp)
2624 struct ifnet *ifp;
2625 {
2626 struct ti_softc *sc;
2627 struct ifmedia *ifm;
2628 struct ti_cmd_desc cmd;
2629
2630 sc = ifp->if_softc;
2631 ifm = &sc->ifmedia;
2632
2633 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2634 return(EINVAL);
2635
2636 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2637 case IFM_AUTO:
2638 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2639 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2640 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2641 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2642 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2643 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2644 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2645 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2646 break;
2647 case IFM_1000_SX:
2648 case IFM_1000_T:
2649 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2650 CSR_WRITE_4(sc, TI_GCR_GLINK,
2651 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2652 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2653 } else {
2654 CSR_WRITE_4(sc, TI_GCR_GLINK,
2655 TI_GLNK_PREF|TI_GLNK_1000MB|
2656 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2657 }
2658 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2659 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2660 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2661 break;
2662 case IFM_100_FX:
2663 case IFM_10_FL:
2664 case IFM_100_TX:
2665 case IFM_10_T:
2666 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2667 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2668 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2669 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2670 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2671 } else {
2672 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2673 }
2674 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2675 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2676 } else {
2677 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2678 }
2679 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2680 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2681 break;
2682 }
2683
2684 sc->ethercom.ec_if.if_baudrate =
2685 ifmedia_baudrate(ifm->ifm_media);
2686
2687 return(0);
2688 }
2689
2690 /*
2691 * Report current media status.
2692 */
2693 static void ti_ifmedia_sts(ifp, ifmr)
2694 struct ifnet *ifp;
2695 struct ifmediareq *ifmr;
2696 {
2697 struct ti_softc *sc;
2698 u_int32_t media = 0;
2699
2700 sc = ifp->if_softc;
2701
2702 ifmr->ifm_status = IFM_AVALID;
2703 ifmr->ifm_active = IFM_ETHER;
2704
2705 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2706 return;
2707
2708 ifmr->ifm_status |= IFM_ACTIVE;
2709
2710 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2711 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2712 if (sc->ti_copper)
2713 ifmr->ifm_active |= IFM_1000_T;
2714 else
2715 ifmr->ifm_active |= IFM_1000_SX;
2716 if (media & TI_GLNK_FULL_DUPLEX)
2717 ifmr->ifm_active |= IFM_FDX;
2718 else
2719 ifmr->ifm_active |= IFM_HDX;
2720 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2721 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2722 if (sc->ti_copper) {
2723 if (media & TI_LNK_100MB)
2724 ifmr->ifm_active |= IFM_100_TX;
2725 if (media & TI_LNK_10MB)
2726 ifmr->ifm_active |= IFM_10_T;
2727 } else {
2728 if (media & TI_LNK_100MB)
2729 ifmr->ifm_active |= IFM_100_FX;
2730 if (media & TI_LNK_10MB)
2731 ifmr->ifm_active |= IFM_10_FL;
2732 }
2733 if (media & TI_LNK_FULL_DUPLEX)
2734 ifmr->ifm_active |= IFM_FDX;
2735 if (media & TI_LNK_HALF_DUPLEX)
2736 ifmr->ifm_active |= IFM_HDX;
2737 }
2738
2739 sc->ethercom.ec_if.if_baudrate =
2740 ifmedia_baudrate(sc->ifmedia.ifm_media);
2741
2742 return;
2743 }
2744
2745 static int
2746 ti_ether_ioctl(ifp, cmd, data)
2747 struct ifnet *ifp;
2748 u_long cmd;
2749 caddr_t data;
2750 {
2751 struct ifaddr *ifa = (struct ifaddr *) data;
2752 struct ti_softc *sc = ifp->if_softc;
2753
2754 if ((ifp->if_flags & IFF_UP) == 0) {
2755 ifp->if_flags |= IFF_UP;
2756 ti_init(sc);
2757 }
2758
2759 switch (cmd) {
2760 case SIOCSIFADDR:
2761
2762 switch (ifa->ifa_addr->sa_family) {
2763 #ifdef INET
2764 case AF_INET:
2765 arp_ifinit(ifp, ifa);
2766 break;
2767 #endif
2768 default:
2769 break;
2770 }
2771 break;
2772
2773 default:
2774 return (EINVAL);
2775 }
2776
2777 return (0);
2778 }
2779
2780 static int ti_ioctl(ifp, command, data)
2781 struct ifnet *ifp;
2782 u_long command;
2783 caddr_t data;
2784 {
2785 struct ti_softc *sc = ifp->if_softc;
2786 struct ifreq *ifr = (struct ifreq *) data;
2787 int s, error = 0;
2788 struct ti_cmd_desc cmd;
2789
2790 s = splnet();
2791
2792 switch(command) {
2793 case SIOCSIFADDR:
2794 case SIOCGIFADDR:
2795 error = ti_ether_ioctl(ifp, command, data);
2796 break;
2797 case SIOCSIFMTU:
2798 if (ifr->ifr_mtu > ETHERMTU_JUMBO)
2799 error = EINVAL;
2800 else {
2801 ifp->if_mtu = ifr->ifr_mtu;
2802 ti_init(sc);
2803 }
2804 break;
2805 case SIOCSIFFLAGS:
2806 if (ifp->if_flags & IFF_UP) {
2807 /*
2808 * If only the state of the PROMISC flag changed,
2809 * then just use the 'set promisc mode' command
2810 * instead of reinitializing the entire NIC. Doing
2811 * a full re-init means reloading the firmware and
2812 * waiting for it to start up, which may take a
2813 * second or two.
2814 */
2815 if (ifp->if_flags & IFF_RUNNING &&
2816 ifp->if_flags & IFF_PROMISC &&
2817 !(sc->ti_if_flags & IFF_PROMISC)) {
2818 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2819 TI_CMD_CODE_PROMISC_ENB, 0);
2820 } else if (ifp->if_flags & IFF_RUNNING &&
2821 !(ifp->if_flags & IFF_PROMISC) &&
2822 sc->ti_if_flags & IFF_PROMISC) {
2823 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2824 TI_CMD_CODE_PROMISC_DIS, 0);
2825 } else
2826 ti_init(sc);
2827 } else {
2828 if (ifp->if_flags & IFF_RUNNING) {
2829 ti_stop(sc);
2830 }
2831 }
2832 sc->ti_if_flags = ifp->if_flags;
2833 error = 0;
2834 break;
2835 case SIOCADDMULTI:
2836 case SIOCDELMULTI:
2837 error = (command == SIOCADDMULTI) ?
2838 ether_addmulti(ifr, &sc->ethercom) :
2839 ether_delmulti(ifr, &sc->ethercom);
2840 if (error == ENETRESET) {
2841 if (ifp->if_flags & IFF_RUNNING)
2842 ti_setmulti(sc);
2843 error = 0;
2844 }
2845 break;
2846 case SIOCSIFMEDIA:
2847 case SIOCGIFMEDIA:
2848 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2849 break;
2850 default:
2851 error = EINVAL;
2852 break;
2853 }
2854
2855 (void)splx(s);
2856
2857 return(error);
2858 }
2859
2860 static void ti_watchdog(ifp)
2861 struct ifnet *ifp;
2862 {
2863 struct ti_softc *sc;
2864
2865 sc = ifp->if_softc;
2866
2867 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2868 ti_stop(sc);
2869 ti_init(sc);
2870
2871 ifp->if_oerrors++;
2872
2873 return;
2874 }
2875
2876 /*
2877 * Stop the adapter and free any mbufs allocated to the
2878 * RX and TX lists.
2879 */
2880 static void ti_stop(sc)
2881 struct ti_softc *sc;
2882 {
2883 struct ifnet *ifp;
2884 struct ti_cmd_desc cmd;
2885
2886 ifp = &sc->ethercom.ec_if;
2887
2888 /* Disable host interrupts. */
2889 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2890 /*
2891 * Tell firmware we're shutting down.
2892 */
2893 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2894
2895 /* Halt and reinitialize. */
2896 ti_chipinit(sc);
2897 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2898 ti_chipinit(sc);
2899
2900 /* Free the RX lists. */
2901 ti_free_rx_ring_std(sc);
2902
2903 /* Free jumbo RX list. */
2904 ti_free_rx_ring_jumbo(sc);
2905
2906 /* Free mini RX list. */
2907 ti_free_rx_ring_mini(sc);
2908
2909 /* Free TX buffers. */
2910 ti_free_tx_ring(sc);
2911
2912 sc->ti_ev_prodidx.ti_idx = 0;
2913 sc->ti_return_prodidx.ti_idx = 0;
2914 sc->ti_tx_considx.ti_idx = 0;
2915 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2916
2917 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2918
2919 return;
2920 }
2921
2922 /*
2923 * Stop all chip I/O so that the kernel's probe routines don't
2924 * get confused by errant DMAs when rebooting.
2925 */
2926 static void ti_shutdown(v)
2927 void *v;
2928 {
2929 struct ti_softc *sc = v;
2930
2931 ti_chipinit(sc);
2932
2933 return;
2934 }
2935