if_ti.c revision 1.85 1 /* $NetBSD: if_ti.c,v 1.85 2009/05/12 08:23:01 cegger Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.85 2009/05/12 08:23:01 cegger Exp $");
85
86 #include "bpfilter.h"
87 #include "opt_inet.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/device.h>
98 #include <sys/reboot.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/if_ether.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #endif
118
119
120 #include <sys/bus.h>
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_tireg.h>
127
128 #include <dev/microcode/tigon/ti_fw.h>
129 #include <dev/microcode/tigon/ti_fw2.h>
130
131 /*
132 * Various supported device vendors/types and their names.
133 */
134
135 static const struct ti_type ti_devs[] = {
136 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
137 "Alteon AceNIC 1000BASE-SX Ethernet" },
138 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
139 "Alteon AceNIC 1000BASE-T Ethernet" },
140 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
141 "3Com 3c985-SX Gigabit Ethernet" },
142 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
143 "Netgear GA620 1000BASE-SX Ethernet" },
144 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
145 "Netgear GA620 1000BASE-T Ethernet" },
146 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
147 "Silicon Graphics Gigabit Ethernet" },
148 { 0, 0, NULL }
149 };
150
151 static const struct ti_type *ti_type_match(struct pci_attach_args *);
152 static int ti_probe(device_t, cfdata_t, void *);
153 static void ti_attach(device_t, device_t, void *);
154 static void ti_shutdown(void *);
155 static void ti_txeof_tigon1(struct ti_softc *);
156 static void ti_txeof_tigon2(struct ti_softc *);
157 static void ti_rxeof(struct ti_softc *);
158
159 static void ti_stats_update(struct ti_softc *);
160 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
161 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
162
163 static int ti_intr(void *);
164 static void ti_start(struct ifnet *);
165 static int ti_ioctl(struct ifnet *, u_long, void *);
166 static void ti_init(void *);
167 static void ti_init2(struct ti_softc *);
168 static void ti_stop(struct ti_softc *);
169 static void ti_watchdog(struct ifnet *);
170 static int ti_ifmedia_upd(struct ifnet *);
171 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
174 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
175 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
176
177 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
178 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
179 static void ti_setmulti(struct ti_softc *);
180
181 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
182 static void ti_loadfw(struct ti_softc *);
183 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
184 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
185 static void ti_handle_events(struct ti_softc *);
186 static int ti_alloc_jumbo_mem(struct ti_softc *);
187 static void *ti_jalloc(struct ti_softc *);
188 static void ti_jfree(struct mbuf *, void *, size_t, void *);
189 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
190 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
191 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
192 static int ti_init_rx_ring_std(struct ti_softc *);
193 static void ti_free_rx_ring_std(struct ti_softc *);
194 static int ti_init_rx_ring_jumbo(struct ti_softc *);
195 static void ti_free_rx_ring_jumbo(struct ti_softc *);
196 static int ti_init_rx_ring_mini(struct ti_softc *);
197 static void ti_free_rx_ring_mini(struct ti_softc *);
198 static void ti_free_tx_ring(struct ti_softc *);
199 static int ti_init_tx_ring(struct ti_softc *);
200
201 static int ti_64bitslot_war(struct ti_softc *);
202 static int ti_chipinit(struct ti_softc *);
203 static int ti_gibinit(struct ti_softc *);
204
205 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
206
207 CFATTACH_DECL(ti, sizeof(struct ti_softc),
208 ti_probe, ti_attach, NULL, NULL);
209
210 /*
211 * Send an instruction or address to the EEPROM, check for ACK.
212 */
213 static u_int32_t
214 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
215 {
216 int i, ack = 0;
217
218 /*
219 * Make sure we're in TX mode.
220 */
221 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
222
223 /*
224 * Feed in each bit and stobe the clock.
225 */
226 for (i = 0x80; i; i >>= 1) {
227 if (byte & i) {
228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
229 } else {
230 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
231 }
232 DELAY(1);
233 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
234 DELAY(1);
235 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
236 }
237
238 /*
239 * Turn off TX mode.
240 */
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
242
243 /*
244 * Check for ack.
245 */
246 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
248 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
249
250 return (ack);
251 }
252
253 /*
254 * Read a byte of data stored in the EEPROM at address 'addr.'
255 * We have to send two address bytes since the EEPROM can hold
256 * more than 256 bytes of data.
257 */
258 static u_int8_t
259 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
260 {
261 int i;
262 u_int8_t byte = 0;
263
264 EEPROM_START();
265
266 /*
267 * Send write control code to EEPROM.
268 */
269 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
270 printf("%s: failed to send write command, status: %x\n",
271 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
272 return (1);
273 }
274
275 /*
276 * Send first byte of address of byte we want to read.
277 */
278 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
279 printf("%s: failed to send address, status: %x\n",
280 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
281 return (1);
282 }
283 /*
284 * Send second byte address of byte we want to read.
285 */
286 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
287 printf("%s: failed to send address, status: %x\n",
288 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 return (1);
290 }
291
292 EEPROM_STOP();
293 EEPROM_START();
294 /*
295 * Send read control code to EEPROM.
296 */
297 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
298 printf("%s: failed to send read command, status: %x\n",
299 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300 return (1);
301 }
302
303 /*
304 * Start reading bits from EEPROM.
305 */
306 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
307 for (i = 0x80; i; i >>= 1) {
308 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
309 DELAY(1);
310 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
311 byte |= i;
312 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
313 DELAY(1);
314 }
315
316 EEPROM_STOP();
317
318 /*
319 * No ACK generated for read, so just return byte.
320 */
321
322 *dest = byte;
323
324 return (0);
325 }
326
327 /*
328 * Read a sequence of bytes from the EEPROM.
329 */
330 static int
331 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
332 {
333 char *dest = destv;
334 int err = 0, i;
335 u_int8_t byte = 0;
336
337 for (i = 0; i < cnt; i++) {
338 err = ti_eeprom_getbyte(sc, off + i, &byte);
339 if (err)
340 break;
341 *(dest + i) = byte;
342 }
343
344 return (err ? 1 : 0);
345 }
346
347 /*
348 * NIC memory access function. Can be used to either clear a section
349 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
350 */
351 static void
352 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf)
353 {
354 int segptr, segsize, cnt;
355 const void *ptr;
356
357 segptr = addr;
358 cnt = len;
359 ptr = xbuf;
360
361 while (cnt) {
362 if (cnt < TI_WINLEN)
363 segsize = cnt;
364 else
365 segsize = TI_WINLEN - (segptr % TI_WINLEN);
366 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
367 if (xbuf == NULL) {
368 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
369 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
370 segsize / 4);
371 } else {
372 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
373 bus_space_write_region_stream_4(sc->ti_btag,
374 sc->ti_bhandle,
375 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
376 (const u_int32_t *)ptr, segsize / 4);
377 #else
378 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
379 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
380 (const u_int32_t *)ptr, segsize / 4);
381 #endif
382 ptr = (const char *)ptr + segsize;
383 }
384 segptr += segsize;
385 cnt -= segsize;
386 }
387
388 return;
389 }
390
391 /*
392 * Load firmware image into the NIC. Check that the firmware revision
393 * is acceptable and see if we want the firmware for the Tigon 1 or
394 * Tigon 2.
395 */
396 static void
397 ti_loadfw(struct ti_softc *sc)
398 {
399 switch (sc->ti_hwrev) {
400 case TI_HWREV_TIGON:
401 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
402 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
403 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
404 printf("%s: firmware revision mismatch; want "
405 "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
406 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
407 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
408 tigonFwReleaseMinor, tigonFwReleaseFix);
409 return;
410 }
411 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
412 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
413 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
414 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
415 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
416 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
417 break;
418 case TI_HWREV_TIGON_II:
419 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
420 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
421 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
422 printf("%s: firmware revision mismatch; want "
423 "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
424 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
425 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
426 tigon2FwReleaseMinor, tigon2FwReleaseFix);
427 return;
428 }
429 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
430 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
431 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
432 tigon2FwRodata);
433 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
434 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
435 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
436 break;
437 default:
438 printf("%s: can't load firmware: unknown hardware rev\n",
439 device_xname(&sc->sc_dev));
440 break;
441 }
442
443 return;
444 }
445
446 /*
447 * Send the NIC a command via the command ring.
448 */
449 static void
450 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
451 {
452 u_int32_t index;
453
454 index = sc->ti_cmd_saved_prodidx;
455 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
456 TI_INC(index, TI_CMD_RING_CNT);
457 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
458 sc->ti_cmd_saved_prodidx = index;
459 }
460
461 /*
462 * Send the NIC an extended command. The 'len' parameter specifies the
463 * number of command slots to include after the initial command.
464 */
465 static void
466 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
467 {
468 char *arg = argv;
469 u_int32_t index;
470 int i;
471
472 index = sc->ti_cmd_saved_prodidx;
473 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
474 TI_INC(index, TI_CMD_RING_CNT);
475 for (i = 0; i < len; i++) {
476 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
477 *(u_int32_t *)(&arg[i * 4]));
478 TI_INC(index, TI_CMD_RING_CNT);
479 }
480 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
481 sc->ti_cmd_saved_prodidx = index;
482 }
483
484 /*
485 * Handle events that have triggered interrupts.
486 */
487 static void
488 ti_handle_events(struct ti_softc *sc)
489 {
490 struct ti_event_desc *e;
491
492 if (sc->ti_rdata->ti_event_ring == NULL)
493 return;
494
495 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
496 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
497 switch (TI_EVENT_EVENT(e)) {
498 case TI_EV_LINKSTAT_CHANGED:
499 sc->ti_linkstat = TI_EVENT_CODE(e);
500 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
501 printf("%s: 10/100 link up\n",
502 device_xname(&sc->sc_dev));
503 else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
504 printf("%s: gigabit link up\n",
505 device_xname(&sc->sc_dev));
506 else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
507 printf("%s: link down\n",
508 device_xname(&sc->sc_dev));
509 break;
510 case TI_EV_ERROR:
511 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
512 printf("%s: invalid command\n",
513 device_xname(&sc->sc_dev));
514 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
515 printf("%s: unknown command\n",
516 device_xname(&sc->sc_dev));
517 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
518 printf("%s: bad config data\n",
519 device_xname(&sc->sc_dev));
520 break;
521 case TI_EV_FIRMWARE_UP:
522 ti_init2(sc);
523 break;
524 case TI_EV_STATS_UPDATED:
525 ti_stats_update(sc);
526 break;
527 case TI_EV_RESET_JUMBO_RING:
528 case TI_EV_MCAST_UPDATED:
529 /* Who cares. */
530 break;
531 default:
532 printf("%s: unknown event: %d\n",
533 device_xname(&sc->sc_dev), TI_EVENT_EVENT(e));
534 break;
535 }
536 /* Advance the consumer index. */
537 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
538 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
539 }
540
541 return;
542 }
543
544 /*
545 * Memory management for the jumbo receive ring is a pain in the
546 * butt. We need to allocate at least 9018 bytes of space per frame,
547 * _and_ it has to be contiguous (unless you use the extended
548 * jumbo descriptor format). Using malloc() all the time won't
549 * work: malloc() allocates memory in powers of two, which means we
550 * would end up wasting a considerable amount of space by allocating
551 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
552 * to do our own memory management.
553 *
554 * The driver needs to allocate a contiguous chunk of memory at boot
555 * time. We then chop this up ourselves into 9K pieces and use them
556 * as external mbuf storage.
557 *
558 * One issue here is how much memory to allocate. The jumbo ring has
559 * 256 slots in it, but at 9K per slot than can consume over 2MB of
560 * RAM. This is a bit much, especially considering we also need
561 * RAM for the standard ring and mini ring (on the Tigon 2). To
562 * save space, we only actually allocate enough memory for 64 slots
563 * by default, which works out to between 500 and 600K. This can
564 * be tuned by changing a #define in if_tireg.h.
565 */
566
567 static int
568 ti_alloc_jumbo_mem(struct ti_softc *sc)
569 {
570 char *ptr;
571 int i;
572 struct ti_jpool_entry *entry;
573 bus_dma_segment_t dmaseg;
574 int error, dmanseg;
575
576 /* Grab a big chunk o' storage. */
577 if ((error = bus_dmamem_alloc(sc->sc_dmat,
578 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
579 BUS_DMA_NOWAIT)) != 0) {
580 aprint_error_dev(&sc->sc_dev, "can't allocate jumbo buffer, error = %d\n",
581 error);
582 return (error);
583 }
584
585 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
586 TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
587 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
588 aprint_error_dev(&sc->sc_dev, "can't map jumbo buffer, error = %d\n",
589 error);
590 return (error);
591 }
592
593 if ((error = bus_dmamap_create(sc->sc_dmat,
594 TI_JMEM, 1,
595 TI_JMEM, 0, BUS_DMA_NOWAIT,
596 &sc->jumbo_dmamap)) != 0) {
597 aprint_error_dev(&sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n",
598 error);
599 return (error);
600 }
601
602 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
603 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
604 BUS_DMA_NOWAIT)) != 0) {
605 aprint_error_dev(&sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n",
606 error);
607 return (error);
608 }
609 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
610
611 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
612 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
613
614 /*
615 * Now divide it up into 9K pieces and save the addresses
616 * in an array.
617 */
618 ptr = sc->ti_cdata.ti_jumbo_buf;
619 for (i = 0; i < TI_JSLOTS; i++) {
620 sc->ti_cdata.ti_jslots[i] = ptr;
621 ptr += TI_JLEN;
622 entry = malloc(sizeof(struct ti_jpool_entry),
623 M_DEVBUF, M_NOWAIT);
624 if (entry == NULL) {
625 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
626 sc->ti_cdata.ti_jumbo_buf = NULL;
627 printf("%s: no memory for jumbo "
628 "buffer queue!\n", device_xname(&sc->sc_dev));
629 return (ENOBUFS);
630 }
631 entry->slot = i;
632 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
633 jpool_entries);
634 }
635
636 return (0);
637 }
638
639 /*
640 * Allocate a jumbo buffer.
641 */
642 static void *
643 ti_jalloc(struct ti_softc *sc)
644 {
645 struct ti_jpool_entry *entry;
646
647 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
648
649 if (entry == NULL) {
650 printf("%s: no free jumbo buffers\n", device_xname(&sc->sc_dev));
651 return (NULL);
652 }
653
654 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
655 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
656
657 return (sc->ti_cdata.ti_jslots[entry->slot]);
658 }
659
660 /*
661 * Release a jumbo buffer.
662 */
663 static void
664 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
665 {
666 struct ti_softc *sc;
667 int i, s;
668 struct ti_jpool_entry *entry;
669
670 /* Extract the softc struct pointer. */
671 sc = (struct ti_softc *)arg;
672
673 if (sc == NULL)
674 panic("ti_jfree: didn't get softc pointer!");
675
676 /* calculate the slot this buffer belongs to */
677
678 i = ((char *)tbuf
679 - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
680
681 if ((i < 0) || (i >= TI_JSLOTS))
682 panic("ti_jfree: asked to free buffer that we don't manage!");
683
684 s = splvm();
685 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
686 if (entry == NULL)
687 panic("ti_jfree: buffer not in use!");
688 entry->slot = i;
689 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
690 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
691
692 if (__predict_true(m != NULL))
693 pool_cache_put(mb_cache, m);
694 splx(s);
695 }
696
697
698 /*
699 * Intialize a standard receive ring descriptor.
700 */
701 static int
702 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
703 {
704 struct mbuf *m_new = NULL;
705 struct ti_rx_desc *r;
706 int error;
707
708 if (dmamap == NULL) {
709 /* if (m) panic() */
710
711 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
712 MCLBYTES, 0, BUS_DMA_NOWAIT,
713 &dmamap)) != 0) {
714 aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
715 error);
716 return (ENOMEM);
717 }
718 }
719 sc->std_dmamap[i] = dmamap;
720
721 if (m == NULL) {
722 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
723 if (m_new == NULL) {
724 aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
725 "-- packet dropped!\n");
726 return (ENOBUFS);
727 }
728
729 MCLGET(m_new, M_DONTWAIT);
730 if (!(m_new->m_flags & M_EXT)) {
731 aprint_error_dev(&sc->sc_dev, "cluster allocation failed "
732 "-- packet dropped!\n");
733 m_freem(m_new);
734 return (ENOBUFS);
735 }
736 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
737 m_adj(m_new, ETHER_ALIGN);
738
739 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
740 mtod(m_new, void *), m_new->m_len, NULL,
741 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
742 aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
743 error);
744 return (ENOMEM);
745 }
746 } else {
747 m_new = m;
748 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
749 m_new->m_data = m_new->m_ext.ext_buf;
750 m_adj(m_new, ETHER_ALIGN);
751
752 /* reuse the dmamap */
753 }
754
755 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
756 r = &sc->ti_rdata->ti_rx_std_ring[i];
757 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
758 r->ti_type = TI_BDTYPE_RECV_BD;
759 r->ti_flags = 0;
760 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
761 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
762 if (sc->ethercom.ec_if.if_capenable &
763 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
764 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
765 r->ti_len = m_new->m_len; /* == ds_len */
766 r->ti_idx = i;
767
768 return (0);
769 }
770
771 /*
772 * Intialize a mini receive ring descriptor. This only applies to
773 * the Tigon 2.
774 */
775 static int
776 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
777 {
778 struct mbuf *m_new = NULL;
779 struct ti_rx_desc *r;
780 int error;
781
782 if (dmamap == NULL) {
783 /* if (m) panic() */
784
785 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
786 MHLEN, 0, BUS_DMA_NOWAIT,
787 &dmamap)) != 0) {
788 aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
789 error);
790 return (ENOMEM);
791 }
792 }
793 sc->mini_dmamap[i] = dmamap;
794
795 if (m == NULL) {
796 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
797 if (m_new == NULL) {
798 aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
799 "-- packet dropped!\n");
800 return (ENOBUFS);
801 }
802 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
803 m_adj(m_new, ETHER_ALIGN);
804
805 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
806 mtod(m_new, void *), m_new->m_len, NULL,
807 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
808 aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
809 error);
810 return (ENOMEM);
811 }
812 } else {
813 m_new = m;
814 m_new->m_data = m_new->m_pktdat;
815 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
816 m_adj(m_new, ETHER_ALIGN);
817
818 /* reuse the dmamap */
819 }
820
821 r = &sc->ti_rdata->ti_rx_mini_ring[i];
822 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
823 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
824 r->ti_type = TI_BDTYPE_RECV_BD;
825 r->ti_flags = TI_BDFLAG_MINI_RING;
826 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
827 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
828 if (sc->ethercom.ec_if.if_capenable &
829 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
830 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
831 r->ti_len = m_new->m_len; /* == ds_len */
832 r->ti_idx = i;
833
834 return (0);
835 }
836
837 /*
838 * Initialize a jumbo receive ring descriptor. This allocates
839 * a jumbo buffer from the pool managed internally by the driver.
840 */
841 static int
842 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
843 {
844 struct mbuf *m_new = NULL;
845 struct ti_rx_desc *r;
846
847 if (m == NULL) {
848 void * tbuf = NULL;
849
850 /* Allocate the mbuf. */
851 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
852 if (m_new == NULL) {
853 aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
854 "-- packet dropped!\n");
855 return (ENOBUFS);
856 }
857
858 /* Allocate the jumbo buffer */
859 tbuf = ti_jalloc(sc);
860 if (tbuf == NULL) {
861 m_freem(m_new);
862 aprint_error_dev(&sc->sc_dev, "jumbo allocation failed "
863 "-- packet dropped!\n");
864 return (ENOBUFS);
865 }
866
867 /* Attach the buffer to the mbuf. */
868 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
869 M_DEVBUF, ti_jfree, sc);
870 m_new->m_flags |= M_EXT_RW;
871 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
872 } else {
873 m_new = m;
874 m_new->m_data = m_new->m_ext.ext_buf;
875 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
876 }
877
878 m_adj(m_new, ETHER_ALIGN);
879 /* Set up the descriptor. */
880 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
881 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
882 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
883 (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
884 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
885 r->ti_flags = TI_BDFLAG_JUMBO_RING;
886 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
887 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
888 if (sc->ethercom.ec_if.if_capenable &
889 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
890 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
891 r->ti_len = m_new->m_len;
892 r->ti_idx = i;
893
894 return (0);
895 }
896
897 /*
898 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
899 * that's 1MB or memory, which is a lot. For now, we fill only the first
900 * 256 ring entries and hope that our CPU is fast enough to keep up with
901 * the NIC.
902 */
903 static int
904 ti_init_rx_ring_std(struct ti_softc *sc)
905 {
906 int i;
907 struct ti_cmd_desc cmd;
908
909 for (i = 0; i < TI_SSLOTS; i++) {
910 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
911 return (ENOBUFS);
912 };
913
914 TI_UPDATE_STDPROD(sc, i - 1);
915 sc->ti_std = i - 1;
916
917 return (0);
918 }
919
920 static void
921 ti_free_rx_ring_std(struct ti_softc *sc)
922 {
923 int i;
924
925 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
926 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
927 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
928 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
929
930 /* if (sc->std_dmamap[i] == 0) panic() */
931 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
932 sc->std_dmamap[i] = 0;
933 }
934 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
935 sizeof(struct ti_rx_desc));
936 }
937
938 return;
939 }
940
941 static int
942 ti_init_rx_ring_jumbo(struct ti_softc *sc)
943 {
944 int i;
945 struct ti_cmd_desc cmd;
946
947 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
948 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
949 return (ENOBUFS);
950 };
951
952 TI_UPDATE_JUMBOPROD(sc, i - 1);
953 sc->ti_jumbo = i - 1;
954
955 return (0);
956 }
957
958 static void
959 ti_free_rx_ring_jumbo(struct ti_softc *sc)
960 {
961 int i;
962
963 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
964 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
965 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
966 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
967 }
968 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
969 sizeof(struct ti_rx_desc));
970 }
971
972 return;
973 }
974
975 static int
976 ti_init_rx_ring_mini(struct ti_softc *sc)
977 {
978 int i;
979
980 for (i = 0; i < TI_MSLOTS; i++) {
981 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
982 return (ENOBUFS);
983 };
984
985 TI_UPDATE_MINIPROD(sc, i - 1);
986 sc->ti_mini = i - 1;
987
988 return (0);
989 }
990
991 static void
992 ti_free_rx_ring_mini(struct ti_softc *sc)
993 {
994 int i;
995
996 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
997 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
998 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
999 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1000
1001 /* if (sc->mini_dmamap[i] == 0) panic() */
1002 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1003 sc->mini_dmamap[i] = 0;
1004 }
1005 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1006 sizeof(struct ti_rx_desc));
1007 }
1008
1009 return;
1010 }
1011
1012 static void
1013 ti_free_tx_ring(struct ti_softc *sc)
1014 {
1015 int i;
1016 struct txdmamap_pool_entry *dma;
1017
1018 if (sc->ti_rdata->ti_tx_ring == NULL)
1019 return;
1020
1021 for (i = 0; i < TI_TX_RING_CNT; i++) {
1022 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1023 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1024 sc->ti_cdata.ti_tx_chain[i] = NULL;
1025
1026 /* if (sc->txdma[i] == 0) panic() */
1027 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1028 link);
1029 sc->txdma[i] = 0;
1030 }
1031 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1032 sizeof(struct ti_tx_desc));
1033 }
1034
1035 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1036 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1037 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1038 free(dma, M_DEVBUF);
1039 }
1040
1041 return;
1042 }
1043
1044 static int
1045 ti_init_tx_ring(struct ti_softc *sc)
1046 {
1047 int i, error;
1048 bus_dmamap_t dmamap;
1049 struct txdmamap_pool_entry *dma;
1050
1051 sc->ti_txcnt = 0;
1052 sc->ti_tx_saved_considx = 0;
1053 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1054
1055 SIMPLEQ_INIT(&sc->txdma_list);
1056 for (i = 0; i < TI_RSLOTS; i++) {
1057 /* I've seen mbufs with 30 fragments. */
1058 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1059 40, ETHER_MAX_LEN_JUMBO, 0,
1060 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1061 aprint_error_dev(&sc->sc_dev, "can't create tx map, error = %d\n",
1062 error);
1063 return (ENOMEM);
1064 }
1065 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1066 if (!dma) {
1067 aprint_error_dev(&sc->sc_dev, "can't alloc txdmamap_pool_entry\n");
1068 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1069 return (ENOMEM);
1070 }
1071 dma->dmamap = dmamap;
1072 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1073 }
1074
1075 return (0);
1076 }
1077
1078 /*
1079 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1080 * but we have to support the old way too so that Tigon 1 cards will
1081 * work.
1082 */
1083 static void
1084 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1085 {
1086 struct ti_cmd_desc cmd;
1087 u_int16_t *m;
1088 u_int32_t ext[2] = {0, 0};
1089
1090 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1091
1092 switch (sc->ti_hwrev) {
1093 case TI_HWREV_TIGON:
1094 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1095 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1096 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1097 break;
1098 case TI_HWREV_TIGON_II:
1099 ext[0] = htons(m[0]);
1100 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1101 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1102 break;
1103 default:
1104 printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
1105 break;
1106 }
1107
1108 return;
1109 }
1110
1111 static void
1112 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1113 {
1114 struct ti_cmd_desc cmd;
1115 u_int16_t *m;
1116 u_int32_t ext[2] = {0, 0};
1117
1118 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1119
1120 switch (sc->ti_hwrev) {
1121 case TI_HWREV_TIGON:
1122 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1123 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1124 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1125 break;
1126 case TI_HWREV_TIGON_II:
1127 ext[0] = htons(m[0]);
1128 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1129 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1130 break;
1131 default:
1132 printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
1133 break;
1134 }
1135
1136 return;
1137 }
1138
1139 /*
1140 * Configure the Tigon's multicast address filter.
1141 *
1142 * The actual multicast table management is a bit of a pain, thanks to
1143 * slight brain damage on the part of both Alteon and us. With our
1144 * multicast code, we are only alerted when the multicast address table
1145 * changes and at that point we only have the current list of addresses:
1146 * we only know the current state, not the previous state, so we don't
1147 * actually know what addresses were removed or added. The firmware has
1148 * state, but we can't get our grubby mits on it, and there is no 'delete
1149 * all multicast addresses' command. Hence, we have to maintain our own
1150 * state so we know what addresses have been programmed into the NIC at
1151 * any given time.
1152 */
1153 static void
1154 ti_setmulti(struct ti_softc *sc)
1155 {
1156 struct ifnet *ifp;
1157 struct ti_cmd_desc cmd;
1158 struct ti_mc_entry *mc;
1159 u_int32_t intrs;
1160 struct ether_multi *enm;
1161 struct ether_multistep step;
1162
1163 ifp = &sc->ethercom.ec_if;
1164
1165 /* Disable interrupts. */
1166 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1167 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1168
1169 /* First, zot all the existing filters. */
1170 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1171 ti_del_mcast(sc, &mc->mc_addr);
1172 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1173 free(mc, M_DEVBUF);
1174 }
1175
1176 /*
1177 * Remember all multicast addresses so that we can delete them
1178 * later. Punt if there is a range of addresses or memory shortage.
1179 */
1180 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1181 while (enm != NULL) {
1182 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1183 ETHER_ADDR_LEN) != 0)
1184 goto allmulti;
1185 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1186 M_NOWAIT)) == NULL)
1187 goto allmulti;
1188 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1189 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1190 ETHER_NEXT_MULTI(step, enm);
1191 }
1192
1193 /* Accept only programmed multicast addresses */
1194 ifp->if_flags &= ~IFF_ALLMULTI;
1195 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1196
1197 /* Now program new ones. */
1198 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1199 ti_add_mcast(sc, &mc->mc_addr);
1200
1201 /* Re-enable interrupts. */
1202 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1203
1204 return;
1205
1206 allmulti:
1207 /* No need to keep individual multicast addresses */
1208 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1209 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1210 free(mc, M_DEVBUF);
1211 }
1212
1213 /* Accept all multicast addresses */
1214 ifp->if_flags |= IFF_ALLMULTI;
1215 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1216
1217 /* Re-enable interrupts. */
1218 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1219 }
1220
1221 /*
1222 * Check to see if the BIOS has configured us for a 64 bit slot when
1223 * we aren't actually in one. If we detect this condition, we can work
1224 * around it on the Tigon 2 by setting a bit in the PCI state register,
1225 * but for the Tigon 1 we must give up and abort the interface attach.
1226 */
1227 static int
1228 ti_64bitslot_war(struct ti_softc *sc)
1229 {
1230 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1231 CSR_WRITE_4(sc, 0x600, 0);
1232 CSR_WRITE_4(sc, 0x604, 0);
1233 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1234 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1235 if (sc->ti_hwrev == TI_HWREV_TIGON)
1236 return (EINVAL);
1237 else {
1238 TI_SETBIT(sc, TI_PCI_STATE,
1239 TI_PCISTATE_32BIT_BUS);
1240 return (0);
1241 }
1242 }
1243 }
1244
1245 return (0);
1246 }
1247
1248 /*
1249 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1250 * self-test results.
1251 */
1252 static int
1253 ti_chipinit(struct ti_softc *sc)
1254 {
1255 u_int32_t cacheline;
1256 u_int32_t pci_writemax = 0;
1257 u_int32_t rev;
1258
1259 /* Initialize link to down state. */
1260 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1261
1262 /* Set endianness before we access any non-PCI registers. */
1263 #if BYTE_ORDER == BIG_ENDIAN
1264 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1265 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1266 #else
1267 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1268 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1269 #endif
1270
1271 /* Check the ROM failed bit to see if self-tests passed. */
1272 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1273 printf("%s: board self-diagnostics failed!\n",
1274 device_xname(&sc->sc_dev));
1275 return (ENODEV);
1276 }
1277
1278 /* Halt the CPU. */
1279 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1280
1281 /* Figure out the hardware revision. */
1282 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1283 switch (rev) {
1284 case TI_REV_TIGON_I:
1285 sc->ti_hwrev = TI_HWREV_TIGON;
1286 break;
1287 case TI_REV_TIGON_II:
1288 sc->ti_hwrev = TI_HWREV_TIGON_II;
1289 break;
1290 default:
1291 printf("%s: unsupported chip revision 0x%x\n",
1292 device_xname(&sc->sc_dev), rev);
1293 return (ENODEV);
1294 }
1295
1296 /* Do special setup for Tigon 2. */
1297 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1298 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1299 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1300 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1301 }
1302
1303 /* Set up the PCI state register. */
1304 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1305 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1306 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1307 }
1308
1309 /* Clear the read/write max DMA parameters. */
1310 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1311 TI_PCISTATE_READ_MAXDMA));
1312
1313 /* Get cache line size. */
1314 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1315
1316 /*
1317 * If the system has set enabled the PCI memory write
1318 * and invalidate command in the command register, set
1319 * the write max parameter accordingly. This is necessary
1320 * to use MWI with the Tigon 2.
1321 */
1322 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1323 & PCI_COMMAND_INVALIDATE_ENABLE) {
1324 switch (cacheline) {
1325 case 1:
1326 case 4:
1327 case 8:
1328 case 16:
1329 case 32:
1330 case 64:
1331 break;
1332 default:
1333 /* Disable PCI memory write and invalidate. */
1334 if (bootverbose)
1335 printf("%s: cache line size %d not "
1336 "supported; disabling PCI MWI\n",
1337 device_xname(&sc->sc_dev), cacheline);
1338 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1339 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1340 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1341 break;
1342 }
1343 }
1344
1345 #ifdef __brokenalpha__
1346 /*
1347 * From the Alteon sample driver:
1348 * Must insure that we do not cross an 8K (bytes) boundary
1349 * for DMA reads. Our highest limit is 1K bytes. This is a
1350 * restriction on some ALPHA platforms with early revision
1351 * 21174 PCI chipsets, such as the AlphaPC 164lx
1352 */
1353 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1354 #else
1355 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1356 #endif
1357
1358 /* This sets the min dma param all the way up (0xff). */
1359 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1360
1361 /* Configure DMA variables. */
1362 #if BYTE_ORDER == BIG_ENDIAN
1363 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1364 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1365 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1366 TI_OPMODE_DONT_FRAG_JUMBO);
1367 #else
1368 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1369 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1370 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1371 #endif
1372
1373 /*
1374 * Only allow 1 DMA channel to be active at a time.
1375 * I don't think this is a good idea, but without it
1376 * the firmware racks up lots of nicDmaReadRingFull
1377 * errors.
1378 * Incompatible with hardware assisted checksums.
1379 */
1380 if ((sc->ethercom.ec_if.if_capenable &
1381 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1382 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1383 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1384 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1385
1386 /* Recommended settings from Tigon manual. */
1387 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1388 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1389
1390 if (ti_64bitslot_war(sc)) {
1391 printf("%s: bios thinks we're in a 64 bit slot, "
1392 "but we aren't", device_xname(&sc->sc_dev));
1393 return (EINVAL);
1394 }
1395
1396 return (0);
1397 }
1398
1399 /*
1400 * Initialize the general information block and firmware, and
1401 * start the CPU(s) running.
1402 */
1403 static int
1404 ti_gibinit(struct ti_softc *sc)
1405 {
1406 struct ti_rcb *rcb;
1407 int i;
1408 struct ifnet *ifp;
1409
1410 ifp = &sc->ethercom.ec_if;
1411
1412 /* Disable interrupts for now. */
1413 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1414
1415 /* Tell the chip where to find the general information block. */
1416 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1417 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1418
1419 /* Load the firmware into SRAM. */
1420 ti_loadfw(sc);
1421
1422 /* Set up the contents of the general info and ring control blocks. */
1423
1424 /* Set up the event ring and producer pointer. */
1425 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1426
1427 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1428 rcb->ti_flags = 0;
1429 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1430 TI_CDEVPRODADDR(sc);
1431
1432 sc->ti_ev_prodidx.ti_idx = 0;
1433 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1434 sc->ti_ev_saved_considx = 0;
1435
1436 /* Set up the command ring and producer mailbox. */
1437 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1438
1439 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1440 rcb->ti_flags = 0;
1441 rcb->ti_max_len = 0;
1442 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1443 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1444 }
1445 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1446 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1447 sc->ti_cmd_saved_prodidx = 0;
1448
1449 /*
1450 * Assign the address of the stats refresh buffer.
1451 * We re-use the current stats buffer for this to
1452 * conserve memory.
1453 */
1454 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1455 TI_CDSTATSADDR(sc);
1456
1457 /* Set up the standard receive ring. */
1458 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1459 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1460 rcb->ti_max_len = ETHER_MAX_LEN;
1461 rcb->ti_flags = 0;
1462 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1463 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1464 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1465 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1466 if (VLAN_ATTACHED(&sc->ethercom))
1467 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1468
1469 /* Set up the jumbo receive ring. */
1470 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1471 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1472 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1473 rcb->ti_flags = 0;
1474 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1475 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1476 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1477 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1478 if (VLAN_ATTACHED(&sc->ethercom))
1479 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1480
1481 /*
1482 * Set up the mini ring. Only activated on the
1483 * Tigon 2 but the slot in the config block is
1484 * still there on the Tigon 1.
1485 */
1486 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1487 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1488 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1489 if (sc->ti_hwrev == TI_HWREV_TIGON)
1490 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1491 else
1492 rcb->ti_flags = 0;
1493 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1494 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1496 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 if (VLAN_ATTACHED(&sc->ethercom))
1498 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1499
1500 /*
1501 * Set up the receive return ring.
1502 */
1503 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1504 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1505 rcb->ti_flags = 0;
1506 rcb->ti_max_len = TI_RETURN_RING_CNT;
1507 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1508 TI_CDRTNPRODADDR(sc);
1509
1510 /*
1511 * Set up the tx ring. Note: for the Tigon 2, we have the option
1512 * of putting the transmit ring in the host's address space and
1513 * letting the chip DMA it instead of leaving the ring in the NIC's
1514 * memory and accessing it through the shared memory region. We
1515 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1516 * so we have to revert to the shared memory scheme if we detect
1517 * a Tigon 1 chip.
1518 */
1519 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1520 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1521 sc->ti_tx_ring_nic =
1522 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1523 }
1524 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1525 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1526 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1527 if (sc->ti_hwrev == TI_HWREV_TIGON)
1528 rcb->ti_flags = 0;
1529 else
1530 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1531 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1532 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1533 /*
1534 * When we get the packet, there is a pseudo-header seed already
1535 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1536 * compute the pseudo-header checksum again!
1537 */
1538 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1539 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1540 TI_RCB_FLAG_NO_PHDR_CKSUM;
1541 if (VLAN_ATTACHED(&sc->ethercom))
1542 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1543 rcb->ti_max_len = TI_TX_RING_CNT;
1544 if (sc->ti_hwrev == TI_HWREV_TIGON)
1545 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1546 else
1547 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1548 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1549 TI_CDTXCONSADDR(sc);
1550
1551 /*
1552 * We're done frobbing the General Information Block. Sync
1553 * it. Note we take care of the first stats sync here, as
1554 * well.
1555 */
1556 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1557
1558 /* Set up tuneables */
1559 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1560 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1561 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1562 (sc->ti_rx_coal_ticks / 10));
1563 else
1564 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1565 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1566 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1567 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1568 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1569 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1570
1571 /* Turn interrupts on. */
1572 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1573 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1574
1575 /* Start CPU. */
1576 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1577
1578 return (0);
1579 }
1580
1581 /*
1582 * look for id in the device list, returning the first match
1583 */
1584 static const struct ti_type *
1585 ti_type_match(struct pci_attach_args *pa)
1586 {
1587 const struct ti_type *t;
1588
1589 t = ti_devs;
1590 while (t->ti_name != NULL) {
1591 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1592 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1593 return (t);
1594 }
1595 t++;
1596 }
1597
1598 return (NULL);
1599 }
1600
1601 /*
1602 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1603 * against our list and return its name if we find a match.
1604 */
1605 static int
1606 ti_probe(device_t parent, cfdata_t match, void *aux)
1607 {
1608 struct pci_attach_args *pa = aux;
1609 const struct ti_type *t;
1610
1611 t = ti_type_match(pa);
1612
1613 return ((t == NULL) ? 0 : 1);
1614 }
1615
1616 static void
1617 ti_attach(device_t parent, device_t self, void *aux)
1618 {
1619 u_int32_t command;
1620 struct ifnet *ifp;
1621 struct ti_softc *sc;
1622 u_int8_t eaddr[ETHER_ADDR_LEN];
1623 struct pci_attach_args *pa = aux;
1624 pci_chipset_tag_t pc = pa->pa_pc;
1625 pci_intr_handle_t ih;
1626 const char *intrstr = NULL;
1627 bus_dma_segment_t dmaseg;
1628 int error, dmanseg, nolinear;
1629 const struct ti_type *t;
1630
1631 t = ti_type_match(pa);
1632 if (t == NULL) {
1633 printf("ti_attach: were did the card go ?\n");
1634 return;
1635 }
1636
1637 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1638
1639 sc = device_private(self);
1640
1641 /*
1642 * Map control/status registers.
1643 */
1644 nolinear = 0;
1645 if (pci_mapreg_map(pa, 0x10,
1646 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1647 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1648 NULL, NULL)) {
1649 nolinear = 1;
1650 if (pci_mapreg_map(pa, 0x10,
1651 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1652 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1653 printf(": can't map memory space\n");
1654 return;
1655 }
1656 }
1657 if (nolinear == 0)
1658 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1659 else
1660 sc->ti_vhandle = NULL;
1661
1662 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1663 command |= PCI_COMMAND_MASTER_ENABLE;
1664 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1665
1666 /* Allocate interrupt */
1667 if (pci_intr_map(pa, &ih)) {
1668 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
1669 return;
1670 }
1671 intrstr = pci_intr_string(pc, ih);
1672 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1673 if (sc->sc_ih == NULL) {
1674 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
1675 if (intrstr != NULL)
1676 printf(" at %s", intrstr);
1677 printf("\n");
1678 return;
1679 }
1680 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1681 /*
1682 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1683 * doing do could allow DMA to corrupt kernel memory during the
1684 * reboot before the driver initializes.
1685 */
1686 (void) shutdownhook_establish(ti_shutdown, sc);
1687
1688 if (ti_chipinit(sc)) {
1689 aprint_error_dev(self, "chip initialization failed\n");
1690 goto fail2;
1691 }
1692
1693 /*
1694 * Deal with some chip diffrences.
1695 */
1696 switch (sc->ti_hwrev) {
1697 case TI_HWREV_TIGON:
1698 sc->sc_tx_encap = ti_encap_tigon1;
1699 sc->sc_tx_eof = ti_txeof_tigon1;
1700 if (nolinear == 1)
1701 aprint_error_dev(self, "memory space not mapped linear\n");
1702 break;
1703
1704 case TI_HWREV_TIGON_II:
1705 sc->sc_tx_encap = ti_encap_tigon2;
1706 sc->sc_tx_eof = ti_txeof_tigon2;
1707 break;
1708
1709 default:
1710 printf("%s: Unknown chip version: %d\n", device_xname(self),
1711 sc->ti_hwrev);
1712 goto fail2;
1713 }
1714
1715 /* Zero out the NIC's on-board SRAM. */
1716 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1717
1718 /* Init again -- zeroing memory may have clobbered some registers. */
1719 if (ti_chipinit(sc)) {
1720 aprint_error_dev(self, "chip initialization failed\n");
1721 goto fail2;
1722 }
1723
1724 /*
1725 * Get station address from the EEPROM. Note: the manual states
1726 * that the MAC address is at offset 0x8c, however the data is
1727 * stored as two longwords (since that's how it's loaded into
1728 * the NIC). This means the MAC address is actually preceded
1729 * by two zero bytes. We need to skip over those.
1730 */
1731 if (ti_read_eeprom(sc, (void *)&eaddr,
1732 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1733 aprint_error_dev(self, "failed to read station address\n");
1734 goto fail2;
1735 }
1736
1737 /*
1738 * A Tigon chip was detected. Inform the world.
1739 */
1740 aprint_error_dev(self, "Ethernet address: %s\n",
1741 ether_sprintf(eaddr));
1742
1743 sc->sc_dmat = pa->pa_dmat;
1744
1745 /* Allocate the general information block and ring buffers. */
1746 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1747 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1748 BUS_DMA_NOWAIT)) != 0) {
1749 aprint_error_dev(&sc->sc_dev, "can't allocate ring buffer, error = %d\n",
1750 error);
1751 goto fail2;
1752 }
1753
1754 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1755 sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1756 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1757 aprint_error_dev(&sc->sc_dev, "can't map ring buffer, error = %d\n",
1758 error);
1759 goto fail2;
1760 }
1761
1762 if ((error = bus_dmamap_create(sc->sc_dmat,
1763 sizeof(struct ti_ring_data), 1,
1764 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1765 &sc->info_dmamap)) != 0) {
1766 aprint_error_dev(&sc->sc_dev, "can't create ring buffer DMA map, error = %d\n",
1767 error);
1768 goto fail2;
1769 }
1770
1771 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1772 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1773 BUS_DMA_NOWAIT)) != 0) {
1774 aprint_error_dev(&sc->sc_dev, "can't load ring buffer DMA map, error = %d\n",
1775 error);
1776 goto fail2;
1777 }
1778
1779 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1780
1781 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1782
1783 /* Try to allocate memory for jumbo buffers. */
1784 if (ti_alloc_jumbo_mem(sc)) {
1785 aprint_error_dev(self, "jumbo buffer allocation failed\n");
1786 goto fail2;
1787 }
1788
1789 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1790
1791 /*
1792 * We really need a better way to tell a 1000baseT card
1793 * from a 1000baseSX one, since in theory there could be
1794 * OEMed 1000baseT cards from lame vendors who aren't
1795 * clever enough to change the PCI ID. For the moment
1796 * though, the AceNIC is the only copper card available.
1797 */
1798 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1799 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1800 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1801 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1802 sc->ti_copper = 1;
1803 else
1804 sc->ti_copper = 0;
1805
1806 /* Set default tuneable values. */
1807 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1808 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1809 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1810 sc->ti_rx_max_coal_bds = 64;
1811 sc->ti_tx_max_coal_bds = 128;
1812 sc->ti_tx_buf_ratio = 21;
1813
1814 /* Set up ifnet structure */
1815 ifp = &sc->ethercom.ec_if;
1816 ifp->if_softc = sc;
1817 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1818 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1819 ifp->if_ioctl = ti_ioctl;
1820 ifp->if_start = ti_start;
1821 ifp->if_watchdog = ti_watchdog;
1822 IFQ_SET_READY(&ifp->if_snd);
1823
1824 #if 0
1825 /*
1826 * XXX This is not really correct -- we don't necessarily
1827 * XXX want to queue up as many as we can transmit at the
1828 * XXX upper layer like that. Someone with a board should
1829 * XXX check to see how this affects performance.
1830 */
1831 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1832 #endif
1833
1834 /*
1835 * We can support 802.1Q VLAN-sized frames.
1836 */
1837 sc->ethercom.ec_capabilities |=
1838 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1839
1840 /*
1841 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1842 */
1843 ifp->if_capabilities |=
1844 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1845 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1846 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1847
1848 /* Set up ifmedia support. */
1849 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1850 if (sc->ti_copper) {
1851 /*
1852 * Copper cards allow manual 10/100 mode selection,
1853 * but not manual 1000baseT mode selection. Why?
1854 * Because currently there's no way to specify the
1855 * master/slave setting through the firmware interface,
1856 * so Alteon decided to just bag it and handle it
1857 * via autonegotiation.
1858 */
1859 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1860 ifmedia_add(&sc->ifmedia,
1861 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1862 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1863 ifmedia_add(&sc->ifmedia,
1864 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1865 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1866 ifmedia_add(&sc->ifmedia,
1867 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1868 } else {
1869 /* Fiber cards don't support 10/100 modes. */
1870 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1871 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1872 }
1873 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1874 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1875
1876 /*
1877 * Call MI attach routines.
1878 */
1879 if_attach(ifp);
1880 ether_ifattach(ifp, eaddr);
1881
1882 return;
1883 fail2:
1884 pci_intr_disestablish(pc, sc->sc_ih);
1885 return;
1886 }
1887
1888 /*
1889 * Frame reception handling. This is called if there's a frame
1890 * on the receive return list.
1891 *
1892 * Note: we have to be able to handle three possibilities here:
1893 * 1) the frame is from the mini receive ring (can only happen)
1894 * on Tigon 2 boards)
1895 * 2) the frame is from the jumbo receive ring
1896 * 3) the frame is from the standard receive ring
1897 */
1898
1899 static void
1900 ti_rxeof(struct ti_softc *sc)
1901 {
1902 struct ifnet *ifp;
1903 struct ti_cmd_desc cmd;
1904
1905 ifp = &sc->ethercom.ec_if;
1906
1907 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1908 struct ti_rx_desc *cur_rx;
1909 u_int32_t rxidx;
1910 struct mbuf *m = NULL;
1911 struct ether_header *eh;
1912 bus_dmamap_t dmamap;
1913
1914 cur_rx =
1915 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1916 rxidx = cur_rx->ti_idx;
1917 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1918
1919 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1920 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1921 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1922 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1923 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1924 ifp->if_ierrors++;
1925 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1926 continue;
1927 }
1928 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1929 == ENOBUFS) {
1930 ifp->if_ierrors++;
1931 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1932 continue;
1933 }
1934 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1935 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1936 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1937 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1938 dmamap = sc->mini_dmamap[rxidx];
1939 sc->mini_dmamap[rxidx] = 0;
1940 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1941 ifp->if_ierrors++;
1942 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1943 continue;
1944 }
1945 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1946 == ENOBUFS) {
1947 ifp->if_ierrors++;
1948 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1949 continue;
1950 }
1951 } else {
1952 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1953 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1954 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1955 dmamap = sc->std_dmamap[rxidx];
1956 sc->std_dmamap[rxidx] = 0;
1957 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1958 ifp->if_ierrors++;
1959 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1960 continue;
1961 }
1962 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1963 == ENOBUFS) {
1964 ifp->if_ierrors++;
1965 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1966 continue;
1967 }
1968 }
1969
1970 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1971 ifp->if_ipackets++;
1972 m->m_pkthdr.rcvif = ifp;
1973
1974 #if NBPFILTER > 0
1975 /*
1976 * Handle BPF listeners. Let the BPF user see the packet, but
1977 * don't pass it up to the ether_input() layer unless it's
1978 * a broadcast packet, multicast packet, matches our ethernet
1979 * address or the interface is in promiscuous mode.
1980 */
1981 if (ifp->if_bpf)
1982 bpf_mtap(ifp->if_bpf, m);
1983 #endif
1984
1985 eh = mtod(m, struct ether_header *);
1986 switch (ntohs(eh->ether_type)) {
1987 #ifdef INET
1988 case ETHERTYPE_IP:
1989 {
1990 struct ip *ip = (struct ip *) (eh + 1);
1991
1992 /*
1993 * Note the Tigon firmware does not invert
1994 * the checksum for us, hence the XOR.
1995 */
1996 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1997 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1998 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1999 /*
2000 * ntohs() the constant so the compiler can
2001 * optimize...
2002 *
2003 * XXX Figure out a sane way to deal with
2004 * fragmented packets.
2005 */
2006 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2007 switch (ip->ip_p) {
2008 case IPPROTO_TCP:
2009 m->m_pkthdr.csum_data =
2010 cur_rx->ti_tcp_udp_cksum;
2011 m->m_pkthdr.csum_flags |=
2012 M_CSUM_TCPv4|M_CSUM_DATA;
2013 break;
2014 case IPPROTO_UDP:
2015 m->m_pkthdr.csum_data =
2016 cur_rx->ti_tcp_udp_cksum;
2017 m->m_pkthdr.csum_flags |=
2018 M_CSUM_UDPv4|M_CSUM_DATA;
2019 break;
2020 default:
2021 /* Nothing */;
2022 }
2023 }
2024 break;
2025 }
2026 #endif
2027 default:
2028 /* Nothing. */
2029 break;
2030 }
2031
2032 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2033 VLAN_INPUT_TAG(ifp, m,
2034 /* ti_vlan_tag also has the priority, trim it */
2035 cur_rx->ti_vlan_tag & 4095,
2036 continue);
2037 }
2038
2039 (*ifp->if_input)(ifp, m);
2040 }
2041
2042 /* Only necessary on the Tigon 1. */
2043 if (sc->ti_hwrev == TI_HWREV_TIGON)
2044 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2045 sc->ti_rx_saved_considx);
2046
2047 TI_UPDATE_STDPROD(sc, sc->ti_std);
2048 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2049 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2050 }
2051
2052 static void
2053 ti_txeof_tigon1(struct ti_softc *sc)
2054 {
2055 struct ti_tx_desc *cur_tx = NULL;
2056 struct ifnet *ifp;
2057 struct txdmamap_pool_entry *dma;
2058
2059 ifp = &sc->ethercom.ec_if;
2060
2061 /*
2062 * Go through our tx ring and free mbufs for those
2063 * frames that have been sent.
2064 */
2065 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2066 u_int32_t idx = 0;
2067
2068 idx = sc->ti_tx_saved_considx;
2069 if (idx > 383)
2070 CSR_WRITE_4(sc, TI_WINBASE,
2071 TI_TX_RING_BASE + 6144);
2072 else if (idx > 255)
2073 CSR_WRITE_4(sc, TI_WINBASE,
2074 TI_TX_RING_BASE + 4096);
2075 else if (idx > 127)
2076 CSR_WRITE_4(sc, TI_WINBASE,
2077 TI_TX_RING_BASE + 2048);
2078 else
2079 CSR_WRITE_4(sc, TI_WINBASE,
2080 TI_TX_RING_BASE);
2081 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2082 if (cur_tx->ti_flags & TI_BDFLAG_END)
2083 ifp->if_opackets++;
2084 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2085 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2086 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2087
2088 dma = sc->txdma[idx];
2089 KDASSERT(dma != NULL);
2090 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2091 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2092 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2093
2094 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2095 sc->txdma[idx] = NULL;
2096 }
2097 sc->ti_txcnt--;
2098 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2099 ifp->if_timer = 0;
2100 }
2101
2102 if (cur_tx != NULL)
2103 ifp->if_flags &= ~IFF_OACTIVE;
2104 }
2105
2106 static void
2107 ti_txeof_tigon2(struct ti_softc *sc)
2108 {
2109 struct ti_tx_desc *cur_tx = NULL;
2110 struct ifnet *ifp;
2111 struct txdmamap_pool_entry *dma;
2112 int firstidx, cnt;
2113
2114 ifp = &sc->ethercom.ec_if;
2115
2116 /*
2117 * Go through our tx ring and free mbufs for those
2118 * frames that have been sent.
2119 */
2120 firstidx = sc->ti_tx_saved_considx;
2121 cnt = 0;
2122 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2123 u_int32_t idx = 0;
2124
2125 idx = sc->ti_tx_saved_considx;
2126 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2127 if (cur_tx->ti_flags & TI_BDFLAG_END)
2128 ifp->if_opackets++;
2129 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2130 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2131 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2132
2133 dma = sc->txdma[idx];
2134 KDASSERT(dma != NULL);
2135 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2136 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2137 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2138
2139 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2140 sc->txdma[idx] = NULL;
2141 }
2142 cnt++;
2143 sc->ti_txcnt--;
2144 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2145 ifp->if_timer = 0;
2146 }
2147
2148 if (cnt != 0)
2149 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2150
2151 if (cur_tx != NULL)
2152 ifp->if_flags &= ~IFF_OACTIVE;
2153 }
2154
2155 static int
2156 ti_intr(void *xsc)
2157 {
2158 struct ti_softc *sc;
2159 struct ifnet *ifp;
2160
2161 sc = xsc;
2162 ifp = &sc->ethercom.ec_if;
2163
2164 #ifdef notdef
2165 /* Avoid this for now -- checking this register is expensive. */
2166 /* Make sure this is really our interrupt. */
2167 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2168 return (0);
2169 #endif
2170
2171 /* Ack interrupt and stop others from occuring. */
2172 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2173
2174 if (ifp->if_flags & IFF_RUNNING) {
2175 /* Check RX return ring producer/consumer */
2176 ti_rxeof(sc);
2177
2178 /* Check TX ring producer/consumer */
2179 (*sc->sc_tx_eof)(sc);
2180 }
2181
2182 ti_handle_events(sc);
2183
2184 /* Re-enable interrupts. */
2185 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2186
2187 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2188 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2189 ti_start(ifp);
2190
2191 return (1);
2192 }
2193
2194 static void
2195 ti_stats_update(struct ti_softc *sc)
2196 {
2197 struct ifnet *ifp;
2198
2199 ifp = &sc->ethercom.ec_if;
2200
2201 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2202
2203 ifp->if_collisions +=
2204 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2205 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2206 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2207 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2208 ifp->if_collisions;
2209
2210 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2211 }
2212
2213 /*
2214 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2215 * pointers to descriptors.
2216 */
2217 static int
2218 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2219 {
2220 struct ti_tx_desc *f = NULL;
2221 u_int32_t frag, cur, cnt = 0;
2222 struct txdmamap_pool_entry *dma;
2223 bus_dmamap_t dmamap;
2224 int error, i;
2225 struct m_tag *mtag;
2226 u_int16_t csum_flags = 0;
2227
2228 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2229 if (dma == NULL) {
2230 return ENOMEM;
2231 }
2232 dmamap = dma->dmamap;
2233
2234 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2235 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2236 if (error) {
2237 struct mbuf *m;
2238 int j = 0;
2239 for (m = m_head; m; m = m->m_next)
2240 j++;
2241 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2242 "error %d\n", m_head->m_pkthdr.len, j, error);
2243 return (ENOMEM);
2244 }
2245
2246 cur = frag = *txidx;
2247
2248 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2249 /* IP header checksum field must be 0! */
2250 csum_flags |= TI_BDFLAG_IP_CKSUM;
2251 }
2252 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2253 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2254
2255 /* XXX fragmented packet checksum capability? */
2256
2257 /*
2258 * Start packing the mbufs in this chain into
2259 * the fragment pointers. Stop when we run out
2260 * of fragments or hit the end of the mbuf chain.
2261 */
2262 for (i = 0; i < dmamap->dm_nsegs; i++) {
2263 if (frag > 383)
2264 CSR_WRITE_4(sc, TI_WINBASE,
2265 TI_TX_RING_BASE + 6144);
2266 else if (frag > 255)
2267 CSR_WRITE_4(sc, TI_WINBASE,
2268 TI_TX_RING_BASE + 4096);
2269 else if (frag > 127)
2270 CSR_WRITE_4(sc, TI_WINBASE,
2271 TI_TX_RING_BASE + 2048);
2272 else
2273 CSR_WRITE_4(sc, TI_WINBASE,
2274 TI_TX_RING_BASE);
2275 f = &sc->ti_tx_ring_nic[frag % 128];
2276 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2277 break;
2278 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2279 f->ti_len = dmamap->dm_segs[i].ds_len;
2280 f->ti_flags = csum_flags;
2281 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2282 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2283 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2284 } else {
2285 f->ti_vlan_tag = 0;
2286 }
2287 /*
2288 * Sanity check: avoid coming within 16 descriptors
2289 * of the end of the ring.
2290 */
2291 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2292 return (ENOBUFS);
2293 cur = frag;
2294 TI_INC(frag, TI_TX_RING_CNT);
2295 cnt++;
2296 }
2297
2298 if (i < dmamap->dm_nsegs)
2299 return (ENOBUFS);
2300
2301 if (frag == sc->ti_tx_saved_considx)
2302 return (ENOBUFS);
2303
2304 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2305 TI_BDFLAG_END;
2306
2307 /* Sync the packet's DMA map. */
2308 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2309 BUS_DMASYNC_PREWRITE);
2310
2311 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2312 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2313 sc->txdma[cur] = dma;
2314 sc->ti_txcnt += cnt;
2315
2316 *txidx = frag;
2317
2318 return (0);
2319 }
2320
2321 static int
2322 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2323 {
2324 struct ti_tx_desc *f = NULL;
2325 u_int32_t frag, firstfrag, cur, cnt = 0;
2326 struct txdmamap_pool_entry *dma;
2327 bus_dmamap_t dmamap;
2328 int error, i;
2329 struct m_tag *mtag;
2330 u_int16_t csum_flags = 0;
2331
2332 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2333 if (dma == NULL) {
2334 return ENOMEM;
2335 }
2336 dmamap = dma->dmamap;
2337
2338 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2339 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2340 if (error) {
2341 struct mbuf *m;
2342 int j = 0;
2343 for (m = m_head; m; m = m->m_next)
2344 j++;
2345 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2346 "error %d\n", m_head->m_pkthdr.len, j, error);
2347 return (ENOMEM);
2348 }
2349
2350 cur = firstfrag = frag = *txidx;
2351
2352 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2353 /* IP header checksum field must be 0! */
2354 csum_flags |= TI_BDFLAG_IP_CKSUM;
2355 }
2356 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2357 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2358
2359 /* XXX fragmented packet checksum capability? */
2360
2361 /*
2362 * Start packing the mbufs in this chain into
2363 * the fragment pointers. Stop when we run out
2364 * of fragments or hit the end of the mbuf chain.
2365 */
2366 for (i = 0; i < dmamap->dm_nsegs; i++) {
2367 f = &sc->ti_rdata->ti_tx_ring[frag];
2368 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2369 break;
2370 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2371 f->ti_len = dmamap->dm_segs[i].ds_len;
2372 f->ti_flags = csum_flags;
2373 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2374 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2375 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2376 } else {
2377 f->ti_vlan_tag = 0;
2378 }
2379 /*
2380 * Sanity check: avoid coming within 16 descriptors
2381 * of the end of the ring.
2382 */
2383 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2384 return (ENOBUFS);
2385 cur = frag;
2386 TI_INC(frag, TI_TX_RING_CNT);
2387 cnt++;
2388 }
2389
2390 if (i < dmamap->dm_nsegs)
2391 return (ENOBUFS);
2392
2393 if (frag == sc->ti_tx_saved_considx)
2394 return (ENOBUFS);
2395
2396 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2397
2398 /* Sync the packet's DMA map. */
2399 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2400 BUS_DMASYNC_PREWRITE);
2401
2402 /* Sync the descriptors we are using. */
2403 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2404
2405 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2406 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2407 sc->txdma[cur] = dma;
2408 sc->ti_txcnt += cnt;
2409
2410 *txidx = frag;
2411
2412 return (0);
2413 }
2414
2415 /*
2416 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2417 * to the mbuf data regions directly in the transmit descriptors.
2418 */
2419 static void
2420 ti_start(struct ifnet *ifp)
2421 {
2422 struct ti_softc *sc;
2423 struct mbuf *m_head = NULL;
2424 u_int32_t prodidx = 0;
2425
2426 sc = ifp->if_softc;
2427
2428 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2429
2430 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2431 IFQ_POLL(&ifp->if_snd, m_head);
2432 if (m_head == NULL)
2433 break;
2434
2435 /*
2436 * Pack the data into the transmit ring. If we
2437 * don't have room, set the OACTIVE flag and wait
2438 * for the NIC to drain the ring.
2439 */
2440 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2441 ifp->if_flags |= IFF_OACTIVE;
2442 break;
2443 }
2444
2445 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2446
2447 /*
2448 * If there's a BPF listener, bounce a copy of this frame
2449 * to him.
2450 */
2451 #if NBPFILTER > 0
2452 if (ifp->if_bpf)
2453 bpf_mtap(ifp->if_bpf, m_head);
2454 #endif
2455 }
2456
2457 /* Transmit */
2458 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2459
2460 /*
2461 * Set a timeout in case the chip goes out to lunch.
2462 */
2463 ifp->if_timer = 5;
2464 }
2465
2466 static void
2467 ti_init(void *xsc)
2468 {
2469 struct ti_softc *sc = xsc;
2470 int s;
2471
2472 s = splnet();
2473
2474 /* Cancel pending I/O and flush buffers. */
2475 ti_stop(sc);
2476
2477 /* Init the gen info block, ring control blocks and firmware. */
2478 if (ti_gibinit(sc)) {
2479 aprint_error_dev(&sc->sc_dev, "initialization failure\n");
2480 splx(s);
2481 return;
2482 }
2483
2484 splx(s);
2485 }
2486
2487 static void
2488 ti_init2(struct ti_softc *sc)
2489 {
2490 struct ti_cmd_desc cmd;
2491 struct ifnet *ifp;
2492 const u_int8_t *m;
2493 struct ifmedia *ifm;
2494 int tmp;
2495
2496 ifp = &sc->ethercom.ec_if;
2497
2498 /* Specify MTU and interface index. */
2499 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
2500
2501 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2502 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2503 tmp += ETHER_VLAN_ENCAP_LEN;
2504 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2505
2506 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2507
2508 /* Load our MAC address. */
2509 m = (const u_int8_t *)CLLADDR(ifp->if_sadl);
2510 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2511 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2512 | (m[4] << 8) | m[5]);
2513 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2514
2515 /* Enable or disable promiscuous mode as needed. */
2516 if (ifp->if_flags & IFF_PROMISC) {
2517 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2518 } else {
2519 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2520 }
2521
2522 /* Program multicast filter. */
2523 ti_setmulti(sc);
2524
2525 /*
2526 * If this is a Tigon 1, we should tell the
2527 * firmware to use software packet filtering.
2528 */
2529 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2530 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2531 }
2532
2533 /* Init RX ring. */
2534 ti_init_rx_ring_std(sc);
2535
2536 /* Init jumbo RX ring. */
2537 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2538 ti_init_rx_ring_jumbo(sc);
2539
2540 /*
2541 * If this is a Tigon 2, we can also configure the
2542 * mini ring.
2543 */
2544 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2545 ti_init_rx_ring_mini(sc);
2546
2547 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2548 sc->ti_rx_saved_considx = 0;
2549
2550 /* Init TX ring. */
2551 ti_init_tx_ring(sc);
2552
2553 /* Tell firmware we're alive. */
2554 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2555
2556 /* Enable host interrupts. */
2557 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2558
2559 ifp->if_flags |= IFF_RUNNING;
2560 ifp->if_flags &= ~IFF_OACTIVE;
2561
2562 /*
2563 * Make sure to set media properly. We have to do this
2564 * here since we have to issue commands in order to set
2565 * the link negotiation and we can't issue commands until
2566 * the firmware is running.
2567 */
2568 ifm = &sc->ifmedia;
2569 tmp = ifm->ifm_media;
2570 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2571 ti_ifmedia_upd(ifp);
2572 ifm->ifm_media = tmp;
2573 }
2574
2575 /*
2576 * Set media options.
2577 */
2578 static int
2579 ti_ifmedia_upd(struct ifnet *ifp)
2580 {
2581 struct ti_softc *sc;
2582 struct ifmedia *ifm;
2583 struct ti_cmd_desc cmd;
2584
2585 sc = ifp->if_softc;
2586 ifm = &sc->ifmedia;
2587
2588 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2589 return (EINVAL);
2590
2591 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2592 case IFM_AUTO:
2593 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2594 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2595 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2596 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2597 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2598 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2599 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2600 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2601 break;
2602 case IFM_1000_SX:
2603 case IFM_1000_T:
2604 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2605 CSR_WRITE_4(sc, TI_GCR_GLINK,
2606 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2607 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2608 } else {
2609 CSR_WRITE_4(sc, TI_GCR_GLINK,
2610 TI_GLNK_PREF|TI_GLNK_1000MB|
2611 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2612 }
2613 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2614 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2615 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2616 break;
2617 case IFM_100_FX:
2618 case IFM_10_FL:
2619 case IFM_100_TX:
2620 case IFM_10_T:
2621 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2622 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2623 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2624 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2625 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2626 } else {
2627 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2628 }
2629 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2630 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2631 } else {
2632 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2633 }
2634 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2635 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2636 break;
2637 }
2638
2639 sc->ethercom.ec_if.if_baudrate =
2640 ifmedia_baudrate(ifm->ifm_media);
2641
2642 return (0);
2643 }
2644
2645 /*
2646 * Report current media status.
2647 */
2648 static void
2649 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2650 {
2651 struct ti_softc *sc;
2652 u_int32_t media = 0;
2653
2654 sc = ifp->if_softc;
2655
2656 ifmr->ifm_status = IFM_AVALID;
2657 ifmr->ifm_active = IFM_ETHER;
2658
2659 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2660 return;
2661
2662 ifmr->ifm_status |= IFM_ACTIVE;
2663
2664 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2665 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2666 if (sc->ti_copper)
2667 ifmr->ifm_active |= IFM_1000_T;
2668 else
2669 ifmr->ifm_active |= IFM_1000_SX;
2670 if (media & TI_GLNK_FULL_DUPLEX)
2671 ifmr->ifm_active |= IFM_FDX;
2672 else
2673 ifmr->ifm_active |= IFM_HDX;
2674 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2675 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2676 if (sc->ti_copper) {
2677 if (media & TI_LNK_100MB)
2678 ifmr->ifm_active |= IFM_100_TX;
2679 if (media & TI_LNK_10MB)
2680 ifmr->ifm_active |= IFM_10_T;
2681 } else {
2682 if (media & TI_LNK_100MB)
2683 ifmr->ifm_active |= IFM_100_FX;
2684 if (media & TI_LNK_10MB)
2685 ifmr->ifm_active |= IFM_10_FL;
2686 }
2687 if (media & TI_LNK_FULL_DUPLEX)
2688 ifmr->ifm_active |= IFM_FDX;
2689 if (media & TI_LNK_HALF_DUPLEX)
2690 ifmr->ifm_active |= IFM_HDX;
2691 }
2692
2693 sc->ethercom.ec_if.if_baudrate =
2694 ifmedia_baudrate(sc->ifmedia.ifm_media);
2695 }
2696
2697 static int
2698 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2699 {
2700 struct ifaddr *ifa = (struct ifaddr *) data;
2701 struct ti_softc *sc = ifp->if_softc;
2702
2703 if ((ifp->if_flags & IFF_UP) == 0) {
2704 ifp->if_flags |= IFF_UP;
2705 ti_init(sc);
2706 }
2707
2708 switch (cmd) {
2709 case SIOCINITIFADDR:
2710
2711 switch (ifa->ifa_addr->sa_family) {
2712 #ifdef INET
2713 case AF_INET:
2714 arp_ifinit(ifp, ifa);
2715 break;
2716 #endif
2717 default:
2718 break;
2719 }
2720 break;
2721
2722 default:
2723 return (EINVAL);
2724 }
2725
2726 return (0);
2727 }
2728
2729 static int
2730 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2731 {
2732 struct ti_softc *sc = ifp->if_softc;
2733 struct ifreq *ifr = (struct ifreq *) data;
2734 int s, error = 0;
2735 struct ti_cmd_desc cmd;
2736
2737 s = splnet();
2738
2739 switch (command) {
2740 case SIOCINITIFADDR:
2741 error = ti_ether_ioctl(ifp, command, data);
2742 break;
2743 case SIOCSIFMTU:
2744 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2745 error = EINVAL;
2746 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){
2747 ti_init(sc);
2748 error = 0;
2749 }
2750 break;
2751 case SIOCSIFFLAGS:
2752 if ((error = ifioctl_common(ifp, command, data)) != 0)
2753 break;
2754 if (ifp->if_flags & IFF_UP) {
2755 /*
2756 * If only the state of the PROMISC flag changed,
2757 * then just use the 'set promisc mode' command
2758 * instead of reinitializing the entire NIC. Doing
2759 * a full re-init means reloading the firmware and
2760 * waiting for it to start up, which may take a
2761 * second or two.
2762 */
2763 if (ifp->if_flags & IFF_RUNNING &&
2764 ifp->if_flags & IFF_PROMISC &&
2765 !(sc->ti_if_flags & IFF_PROMISC)) {
2766 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2767 TI_CMD_CODE_PROMISC_ENB, 0);
2768 } else if (ifp->if_flags & IFF_RUNNING &&
2769 !(ifp->if_flags & IFF_PROMISC) &&
2770 sc->ti_if_flags & IFF_PROMISC) {
2771 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2772 TI_CMD_CODE_PROMISC_DIS, 0);
2773 } else
2774 ti_init(sc);
2775 } else {
2776 if (ifp->if_flags & IFF_RUNNING) {
2777 ti_stop(sc);
2778 }
2779 }
2780 sc->ti_if_flags = ifp->if_flags;
2781 error = 0;
2782 break;
2783 case SIOCSIFMEDIA:
2784 case SIOCGIFMEDIA:
2785 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2786 break;
2787 default:
2788 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2789 break;
2790
2791 error = 0;
2792
2793 if (command == SIOCSIFCAP)
2794 ti_init(sc);
2795 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2796 ;
2797 else if (ifp->if_flags & IFF_RUNNING)
2798 ti_setmulti(sc);
2799 break;
2800 }
2801
2802 (void)splx(s);
2803
2804 return (error);
2805 }
2806
2807 static void
2808 ti_watchdog(struct ifnet *ifp)
2809 {
2810 struct ti_softc *sc;
2811
2812 sc = ifp->if_softc;
2813
2814 aprint_error_dev(&sc->sc_dev, "watchdog timeout -- resetting\n");
2815 ti_stop(sc);
2816 ti_init(sc);
2817
2818 ifp->if_oerrors++;
2819 }
2820
2821 /*
2822 * Stop the adapter and free any mbufs allocated to the
2823 * RX and TX lists.
2824 */
2825 static void
2826 ti_stop(struct ti_softc *sc)
2827 {
2828 struct ifnet *ifp;
2829 struct ti_cmd_desc cmd;
2830
2831 ifp = &sc->ethercom.ec_if;
2832
2833 /* Disable host interrupts. */
2834 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2835 /*
2836 * Tell firmware we're shutting down.
2837 */
2838 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2839
2840 /* Halt and reinitialize. */
2841 ti_chipinit(sc);
2842 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2843 ti_chipinit(sc);
2844
2845 /* Free the RX lists. */
2846 ti_free_rx_ring_std(sc);
2847
2848 /* Free jumbo RX list. */
2849 ti_free_rx_ring_jumbo(sc);
2850
2851 /* Free mini RX list. */
2852 ti_free_rx_ring_mini(sc);
2853
2854 /* Free TX buffers. */
2855 ti_free_tx_ring(sc);
2856
2857 sc->ti_ev_prodidx.ti_idx = 0;
2858 sc->ti_return_prodidx.ti_idx = 0;
2859 sc->ti_tx_considx.ti_idx = 0;
2860 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2861
2862 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2863 }
2864
2865 /*
2866 * Stop all chip I/O so that the kernel's probe routines don't
2867 * get confused by errant DMAs when rebooting.
2868 */
2869 static void
2870 ti_shutdown(void *v)
2871 {
2872 struct ti_softc *sc = v;
2873
2874 ti_chipinit(sc);
2875 }
2876