Home | History | Annotate | Line # | Download | only in pci
if_ti.c revision 1.85
      1 /* $NetBSD: if_ti.c,v 1.85 2009/05/12 08:23:01 cegger Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997, 1998, 1999
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
     35  */
     36 
     37 /*
     38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
     39  * Manuals, sample driver and firmware source kits are available
     40  * from http://www.alteon.com/support/openkits.
     41  *
     42  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     43  * Electrical Engineering Department
     44  * Columbia University, New York City
     45  */
     46 
     47 /*
     48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
     49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
     50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
     51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
     52  * filtering and jumbo (9014 byte) frames. The hardware is largely
     53  * controlled by firmware, which must be loaded into the NIC during
     54  * initialization.
     55  *
     56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
     57  * revision, which supports new features such as extended commands,
     58  * extended jumbo receive ring desciptors and a mini receive ring.
     59  *
     60  * Alteon Networks is to be commended for releasing such a vast amount
     61  * of development material for the Tigon NIC without requiring an NDA
     62  * (although they really should have done it a long time ago). With
     63  * any luck, the other vendors will finally wise up and follow Alteon's
     64  * stellar example.
     65  *
     66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
     67  * this driver by #including it as a C header file. This bloats the
     68  * driver somewhat, but it's the easiest method considering that the
     69  * driver code and firmware code need to be kept in sync. The source
     70  * for the firmware is not provided with the FreeBSD distribution since
     71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
     72  *
     73  * The following people deserve special thanks:
     74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
     75  *   for testing
     76  * - Raymond Lee of Netgear, for providing a pair of Netgear
     77  *   GA620 Tigon 2 boards for testing
     78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
     79  *   convincing me to write this driver.
     80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.85 2009/05/12 08:23:01 cegger Exp $");
     85 
     86 #include "bpfilter.h"
     87 #include "opt_inet.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/sockio.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/queue.h>
     97 #include <sys/device.h>
     98 #include <sys/reboot.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 #include <net/if.h>
    103 #include <net/if_arp.h>
    104 #include <net/if_ether.h>
    105 #include <net/if_dl.h>
    106 #include <net/if_media.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #ifdef INET
    113 #include <netinet/in.h>
    114 #include <netinet/if_inarp.h>
    115 #include <netinet/in_systm.h>
    116 #include <netinet/ip.h>
    117 #endif
    118 
    119 
    120 #include <sys/bus.h>
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_tireg.h>
    127 
    128 #include <dev/microcode/tigon/ti_fw.h>
    129 #include <dev/microcode/tigon/ti_fw2.h>
    130 
    131 /*
    132  * Various supported device vendors/types and their names.
    133  */
    134 
    135 static const struct ti_type ti_devs[] = {
    136 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
    137 		"Alteon AceNIC 1000BASE-SX Ethernet" },
    138 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
    139 		"Alteon AceNIC 1000BASE-T Ethernet" },
    140 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
    141 		"3Com 3c985-SX Gigabit Ethernet" },
    142 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
    143 		"Netgear GA620 1000BASE-SX Ethernet" },
    144 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
    145 		"Netgear GA620 1000BASE-T Ethernet" },
    146 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
    147 		"Silicon Graphics Gigabit Ethernet" },
    148 	{ 0, 0, NULL }
    149 };
    150 
    151 static const struct ti_type *ti_type_match(struct pci_attach_args *);
    152 static int ti_probe(device_t, cfdata_t, void *);
    153 static void ti_attach(device_t, device_t, void *);
    154 static void ti_shutdown(void *);
    155 static void ti_txeof_tigon1(struct ti_softc *);
    156 static void ti_txeof_tigon2(struct ti_softc *);
    157 static void ti_rxeof(struct ti_softc *);
    158 
    159 static void ti_stats_update(struct ti_softc *);
    160 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
    161 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
    162 
    163 static int ti_intr(void *);
    164 static void ti_start(struct ifnet *);
    165 static int ti_ioctl(struct ifnet *, u_long, void *);
    166 static void ti_init(void *);
    167 static void ti_init2(struct ti_softc *);
    168 static void ti_stop(struct ti_softc *);
    169 static void ti_watchdog(struct ifnet *);
    170 static int ti_ifmedia_upd(struct ifnet *);
    171 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    172 
    173 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
    174 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
    175 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
    176 
    177 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
    178 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
    179 static void ti_setmulti(struct ti_softc *);
    180 
    181 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
    182 static void ti_loadfw(struct ti_softc *);
    183 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
    184 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
    185 static void ti_handle_events(struct ti_softc *);
    186 static int ti_alloc_jumbo_mem(struct ti_softc *);
    187 static void *ti_jalloc(struct ti_softc *);
    188 static void ti_jfree(struct mbuf *, void *, size_t, void *);
    189 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
    190 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
    191 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
    192 static int ti_init_rx_ring_std(struct ti_softc *);
    193 static void ti_free_rx_ring_std(struct ti_softc *);
    194 static int ti_init_rx_ring_jumbo(struct ti_softc *);
    195 static void ti_free_rx_ring_jumbo(struct ti_softc *);
    196 static int ti_init_rx_ring_mini(struct ti_softc *);
    197 static void ti_free_rx_ring_mini(struct ti_softc *);
    198 static void ti_free_tx_ring(struct ti_softc *);
    199 static int ti_init_tx_ring(struct ti_softc *);
    200 
    201 static int ti_64bitslot_war(struct ti_softc *);
    202 static int ti_chipinit(struct ti_softc *);
    203 static int ti_gibinit(struct ti_softc *);
    204 
    205 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
    206 
    207 CFATTACH_DECL(ti, sizeof(struct ti_softc),
    208     ti_probe, ti_attach, NULL, NULL);
    209 
    210 /*
    211  * Send an instruction or address to the EEPROM, check for ACK.
    212  */
    213 static u_int32_t
    214 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
    215 {
    216 	int i, ack = 0;
    217 
    218 	/*
    219 	 * Make sure we're in TX mode.
    220 	 */
    221 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    222 
    223 	/*
    224 	 * Feed in each bit and stobe the clock.
    225 	 */
    226 	for (i = 0x80; i; i >>= 1) {
    227 		if (byte & i) {
    228 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    229 		} else {
    230 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    231 		}
    232 		DELAY(1);
    233 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    234 		DELAY(1);
    235 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    236 	}
    237 
    238 	/*
    239 	 * Turn off TX mode.
    240 	 */
    241 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    242 
    243 	/*
    244 	 * Check for ack.
    245 	 */
    246 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    247 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
    248 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    249 
    250 	return (ack);
    251 }
    252 
    253 /*
    254  * Read a byte of data stored in the EEPROM at address 'addr.'
    255  * We have to send two address bytes since the EEPROM can hold
    256  * more than 256 bytes of data.
    257  */
    258 static u_int8_t
    259 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
    260 {
    261 	int		i;
    262 	u_int8_t		byte = 0;
    263 
    264 	EEPROM_START();
    265 
    266 	/*
    267 	 * Send write control code to EEPROM.
    268 	 */
    269 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
    270 		printf("%s: failed to send write command, status: %x\n",
    271 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    272 		return (1);
    273 	}
    274 
    275 	/*
    276 	 * Send first byte of address of byte we want to read.
    277 	 */
    278 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
    279 		printf("%s: failed to send address, status: %x\n",
    280 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    281 		return (1);
    282 	}
    283 	/*
    284 	 * Send second byte address of byte we want to read.
    285 	 */
    286 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
    287 		printf("%s: failed to send address, status: %x\n",
    288 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    289 		return (1);
    290 	}
    291 
    292 	EEPROM_STOP();
    293 	EEPROM_START();
    294 	/*
    295 	 * Send read control code to EEPROM.
    296 	 */
    297 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
    298 		printf("%s: failed to send read command, status: %x\n",
    299 		    device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    300 		return (1);
    301 	}
    302 
    303 	/*
    304 	 * Start reading bits from EEPROM.
    305 	 */
    306 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    307 	for (i = 0x80; i; i >>= 1) {
    308 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    309 		DELAY(1);
    310 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
    311 			byte |= i;
    312 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    313 		DELAY(1);
    314 	}
    315 
    316 	EEPROM_STOP();
    317 
    318 	/*
    319 	 * No ACK generated for read, so just return byte.
    320 	 */
    321 
    322 	*dest = byte;
    323 
    324 	return (0);
    325 }
    326 
    327 /*
    328  * Read a sequence of bytes from the EEPROM.
    329  */
    330 static int
    331 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
    332 {
    333 	char *dest = destv;
    334 	int err = 0, i;
    335 	u_int8_t byte = 0;
    336 
    337 	for (i = 0; i < cnt; i++) {
    338 		err = ti_eeprom_getbyte(sc, off + i, &byte);
    339 		if (err)
    340 			break;
    341 		*(dest + i) = byte;
    342 	}
    343 
    344 	return (err ? 1 : 0);
    345 }
    346 
    347 /*
    348  * NIC memory access function. Can be used to either clear a section
    349  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
    350  */
    351 static void
    352 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf)
    353 {
    354 	int			segptr, segsize, cnt;
    355 	const void		*ptr;
    356 
    357 	segptr = addr;
    358 	cnt = len;
    359 	ptr = xbuf;
    360 
    361 	while (cnt) {
    362 		if (cnt < TI_WINLEN)
    363 			segsize = cnt;
    364 		else
    365 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
    366 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
    367 		if (xbuf == NULL) {
    368 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
    369 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
    370 			    segsize / 4);
    371 		} else {
    372 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
    373 			bus_space_write_region_stream_4(sc->ti_btag,
    374 			    sc->ti_bhandle,
    375 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    376 			    (const u_int32_t *)ptr, segsize / 4);
    377 #else
    378 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
    379 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    380 			    (const u_int32_t *)ptr, segsize / 4);
    381 #endif
    382 			ptr = (const char *)ptr + segsize;
    383 		}
    384 		segptr += segsize;
    385 		cnt -= segsize;
    386 	}
    387 
    388 	return;
    389 }
    390 
    391 /*
    392  * Load firmware image into the NIC. Check that the firmware revision
    393  * is acceptable and see if we want the firmware for the Tigon 1 or
    394  * Tigon 2.
    395  */
    396 static void
    397 ti_loadfw(struct ti_softc *sc)
    398 {
    399 	switch (sc->ti_hwrev) {
    400 	case TI_HWREV_TIGON:
    401 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
    402 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
    403 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
    404 			printf("%s: firmware revision mismatch; want "
    405 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
    406 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    407 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
    408 			    tigonFwReleaseMinor, tigonFwReleaseFix);
    409 			return;
    410 		}
    411 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
    412 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
    413 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
    414 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
    415 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
    416 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
    417 		break;
    418 	case TI_HWREV_TIGON_II:
    419 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
    420 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
    421 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
    422 			printf("%s: firmware revision mismatch; want "
    423 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
    424 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    425 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
    426 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
    427 			return;
    428 		}
    429 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
    430 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
    431 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
    432 		    tigon2FwRodata);
    433 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
    434 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
    435 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
    436 		break;
    437 	default:
    438 		printf("%s: can't load firmware: unknown hardware rev\n",
    439 		    device_xname(&sc->sc_dev));
    440 		break;
    441 	}
    442 
    443 	return;
    444 }
    445 
    446 /*
    447  * Send the NIC a command via the command ring.
    448  */
    449 static void
    450 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
    451 {
    452 	u_int32_t		index;
    453 
    454 	index = sc->ti_cmd_saved_prodidx;
    455 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    456 	TI_INC(index, TI_CMD_RING_CNT);
    457 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    458 	sc->ti_cmd_saved_prodidx = index;
    459 }
    460 
    461 /*
    462  * Send the NIC an extended command. The 'len' parameter specifies the
    463  * number of command slots to include after the initial command.
    464  */
    465 static void
    466 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
    467 {
    468 	char *arg = argv;
    469 	u_int32_t		index;
    470 	int		i;
    471 
    472 	index = sc->ti_cmd_saved_prodidx;
    473 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
    474 	TI_INC(index, TI_CMD_RING_CNT);
    475 	for (i = 0; i < len; i++) {
    476 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
    477 		    *(u_int32_t *)(&arg[i * 4]));
    478 		TI_INC(index, TI_CMD_RING_CNT);
    479 	}
    480 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    481 	sc->ti_cmd_saved_prodidx = index;
    482 }
    483 
    484 /*
    485  * Handle events that have triggered interrupts.
    486  */
    487 static void
    488 ti_handle_events(struct ti_softc *sc)
    489 {
    490 	struct ti_event_desc	*e;
    491 
    492 	if (sc->ti_rdata->ti_event_ring == NULL)
    493 		return;
    494 
    495 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
    496 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
    497 		switch (TI_EVENT_EVENT(e)) {
    498 		case TI_EV_LINKSTAT_CHANGED:
    499 			sc->ti_linkstat = TI_EVENT_CODE(e);
    500 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
    501 				printf("%s: 10/100 link up\n",
    502 				       device_xname(&sc->sc_dev));
    503 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
    504 				printf("%s: gigabit link up\n",
    505 				       device_xname(&sc->sc_dev));
    506 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
    507 				printf("%s: link down\n",
    508 				       device_xname(&sc->sc_dev));
    509 			break;
    510 		case TI_EV_ERROR:
    511 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
    512 				printf("%s: invalid command\n",
    513 				       device_xname(&sc->sc_dev));
    514 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
    515 				printf("%s: unknown command\n",
    516 				       device_xname(&sc->sc_dev));
    517 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
    518 				printf("%s: bad config data\n",
    519 				       device_xname(&sc->sc_dev));
    520 			break;
    521 		case TI_EV_FIRMWARE_UP:
    522 			ti_init2(sc);
    523 			break;
    524 		case TI_EV_STATS_UPDATED:
    525 			ti_stats_update(sc);
    526 			break;
    527 		case TI_EV_RESET_JUMBO_RING:
    528 		case TI_EV_MCAST_UPDATED:
    529 			/* Who cares. */
    530 			break;
    531 		default:
    532 			printf("%s: unknown event: %d\n",
    533 			    device_xname(&sc->sc_dev), TI_EVENT_EVENT(e));
    534 			break;
    535 		}
    536 		/* Advance the consumer index. */
    537 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
    538 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
    539 	}
    540 
    541 	return;
    542 }
    543 
    544 /*
    545  * Memory management for the jumbo receive ring is a pain in the
    546  * butt. We need to allocate at least 9018 bytes of space per frame,
    547  * _and_ it has to be contiguous (unless you use the extended
    548  * jumbo descriptor format). Using malloc() all the time won't
    549  * work: malloc() allocates memory in powers of two, which means we
    550  * would end up wasting a considerable amount of space by allocating
    551  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
    552  * to do our own memory management.
    553  *
    554  * The driver needs to allocate a contiguous chunk of memory at boot
    555  * time. We then chop this up ourselves into 9K pieces and use them
    556  * as external mbuf storage.
    557  *
    558  * One issue here is how much memory to allocate. The jumbo ring has
    559  * 256 slots in it, but at 9K per slot than can consume over 2MB of
    560  * RAM. This is a bit much, especially considering we also need
    561  * RAM for the standard ring and mini ring (on the Tigon 2). To
    562  * save space, we only actually allocate enough memory for 64 slots
    563  * by default, which works out to between 500 and 600K. This can
    564  * be tuned by changing a #define in if_tireg.h.
    565  */
    566 
    567 static int
    568 ti_alloc_jumbo_mem(struct ti_softc *sc)
    569 {
    570 	char *ptr;
    571 	int i;
    572 	struct ti_jpool_entry   *entry;
    573 	bus_dma_segment_t dmaseg;
    574 	int error, dmanseg;
    575 
    576 	/* Grab a big chunk o' storage. */
    577 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    578 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
    579 	    BUS_DMA_NOWAIT)) != 0) {
    580 		aprint_error_dev(&sc->sc_dev, "can't allocate jumbo buffer, error = %d\n",
    581 		       error);
    582 		return (error);
    583 	}
    584 
    585 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
    586 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
    587 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    588 		aprint_error_dev(&sc->sc_dev, "can't map jumbo buffer, error = %d\n",
    589 		       error);
    590 		return (error);
    591 	}
    592 
    593 	if ((error = bus_dmamap_create(sc->sc_dmat,
    594 	    TI_JMEM, 1,
    595 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
    596 	    &sc->jumbo_dmamap)) != 0) {
    597 		aprint_error_dev(&sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n",
    598 		       error);
    599 		return (error);
    600 	}
    601 
    602 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
    603 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
    604 	    BUS_DMA_NOWAIT)) != 0) {
    605 		aprint_error_dev(&sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n",
    606 		       error);
    607 		return (error);
    608 	}
    609 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
    610 
    611 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
    612 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
    613 
    614 	/*
    615 	 * Now divide it up into 9K pieces and save the addresses
    616 	 * in an array.
    617 	 */
    618 	ptr = sc->ti_cdata.ti_jumbo_buf;
    619 	for (i = 0; i < TI_JSLOTS; i++) {
    620 		sc->ti_cdata.ti_jslots[i] = ptr;
    621 		ptr += TI_JLEN;
    622 		entry = malloc(sizeof(struct ti_jpool_entry),
    623 			       M_DEVBUF, M_NOWAIT);
    624 		if (entry == NULL) {
    625 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
    626 			sc->ti_cdata.ti_jumbo_buf = NULL;
    627 			printf("%s: no memory for jumbo "
    628 			    "buffer queue!\n", device_xname(&sc->sc_dev));
    629 			return (ENOBUFS);
    630 		}
    631 		entry->slot = i;
    632 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
    633 				    jpool_entries);
    634 	}
    635 
    636 	return (0);
    637 }
    638 
    639 /*
    640  * Allocate a jumbo buffer.
    641  */
    642 static void *
    643 ti_jalloc(struct ti_softc *sc)
    644 {
    645 	struct ti_jpool_entry   *entry;
    646 
    647 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
    648 
    649 	if (entry == NULL) {
    650 		printf("%s: no free jumbo buffers\n", device_xname(&sc->sc_dev));
    651 		return (NULL);
    652 	}
    653 
    654 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
    655 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
    656 
    657 	return (sc->ti_cdata.ti_jslots[entry->slot]);
    658 }
    659 
    660 /*
    661  * Release a jumbo buffer.
    662  */
    663 static void
    664 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
    665 {
    666 	struct ti_softc		*sc;
    667 	int		        i, s;
    668 	struct ti_jpool_entry   *entry;
    669 
    670 	/* Extract the softc struct pointer. */
    671 	sc = (struct ti_softc *)arg;
    672 
    673 	if (sc == NULL)
    674 		panic("ti_jfree: didn't get softc pointer!");
    675 
    676 	/* calculate the slot this buffer belongs to */
    677 
    678 	i = ((char *)tbuf
    679 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
    680 
    681 	if ((i < 0) || (i >= TI_JSLOTS))
    682 		panic("ti_jfree: asked to free buffer that we don't manage!");
    683 
    684 	s = splvm();
    685 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
    686 	if (entry == NULL)
    687 		panic("ti_jfree: buffer not in use!");
    688 	entry->slot = i;
    689 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
    690 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
    691 
    692 	if (__predict_true(m != NULL))
    693 		pool_cache_put(mb_cache, m);
    694 	splx(s);
    695 }
    696 
    697 
    698 /*
    699  * Intialize a standard receive ring descriptor.
    700  */
    701 static int
    702 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    703 {
    704 	struct mbuf		*m_new = NULL;
    705 	struct ti_rx_desc	*r;
    706 	int error;
    707 
    708 	if (dmamap == NULL) {
    709 		/* if (m) panic() */
    710 
    711 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    712 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
    713 					       &dmamap)) != 0) {
    714 			aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
    715 			       error);
    716 			return (ENOMEM);
    717 		}
    718 	}
    719 	sc->std_dmamap[i] = dmamap;
    720 
    721 	if (m == NULL) {
    722 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    723 		if (m_new == NULL) {
    724 			aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
    725 			    "-- packet dropped!\n");
    726 			return (ENOBUFS);
    727 		}
    728 
    729 		MCLGET(m_new, M_DONTWAIT);
    730 		if (!(m_new->m_flags & M_EXT)) {
    731 			aprint_error_dev(&sc->sc_dev, "cluster allocation failed "
    732 			    "-- packet dropped!\n");
    733 			m_freem(m_new);
    734 			return (ENOBUFS);
    735 		}
    736 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    737 		m_adj(m_new, ETHER_ALIGN);
    738 
    739 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    740 				mtod(m_new, void *), m_new->m_len, NULL,
    741 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    742 			aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
    743 			       error);
    744 			return (ENOMEM);
    745 		}
    746 	} else {
    747 		m_new = m;
    748 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    749 		m_new->m_data = m_new->m_ext.ext_buf;
    750 		m_adj(m_new, ETHER_ALIGN);
    751 
    752 		/* reuse the dmamap */
    753 	}
    754 
    755 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
    756 	r = &sc->ti_rdata->ti_rx_std_ring[i];
    757 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    758 	r->ti_type = TI_BDTYPE_RECV_BD;
    759 	r->ti_flags = 0;
    760 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    761 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    762 	if (sc->ethercom.ec_if.if_capenable &
    763 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    764 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    765 	r->ti_len = m_new->m_len; /* == ds_len */
    766 	r->ti_idx = i;
    767 
    768 	return (0);
    769 }
    770 
    771 /*
    772  * Intialize a mini receive ring descriptor. This only applies to
    773  * the Tigon 2.
    774  */
    775 static int
    776 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    777 {
    778 	struct mbuf		*m_new = NULL;
    779 	struct ti_rx_desc	*r;
    780 	int error;
    781 
    782 	if (dmamap == NULL) {
    783 		/* if (m) panic() */
    784 
    785 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
    786 					       MHLEN, 0, BUS_DMA_NOWAIT,
    787 					       &dmamap)) != 0) {
    788 			aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
    789 			       error);
    790 			return (ENOMEM);
    791 		}
    792 	}
    793 	sc->mini_dmamap[i] = dmamap;
    794 
    795 	if (m == NULL) {
    796 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    797 		if (m_new == NULL) {
    798 			aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
    799 			    "-- packet dropped!\n");
    800 			return (ENOBUFS);
    801 		}
    802 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    803 		m_adj(m_new, ETHER_ALIGN);
    804 
    805 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    806 				mtod(m_new, void *), m_new->m_len, NULL,
    807 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
    808 			aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
    809 			       error);
    810 			return (ENOMEM);
    811 		}
    812 	} else {
    813 		m_new = m;
    814 		m_new->m_data = m_new->m_pktdat;
    815 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    816 		m_adj(m_new, ETHER_ALIGN);
    817 
    818 		/* reuse the dmamap */
    819 	}
    820 
    821 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
    822 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
    823 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    824 	r->ti_type = TI_BDTYPE_RECV_BD;
    825 	r->ti_flags = TI_BDFLAG_MINI_RING;
    826 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    827 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    828 	if (sc->ethercom.ec_if.if_capenable &
    829 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    830 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    831 	r->ti_len = m_new->m_len; /* == ds_len */
    832 	r->ti_idx = i;
    833 
    834 	return (0);
    835 }
    836 
    837 /*
    838  * Initialize a jumbo receive ring descriptor. This allocates
    839  * a jumbo buffer from the pool managed internally by the driver.
    840  */
    841 static int
    842 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
    843 {
    844 	struct mbuf		*m_new = NULL;
    845 	struct ti_rx_desc	*r;
    846 
    847 	if (m == NULL) {
    848 		void *			tbuf = NULL;
    849 
    850 		/* Allocate the mbuf. */
    851 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    852 		if (m_new == NULL) {
    853 			aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
    854 			    "-- packet dropped!\n");
    855 			return (ENOBUFS);
    856 		}
    857 
    858 		/* Allocate the jumbo buffer */
    859 		tbuf = ti_jalloc(sc);
    860 		if (tbuf == NULL) {
    861 			m_freem(m_new);
    862 			aprint_error_dev(&sc->sc_dev, "jumbo allocation failed "
    863 			    "-- packet dropped!\n");
    864 			return (ENOBUFS);
    865 		}
    866 
    867 		/* Attach the buffer to the mbuf. */
    868 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
    869 		    M_DEVBUF, ti_jfree, sc);
    870 		m_new->m_flags |= M_EXT_RW;
    871 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
    872 	} else {
    873 		m_new = m;
    874 		m_new->m_data = m_new->m_ext.ext_buf;
    875 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
    876 	}
    877 
    878 	m_adj(m_new, ETHER_ALIGN);
    879 	/* Set up the descriptor. */
    880 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
    881 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
    882 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
    883 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
    884 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
    885 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
    886 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    887 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    888 	if (sc->ethercom.ec_if.if_capenable &
    889 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    890 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    891 	r->ti_len = m_new->m_len;
    892 	r->ti_idx = i;
    893 
    894 	return (0);
    895 }
    896 
    897 /*
    898  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    899  * that's 1MB or memory, which is a lot. For now, we fill only the first
    900  * 256 ring entries and hope that our CPU is fast enough to keep up with
    901  * the NIC.
    902  */
    903 static int
    904 ti_init_rx_ring_std(struct ti_softc *sc)
    905 {
    906 	int		i;
    907 	struct ti_cmd_desc	cmd;
    908 
    909 	for (i = 0; i < TI_SSLOTS; i++) {
    910 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    911 			return (ENOBUFS);
    912 	};
    913 
    914 	TI_UPDATE_STDPROD(sc, i - 1);
    915 	sc->ti_std = i - 1;
    916 
    917 	return (0);
    918 }
    919 
    920 static void
    921 ti_free_rx_ring_std(struct ti_softc *sc)
    922 {
    923 	int		i;
    924 
    925 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
    926 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
    927 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
    928 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
    929 
    930 			/* if (sc->std_dmamap[i] == 0) panic() */
    931 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
    932 			sc->std_dmamap[i] = 0;
    933 		}
    934 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
    935 		    sizeof(struct ti_rx_desc));
    936 	}
    937 
    938 	return;
    939 }
    940 
    941 static int
    942 ti_init_rx_ring_jumbo(struct ti_softc *sc)
    943 {
    944 	int		i;
    945 	struct ti_cmd_desc	cmd;
    946 
    947 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    948 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    949 			return (ENOBUFS);
    950 	};
    951 
    952 	TI_UPDATE_JUMBOPROD(sc, i - 1);
    953 	sc->ti_jumbo = i - 1;
    954 
    955 	return (0);
    956 }
    957 
    958 static void
    959 ti_free_rx_ring_jumbo(struct ti_softc *sc)
    960 {
    961 	int		i;
    962 
    963 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    964 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
    965 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
    966 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
    967 		}
    968 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
    969 		    sizeof(struct ti_rx_desc));
    970 	}
    971 
    972 	return;
    973 }
    974 
    975 static int
    976 ti_init_rx_ring_mini(struct ti_softc *sc)
    977 {
    978 	int		i;
    979 
    980 	for (i = 0; i < TI_MSLOTS; i++) {
    981 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
    982 			return (ENOBUFS);
    983 	};
    984 
    985 	TI_UPDATE_MINIPROD(sc, i - 1);
    986 	sc->ti_mini = i - 1;
    987 
    988 	return (0);
    989 }
    990 
    991 static void
    992 ti_free_rx_ring_mini(struct ti_softc *sc)
    993 {
    994 	int		i;
    995 
    996 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
    997 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
    998 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
    999 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
   1000 
   1001 			/* if (sc->mini_dmamap[i] == 0) panic() */
   1002 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
   1003 			sc->mini_dmamap[i] = 0;
   1004 		}
   1005 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
   1006 		    sizeof(struct ti_rx_desc));
   1007 	}
   1008 
   1009 	return;
   1010 }
   1011 
   1012 static void
   1013 ti_free_tx_ring(struct ti_softc *sc)
   1014 {
   1015 	int		i;
   1016 	struct txdmamap_pool_entry *dma;
   1017 
   1018 	if (sc->ti_rdata->ti_tx_ring == NULL)
   1019 		return;
   1020 
   1021 	for (i = 0; i < TI_TX_RING_CNT; i++) {
   1022 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
   1023 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
   1024 			sc->ti_cdata.ti_tx_chain[i] = NULL;
   1025 
   1026 			/* if (sc->txdma[i] == 0) panic() */
   1027 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1028 					    link);
   1029 			sc->txdma[i] = 0;
   1030 		}
   1031 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
   1032 		    sizeof(struct ti_tx_desc));
   1033 	}
   1034 
   1035 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
   1036 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   1037 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
   1038 		free(dma, M_DEVBUF);
   1039 	}
   1040 
   1041 	return;
   1042 }
   1043 
   1044 static int
   1045 ti_init_tx_ring(struct ti_softc *sc)
   1046 {
   1047 	int i, error;
   1048 	bus_dmamap_t dmamap;
   1049 	struct txdmamap_pool_entry *dma;
   1050 
   1051 	sc->ti_txcnt = 0;
   1052 	sc->ti_tx_saved_considx = 0;
   1053 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
   1054 
   1055 	SIMPLEQ_INIT(&sc->txdma_list);
   1056 	for (i = 0; i < TI_RSLOTS; i++) {
   1057 		/* I've seen mbufs with 30 fragments. */
   1058 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
   1059 					       40, ETHER_MAX_LEN_JUMBO, 0,
   1060 					       BUS_DMA_NOWAIT, &dmamap)) != 0) {
   1061 			aprint_error_dev(&sc->sc_dev, "can't create tx map, error = %d\n",
   1062 			       error);
   1063 			return (ENOMEM);
   1064 		}
   1065 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1066 		if (!dma) {
   1067 			aprint_error_dev(&sc->sc_dev, "can't alloc txdmamap_pool_entry\n");
   1068 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
   1069 			return (ENOMEM);
   1070 		}
   1071 		dma->dmamap = dmamap;
   1072 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   1073 	}
   1074 
   1075 	return (0);
   1076 }
   1077 
   1078 /*
   1079  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
   1080  * but we have to support the old way too so that Tigon 1 cards will
   1081  * work.
   1082  */
   1083 static void
   1084 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
   1085 {
   1086 	struct ti_cmd_desc	cmd;
   1087 	u_int16_t		*m;
   1088 	u_int32_t		ext[2] = {0, 0};
   1089 
   1090 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1091 
   1092 	switch (sc->ti_hwrev) {
   1093 	case TI_HWREV_TIGON:
   1094 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1095 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1096 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
   1097 		break;
   1098 	case TI_HWREV_TIGON_II:
   1099 		ext[0] = htons(m[0]);
   1100 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1101 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
   1102 		break;
   1103 	default:
   1104 		printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
   1105 		break;
   1106 	}
   1107 
   1108 	return;
   1109 }
   1110 
   1111 static void
   1112 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
   1113 {
   1114 	struct ti_cmd_desc	cmd;
   1115 	u_int16_t		*m;
   1116 	u_int32_t		ext[2] = {0, 0};
   1117 
   1118 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1119 
   1120 	switch (sc->ti_hwrev) {
   1121 	case TI_HWREV_TIGON:
   1122 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1123 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1124 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
   1125 		break;
   1126 	case TI_HWREV_TIGON_II:
   1127 		ext[0] = htons(m[0]);
   1128 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1129 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
   1130 		break;
   1131 	default:
   1132 		printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
   1133 		break;
   1134 	}
   1135 
   1136 	return;
   1137 }
   1138 
   1139 /*
   1140  * Configure the Tigon's multicast address filter.
   1141  *
   1142  * The actual multicast table management is a bit of a pain, thanks to
   1143  * slight brain damage on the part of both Alteon and us. With our
   1144  * multicast code, we are only alerted when the multicast address table
   1145  * changes and at that point we only have the current list of addresses:
   1146  * we only know the current state, not the previous state, so we don't
   1147  * actually know what addresses were removed or added. The firmware has
   1148  * state, but we can't get our grubby mits on it, and there is no 'delete
   1149  * all multicast addresses' command. Hence, we have to maintain our own
   1150  * state so we know what addresses have been programmed into the NIC at
   1151  * any given time.
   1152  */
   1153 static void
   1154 ti_setmulti(struct ti_softc *sc)
   1155 {
   1156 	struct ifnet		*ifp;
   1157 	struct ti_cmd_desc	cmd;
   1158 	struct ti_mc_entry	*mc;
   1159 	u_int32_t		intrs;
   1160 	struct ether_multi *enm;
   1161 	struct ether_multistep step;
   1162 
   1163 	ifp = &sc->ethercom.ec_if;
   1164 
   1165 	/* Disable interrupts. */
   1166 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
   1167 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1168 
   1169 	/* First, zot all the existing filters. */
   1170 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1171 		ti_del_mcast(sc, &mc->mc_addr);
   1172 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1173 		free(mc, M_DEVBUF);
   1174 	}
   1175 
   1176 	/*
   1177 	 * Remember all multicast addresses so that we can delete them
   1178 	 * later.  Punt if there is a range of addresses or memory shortage.
   1179 	 */
   1180 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
   1181 	while (enm != NULL) {
   1182 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1183 		    ETHER_ADDR_LEN) != 0)
   1184 			goto allmulti;
   1185 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
   1186 		    M_NOWAIT)) == NULL)
   1187 			goto allmulti;
   1188 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
   1189 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
   1190 		ETHER_NEXT_MULTI(step, enm);
   1191 	}
   1192 
   1193 	/* Accept only programmed multicast addresses */
   1194 	ifp->if_flags &= ~IFF_ALLMULTI;
   1195 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
   1196 
   1197 	/* Now program new ones. */
   1198 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
   1199 		ti_add_mcast(sc, &mc->mc_addr);
   1200 
   1201 	/* Re-enable interrupts. */
   1202 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1203 
   1204 	return;
   1205 
   1206 allmulti:
   1207 	/* No need to keep individual multicast addresses */
   1208 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1209 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1210 		free(mc, M_DEVBUF);
   1211 	}
   1212 
   1213 	/* Accept all multicast addresses */
   1214 	ifp->if_flags |= IFF_ALLMULTI;
   1215 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
   1216 
   1217 	/* Re-enable interrupts. */
   1218 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1219 }
   1220 
   1221 /*
   1222  * Check to see if the BIOS has configured us for a 64 bit slot when
   1223  * we aren't actually in one. If we detect this condition, we can work
   1224  * around it on the Tigon 2 by setting a bit in the PCI state register,
   1225  * but for the Tigon 1 we must give up and abort the interface attach.
   1226  */
   1227 static int
   1228 ti_64bitslot_war(struct ti_softc *sc)
   1229 {
   1230 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
   1231 		CSR_WRITE_4(sc, 0x600, 0);
   1232 		CSR_WRITE_4(sc, 0x604, 0);
   1233 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
   1234 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
   1235 			if (sc->ti_hwrev == TI_HWREV_TIGON)
   1236 				return (EINVAL);
   1237 			else {
   1238 				TI_SETBIT(sc, TI_PCI_STATE,
   1239 				    TI_PCISTATE_32BIT_BUS);
   1240 				return (0);
   1241 			}
   1242 		}
   1243 	}
   1244 
   1245 	return (0);
   1246 }
   1247 
   1248 /*
   1249  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1250  * self-test results.
   1251  */
   1252 static int
   1253 ti_chipinit(struct ti_softc *sc)
   1254 {
   1255 	u_int32_t		cacheline;
   1256 	u_int32_t		pci_writemax = 0;
   1257 	u_int32_t		rev;
   1258 
   1259 	/* Initialize link to down state. */
   1260 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
   1261 
   1262 	/* Set endianness before we access any non-PCI registers. */
   1263 #if BYTE_ORDER == BIG_ENDIAN
   1264 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1265 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
   1266 #else
   1267 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1268 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
   1269 #endif
   1270 
   1271 	/* Check the ROM failed bit to see if self-tests passed. */
   1272 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
   1273 		printf("%s: board self-diagnostics failed!\n",
   1274 		       device_xname(&sc->sc_dev));
   1275 		return (ENODEV);
   1276 	}
   1277 
   1278 	/* Halt the CPU. */
   1279 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
   1280 
   1281 	/* Figure out the hardware revision. */
   1282 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
   1283 	switch (rev) {
   1284 	case TI_REV_TIGON_I:
   1285 		sc->ti_hwrev = TI_HWREV_TIGON;
   1286 		break;
   1287 	case TI_REV_TIGON_II:
   1288 		sc->ti_hwrev = TI_HWREV_TIGON_II;
   1289 		break;
   1290 	default:
   1291 		printf("%s: unsupported chip revision 0x%x\n",
   1292 		    device_xname(&sc->sc_dev), rev);
   1293 		return (ENODEV);
   1294 	}
   1295 
   1296 	/* Do special setup for Tigon 2. */
   1297 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1298 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
   1299 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
   1300 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
   1301 	}
   1302 
   1303 	/* Set up the PCI state register. */
   1304 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
   1305 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1306 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
   1307 	}
   1308 
   1309 	/* Clear the read/write max DMA parameters. */
   1310 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
   1311 	    TI_PCISTATE_READ_MAXDMA));
   1312 
   1313 	/* Get cache line size. */
   1314 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
   1315 
   1316 	/*
   1317 	 * If the system has set enabled the PCI memory write
   1318 	 * and invalidate command in the command register, set
   1319 	 * the write max parameter accordingly. This is necessary
   1320 	 * to use MWI with the Tigon 2.
   1321 	 */
   1322 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1323 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
   1324 		switch (cacheline) {
   1325 		case 1:
   1326 		case 4:
   1327 		case 8:
   1328 		case 16:
   1329 		case 32:
   1330 		case 64:
   1331 			break;
   1332 		default:
   1333 		/* Disable PCI memory write and invalidate. */
   1334 			if (bootverbose)
   1335 				printf("%s: cache line size %d not "
   1336 				    "supported; disabling PCI MWI\n",
   1337 				    device_xname(&sc->sc_dev), cacheline);
   1338 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
   1339 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1340 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
   1341 			break;
   1342 		}
   1343 	}
   1344 
   1345 #ifdef __brokenalpha__
   1346 	/*
   1347 	 * From the Alteon sample driver:
   1348 	 * Must insure that we do not cross an 8K (bytes) boundary
   1349 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1350 	 * restriction on some ALPHA platforms with early revision
   1351 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1352 	 */
   1353 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
   1354 #else
   1355 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
   1356 #endif
   1357 
   1358 	/* This sets the min dma param all the way up (0xff). */
   1359 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
   1360 
   1361 	/* Configure DMA variables. */
   1362 #if BYTE_ORDER == BIG_ENDIAN
   1363 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
   1364 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
   1365 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
   1366 	    TI_OPMODE_DONT_FRAG_JUMBO);
   1367 #else
   1368 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
   1369 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
   1370 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
   1371 #endif
   1372 
   1373 	/*
   1374 	 * Only allow 1 DMA channel to be active at a time.
   1375 	 * I don't think this is a good idea, but without it
   1376 	 * the firmware racks up lots of nicDmaReadRingFull
   1377 	 * errors.
   1378 	 * Incompatible with hardware assisted checksums.
   1379 	 */
   1380 	if ((sc->ethercom.ec_if.if_capenable &
   1381 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1382 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1383 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
   1384 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
   1385 
   1386 	/* Recommended settings from Tigon manual. */
   1387 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
   1388 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
   1389 
   1390 	if (ti_64bitslot_war(sc)) {
   1391 		printf("%s: bios thinks we're in a 64 bit slot, "
   1392 		    "but we aren't", device_xname(&sc->sc_dev));
   1393 		return (EINVAL);
   1394 	}
   1395 
   1396 	return (0);
   1397 }
   1398 
   1399 /*
   1400  * Initialize the general information block and firmware, and
   1401  * start the CPU(s) running.
   1402  */
   1403 static int
   1404 ti_gibinit(struct ti_softc *sc)
   1405 {
   1406 	struct ti_rcb		*rcb;
   1407 	int			i;
   1408 	struct ifnet		*ifp;
   1409 
   1410 	ifp = &sc->ethercom.ec_if;
   1411 
   1412 	/* Disable interrupts for now. */
   1413 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1414 
   1415 	/* Tell the chip where to find the general information block. */
   1416 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
   1417 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
   1418 
   1419 	/* Load the firmware into SRAM. */
   1420 	ti_loadfw(sc);
   1421 
   1422 	/* Set up the contents of the general info and ring control blocks. */
   1423 
   1424 	/* Set up the event ring and producer pointer. */
   1425 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
   1426 
   1427 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
   1428 	rcb->ti_flags = 0;
   1429 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
   1430 	    TI_CDEVPRODADDR(sc);
   1431 
   1432 	sc->ti_ev_prodidx.ti_idx = 0;
   1433 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
   1434 	sc->ti_ev_saved_considx = 0;
   1435 
   1436 	/* Set up the command ring and producer mailbox. */
   1437 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
   1438 
   1439 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
   1440 	rcb->ti_flags = 0;
   1441 	rcb->ti_max_len = 0;
   1442 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
   1443 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
   1444 	}
   1445 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
   1446 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
   1447 	sc->ti_cmd_saved_prodidx = 0;
   1448 
   1449 	/*
   1450 	 * Assign the address of the stats refresh buffer.
   1451 	 * We re-use the current stats buffer for this to
   1452 	 * conserve memory.
   1453 	 */
   1454 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
   1455 	    TI_CDSTATSADDR(sc);
   1456 
   1457 	/* Set up the standard receive ring. */
   1458 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
   1459 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
   1460 	rcb->ti_max_len = ETHER_MAX_LEN;
   1461 	rcb->ti_flags = 0;
   1462 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1463 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1464 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   1465 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1466 	if (VLAN_ATTACHED(&sc->ethercom))
   1467 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1468 
   1469 	/* Set up the jumbo receive ring. */
   1470 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
   1471 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
   1472 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
   1473 	rcb->ti_flags = 0;
   1474 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1475 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1476 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   1477 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1478 	if (VLAN_ATTACHED(&sc->ethercom))
   1479 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1480 
   1481 	/*
   1482 	 * Set up the mini ring. Only activated on the
   1483 	 * Tigon 2 but the slot in the config block is
   1484 	 * still there on the Tigon 1.
   1485 	 */
   1486 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
   1487 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
   1488 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
   1489 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1490 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
   1491 	else
   1492 		rcb->ti_flags = 0;
   1493 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1494 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1495 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
   1496 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1497 	if (VLAN_ATTACHED(&sc->ethercom))
   1498 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1499 
   1500 	/*
   1501 	 * Set up the receive return ring.
   1502 	 */
   1503 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
   1504 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
   1505 	rcb->ti_flags = 0;
   1506 	rcb->ti_max_len = TI_RETURN_RING_CNT;
   1507 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
   1508 	    TI_CDRTNPRODADDR(sc);
   1509 
   1510 	/*
   1511 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
   1512 	 * of putting the transmit ring in the host's address space and
   1513 	 * letting the chip DMA it instead of leaving the ring in the NIC's
   1514 	 * memory and accessing it through the shared memory region. We
   1515 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
   1516 	 * so we have to revert to the shared memory scheme if we detect
   1517 	 * a Tigon 1 chip.
   1518 	 */
   1519 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
   1520 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   1521 		sc->ti_tx_ring_nic =
   1522 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
   1523 	}
   1524 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
   1525 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
   1526 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
   1527 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1528 		rcb->ti_flags = 0;
   1529 	else
   1530 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
   1531 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   1532 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1533 	/*
   1534 	 * When we get the packet, there is a pseudo-header seed already
   1535 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
   1536 	 * compute the pseudo-header checksum again!
   1537 	 */
   1538 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
   1539 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
   1540 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
   1541 	if (VLAN_ATTACHED(&sc->ethercom))
   1542 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1543 	rcb->ti_max_len = TI_TX_RING_CNT;
   1544 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1545 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
   1546 	else
   1547 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
   1548 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
   1549 	    TI_CDTXCONSADDR(sc);
   1550 
   1551 	/*
   1552 	 * We're done frobbing the General Information Block.  Sync
   1553 	 * it.  Note we take care of the first stats sync here, as
   1554 	 * well.
   1555 	 */
   1556 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1557 
   1558 	/* Set up tuneables */
   1559 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
   1560 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   1561 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
   1562 		    (sc->ti_rx_coal_ticks / 10));
   1563 	else
   1564 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
   1565 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
   1566 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
   1567 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
   1568 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
   1569 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
   1570 
   1571 	/* Turn interrupts on. */
   1572 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
   1573 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   1574 
   1575 	/* Start CPU. */
   1576 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
   1577 
   1578 	return (0);
   1579 }
   1580 
   1581 /*
   1582  * look for id in the device list, returning the first match
   1583  */
   1584 static const struct ti_type *
   1585 ti_type_match(struct pci_attach_args *pa)
   1586 {
   1587 	const struct ti_type          *t;
   1588 
   1589 	t = ti_devs;
   1590 	while (t->ti_name != NULL) {
   1591 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
   1592 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
   1593 			return (t);
   1594 		}
   1595 		t++;
   1596 	}
   1597 
   1598 	return (NULL);
   1599 }
   1600 
   1601 /*
   1602  * Probe for a Tigon chip. Check the PCI vendor and device IDs
   1603  * against our list and return its name if we find a match.
   1604  */
   1605 static int
   1606 ti_probe(device_t parent, cfdata_t match, void *aux)
   1607 {
   1608 	struct pci_attach_args *pa = aux;
   1609 	const struct ti_type		*t;
   1610 
   1611 	t = ti_type_match(pa);
   1612 
   1613 	return ((t == NULL) ? 0 : 1);
   1614 }
   1615 
   1616 static void
   1617 ti_attach(device_t parent, device_t self, void *aux)
   1618 {
   1619 	u_int32_t		command;
   1620 	struct ifnet		*ifp;
   1621 	struct ti_softc		*sc;
   1622 	u_int8_t eaddr[ETHER_ADDR_LEN];
   1623 	struct pci_attach_args *pa = aux;
   1624 	pci_chipset_tag_t pc = pa->pa_pc;
   1625 	pci_intr_handle_t ih;
   1626 	const char *intrstr = NULL;
   1627 	bus_dma_segment_t dmaseg;
   1628 	int error, dmanseg, nolinear;
   1629 	const struct ti_type		*t;
   1630 
   1631 	t = ti_type_match(pa);
   1632 	if (t == NULL) {
   1633 		printf("ti_attach: were did the card go ?\n");
   1634 		return;
   1635 	}
   1636 
   1637 	printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
   1638 
   1639 	sc = device_private(self);
   1640 
   1641 	/*
   1642 	 * Map control/status registers.
   1643 	 */
   1644 	nolinear = 0;
   1645 	if (pci_mapreg_map(pa, 0x10,
   1646 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1647 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
   1648 	    NULL, NULL)) {
   1649 		nolinear = 1;
   1650 		if (pci_mapreg_map(pa, 0x10,
   1651 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1652 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
   1653 			printf(": can't map memory space\n");
   1654 			return;
   1655 		}
   1656 	}
   1657 	if (nolinear == 0)
   1658 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
   1659 	else
   1660 		sc->ti_vhandle = NULL;
   1661 
   1662 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1663 	command |= PCI_COMMAND_MASTER_ENABLE;
   1664 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1665 
   1666 	/* Allocate interrupt */
   1667 	if (pci_intr_map(pa, &ih)) {
   1668 		aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
   1669 		return;
   1670 	}
   1671 	intrstr = pci_intr_string(pc, ih);
   1672 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
   1673 	if (sc->sc_ih == NULL) {
   1674 		aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
   1675 		if (intrstr != NULL)
   1676 			printf(" at %s", intrstr);
   1677 		printf("\n");
   1678 		return;
   1679 	}
   1680 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
   1681 	/*
   1682 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
   1683 	 * doing do could allow DMA to corrupt kernel memory during the
   1684 	 * reboot before the driver initializes.
   1685 	 */
   1686 	(void) shutdownhook_establish(ti_shutdown, sc);
   1687 
   1688 	if (ti_chipinit(sc)) {
   1689 		aprint_error_dev(self, "chip initialization failed\n");
   1690 		goto fail2;
   1691 	}
   1692 
   1693 	/*
   1694 	 * Deal with some chip diffrences.
   1695 	 */
   1696 	switch (sc->ti_hwrev) {
   1697 	case TI_HWREV_TIGON:
   1698 		sc->sc_tx_encap = ti_encap_tigon1;
   1699 		sc->sc_tx_eof = ti_txeof_tigon1;
   1700 		if (nolinear == 1)
   1701 			aprint_error_dev(self, "memory space not mapped linear\n");
   1702 		break;
   1703 
   1704 	case TI_HWREV_TIGON_II:
   1705 		sc->sc_tx_encap = ti_encap_tigon2;
   1706 		sc->sc_tx_eof = ti_txeof_tigon2;
   1707 		break;
   1708 
   1709 	default:
   1710 		printf("%s: Unknown chip version: %d\n", device_xname(self),
   1711 		    sc->ti_hwrev);
   1712 		goto fail2;
   1713 	}
   1714 
   1715 	/* Zero out the NIC's on-board SRAM. */
   1716 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
   1717 
   1718 	/* Init again -- zeroing memory may have clobbered some registers. */
   1719 	if (ti_chipinit(sc)) {
   1720 		aprint_error_dev(self, "chip initialization failed\n");
   1721 		goto fail2;
   1722 	}
   1723 
   1724 	/*
   1725 	 * Get station address from the EEPROM. Note: the manual states
   1726 	 * that the MAC address is at offset 0x8c, however the data is
   1727 	 * stored as two longwords (since that's how it's loaded into
   1728 	 * the NIC). This means the MAC address is actually preceded
   1729 	 * by two zero bytes. We need to skip over those.
   1730 	 */
   1731 	if (ti_read_eeprom(sc, (void *)&eaddr,
   1732 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1733 		aprint_error_dev(self, "failed to read station address\n");
   1734 		goto fail2;
   1735 	}
   1736 
   1737 	/*
   1738 	 * A Tigon chip was detected. Inform the world.
   1739 	 */
   1740 	aprint_error_dev(self, "Ethernet address: %s\n",
   1741 				ether_sprintf(eaddr));
   1742 
   1743 	sc->sc_dmat = pa->pa_dmat;
   1744 
   1745 	/* Allocate the general information block and ring buffers. */
   1746 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1747 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
   1748 	    BUS_DMA_NOWAIT)) != 0) {
   1749 		aprint_error_dev(&sc->sc_dev, "can't allocate ring buffer, error = %d\n",
   1750 		       error);
   1751 		goto fail2;
   1752 	}
   1753 
   1754 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
   1755 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
   1756 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
   1757 		aprint_error_dev(&sc->sc_dev, "can't map ring buffer, error = %d\n",
   1758 		       error);
   1759 		goto fail2;
   1760 	}
   1761 
   1762 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1763 	    sizeof(struct ti_ring_data), 1,
   1764 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
   1765 	    &sc->info_dmamap)) != 0) {
   1766 		aprint_error_dev(&sc->sc_dev, "can't create ring buffer DMA map, error = %d\n",
   1767 		       error);
   1768 		goto fail2;
   1769 	}
   1770 
   1771 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
   1772 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
   1773 	    BUS_DMA_NOWAIT)) != 0) {
   1774 		aprint_error_dev(&sc->sc_dev, "can't load ring buffer DMA map, error = %d\n",
   1775 		       error);
   1776 		goto fail2;
   1777 	}
   1778 
   1779 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
   1780 
   1781 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
   1782 
   1783 	/* Try to allocate memory for jumbo buffers. */
   1784 	if (ti_alloc_jumbo_mem(sc)) {
   1785 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
   1786 		goto fail2;
   1787 	}
   1788 
   1789 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
   1790 
   1791 	/*
   1792 	 * We really need a better way to tell a 1000baseT card
   1793 	 * from a 1000baseSX one, since in theory there could be
   1794 	 * OEMed 1000baseT cards from lame vendors who aren't
   1795 	 * clever enough to change the PCI ID. For the moment
   1796 	 * though, the AceNIC is the only copper card available.
   1797 	 */
   1798 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
   1799 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
   1800 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
   1801 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
   1802 		sc->ti_copper = 1;
   1803 	else
   1804 		sc->ti_copper = 0;
   1805 
   1806 	/* Set default tuneable values. */
   1807 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
   1808 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
   1809 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
   1810 	sc->ti_rx_max_coal_bds = 64;
   1811 	sc->ti_tx_max_coal_bds = 128;
   1812 	sc->ti_tx_buf_ratio = 21;
   1813 
   1814 	/* Set up ifnet structure */
   1815 	ifp = &sc->ethercom.ec_if;
   1816 	ifp->if_softc = sc;
   1817 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
   1818 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1819 	ifp->if_ioctl = ti_ioctl;
   1820 	ifp->if_start = ti_start;
   1821 	ifp->if_watchdog = ti_watchdog;
   1822 	IFQ_SET_READY(&ifp->if_snd);
   1823 
   1824 #if 0
   1825 	/*
   1826 	 * XXX This is not really correct -- we don't necessarily
   1827 	 * XXX want to queue up as many as we can transmit at the
   1828 	 * XXX upper layer like that.  Someone with a board should
   1829 	 * XXX check to see how this affects performance.
   1830 	 */
   1831 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
   1832 #endif
   1833 
   1834 	/*
   1835 	 * We can support 802.1Q VLAN-sized frames.
   1836 	 */
   1837 	sc->ethercom.ec_capabilities |=
   1838 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
   1839 
   1840 	/*
   1841 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
   1842 	 */
   1843 	ifp->if_capabilities |=
   1844 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1845 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1846 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1847 
   1848 	/* Set up ifmedia support. */
   1849 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
   1850 	if (sc->ti_copper) {
   1851                 /*
   1852                  * Copper cards allow manual 10/100 mode selection,
   1853                  * but not manual 1000baseT mode selection. Why?
   1854                  * Because currently there's no way to specify the
   1855                  * master/slave setting through the firmware interface,
   1856                  * so Alteon decided to just bag it and handle it
   1857                  * via autonegotiation.
   1858                  */
   1859                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
   1860                 ifmedia_add(&sc->ifmedia,
   1861                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
   1862                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
   1863                 ifmedia_add(&sc->ifmedia,
   1864                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
   1865                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
   1866                 ifmedia_add(&sc->ifmedia,
   1867                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
   1868 	} else {
   1869 		/* Fiber cards don't support 10/100 modes. */
   1870 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   1871 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
   1872 	}
   1873 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   1874 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
   1875 
   1876 	/*
   1877 	 * Call MI attach routines.
   1878 	 */
   1879 	if_attach(ifp);
   1880 	ether_ifattach(ifp, eaddr);
   1881 
   1882 	return;
   1883 fail2:
   1884 	pci_intr_disestablish(pc, sc->sc_ih);
   1885 	return;
   1886 }
   1887 
   1888 /*
   1889  * Frame reception handling. This is called if there's a frame
   1890  * on the receive return list.
   1891  *
   1892  * Note: we have to be able to handle three possibilities here:
   1893  * 1) the frame is from the mini receive ring (can only happen)
   1894  *    on Tigon 2 boards)
   1895  * 2) the frame is from the jumbo receive ring
   1896  * 3) the frame is from the standard receive ring
   1897  */
   1898 
   1899 static void
   1900 ti_rxeof(struct ti_softc *sc)
   1901 {
   1902 	struct ifnet		*ifp;
   1903 	struct ti_cmd_desc	cmd;
   1904 
   1905 	ifp = &sc->ethercom.ec_if;
   1906 
   1907 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
   1908 		struct ti_rx_desc	*cur_rx;
   1909 		u_int32_t		rxidx;
   1910 		struct mbuf		*m = NULL;
   1911 		struct ether_header	*eh;
   1912 		bus_dmamap_t dmamap;
   1913 
   1914 		cur_rx =
   1915 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
   1916 		rxidx = cur_rx->ti_idx;
   1917 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
   1918 
   1919 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
   1920 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
   1921 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
   1922 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
   1923 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1924 				ifp->if_ierrors++;
   1925 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1926 				continue;
   1927 			}
   1928 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
   1929 			    == ENOBUFS) {
   1930 				ifp->if_ierrors++;
   1931 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1932 				continue;
   1933 			}
   1934 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
   1935 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
   1936 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
   1937 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
   1938 			dmamap = sc->mini_dmamap[rxidx];
   1939 			sc->mini_dmamap[rxidx] = 0;
   1940 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1941 				ifp->if_ierrors++;
   1942 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1943 				continue;
   1944 			}
   1945 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
   1946 			    == ENOBUFS) {
   1947 				ifp->if_ierrors++;
   1948 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1949 				continue;
   1950 			}
   1951 		} else {
   1952 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
   1953 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
   1954 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
   1955 			dmamap = sc->std_dmamap[rxidx];
   1956 			sc->std_dmamap[rxidx] = 0;
   1957 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1958 				ifp->if_ierrors++;
   1959 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1960 				continue;
   1961 			}
   1962 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
   1963 			    == ENOBUFS) {
   1964 				ifp->if_ierrors++;
   1965 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1966 				continue;
   1967 			}
   1968 		}
   1969 
   1970 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
   1971 		ifp->if_ipackets++;
   1972 		m->m_pkthdr.rcvif = ifp;
   1973 
   1974 #if NBPFILTER > 0
   1975 		/*
   1976 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
   1977 	 	 * don't pass it up to the ether_input() layer unless it's
   1978 	 	 * a broadcast packet, multicast packet, matches our ethernet
   1979 	 	 * address or the interface is in promiscuous mode.
   1980 	 	 */
   1981 		if (ifp->if_bpf)
   1982 			bpf_mtap(ifp->if_bpf, m);
   1983 #endif
   1984 
   1985 		eh = mtod(m, struct ether_header *);
   1986 		switch (ntohs(eh->ether_type)) {
   1987 #ifdef INET
   1988 		case ETHERTYPE_IP:
   1989 		    {
   1990 			struct ip *ip = (struct ip *) (eh + 1);
   1991 
   1992 			/*
   1993 			 * Note the Tigon firmware does not invert
   1994 			 * the checksum for us, hence the XOR.
   1995 			 */
   1996 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1997 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
   1998 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1999 			/*
   2000 			 * ntohs() the constant so the compiler can
   2001 			 * optimize...
   2002 			 *
   2003 			 * XXX Figure out a sane way to deal with
   2004 			 * fragmented packets.
   2005 			 */
   2006 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
   2007 				switch (ip->ip_p) {
   2008 				case IPPROTO_TCP:
   2009 					m->m_pkthdr.csum_data =
   2010 					    cur_rx->ti_tcp_udp_cksum;
   2011 					m->m_pkthdr.csum_flags |=
   2012 					    M_CSUM_TCPv4|M_CSUM_DATA;
   2013 					break;
   2014 				case IPPROTO_UDP:
   2015 					m->m_pkthdr.csum_data =
   2016 					    cur_rx->ti_tcp_udp_cksum;
   2017 					m->m_pkthdr.csum_flags |=
   2018 					    M_CSUM_UDPv4|M_CSUM_DATA;
   2019 					break;
   2020 				default:
   2021 					/* Nothing */;
   2022 				}
   2023 			}
   2024 			break;
   2025 		    }
   2026 #endif
   2027 		default:
   2028 			/* Nothing. */
   2029 			break;
   2030 		}
   2031 
   2032 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
   2033 			VLAN_INPUT_TAG(ifp, m,
   2034 			    /* ti_vlan_tag also has the priority, trim it */
   2035 			    cur_rx->ti_vlan_tag & 4095,
   2036 			    continue);
   2037 		}
   2038 
   2039 		(*ifp->if_input)(ifp, m);
   2040 	}
   2041 
   2042 	/* Only necessary on the Tigon 1. */
   2043 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   2044 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
   2045 		    sc->ti_rx_saved_considx);
   2046 
   2047 	TI_UPDATE_STDPROD(sc, sc->ti_std);
   2048 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
   2049 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
   2050 }
   2051 
   2052 static void
   2053 ti_txeof_tigon1(struct ti_softc *sc)
   2054 {
   2055 	struct ti_tx_desc	*cur_tx = NULL;
   2056 	struct ifnet		*ifp;
   2057 	struct txdmamap_pool_entry *dma;
   2058 
   2059 	ifp = &sc->ethercom.ec_if;
   2060 
   2061 	/*
   2062 	 * Go through our tx ring and free mbufs for those
   2063 	 * frames that have been sent.
   2064 	 */
   2065 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2066 		u_int32_t		idx = 0;
   2067 
   2068 		idx = sc->ti_tx_saved_considx;
   2069 		if (idx > 383)
   2070 			CSR_WRITE_4(sc, TI_WINBASE,
   2071 			    TI_TX_RING_BASE + 6144);
   2072 		else if (idx > 255)
   2073 			CSR_WRITE_4(sc, TI_WINBASE,
   2074 			    TI_TX_RING_BASE + 4096);
   2075 		else if (idx > 127)
   2076 			CSR_WRITE_4(sc, TI_WINBASE,
   2077 			    TI_TX_RING_BASE + 2048);
   2078 		else
   2079 			CSR_WRITE_4(sc, TI_WINBASE,
   2080 			    TI_TX_RING_BASE);
   2081 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
   2082 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2083 			ifp->if_opackets++;
   2084 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2085 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2086 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2087 
   2088 			dma = sc->txdma[idx];
   2089 			KDASSERT(dma != NULL);
   2090 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2091 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2092 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2093 
   2094 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2095 			sc->txdma[idx] = NULL;
   2096 		}
   2097 		sc->ti_txcnt--;
   2098 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2099 		ifp->if_timer = 0;
   2100 	}
   2101 
   2102 	if (cur_tx != NULL)
   2103 		ifp->if_flags &= ~IFF_OACTIVE;
   2104 }
   2105 
   2106 static void
   2107 ti_txeof_tigon2(struct ti_softc *sc)
   2108 {
   2109 	struct ti_tx_desc	*cur_tx = NULL;
   2110 	struct ifnet		*ifp;
   2111 	struct txdmamap_pool_entry *dma;
   2112 	int firstidx, cnt;
   2113 
   2114 	ifp = &sc->ethercom.ec_if;
   2115 
   2116 	/*
   2117 	 * Go through our tx ring and free mbufs for those
   2118 	 * frames that have been sent.
   2119 	 */
   2120 	firstidx = sc->ti_tx_saved_considx;
   2121 	cnt = 0;
   2122 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2123 		u_int32_t		idx = 0;
   2124 
   2125 		idx = sc->ti_tx_saved_considx;
   2126 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
   2127 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2128 			ifp->if_opackets++;
   2129 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2130 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2131 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2132 
   2133 			dma = sc->txdma[idx];
   2134 			KDASSERT(dma != NULL);
   2135 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2136 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2137 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2138 
   2139 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2140 			sc->txdma[idx] = NULL;
   2141 		}
   2142 		cnt++;
   2143 		sc->ti_txcnt--;
   2144 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2145 		ifp->if_timer = 0;
   2146 	}
   2147 
   2148 	if (cnt != 0)
   2149 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
   2150 
   2151 	if (cur_tx != NULL)
   2152 		ifp->if_flags &= ~IFF_OACTIVE;
   2153 }
   2154 
   2155 static int
   2156 ti_intr(void *xsc)
   2157 {
   2158 	struct ti_softc		*sc;
   2159 	struct ifnet		*ifp;
   2160 
   2161 	sc = xsc;
   2162 	ifp = &sc->ethercom.ec_if;
   2163 
   2164 #ifdef notdef
   2165 	/* Avoid this for now -- checking this register is expensive. */
   2166 	/* Make sure this is really our interrupt. */
   2167 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
   2168 		return (0);
   2169 #endif
   2170 
   2171 	/* Ack interrupt and stop others from occuring. */
   2172 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2173 
   2174 	if (ifp->if_flags & IFF_RUNNING) {
   2175 		/* Check RX return ring producer/consumer */
   2176 		ti_rxeof(sc);
   2177 
   2178 		/* Check TX ring producer/consumer */
   2179 		(*sc->sc_tx_eof)(sc);
   2180 	}
   2181 
   2182 	ti_handle_events(sc);
   2183 
   2184 	/* Re-enable interrupts. */
   2185 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2186 
   2187 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2188 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   2189 		ti_start(ifp);
   2190 
   2191 	return (1);
   2192 }
   2193 
   2194 static void
   2195 ti_stats_update(struct ti_softc *sc)
   2196 {
   2197 	struct ifnet		*ifp;
   2198 
   2199 	ifp = &sc->ethercom.ec_if;
   2200 
   2201 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   2202 
   2203 	ifp->if_collisions +=
   2204 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
   2205 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
   2206 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
   2207 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
   2208 	   ifp->if_collisions;
   2209 
   2210 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   2211 }
   2212 
   2213 /*
   2214  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2215  * pointers to descriptors.
   2216  */
   2217 static int
   2218 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   2219 {
   2220 	struct ti_tx_desc	*f = NULL;
   2221 	u_int32_t		frag, cur, cnt = 0;
   2222 	struct txdmamap_pool_entry *dma;
   2223 	bus_dmamap_t dmamap;
   2224 	int error, i;
   2225 	struct m_tag *mtag;
   2226 	u_int16_t csum_flags = 0;
   2227 
   2228 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2229 	if (dma == NULL) {
   2230 		return ENOMEM;
   2231 	}
   2232 	dmamap = dma->dmamap;
   2233 
   2234 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2235 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2236 	if (error) {
   2237 		struct mbuf *m;
   2238 		int j = 0;
   2239 		for (m = m_head; m; m = m->m_next)
   2240 			j++;
   2241 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2242 		       "error %d\n", m_head->m_pkthdr.len, j, error);
   2243 		return (ENOMEM);
   2244 	}
   2245 
   2246 	cur = frag = *txidx;
   2247 
   2248 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2249 		/* IP header checksum field must be 0! */
   2250 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2251 	}
   2252 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2253 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2254 
   2255 	/* XXX fragmented packet checksum capability? */
   2256 
   2257 	/*
   2258  	 * Start packing the mbufs in this chain into
   2259 	 * the fragment pointers. Stop when we run out
   2260  	 * of fragments or hit the end of the mbuf chain.
   2261 	 */
   2262 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2263 		if (frag > 383)
   2264 			CSR_WRITE_4(sc, TI_WINBASE,
   2265 			    TI_TX_RING_BASE + 6144);
   2266 		else if (frag > 255)
   2267 			CSR_WRITE_4(sc, TI_WINBASE,
   2268 			    TI_TX_RING_BASE + 4096);
   2269 		else if (frag > 127)
   2270 			CSR_WRITE_4(sc, TI_WINBASE,
   2271 			    TI_TX_RING_BASE + 2048);
   2272 		else
   2273 			CSR_WRITE_4(sc, TI_WINBASE,
   2274 			    TI_TX_RING_BASE);
   2275 		f = &sc->ti_tx_ring_nic[frag % 128];
   2276 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2277 			break;
   2278 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2279 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2280 		f->ti_flags = csum_flags;
   2281 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
   2282 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2283 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
   2284 		} else {
   2285 			f->ti_vlan_tag = 0;
   2286 		}
   2287 		/*
   2288 		 * Sanity check: avoid coming within 16 descriptors
   2289 		 * of the end of the ring.
   2290 		 */
   2291 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2292 			return (ENOBUFS);
   2293 		cur = frag;
   2294 		TI_INC(frag, TI_TX_RING_CNT);
   2295 		cnt++;
   2296 	}
   2297 
   2298 	if (i < dmamap->dm_nsegs)
   2299 		return (ENOBUFS);
   2300 
   2301 	if (frag == sc->ti_tx_saved_considx)
   2302 		return (ENOBUFS);
   2303 
   2304 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
   2305 	    TI_BDFLAG_END;
   2306 
   2307 	/* Sync the packet's DMA map. */
   2308 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2309 	    BUS_DMASYNC_PREWRITE);
   2310 
   2311 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2312 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2313 	sc->txdma[cur] = dma;
   2314 	sc->ti_txcnt += cnt;
   2315 
   2316 	*txidx = frag;
   2317 
   2318 	return (0);
   2319 }
   2320 
   2321 static int
   2322 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
   2323 {
   2324 	struct ti_tx_desc	*f = NULL;
   2325 	u_int32_t		frag, firstfrag, cur, cnt = 0;
   2326 	struct txdmamap_pool_entry *dma;
   2327 	bus_dmamap_t dmamap;
   2328 	int error, i;
   2329 	struct m_tag *mtag;
   2330 	u_int16_t csum_flags = 0;
   2331 
   2332 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2333 	if (dma == NULL) {
   2334 		return ENOMEM;
   2335 	}
   2336 	dmamap = dma->dmamap;
   2337 
   2338 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2339 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2340 	if (error) {
   2341 		struct mbuf *m;
   2342 		int j = 0;
   2343 		for (m = m_head; m; m = m->m_next)
   2344 			j++;
   2345 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2346 		       "error %d\n", m_head->m_pkthdr.len, j, error);
   2347 		return (ENOMEM);
   2348 	}
   2349 
   2350 	cur = firstfrag = frag = *txidx;
   2351 
   2352 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2353 		/* IP header checksum field must be 0! */
   2354 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2355 	}
   2356 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2357 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2358 
   2359 	/* XXX fragmented packet checksum capability? */
   2360 
   2361 	/*
   2362  	 * Start packing the mbufs in this chain into
   2363 	 * the fragment pointers. Stop when we run out
   2364  	 * of fragments or hit the end of the mbuf chain.
   2365 	 */
   2366 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2367 		f = &sc->ti_rdata->ti_tx_ring[frag];
   2368 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2369 			break;
   2370 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2371 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2372 		f->ti_flags = csum_flags;
   2373 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
   2374 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2375 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
   2376 		} else {
   2377 			f->ti_vlan_tag = 0;
   2378 		}
   2379 		/*
   2380 		 * Sanity check: avoid coming within 16 descriptors
   2381 		 * of the end of the ring.
   2382 		 */
   2383 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2384 			return (ENOBUFS);
   2385 		cur = frag;
   2386 		TI_INC(frag, TI_TX_RING_CNT);
   2387 		cnt++;
   2388 	}
   2389 
   2390 	if (i < dmamap->dm_nsegs)
   2391 		return (ENOBUFS);
   2392 
   2393 	if (frag == sc->ti_tx_saved_considx)
   2394 		return (ENOBUFS);
   2395 
   2396 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
   2397 
   2398 	/* Sync the packet's DMA map. */
   2399 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2400 	    BUS_DMASYNC_PREWRITE);
   2401 
   2402 	/* Sync the descriptors we are using. */
   2403 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
   2404 
   2405 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2406 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2407 	sc->txdma[cur] = dma;
   2408 	sc->ti_txcnt += cnt;
   2409 
   2410 	*txidx = frag;
   2411 
   2412 	return (0);
   2413 }
   2414 
   2415 /*
   2416  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2417  * to the mbuf data regions directly in the transmit descriptors.
   2418  */
   2419 static void
   2420 ti_start(struct ifnet *ifp)
   2421 {
   2422 	struct ti_softc		*sc;
   2423 	struct mbuf		*m_head = NULL;
   2424 	u_int32_t		prodidx = 0;
   2425 
   2426 	sc = ifp->if_softc;
   2427 
   2428 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
   2429 
   2430 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
   2431 		IFQ_POLL(&ifp->if_snd, m_head);
   2432 		if (m_head == NULL)
   2433 			break;
   2434 
   2435 		/*
   2436 		 * Pack the data into the transmit ring. If we
   2437 		 * don't have room, set the OACTIVE flag and wait
   2438 		 * for the NIC to drain the ring.
   2439 		 */
   2440 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
   2441 			ifp->if_flags |= IFF_OACTIVE;
   2442 			break;
   2443 		}
   2444 
   2445 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2446 
   2447 		/*
   2448 		 * If there's a BPF listener, bounce a copy of this frame
   2449 		 * to him.
   2450 		 */
   2451 #if NBPFILTER > 0
   2452 		if (ifp->if_bpf)
   2453 			bpf_mtap(ifp->if_bpf, m_head);
   2454 #endif
   2455 	}
   2456 
   2457 	/* Transmit */
   2458 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
   2459 
   2460 	/*
   2461 	 * Set a timeout in case the chip goes out to lunch.
   2462 	 */
   2463 	ifp->if_timer = 5;
   2464 }
   2465 
   2466 static void
   2467 ti_init(void *xsc)
   2468 {
   2469 	struct ti_softc		*sc = xsc;
   2470         int			s;
   2471 
   2472 	s = splnet();
   2473 
   2474 	/* Cancel pending I/O and flush buffers. */
   2475 	ti_stop(sc);
   2476 
   2477 	/* Init the gen info block, ring control blocks and firmware. */
   2478 	if (ti_gibinit(sc)) {
   2479 		aprint_error_dev(&sc->sc_dev, "initialization failure\n");
   2480 		splx(s);
   2481 		return;
   2482 	}
   2483 
   2484 	splx(s);
   2485 }
   2486 
   2487 static void
   2488 ti_init2(struct ti_softc *sc)
   2489 {
   2490 	struct ti_cmd_desc	cmd;
   2491 	struct ifnet		*ifp;
   2492 	const u_int8_t		*m;
   2493 	struct ifmedia		*ifm;
   2494 	int			tmp;
   2495 
   2496 	ifp = &sc->ethercom.ec_if;
   2497 
   2498 	/* Specify MTU and interface index. */
   2499 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
   2500 
   2501 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
   2502 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2503 		tmp += ETHER_VLAN_ENCAP_LEN;
   2504 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
   2505 
   2506 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
   2507 
   2508 	/* Load our MAC address. */
   2509 	m = (const u_int8_t *)CLLADDR(ifp->if_sadl);
   2510 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
   2511 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
   2512 		    | (m[4] << 8) | m[5]);
   2513 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
   2514 
   2515 	/* Enable or disable promiscuous mode as needed. */
   2516 	if (ifp->if_flags & IFF_PROMISC) {
   2517 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
   2518 	} else {
   2519 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
   2520 	}
   2521 
   2522 	/* Program multicast filter. */
   2523 	ti_setmulti(sc);
   2524 
   2525 	/*
   2526 	 * If this is a Tigon 1, we should tell the
   2527 	 * firmware to use software packet filtering.
   2528 	 */
   2529 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2530 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
   2531 	}
   2532 
   2533 	/* Init RX ring. */
   2534 	ti_init_rx_ring_std(sc);
   2535 
   2536 	/* Init jumbo RX ring. */
   2537 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
   2538 		ti_init_rx_ring_jumbo(sc);
   2539 
   2540 	/*
   2541 	 * If this is a Tigon 2, we can also configure the
   2542 	 * mini ring.
   2543 	 */
   2544 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
   2545 		ti_init_rx_ring_mini(sc);
   2546 
   2547 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
   2548 	sc->ti_rx_saved_considx = 0;
   2549 
   2550 	/* Init TX ring. */
   2551 	ti_init_tx_ring(sc);
   2552 
   2553 	/* Tell firmware we're alive. */
   2554 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
   2555 
   2556 	/* Enable host interrupts. */
   2557 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2558 
   2559 	ifp->if_flags |= IFF_RUNNING;
   2560 	ifp->if_flags &= ~IFF_OACTIVE;
   2561 
   2562 	/*
   2563 	 * Make sure to set media properly. We have to do this
   2564 	 * here since we have to issue commands in order to set
   2565 	 * the link negotiation and we can't issue commands until
   2566 	 * the firmware is running.
   2567 	 */
   2568 	ifm = &sc->ifmedia;
   2569 	tmp = ifm->ifm_media;
   2570 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
   2571 	ti_ifmedia_upd(ifp);
   2572 	ifm->ifm_media = tmp;
   2573 }
   2574 
   2575 /*
   2576  * Set media options.
   2577  */
   2578 static int
   2579 ti_ifmedia_upd(struct ifnet *ifp)
   2580 {
   2581 	struct ti_softc		*sc;
   2582 	struct ifmedia		*ifm;
   2583 	struct ti_cmd_desc	cmd;
   2584 
   2585 	sc = ifp->if_softc;
   2586 	ifm = &sc->ifmedia;
   2587 
   2588 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2589 		return (EINVAL);
   2590 
   2591 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
   2592 	case IFM_AUTO:
   2593 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
   2594 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
   2595 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
   2596 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
   2597 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
   2598 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
   2599 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2600 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
   2601 		break;
   2602 	case IFM_1000_SX:
   2603 	case IFM_1000_T:
   2604 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2605 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2606 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
   2607 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2608 		} else {
   2609 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2610 			    TI_GLNK_PREF|TI_GLNK_1000MB|
   2611 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
   2612 		}
   2613 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
   2614 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2615 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
   2616 		break;
   2617 	case IFM_100_FX:
   2618 	case IFM_10_FL:
   2619 	case IFM_100_TX:
   2620 	case IFM_10_T:
   2621 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
   2622 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
   2623 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
   2624 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
   2625 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
   2626 		} else {
   2627 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
   2628 		}
   2629 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2630 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
   2631 		} else {
   2632 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
   2633 		}
   2634 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2635 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
   2636 		break;
   2637 	}
   2638 
   2639 	sc->ethercom.ec_if.if_baudrate =
   2640 	    ifmedia_baudrate(ifm->ifm_media);
   2641 
   2642 	return (0);
   2643 }
   2644 
   2645 /*
   2646  * Report current media status.
   2647  */
   2648 static void
   2649 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   2650 {
   2651 	struct ti_softc		*sc;
   2652 	u_int32_t               media = 0;
   2653 
   2654 	sc = ifp->if_softc;
   2655 
   2656 	ifmr->ifm_status = IFM_AVALID;
   2657 	ifmr->ifm_active = IFM_ETHER;
   2658 
   2659 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
   2660 		return;
   2661 
   2662 	ifmr->ifm_status |= IFM_ACTIVE;
   2663 
   2664 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
   2665 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
   2666 		if (sc->ti_copper)
   2667 			ifmr->ifm_active |= IFM_1000_T;
   2668 		else
   2669 			ifmr->ifm_active |= IFM_1000_SX;
   2670 		if (media & TI_GLNK_FULL_DUPLEX)
   2671 			ifmr->ifm_active |= IFM_FDX;
   2672 		else
   2673 			ifmr->ifm_active |= IFM_HDX;
   2674 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
   2675 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
   2676 		if (sc->ti_copper) {
   2677 			if (media & TI_LNK_100MB)
   2678 				ifmr->ifm_active |= IFM_100_TX;
   2679 			if (media & TI_LNK_10MB)
   2680 				ifmr->ifm_active |= IFM_10_T;
   2681 		} else {
   2682 			if (media & TI_LNK_100MB)
   2683 				ifmr->ifm_active |= IFM_100_FX;
   2684 			if (media & TI_LNK_10MB)
   2685 				ifmr->ifm_active |= IFM_10_FL;
   2686 		}
   2687 		if (media & TI_LNK_FULL_DUPLEX)
   2688 			ifmr->ifm_active |= IFM_FDX;
   2689 		if (media & TI_LNK_HALF_DUPLEX)
   2690 			ifmr->ifm_active |= IFM_HDX;
   2691 	}
   2692 
   2693 	sc->ethercom.ec_if.if_baudrate =
   2694 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
   2695 }
   2696 
   2697 static int
   2698 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2699 {
   2700 	struct ifaddr *ifa = (struct ifaddr *) data;
   2701 	struct ti_softc *sc = ifp->if_softc;
   2702 
   2703 	if ((ifp->if_flags & IFF_UP) == 0) {
   2704 		ifp->if_flags |= IFF_UP;
   2705 		ti_init(sc);
   2706 	}
   2707 
   2708 	switch (cmd) {
   2709 	case SIOCINITIFADDR:
   2710 
   2711 		switch (ifa->ifa_addr->sa_family) {
   2712 #ifdef INET
   2713 		case AF_INET:
   2714 			arp_ifinit(ifp, ifa);
   2715 			break;
   2716 #endif
   2717 		default:
   2718 			break;
   2719 		}
   2720 		break;
   2721 
   2722 	default:
   2723 		return (EINVAL);
   2724 	}
   2725 
   2726 	return (0);
   2727 }
   2728 
   2729 static int
   2730 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
   2731 {
   2732 	struct ti_softc		*sc = ifp->if_softc;
   2733 	struct ifreq		*ifr = (struct ifreq *) data;
   2734 	int			s, error = 0;
   2735 	struct ti_cmd_desc	cmd;
   2736 
   2737 	s = splnet();
   2738 
   2739 	switch (command) {
   2740 	case SIOCINITIFADDR:
   2741 		error = ti_ether_ioctl(ifp, command, data);
   2742 		break;
   2743 	case SIOCSIFMTU:
   2744 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
   2745 			error = EINVAL;
   2746 		else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){
   2747 			ti_init(sc);
   2748 			error = 0;
   2749 		}
   2750 		break;
   2751 	case SIOCSIFFLAGS:
   2752 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   2753 			break;
   2754 		if (ifp->if_flags & IFF_UP) {
   2755 			/*
   2756 			 * If only the state of the PROMISC flag changed,
   2757 			 * then just use the 'set promisc mode' command
   2758 			 * instead of reinitializing the entire NIC. Doing
   2759 			 * a full re-init means reloading the firmware and
   2760 			 * waiting for it to start up, which may take a
   2761 			 * second or two.
   2762 			 */
   2763 			if (ifp->if_flags & IFF_RUNNING &&
   2764 			    ifp->if_flags & IFF_PROMISC &&
   2765 			    !(sc->ti_if_flags & IFF_PROMISC)) {
   2766 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2767 				    TI_CMD_CODE_PROMISC_ENB, 0);
   2768 			} else if (ifp->if_flags & IFF_RUNNING &&
   2769 			    !(ifp->if_flags & IFF_PROMISC) &&
   2770 			    sc->ti_if_flags & IFF_PROMISC) {
   2771 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2772 				    TI_CMD_CODE_PROMISC_DIS, 0);
   2773 			} else
   2774 				ti_init(sc);
   2775 		} else {
   2776 			if (ifp->if_flags & IFF_RUNNING) {
   2777 				ti_stop(sc);
   2778 			}
   2779 		}
   2780 		sc->ti_if_flags = ifp->if_flags;
   2781 		error = 0;
   2782 		break;
   2783 	case SIOCSIFMEDIA:
   2784 	case SIOCGIFMEDIA:
   2785 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
   2786 		break;
   2787 	default:
   2788 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2789 			break;
   2790 
   2791 		error = 0;
   2792 
   2793 		if (command == SIOCSIFCAP)
   2794 			ti_init(sc);
   2795 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2796 			;
   2797 		else if (ifp->if_flags & IFF_RUNNING)
   2798 			ti_setmulti(sc);
   2799 		break;
   2800 	}
   2801 
   2802 	(void)splx(s);
   2803 
   2804 	return (error);
   2805 }
   2806 
   2807 static void
   2808 ti_watchdog(struct ifnet *ifp)
   2809 {
   2810 	struct ti_softc		*sc;
   2811 
   2812 	sc = ifp->if_softc;
   2813 
   2814 	aprint_error_dev(&sc->sc_dev, "watchdog timeout -- resetting\n");
   2815 	ti_stop(sc);
   2816 	ti_init(sc);
   2817 
   2818 	ifp->if_oerrors++;
   2819 }
   2820 
   2821 /*
   2822  * Stop the adapter and free any mbufs allocated to the
   2823  * RX and TX lists.
   2824  */
   2825 static void
   2826 ti_stop(struct ti_softc *sc)
   2827 {
   2828 	struct ifnet		*ifp;
   2829 	struct ti_cmd_desc	cmd;
   2830 
   2831 	ifp = &sc->ethercom.ec_if;
   2832 
   2833 	/* Disable host interrupts. */
   2834 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2835 	/*
   2836 	 * Tell firmware we're shutting down.
   2837 	 */
   2838 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
   2839 
   2840 	/* Halt and reinitialize. */
   2841 	ti_chipinit(sc);
   2842 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
   2843 	ti_chipinit(sc);
   2844 
   2845 	/* Free the RX lists. */
   2846 	ti_free_rx_ring_std(sc);
   2847 
   2848 	/* Free jumbo RX list. */
   2849 	ti_free_rx_ring_jumbo(sc);
   2850 
   2851 	/* Free mini RX list. */
   2852 	ti_free_rx_ring_mini(sc);
   2853 
   2854 	/* Free TX buffers. */
   2855 	ti_free_tx_ring(sc);
   2856 
   2857 	sc->ti_ev_prodidx.ti_idx = 0;
   2858 	sc->ti_return_prodidx.ti_idx = 0;
   2859 	sc->ti_tx_considx.ti_idx = 0;
   2860 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
   2861 
   2862 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2863 }
   2864 
   2865 /*
   2866  * Stop all chip I/O so that the kernel's probe routines don't
   2867  * get confused by errant DMAs when rebooting.
   2868  */
   2869 static void
   2870 ti_shutdown(void *v)
   2871 {
   2872 	struct ti_softc		*sc = v;
   2873 
   2874 	ti_chipinit(sc);
   2875 }
   2876