if_ti.c revision 1.9 1 /* $NetBSD: if_ti.c,v 1.9 2000/09/24 12:37:03 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35 */
36
37 /*
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
41 *
42 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47 /*
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
55 *
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
59 *
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
65 *
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 *
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
81 */
82
83 #include "bpfilter.h"
84 #include "opt_inet.h"
85 #include "opt_ns.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/device.h>
96 #include <sys/reboot.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112
113 #ifdef NS
114 #include <netns/ns.h>
115 #include <netns/ns_if.h>
116 #endif
117
118 #include <machine/bus.h>
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/pci/if_tireg.h>
125 #include <dev/pci/ti_fw.h>
126 #include <dev/pci/ti_fw2.h>
127
128 #ifdef M_HWCKSUM
129 /*#define TI_CSUM_OFFLOAD*/
130 #endif
131
132 /*
133 * Various supported device vendors/types and their names.
134 */
135
136 static struct ti_type ti_devs[] = {
137 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
138 "Alteon AceNIC Gigabit Ethernet" },
139 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
140 "3Com 3c985-SX Gigabit Ethernet" },
141 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
142 "Netgear GA620 Gigabit Ethernet" },
143 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
144 "Silicon Graphics Gigabit Ethernet" },
145 { 0, 0, NULL }
146 };
147
148 static struct ti_type *ti_type_match __P((struct pci_attach_args *));
149 static int ti_probe __P((struct device *, struct cfdata *, void *));
150 static void ti_attach __P((struct device *, struct device *, void *));
151 static void ti_shutdown __P((void *));
152 static void ti_txeof __P((struct ti_softc *));
153 static void ti_rxeof __P((struct ti_softc *));
154
155 static void ti_stats_update __P((struct ti_softc *));
156 static int ti_encap __P((struct ti_softc *, struct mbuf *,
157 u_int32_t *));
158
159 static int ti_intr __P((void *));
160 static void ti_start __P((struct ifnet *));
161 static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
162 static void ti_init __P((void *));
163 static void ti_init2 __P((struct ti_softc *));
164 static void ti_stop __P((struct ti_softc *));
165 static void ti_watchdog __P((struct ifnet *));
166 static int ti_ifmedia_upd __P((struct ifnet *));
167 static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
168
169 static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
170 static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
171 int, u_int8_t *));
172 static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
173
174 static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
175 static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
176 static void ti_setmulti __P((struct ti_softc *));
177
178 static void ti_mem __P((struct ti_softc *, u_int32_t,
179 u_int32_t, caddr_t));
180 static void ti_loadfw __P((struct ti_softc *));
181 static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
182 static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
183 caddr_t, int));
184 static void ti_handle_events __P((struct ti_softc *));
185 static int ti_alloc_jumbo_mem __P((struct ti_softc *));
186 static void *ti_jalloc __P((struct ti_softc *));
187 static void ti_jfree __P((caddr_t, u_int, void *));
188 static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
189 static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
190 static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
191 static int ti_init_rx_ring_std __P((struct ti_softc *));
192 static void ti_free_rx_ring_std __P((struct ti_softc *));
193 static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
194 static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
195 static int ti_init_rx_ring_mini __P((struct ti_softc *));
196 static void ti_free_rx_ring_mini __P((struct ti_softc *));
197 static void ti_free_tx_ring __P((struct ti_softc *));
198 static int ti_init_tx_ring __P((struct ti_softc *));
199
200 static int ti_64bitslot_war __P((struct ti_softc *));
201 static int ti_chipinit __P((struct ti_softc *));
202 static int ti_gibinit __P((struct ti_softc *));
203
204 static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
205
206 struct cfattach ti_ca = {
207 sizeof(struct ti_softc), ti_probe, ti_attach
208 };
209
210 /*
211 * Send an instruction or address to the EEPROM, check for ACK.
212 */
213 static u_int32_t ti_eeprom_putbyte(sc, byte)
214 struct ti_softc *sc;
215 int byte;
216 {
217 int i, ack = 0;
218
219 /*
220 * Make sure we're in TX mode.
221 */
222 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
223
224 /*
225 * Feed in each bit and stobe the clock.
226 */
227 for (i = 0x80; i; i >>= 1) {
228 if (byte & i) {
229 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
230 } else {
231 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
232 }
233 DELAY(1);
234 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
235 DELAY(1);
236 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
237 }
238
239 /*
240 * Turn off TX mode.
241 */
242 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
243
244 /*
245 * Check for ack.
246 */
247 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
249 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250
251 return(ack);
252 }
253
254 /*
255 * Read a byte of data stored in the EEPROM at address 'addr.'
256 * We have to send two address bytes since the EEPROM can hold
257 * more than 256 bytes of data.
258 */
259 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
260 struct ti_softc *sc;
261 int addr;
262 u_int8_t *dest;
263 {
264 int i;
265 u_int8_t byte = 0;
266
267 EEPROM_START;
268
269 /*
270 * Send write control code to EEPROM.
271 */
272 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
273 printf("%s: failed to send write command, status: %x\n",
274 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
275 return(1);
276 }
277
278 /*
279 * Send first byte of address of byte we want to read.
280 */
281 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
282 printf("%s: failed to send address, status: %x\n",
283 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
284 return(1);
285 }
286 /*
287 * Send second byte address of byte we want to read.
288 */
289 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
290 printf("%s: failed to send address, status: %x\n",
291 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
292 return(1);
293 }
294
295 EEPROM_STOP;
296 EEPROM_START;
297 /*
298 * Send read control code to EEPROM.
299 */
300 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
301 printf("%s: failed to send read command, status: %x\n",
302 sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 return(1);
304 }
305
306 /*
307 * Start reading bits from EEPROM.
308 */
309 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
310 for (i = 0x80; i; i >>= 1) {
311 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
312 DELAY(1);
313 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
314 byte |= i;
315 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316 DELAY(1);
317 }
318
319 EEPROM_STOP;
320
321 /*
322 * No ACK generated for read, so just return byte.
323 */
324
325 *dest = byte;
326
327 return(0);
328 }
329
330 /*
331 * Read a sequence of bytes from the EEPROM.
332 */
333 static int ti_read_eeprom(sc, dest, off, cnt)
334 struct ti_softc *sc;
335 caddr_t dest;
336 int off;
337 int cnt;
338 {
339 int err = 0, i;
340 u_int8_t byte = 0;
341
342 for (i = 0; i < cnt; i++) {
343 err = ti_eeprom_getbyte(sc, off + i, &byte);
344 if (err)
345 break;
346 *(dest + i) = byte;
347 }
348
349 return(err ? 1 : 0);
350 }
351
352 /*
353 * NIC memory access function. Can be used to either clear a section
354 * of NIC local memory or (if buf is non-NULL) copy data into it.
355 */
356 static void ti_mem(sc, addr, len, buf)
357 struct ti_softc *sc;
358 u_int32_t addr, len;
359 caddr_t buf;
360 {
361 int segptr, segsize, cnt;
362 caddr_t ptr;
363
364 segptr = addr;
365 cnt = len;
366 ptr = buf;
367
368 while(cnt) {
369 if (cnt < TI_WINLEN)
370 segsize = cnt;
371 else
372 segsize = TI_WINLEN - (segptr % TI_WINLEN);
373 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
374 if (buf == NULL) {
375 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
376 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
377 segsize / 4);
378 } else {
379 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
380 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
381 (u_int32_t *)ptr, segsize / 4);
382 ptr += segsize;
383 }
384 segptr += segsize;
385 cnt -= segsize;
386 }
387
388 return;
389 }
390
391 /*
392 * Load firmware image into the NIC. Check that the firmware revision
393 * is acceptable and see if we want the firmware for the Tigon 1 or
394 * Tigon 2.
395 */
396 static void ti_loadfw(sc)
397 struct ti_softc *sc;
398 {
399 switch(sc->ti_hwrev) {
400 case TI_HWREV_TIGON:
401 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
402 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
403 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
404 printf("%s: firmware revision mismatch; want "
405 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
406 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
407 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
408 tigonFwReleaseMinor, tigonFwReleaseFix);
409 return;
410 }
411 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
412 (caddr_t)tigonFwText);
413 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
414 (caddr_t)tigonFwData);
415 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
416 (caddr_t)tigonFwRodata);
417 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
418 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
419 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
420 break;
421 case TI_HWREV_TIGON_II:
422 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
423 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
424 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
425 printf("%s: firmware revision mismatch; want "
426 "%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
427 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
428 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
429 tigon2FwReleaseMinor, tigon2FwReleaseFix);
430 return;
431 }
432 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
433 (caddr_t)tigon2FwText);
434 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
435 (caddr_t)tigon2FwData);
436 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
437 (caddr_t)tigon2FwRodata);
438 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
439 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
440 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
441 break;
442 default:
443 printf("%s: can't load firmware: unknown hardware rev\n",
444 sc->sc_dev.dv_xname);
445 break;
446 }
447
448 return;
449 }
450
451 /*
452 * Send the NIC a command via the command ring.
453 */
454 static void ti_cmd(sc, cmd)
455 struct ti_softc *sc;
456 struct ti_cmd_desc *cmd;
457 {
458 u_int32_t index;
459
460 index = sc->ti_cmd_saved_prodidx;
461 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
462 TI_INC(index, TI_CMD_RING_CNT);
463 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
464 sc->ti_cmd_saved_prodidx = index;
465
466 return;
467 }
468
469 /*
470 * Send the NIC an extended command. The 'len' parameter specifies the
471 * number of command slots to include after the initial command.
472 */
473 static void ti_cmd_ext(sc, cmd, arg, len)
474 struct ti_softc *sc;
475 struct ti_cmd_desc *cmd;
476 caddr_t arg;
477 int len;
478 {
479 u_int32_t index;
480 int i;
481
482 index = sc->ti_cmd_saved_prodidx;
483 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
484 TI_INC(index, TI_CMD_RING_CNT);
485 for (i = 0; i < len; i++) {
486 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
487 *(u_int32_t *)(&arg[i * 4]));
488 TI_INC(index, TI_CMD_RING_CNT);
489 }
490 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
491 sc->ti_cmd_saved_prodidx = index;
492
493 return;
494 }
495
496 /*
497 * Handle events that have triggered interrupts.
498 */
499 static void ti_handle_events(sc)
500 struct ti_softc *sc;
501 {
502 struct ti_event_desc *e;
503
504 if (sc->ti_rdata->ti_event_ring == NULL)
505 return;
506
507 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
508 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
509 switch(e->ti_event) {
510 case TI_EV_LINKSTAT_CHANGED:
511 sc->ti_linkstat = e->ti_code;
512 if (e->ti_code == TI_EV_CODE_LINK_UP)
513 printf("%s: 10/100 link up\n",
514 sc->sc_dev.dv_xname);
515 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
516 printf("%s: gigabit link up\n",
517 sc->sc_dev.dv_xname);
518 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
519 printf("%s: link down\n",
520 sc->sc_dev.dv_xname);
521 break;
522 case TI_EV_ERROR:
523 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
524 printf("%s: invalid command\n",
525 sc->sc_dev.dv_xname);
526 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
527 printf("%s: unknown command\n",
528 sc->sc_dev.dv_xname);
529 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
530 printf("%s: bad config data\n",
531 sc->sc_dev.dv_xname);
532 break;
533 case TI_EV_FIRMWARE_UP:
534 ti_init2(sc);
535 break;
536 case TI_EV_STATS_UPDATED:
537 ti_stats_update(sc);
538 break;
539 case TI_EV_RESET_JUMBO_RING:
540 case TI_EV_MCAST_UPDATED:
541 /* Who cares. */
542 break;
543 default:
544 printf("%s: unknown event: %d\n",
545 sc->sc_dev.dv_xname, e->ti_event);
546 break;
547 }
548 /* Advance the consumer index. */
549 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
550 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
551 }
552
553 return;
554 }
555
556 /*
557 * Memory management for the jumbo receive ring is a pain in the
558 * butt. We need to allocate at least 9018 bytes of space per frame,
559 * _and_ it has to be contiguous (unless you use the extended
560 * jumbo descriptor format). Using malloc() all the time won't
561 * work: malloc() allocates memory in powers of two, which means we
562 * would end up wasting a considerable amount of space by allocating
563 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
564 * to do our own memory management.
565 *
566 * The driver needs to allocate a contiguous chunk of memory at boot
567 * time. We then chop this up ourselves into 9K pieces and use them
568 * as external mbuf storage.
569 *
570 * One issue here is how much memory to allocate. The jumbo ring has
571 * 256 slots in it, but at 9K per slot than can consume over 2MB of
572 * RAM. This is a bit much, especially considering we also need
573 * RAM for the standard ring and mini ring (on the Tigon 2). To
574 * save space, we only actually allocate enough memory for 64 slots
575 * by default, which works out to between 500 and 600K. This can
576 * be tuned by changing a #define in if_tireg.h.
577 */
578
579 static int ti_alloc_jumbo_mem(sc)
580 struct ti_softc *sc;
581 {
582 caddr_t ptr;
583 int i;
584 struct ti_jpool_entry *entry;
585 bus_dma_segment_t dmaseg;
586 int error, dmanseg;
587
588 /* Grab a big chunk o' storage. */
589 if ((error = bus_dmamem_alloc(sc->sc_dmat,
590 TI_JMEM, NBPG, 0, &dmaseg, 1, &dmanseg,
591 BUS_DMA_NOWAIT)) != 0) {
592 printf("%s: can't allocate jumbo buffer, error = %d\n",
593 sc->sc_dev.dv_xname, error);
594 return (error);
595 }
596
597 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
598 TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
599 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
600 printf("%s: can't map jumbo buffer, error = %d\n",
601 sc->sc_dev.dv_xname, error);
602 return (error);
603 }
604
605 if ((error = bus_dmamap_create(sc->sc_dmat,
606 TI_JMEM, 1,
607 TI_JMEM, 0, BUS_DMA_NOWAIT,
608 &sc->jumbo_dmamap)) != 0) {
609 printf("%s: can't create jumbo buffer DMA map, error = %d\n",
610 sc->sc_dev.dv_xname, error);
611 return (error);
612 }
613
614 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
615 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
616 BUS_DMA_NOWAIT)) != 0) {
617 printf("%s: can't load jumbo buffer DMA map, error = %d\n",
618 sc->sc_dev.dv_xname, error);
619 return (error);
620 }
621 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
622
623 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
624 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
625
626 /*
627 * Now divide it up into 9K pieces and save the addresses
628 * in an array. Note that we play an evil trick here by using
629 * the first few bytes in the buffer to hold the address
630 * of the softc structure for this interface. This is because
631 * ti_jfree() needs it, but it is called by the mbuf management
632 * code which will not pass it to us explicitly.
633 */
634 ptr = sc->ti_cdata.ti_jumbo_buf;
635 for (i = 0; i < TI_JSLOTS; i++) {
636 u_int64_t **aptr;
637 aptr = (u_int64_t **)ptr;
638 aptr[0] = (u_int64_t *)sc;
639 ptr += sizeof(u_int64_t);
640 sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
641 sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
642 ptr += (TI_JLEN - sizeof(u_int64_t));
643 entry = malloc(sizeof(struct ti_jpool_entry),
644 M_DEVBUF, M_NOWAIT);
645 if (entry == NULL) {
646 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
647 sc->ti_cdata.ti_jumbo_buf = NULL;
648 printf("%s: no memory for jumbo "
649 "buffer queue!\n", sc->sc_dev.dv_xname);
650 return(ENOBUFS);
651 }
652 entry->slot = i;
653 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
654 jpool_entries);
655 }
656
657 return(0);
658 }
659
660 /*
661 * Allocate a jumbo buffer.
662 */
663 static void *ti_jalloc(sc)
664 struct ti_softc *sc;
665 {
666 struct ti_jpool_entry *entry;
667
668 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
669
670 if (entry == NULL) {
671 printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
672 return(NULL);
673 }
674
675 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
676 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
677 sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
678 return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
679 }
680
681 /*
682 * Release a jumbo buffer.
683 */
684 static void ti_jfree(buf, size, arg)
685 caddr_t buf;
686 u_int size;
687 void *arg; /* XXX NetBSD: we should really use it */
688 {
689 struct ti_softc *sc;
690 u_int64_t **aptr;
691 int i;
692 struct ti_jpool_entry *entry;
693
694 /* Extract the softc struct pointer. */
695 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
696 sc = (struct ti_softc *)(aptr[0]);
697
698 if (sc == NULL)
699 panic("ti_jfree: can't find softc pointer!");
700
701 if (size != TI_JUMBO_FRAMELEN)
702 panic("ti_jfree: freeing buffer of wrong size!");
703
704 /* calculate the slot this buffer belongs to */
705
706 i = ((caddr_t)aptr
707 - (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
708
709 if ((i < 0) || (i >= TI_JSLOTS))
710 panic("ti_jfree: asked to free buffer that we don't manage!");
711 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
712 panic("ti_jfree: buffer already free!");
713 else {
714 sc->ti_cdata.ti_jslots[i].ti_inuse--;
715 if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
716 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
717 if (entry == NULL)
718 panic("ti_jfree: buffer not in use!");
719 entry->slot = i;
720 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
721 entry, jpool_entries);
722 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
723 entry, jpool_entries);
724 }
725 }
726
727 return;
728 }
729
730
731 /*
732 * Intialize a standard receive ring descriptor.
733 */
734 static int ti_newbuf_std(sc, i, m, dmamap)
735 struct ti_softc *sc;
736 int i;
737 struct mbuf *m;
738 bus_dmamap_t dmamap; /* required if (m != NULL) */
739 {
740 struct mbuf *m_new = NULL;
741 struct ti_rx_desc *r;
742 int error;
743
744 if (dmamap == NULL) {
745 /* if (m) panic() */
746
747 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
748 MCLBYTES, 0, BUS_DMA_NOWAIT,
749 &dmamap)) != 0) {
750 printf("%s: can't create recv map, error = %d\n",
751 sc->sc_dev.dv_xname, error);
752 return(ENOMEM);
753 }
754 }
755 sc->std_dmamap[i] = dmamap;
756
757 if (m == NULL) {
758 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
759 if (m_new == NULL) {
760 printf("%s: mbuf allocation failed "
761 "-- packet dropped!\n", sc->sc_dev.dv_xname);
762 return(ENOBUFS);
763 }
764
765 MCLGET(m_new, M_DONTWAIT);
766 if (!(m_new->m_flags & M_EXT)) {
767 printf("%s: cluster allocation failed "
768 "-- packet dropped!\n", sc->sc_dev.dv_xname);
769 m_freem(m_new);
770 return(ENOBUFS);
771 }
772 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
773 m_adj(m_new, ETHER_ALIGN);
774
775 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
776 mtod(m_new, caddr_t), m_new->m_len, NULL,
777 BUS_DMA_NOWAIT)) != 0) {
778 printf("%s: can't load recv map, error = %d\n",
779 sc->sc_dev.dv_xname, error);
780 return (ENOMEM);
781 }
782 } else {
783 m_new = m;
784 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
785 m_new->m_data = m_new->m_ext.ext_buf;
786 m_adj(m_new, ETHER_ALIGN);
787
788 /* reuse the dmamap */
789 }
790
791 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
792 r = &sc->ti_rdata->ti_rx_std_ring[i];
793 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
794 r->ti_type = TI_BDTYPE_RECV_BD;
795 #ifdef TI_CSUM_OFFLOAD
796 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
797 #else
798 r->ti_flags = 0;
799 #endif
800 r->ti_len = m_new->m_len; /* == ds_len */
801 r->ti_idx = i;
802
803 return(0);
804 }
805
806 /*
807 * Intialize a mini receive ring descriptor. This only applies to
808 * the Tigon 2.
809 */
810 static int ti_newbuf_mini(sc, i, m, dmamap)
811 struct ti_softc *sc;
812 int i;
813 struct mbuf *m;
814 bus_dmamap_t dmamap; /* required if (m != NULL) */
815 {
816 struct mbuf *m_new = NULL;
817 struct ti_rx_desc *r;
818 int error;
819
820 if (dmamap == NULL) {
821 /* if (m) panic() */
822
823 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
824 MHLEN, 0, BUS_DMA_NOWAIT,
825 &dmamap)) != 0) {
826 printf("%s: can't create recv map, error = %d\n",
827 sc->sc_dev.dv_xname, error);
828 return(ENOMEM);
829 }
830 }
831 sc->mini_dmamap[i] = dmamap;
832
833 if (m == NULL) {
834 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
835 if (m_new == NULL) {
836 printf("%s: mbuf allocation failed "
837 "-- packet dropped!\n", sc->sc_dev.dv_xname);
838 return(ENOBUFS);
839 }
840 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
841 m_adj(m_new, ETHER_ALIGN);
842
843 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
844 mtod(m_new, caddr_t), m_new->m_len, NULL,
845 BUS_DMA_NOWAIT)) != 0) {
846 printf("%s: can't load recv map, error = %d\n",
847 sc->sc_dev.dv_xname, error);
848 return (ENOMEM);
849 }
850 } else {
851 m_new = m;
852 m_new->m_data = m_new->m_pktdat;
853 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
854 m_adj(m_new, ETHER_ALIGN);
855
856 /* reuse the dmamap */
857 }
858
859 r = &sc->ti_rdata->ti_rx_mini_ring[i];
860 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
861 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
862 r->ti_type = TI_BDTYPE_RECV_BD;
863 r->ti_flags = TI_BDFLAG_MINI_RING;
864 #ifdef TI_CSUM_OFFLOAD
865 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
866 #endif
867 r->ti_len = m_new->m_len; /* == ds_len */
868 r->ti_idx = i;
869
870 return(0);
871 }
872
873 /*
874 * Initialize a jumbo receive ring descriptor. This allocates
875 * a jumbo buffer from the pool managed internally by the driver.
876 */
877 static int ti_newbuf_jumbo(sc, i, m)
878 struct ti_softc *sc;
879 int i;
880 struct mbuf *m;
881 {
882 struct mbuf *m_new = NULL;
883 struct ti_rx_desc *r;
884
885 if (m == NULL) {
886 caddr_t *buf = NULL;
887
888 /* Allocate the mbuf. */
889 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
890 if (m_new == NULL) {
891 printf("%s: mbuf allocation failed "
892 "-- packet dropped!\n", sc->sc_dev.dv_xname);
893 return(ENOBUFS);
894 }
895
896 /* Allocate the jumbo buffer */
897 buf = ti_jalloc(sc);
898 if (buf == NULL) {
899 m_freem(m_new);
900 printf("%s: jumbo allocation failed "
901 "-- packet dropped!\n", sc->sc_dev.dv_xname);
902 return(ENOBUFS);
903 }
904
905 /* Attach the buffer to the mbuf. */
906 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
907 m_new->m_flags |= M_EXT;
908 m_new->m_len = m_new->m_pkthdr.len =
909 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
910 m_new->m_ext.ext_free = ti_jfree;
911 m_new->m_ext.ext_arg = sc;
912 MCLINITREFERENCE(m_new);
913 } else {
914 m_new = m;
915 m_new->m_data = m_new->m_ext.ext_buf;
916 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
917 }
918
919 m_adj(m_new, ETHER_ALIGN);
920 /* Set up the descriptor. */
921 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
922 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
923 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
924 ((caddr_t)mtod(m_new, caddr_t)
925 - (caddr_t)sc->ti_cdata.ti_jumbo_buf);
926 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
927 r->ti_flags = TI_BDFLAG_JUMBO_RING;
928 #ifdef TI_CSUM_OFFLOAD
929 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
930 #endif
931 r->ti_len = m_new->m_len;
932 r->ti_idx = i;
933
934 return(0);
935 }
936
937 /*
938 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
939 * that's 1MB or memory, which is a lot. For now, we fill only the first
940 * 256 ring entries and hope that our CPU is fast enough to keep up with
941 * the NIC.
942 */
943 static int ti_init_rx_ring_std(sc)
944 struct ti_softc *sc;
945 {
946 int i;
947 struct ti_cmd_desc cmd;
948
949 for (i = 0; i < TI_SSLOTS; i++) {
950 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
951 return(ENOBUFS);
952 };
953
954 TI_UPDATE_STDPROD(sc, i - 1);
955 sc->ti_std = i - 1;
956
957 return(0);
958 }
959
960 static void ti_free_rx_ring_std(sc)
961 struct ti_softc *sc;
962 {
963 int i;
964
965 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
966 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
967 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
968 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
969
970 /* if (sc->std_dmamap[i] == 0) panic() */
971 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
972 sc->std_dmamap[i] = 0;
973 }
974 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
975 sizeof(struct ti_rx_desc));
976 }
977
978 return;
979 }
980
981 static int ti_init_rx_ring_jumbo(sc)
982 struct ti_softc *sc;
983 {
984 int i;
985 struct ti_cmd_desc cmd;
986
987 for (i = 0; i < (TI_JSLOTS - 20); i++) {
988 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
989 return(ENOBUFS);
990 };
991
992 TI_UPDATE_JUMBOPROD(sc, i - 1);
993 sc->ti_jumbo = i - 1;
994
995 return(0);
996 }
997
998 static void ti_free_rx_ring_jumbo(sc)
999 struct ti_softc *sc;
1000 {
1001 int i;
1002
1003 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1004 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1005 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1006 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1007 }
1008 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1009 sizeof(struct ti_rx_desc));
1010 }
1011
1012 return;
1013 }
1014
1015 static int ti_init_rx_ring_mini(sc)
1016 struct ti_softc *sc;
1017 {
1018 int i;
1019
1020 for (i = 0; i < TI_MSLOTS; i++) {
1021 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
1022 return(ENOBUFS);
1023 };
1024
1025 TI_UPDATE_MINIPROD(sc, i - 1);
1026 sc->ti_mini = i - 1;
1027
1028 return(0);
1029 }
1030
1031 static void ti_free_rx_ring_mini(sc)
1032 struct ti_softc *sc;
1033 {
1034 int i;
1035
1036 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1037 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1038 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1039 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1040
1041 /* if (sc->mini_dmamap[i] == 0) panic() */
1042 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1043 sc->mini_dmamap[i] = 0;
1044 }
1045 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1046 sizeof(struct ti_rx_desc));
1047 }
1048
1049 return;
1050 }
1051
1052 static void ti_free_tx_ring(sc)
1053 struct ti_softc *sc;
1054 {
1055 int i;
1056 struct txdmamap_pool_entry *dma;
1057
1058 if (sc->ti_rdata->ti_tx_ring == NULL)
1059 return;
1060
1061 for (i = 0; i < TI_TX_RING_CNT; i++) {
1062 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1063 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1064 sc->ti_cdata.ti_tx_chain[i] = NULL;
1065
1066 /* if (sc->txdma[i] == 0) panic() */
1067 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1068 link);
1069 sc->txdma[i] = 0;
1070 }
1071 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1072 sizeof(struct ti_tx_desc));
1073 }
1074
1075 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1076 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
1077 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1078 free(dma, M_DEVBUF);
1079 }
1080
1081 return;
1082 }
1083
1084 static int ti_init_tx_ring(sc)
1085 struct ti_softc *sc;
1086 {
1087 int i, error;
1088 bus_dmamap_t dmamap;
1089 struct txdmamap_pool_entry *dma;
1090
1091 sc->ti_txcnt = 0;
1092 sc->ti_tx_saved_considx = 0;
1093 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1094
1095 SIMPLEQ_INIT(&sc->txdma_list);
1096 for (i = 0; i < TI_RSLOTS; i++) {
1097 /* I've seen mbufs with 30 fragments. */
1098 if ((error = bus_dmamap_create(sc->sc_dmat, TI_JUMBO_FRAMELEN,
1099 40, TI_JUMBO_FRAMELEN, 0,
1100 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1101 printf("%s: can't create tx map, error = %d\n",
1102 sc->sc_dev.dv_xname, error);
1103 return(ENOMEM);
1104 }
1105 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1106 if (!dma) {
1107 printf("%s: can't alloc txdmamap_pool_entry\n",
1108 sc->sc_dev.dv_xname);
1109 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1110 return (ENOMEM);
1111 }
1112 dma->dmamap = dmamap;
1113 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1114 }
1115
1116 return(0);
1117 }
1118
1119 /*
1120 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1121 * but we have to support the old way too so that Tigon 1 cards will
1122 * work.
1123 */
1124 void ti_add_mcast(sc, addr)
1125 struct ti_softc *sc;
1126 struct ether_addr *addr;
1127 {
1128 struct ti_cmd_desc cmd;
1129 u_int16_t *m;
1130 u_int32_t ext[2] = {0, 0};
1131
1132 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1133
1134 switch(sc->ti_hwrev) {
1135 case TI_HWREV_TIGON:
1136 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1137 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1138 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1139 break;
1140 case TI_HWREV_TIGON_II:
1141 ext[0] = htons(m[0]);
1142 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1143 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1144 break;
1145 default:
1146 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1147 break;
1148 }
1149
1150 return;
1151 }
1152
1153 void ti_del_mcast(sc, addr)
1154 struct ti_softc *sc;
1155 struct ether_addr *addr;
1156 {
1157 struct ti_cmd_desc cmd;
1158 u_int16_t *m;
1159 u_int32_t ext[2] = {0, 0};
1160
1161 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1162
1163 switch(sc->ti_hwrev) {
1164 case TI_HWREV_TIGON:
1165 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1166 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1167 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1168 break;
1169 case TI_HWREV_TIGON_II:
1170 ext[0] = htons(m[0]);
1171 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1172 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1173 break;
1174 default:
1175 printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
1176 break;
1177 }
1178
1179 return;
1180 }
1181
1182 /*
1183 * Configure the Tigon's multicast address filter.
1184 *
1185 * The actual multicast table management is a bit of a pain, thanks to
1186 * slight brain damage on the part of both Alteon and us. With our
1187 * multicast code, we are only alerted when the multicast address table
1188 * changes and at that point we only have the current list of addresses:
1189 * we only know the current state, not the previous state, so we don't
1190 * actually know what addresses were removed or added. The firmware has
1191 * state, but we can't get our grubby mits on it, and there is no 'delete
1192 * all multicast addresses' command. Hence, we have to maintain our own
1193 * state so we know what addresses have been programmed into the NIC at
1194 * any given time.
1195 */
1196 static void ti_setmulti(sc)
1197 struct ti_softc *sc;
1198 {
1199 struct ifnet *ifp;
1200 struct ti_cmd_desc cmd;
1201 struct ti_mc_entry *mc;
1202 u_int32_t intrs;
1203 struct ether_multi *enm;
1204 struct ether_multistep step;
1205
1206 ifp = &sc->ethercom.ec_if;
1207
1208 if (ifp->if_flags & IFF_ALLMULTI) {
1209 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1210 return;
1211 } else {
1212 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1213 }
1214
1215 /* Disable interrupts. */
1216 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1217 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1218
1219 /* First, zot all the existing filters. */
1220 while (SIMPLEQ_FIRST(&sc->ti_mc_listhead) != NULL) {
1221 mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead);
1222 ti_del_mcast(sc, &mc->mc_addr);
1223 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1224 free(mc, M_DEVBUF);
1225 }
1226
1227 /* Now program new ones. */
1228 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1229 while (enm != NULL) {
1230 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1231 bcopy(enm->enm_addrlo,
1232 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1233 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1234 ti_add_mcast(sc, &mc->mc_addr);
1235 ETHER_NEXT_MULTI(step, enm);
1236 }
1237
1238 /* Re-enable interrupts. */
1239 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1240
1241 return;
1242 }
1243
1244 /*
1245 * Check to see if the BIOS has configured us for a 64 bit slot when
1246 * we aren't actually in one. If we detect this condition, we can work
1247 * around it on the Tigon 2 by setting a bit in the PCI state register,
1248 * but for the Tigon 1 we must give up and abort the interface attach.
1249 */
1250 static int ti_64bitslot_war(sc)
1251 struct ti_softc *sc;
1252 {
1253 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1254 CSR_WRITE_4(sc, 0x600, 0);
1255 CSR_WRITE_4(sc, 0x604, 0);
1256 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1257 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1258 if (sc->ti_hwrev == TI_HWREV_TIGON)
1259 return(EINVAL);
1260 else {
1261 TI_SETBIT(sc, TI_PCI_STATE,
1262 TI_PCISTATE_32BIT_BUS);
1263 return(0);
1264 }
1265 }
1266 }
1267
1268 return(0);
1269 }
1270
1271 /*
1272 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1273 * self-test results.
1274 */
1275 static int ti_chipinit(sc)
1276 struct ti_softc *sc;
1277 {
1278 u_int32_t cacheline;
1279 u_int32_t pci_writemax = 0;
1280
1281 /* Initialize link to down state. */
1282 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1283
1284 /* Set endianness before we access any non-PCI registers. */
1285 #if BYTE_ORDER == BIG_ENDIAN
1286 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1287 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1288 #else
1289 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1290 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1291 #endif
1292
1293 /* Check the ROM failed bit to see if self-tests passed. */
1294 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1295 printf("%s: board self-diagnostics failed!\n",
1296 sc->sc_dev.dv_xname);
1297 return(ENODEV);
1298 }
1299
1300 /* Halt the CPU. */
1301 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1302
1303 /* Figure out the hardware revision. */
1304 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1305 case TI_REV_TIGON_I:
1306 sc->ti_hwrev = TI_HWREV_TIGON;
1307 break;
1308 case TI_REV_TIGON_II:
1309 sc->ti_hwrev = TI_HWREV_TIGON_II;
1310 break;
1311 default:
1312 printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
1313 return(ENODEV);
1314 }
1315
1316 /* Do special setup for Tigon 2. */
1317 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1318 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1319 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1320 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1321 }
1322
1323 /* Set up the PCI state register. */
1324 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1325 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1326 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1327 }
1328
1329 /* Clear the read/write max DMA parameters. */
1330 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1331 TI_PCISTATE_READ_MAXDMA));
1332
1333 /* Get cache line size. */
1334 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1335
1336 /*
1337 * If the system has set enabled the PCI memory write
1338 * and invalidate command in the command register, set
1339 * the write max parameter accordingly. This is necessary
1340 * to use MWI with the Tigon 2.
1341 */
1342 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1343 & PCI_COMMAND_INVALIDATE_ENABLE) {
1344 switch(cacheline) {
1345 case 1:
1346 case 4:
1347 case 8:
1348 case 16:
1349 case 32:
1350 case 64:
1351 break;
1352 default:
1353 /* Disable PCI memory write and invalidate. */
1354 if (bootverbose)
1355 printf("%s: cache line size %d not "
1356 "supported; disabling PCI MWI\n",
1357 sc->sc_dev.dv_xname, cacheline);
1358 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1359 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1360 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1361 break;
1362 }
1363 }
1364
1365 #ifdef __brokenalpha__
1366 /*
1367 * From the Alteon sample driver:
1368 * Must insure that we do not cross an 8K (bytes) boundary
1369 * for DMA reads. Our highest limit is 1K bytes. This is a
1370 * restriction on some ALPHA platforms with early revision
1371 * 21174 PCI chipsets, such as the AlphaPC 164lx
1372 */
1373 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1374 #else
1375 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1376 #endif
1377
1378 /* This sets the min dma param all the way up (0xff). */
1379 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1380
1381 /* Configure DMA variables. */
1382 #if BYTE_ORDER == BIG_ENDIAN
1383 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1384 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1385 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1386 TI_OPMODE_DONT_FRAG_JUMBO);
1387 #else
1388 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1389 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1390 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1391 #endif
1392
1393 /*
1394 * Only allow 1 DMA channel to be active at a time.
1395 * I don't think this is a good idea, but without it
1396 * the firmware racks up lots of nicDmaReadRingFull
1397 * errors.
1398 */
1399 #ifndef TI_CSUM_OFFLOAD
1400 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1401 #endif
1402
1403 /* Recommended settings from Tigon manual. */
1404 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1405 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1406
1407 if (ti_64bitslot_war(sc)) {
1408 printf("%s: bios thinks we're in a 64 bit slot, "
1409 "but we aren't", sc->sc_dev.dv_xname);
1410 return(EINVAL);
1411 }
1412
1413 return(0);
1414 }
1415
1416 /*
1417 * Initialize the general information block and firmware, and
1418 * start the CPU(s) running.
1419 */
1420 static int ti_gibinit(sc)
1421 struct ti_softc *sc;
1422 {
1423 struct ti_rcb *rcb;
1424 int i;
1425 struct ifnet *ifp;
1426
1427 ifp = &sc->ethercom.ec_if;
1428
1429 /* Disable interrupts for now. */
1430 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1431
1432 /* Tell the chip where to find the general information block. */
1433 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1434 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
1435 ((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
1436
1437 /* Load the firmware into SRAM. */
1438 ti_loadfw(sc);
1439
1440 /* Set up the contents of the general info and ring control blocks. */
1441
1442 /* Set up the event ring and producer pointer. */
1443 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1444
1445 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1446 ((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
1447 rcb->ti_flags = 0;
1448 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1449 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
1450 - (caddr_t)sc->ti_rdata);
1451 sc->ti_ev_prodidx.ti_idx = 0;
1452 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1453 sc->ti_ev_saved_considx = 0;
1454
1455 /* Set up the command ring and producer mailbox. */
1456 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1457
1458 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1459 rcb->ti_flags = 0;
1460 rcb->ti_max_len = 0;
1461 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1462 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1463 }
1464 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1465 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1466 sc->ti_cmd_saved_prodidx = 0;
1467
1468 /*
1469 * Assign the address of the stats refresh buffer.
1470 * We re-use the current stats buffer for this to
1471 * conserve memory.
1472 */
1473 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1474 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
1475 - (caddr_t)sc->ti_rdata);
1476
1477 /* Set up the standard receive ring. */
1478 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1479 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1480 ((caddr_t)&sc->ti_rdata->ti_rx_std_ring
1481 - (caddr_t)sc->ti_rdata);
1482 rcb->ti_max_len = TI_FRAMELEN;
1483 rcb->ti_flags = 0;
1484 #ifdef TI_CSUM_OFFLOAD
1485 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1486 #endif
1487 #if NVLAN > 0
1488 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1489 #endif
1490
1491 /* Set up the jumbo receive ring. */
1492 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1493 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1494 ((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
1495 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1496 rcb->ti_flags = 0;
1497 #ifdef TI_CSUM_OFFLOAD
1498 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1499 #endif
1500 #if NVLAN > 0
1501 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1502 #endif
1503
1504 /*
1505 * Set up the mini ring. Only activated on the
1506 * Tigon 2 but the slot in the config block is
1507 * still there on the Tigon 1.
1508 */
1509 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1510 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1511 ((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
1512 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1513 if (sc->ti_hwrev == TI_HWREV_TIGON)
1514 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1515 else
1516 rcb->ti_flags = 0;
1517 #ifdef TI_CSUM_OFFLOAD
1518 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1519 #endif
1520 #if NVLAN > 0
1521 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1522 #endif
1523
1524 /*
1525 * Set up the receive return ring.
1526 */
1527 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1528 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1529 ((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
1530 rcb->ti_flags = 0;
1531 rcb->ti_max_len = TI_RETURN_RING_CNT;
1532 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1533 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
1534 - (caddr_t)sc->ti_rdata);
1535
1536 /*
1537 * Set up the tx ring. Note: for the Tigon 2, we have the option
1538 * of putting the transmit ring in the host's address space and
1539 * letting the chip DMA it instead of leaving the ring in the NIC's
1540 * memory and accessing it through the shared memory region. We
1541 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1542 * so we have to revert to the shared memory scheme if we detect
1543 * a Tigon 1 chip.
1544 */
1545 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1546 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1547 sc->ti_rdata->ti_tx_ring_nic =
1548 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1549 }
1550 bzero((char *)sc->ti_rdata->ti_tx_ring,
1551 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1552 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1553 if (sc->ti_hwrev == TI_HWREV_TIGON)
1554 rcb->ti_flags = 0;
1555 else
1556 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1557 #if NVLAN > 0
1558 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1559 #endif
1560 rcb->ti_max_len = TI_TX_RING_CNT;
1561 if (sc->ti_hwrev == TI_HWREV_TIGON)
1562 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1563 else
1564 TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
1565 ((caddr_t)&sc->ti_rdata->ti_tx_ring
1566 - (caddr_t)sc->ti_rdata);
1567 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1568 sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
1569 - (caddr_t)sc->ti_rdata);
1570
1571 /* Set up tuneables */
1572 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1573 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1574 (sc->ti_rx_coal_ticks / 10));
1575 else
1576 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1577 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1578 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1579 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1580 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1581 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1582
1583 /* Turn interrupts on. */
1584 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1585 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1586
1587 /* Start CPU. */
1588 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1589
1590 return(0);
1591 }
1592
1593 /*
1594 * look for id in the device list, returning the first match
1595 */
1596 static struct ti_type * ti_type_match(pa)
1597 struct pci_attach_args *pa;
1598 {
1599 struct ti_type *t;
1600
1601 t = ti_devs;
1602 while(t->ti_name != NULL) {
1603 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1604 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1605 return (t);
1606 }
1607 t++;
1608 }
1609
1610 return(NULL);
1611 }
1612
1613 /*
1614 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1615 * against our list and return its name if we find a match.
1616 */
1617 static int ti_probe(parent, match, aux)
1618 struct device *parent;
1619 struct cfdata *match;
1620 void *aux;
1621 {
1622 struct pci_attach_args *pa = aux;
1623 struct ti_type *t;
1624
1625 t = ti_type_match(pa);
1626
1627 return((t == NULL) ? 0 : 1);
1628 }
1629
1630 static void ti_attach(parent, self, aux)
1631 struct device *parent, *self;
1632 void *aux;
1633 {
1634 u_int32_t command;
1635 struct ifnet *ifp;
1636 struct ti_softc *sc;
1637 u_char eaddr[ETHER_ADDR_LEN];
1638 struct pci_attach_args *pa = aux;
1639 pci_chipset_tag_t pc = pa->pa_pc;
1640 pci_intr_handle_t ih;
1641 const char *intrstr = NULL;
1642 bus_dma_segment_t dmaseg;
1643 int error, dmanseg, nolinear;
1644 struct ti_type *t;
1645
1646 t = ti_type_match(pa);
1647 if (t == NULL) {
1648 printf("ti_attach: were did the card go ?\n");
1649 return;
1650 }
1651
1652 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1653
1654 sc = (struct ti_softc *)self;
1655
1656 /*
1657 * Map control/status registers.
1658 */
1659 nolinear = 0;
1660 if (pci_mapreg_map(pa, 0x10,
1661 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1662 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1663 NULL, NULL)) {
1664 nolinear = 1;
1665 if (pci_mapreg_map(pa, 0x10,
1666 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1667 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1668 printf(": can't map memory space\n");
1669 return;
1670 }
1671 }
1672 if (nolinear == 0)
1673 sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
1674 else
1675 sc->ti_vhandle = NULL;
1676
1677 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1678 command |= PCI_COMMAND_MASTER_ENABLE;
1679 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1680
1681 /* Allocate interrupt */
1682 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
1683 pa->pa_intrline, &ih)) {
1684 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
1685 return;;
1686 }
1687 intrstr = pci_intr_string(pc, ih);
1688 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1689 if (sc->sc_ih == NULL) {
1690 printf("%s: couldn't establish interrupt",
1691 sc->sc_dev.dv_xname);
1692 if (intrstr != NULL)
1693 printf(" at %s", intrstr);
1694 printf("\n");
1695 return;;
1696 }
1697 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1698 /*
1699 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1700 * doing do could allow DMA to corrupt kernel memory during the
1701 * reboot before the driver initializes.
1702 */
1703 (void) shutdownhook_establish(ti_shutdown, sc);
1704
1705 if (ti_chipinit(sc)) {
1706 printf("%s: chip initialization failed\n", self->dv_xname);
1707 goto fail2;
1708 }
1709 if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
1710 printf("%s: memory space not mapped linear\n", self->dv_xname);
1711 }
1712
1713 /* Zero out the NIC's on-board SRAM. */
1714 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1715
1716 /* Init again -- zeroing memory may have clobbered some registers. */
1717 if (ti_chipinit(sc)) {
1718 printf("%s: chip initialization failed\n", self->dv_xname);
1719 goto fail2;
1720 }
1721
1722 /*
1723 * Get station address from the EEPROM. Note: the manual states
1724 * that the MAC address is at offset 0x8c, however the data is
1725 * stored as two longwords (since that's how it's loaded into
1726 * the NIC). This means the MAC address is actually preceeded
1727 * by two zero bytes. We need to skip over those.
1728 */
1729 if (ti_read_eeprom(sc, (caddr_t)&eaddr,
1730 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1731 printf("%s: failed to read station address\n", self->dv_xname);
1732 goto fail2;
1733 }
1734
1735 /*
1736 * A Tigon chip was detected. Inform the world.
1737 */
1738 printf("%s: Ethernet address: %s\n", self->dv_xname,
1739 ether_sprintf(eaddr));
1740
1741 sc->sc_dmat = pa->pa_dmat;
1742
1743 /* Allocate the general information block and ring buffers. */
1744 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1745 sizeof(struct ti_ring_data), NBPG, 0, &dmaseg, 1, &dmanseg,
1746 BUS_DMA_NOWAIT)) != 0) {
1747 printf("%s: can't allocate ring buffer, error = %d\n",
1748 sc->sc_dev.dv_xname, error);
1749 goto fail2;
1750 }
1751
1752 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1753 sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
1754 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1755 printf("%s: can't map ring buffer, error = %d\n",
1756 sc->sc_dev.dv_xname, error);
1757 goto fail2;
1758 }
1759
1760 if ((error = bus_dmamap_create(sc->sc_dmat,
1761 sizeof(struct ti_ring_data), 1,
1762 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1763 &sc->info_dmamap)) != 0) {
1764 printf("%s: can't create ring buffer DMA map, error = %d\n",
1765 sc->sc_dev.dv_xname, error);
1766 goto fail2;
1767 }
1768
1769 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1770 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1771 BUS_DMA_NOWAIT)) != 0) {
1772 printf("%s: can't load ring buffer DMA map, error = %d\n",
1773 sc->sc_dev.dv_xname, error);
1774 goto fail2;
1775 }
1776
1777 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1778
1779 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1780
1781 /* Try to allocate memory for jumbo buffers. */
1782 if (ti_alloc_jumbo_mem(sc)) {
1783 printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
1784 goto fail2;
1785 }
1786
1787 /* Set default tuneable values. */
1788 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1789 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1790 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1791 sc->ti_rx_max_coal_bds = 64;
1792 sc->ti_tx_max_coal_bds = 128;
1793 sc->ti_tx_buf_ratio = 21;
1794
1795 /* Set up ifnet structure */
1796 ifp = &sc->ethercom.ec_if;
1797 ifp->if_softc = sc;
1798 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1799 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1800 ifp->if_ioctl = ti_ioctl;
1801 ifp->if_start = ti_start;
1802 ifp->if_watchdog = ti_watchdog;
1803 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1804
1805 /* Set up ifmedia support. */
1806 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1807 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1808 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1809 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1810 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1811 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1812 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1813 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1814 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1815
1816 /*
1817 * Call MI attach routines.
1818 */
1819 if_attach(ifp);
1820 ether_ifattach(ifp, eaddr);
1821
1822 #if NBPFILTER > 0
1823 bpfattach(&sc->ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
1824 sizeof(struct ether_header));
1825 #endif
1826
1827 return;
1828 fail2:
1829 pci_intr_disestablish(pc, sc->sc_ih);
1830 return;
1831 }
1832
1833 /*
1834 * Frame reception handling. This is called if there's a frame
1835 * on the receive return list.
1836 *
1837 * Note: we have to be able to handle three possibilities here:
1838 * 1) the frame is from the mini receive ring (can only happen)
1839 * on Tigon 2 boards)
1840 * 2) the frame is from the jumbo recieve ring
1841 * 3) the frame is from the standard receive ring
1842 */
1843
1844 static void ti_rxeof(sc)
1845 struct ti_softc *sc;
1846 {
1847 struct ifnet *ifp;
1848 struct ti_cmd_desc cmd;
1849
1850 ifp = &sc->ethercom.ec_if;
1851
1852 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1853 struct ti_rx_desc *cur_rx;
1854 u_int32_t rxidx;
1855 struct ether_header *eh;
1856 struct mbuf *m = NULL;
1857 #if NVLAN > 0
1858 u_int16_t vlan_tag = 0;
1859 int have_tag = 0;
1860 #endif
1861 #ifdef TI_CSUM_OFFLOAD
1862 struct ip *ip;
1863 #endif
1864 bus_dmamap_t dmamap;
1865
1866 cur_rx =
1867 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1868 rxidx = cur_rx->ti_idx;
1869 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1870
1871 #if NVLAN > 0
1872 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1873 have_tag = 1;
1874 vlan_tag = cur_rx->ti_vlan_tag;
1875 }
1876 #endif
1877
1878 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1879 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1880 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1881 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1882 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1883 ifp->if_ierrors++;
1884 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1885 continue;
1886 }
1887 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1888 == ENOBUFS) {
1889 ifp->if_ierrors++;
1890 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1891 continue;
1892 }
1893 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1894 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1895 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1896 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1897 dmamap = sc->mini_dmamap[rxidx];
1898 sc->mini_dmamap[rxidx] = 0;
1899 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1900 ifp->if_ierrors++;
1901 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1902 continue;
1903 }
1904 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1905 == ENOBUFS) {
1906 ifp->if_ierrors++;
1907 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1908 continue;
1909 }
1910 } else {
1911 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1912 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1913 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1914 dmamap = sc->std_dmamap[rxidx];
1915 sc->std_dmamap[rxidx] = 0;
1916 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1917 ifp->if_ierrors++;
1918 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1919 continue;
1920 }
1921 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1922 == ENOBUFS) {
1923 ifp->if_ierrors++;
1924 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1925 continue;
1926 }
1927 }
1928
1929 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1930 ifp->if_ipackets++;
1931 eh = mtod(m, struct ether_header *);
1932 m->m_pkthdr.rcvif = ifp;
1933
1934 #if NBPFILTER > 0
1935 /*
1936 * Handle BPF listeners. Let the BPF user see the packet, but
1937 * don't pass it up to the ether_input() layer unless it's
1938 * a broadcast packet, multicast packet, matches our ethernet
1939 * address or the interface is in promiscuous mode.
1940 */
1941 if (ifp->if_bpf) {
1942 bpf_mtap(ifp->if_bpf, m);
1943 if (ifp->if_flags & IFF_PROMISC &&
1944 (bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
1945 ETHER_ADDR_LEN) &&
1946 (eh->ether_dhost[0] & 1) == 0)) {
1947 m_freem(m);
1948 continue;
1949 }
1950 }
1951 #endif
1952
1953 #ifdef TI_CSUM_OFFLOAD /* XXX NetBSD: broken because m points to ether pkt */
1954 ip = mtod(m, struct ip *);
1955 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1956 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1957 m->m_flags |= M_HWCKSUM;
1958 #endif
1959
1960 #if NVLAN > 0 /* XXX NetBSD: broken because m points to ether pkt */
1961 /*
1962 * If we received a packet with a vlan tag, pass it
1963 * to vlan_input() instead of ether_input().
1964 */
1965 if (have_tag) {
1966 vlan_input_tag(eh, m, vlan_tag);
1967 have_tag = vlan_tag = 0;
1968 continue;
1969 }
1970 #endif
1971 (*ifp->if_input)(ifp, m);
1972 }
1973
1974 /* Only necessary on the Tigon 1. */
1975 if (sc->ti_hwrev == TI_HWREV_TIGON)
1976 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1977 sc->ti_rx_saved_considx);
1978
1979 TI_UPDATE_STDPROD(sc, sc->ti_std);
1980 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1981 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1982
1983 return;
1984 }
1985
1986 static void ti_txeof(sc)
1987 struct ti_softc *sc;
1988 {
1989 struct ti_tx_desc *cur_tx = NULL;
1990 struct ifnet *ifp;
1991
1992 ifp = &sc->ethercom.ec_if;
1993
1994 /*
1995 * Go through our tx ring and free mbufs for those
1996 * frames that have been sent.
1997 */
1998 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1999 u_int32_t idx = 0;
2000
2001 idx = sc->ti_tx_saved_considx;
2002 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2003 if (idx > 383)
2004 CSR_WRITE_4(sc, TI_WINBASE,
2005 TI_TX_RING_BASE + 6144);
2006 else if (idx > 255)
2007 CSR_WRITE_4(sc, TI_WINBASE,
2008 TI_TX_RING_BASE + 4096);
2009 else if (idx > 127)
2010 CSR_WRITE_4(sc, TI_WINBASE,
2011 TI_TX_RING_BASE + 2048);
2012 else
2013 CSR_WRITE_4(sc, TI_WINBASE,
2014 TI_TX_RING_BASE);
2015 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2016 } else
2017 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2018 if (cur_tx->ti_flags & TI_BDFLAG_END)
2019 ifp->if_opackets++;
2020 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2021 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2022 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2023
2024 /* if (sc->txdma[idx] == 0) panic() */
2025 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
2026 link);
2027 sc->txdma[idx] = 0;
2028 }
2029 sc->ti_txcnt--;
2030 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2031 ifp->if_timer = 0;
2032 }
2033
2034 if (cur_tx != NULL)
2035 ifp->if_flags &= ~IFF_OACTIVE;
2036
2037 return;
2038 }
2039
2040 static int ti_intr(xsc)
2041 void *xsc;
2042 {
2043 struct ti_softc *sc;
2044 struct ifnet *ifp;
2045
2046 sc = xsc;
2047 ifp = &sc->ethercom.ec_if;
2048
2049 #ifdef notdef
2050 /* Avoid this for now -- checking this register is expensive. */
2051 /* Make sure this is really our interrupt. */
2052 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2053 return (0);
2054 #endif
2055
2056 /* Ack interrupt and stop others from occuring. */
2057 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2058
2059 if (ifp->if_flags & IFF_RUNNING) {
2060 /* Check RX return ring producer/consumer */
2061 ti_rxeof(sc);
2062
2063 /* Check TX ring producer/consumer */
2064 ti_txeof(sc);
2065 }
2066
2067 ti_handle_events(sc);
2068
2069 /* Re-enable interrupts. */
2070 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2071
2072 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2073 ti_start(ifp);
2074
2075 return (1);
2076 }
2077
2078 static void ti_stats_update(sc)
2079 struct ti_softc *sc;
2080 {
2081 struct ifnet *ifp;
2082
2083 ifp = &sc->ethercom.ec_if;
2084
2085 ifp->if_collisions +=
2086 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2087 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2088 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2089 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2090 ifp->if_collisions;
2091
2092 return;
2093 }
2094
2095 /*
2096 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2097 * pointers to descriptors.
2098 */
2099 static int ti_encap(sc, m_head, txidx)
2100 struct ti_softc *sc;
2101 struct mbuf *m_head;
2102 u_int32_t *txidx;
2103 {
2104 struct ti_tx_desc *f = NULL;
2105 u_int32_t frag, cur, cnt = 0;
2106 struct txdmamap_pool_entry *dma;
2107 bus_dmamap_t dmamap;
2108 int error, i;
2109 #if NVLAN > 0
2110 struct ifvlan *ifv = NULL;
2111
2112 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2113 m_head->m_pkthdr.rcvif != NULL &&
2114 m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2115 ifv = m_head->m_pkthdr.rcvif->if_softc;
2116 #endif
2117
2118 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2119 if (dma == NULL) {
2120 return ENOMEM;
2121 }
2122 dmamap = dma->dmamap;
2123
2124 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
2125 if (error) {
2126 struct mbuf *m;
2127 int i = 0;
2128 for (m = m_head; m; m = m->m_next)
2129 i++;
2130 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2131 "error %d\n", m_head->m_pkthdr.len, i, error);
2132 return (ENOMEM);
2133 }
2134
2135 cur = frag = *txidx;
2136
2137 /*
2138 * Start packing the mbufs in this chain into
2139 * the fragment pointers. Stop when we run out
2140 * of fragments or hit the end of the mbuf chain.
2141 */
2142 for (i = 0; i < dmamap->dm_nsegs; i++) {
2143 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2144 if (frag > 383)
2145 CSR_WRITE_4(sc, TI_WINBASE,
2146 TI_TX_RING_BASE + 6144);
2147 else if (frag > 255)
2148 CSR_WRITE_4(sc, TI_WINBASE,
2149 TI_TX_RING_BASE + 4096);
2150 else if (frag > 127)
2151 CSR_WRITE_4(sc, TI_WINBASE,
2152 TI_TX_RING_BASE + 2048);
2153 else
2154 CSR_WRITE_4(sc, TI_WINBASE,
2155 TI_TX_RING_BASE);
2156 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2157 } else
2158 f = &sc->ti_rdata->ti_tx_ring[frag];
2159 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2160 break;
2161 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2162 f->ti_len = dmamap->dm_segs[i].ds_len;
2163 f->ti_flags = 0;
2164 #if NVLAN > 0
2165 if (ifv != NULL) {
2166 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2167 f->ti_vlan_tag = ifv->ifv_tag;
2168 } else {
2169 f->ti_vlan_tag = 0;
2170 }
2171 #endif
2172 /*
2173 * Sanity check: avoid coming within 16 descriptors
2174 * of the end of the ring.
2175 */
2176 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2177 return(ENOBUFS);
2178 cur = frag;
2179 TI_INC(frag, TI_TX_RING_CNT);
2180 cnt++;
2181 }
2182
2183 if (i < dmamap->dm_nsegs)
2184 return(ENOBUFS);
2185
2186 if (frag == sc->ti_tx_saved_considx)
2187 return(ENOBUFS);
2188
2189 if (sc->ti_hwrev == TI_HWREV_TIGON)
2190 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2191 TI_BDFLAG_END;
2192 else
2193 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2194 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2195 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
2196 sc->txdma[cur] = dma;
2197 sc->ti_txcnt += cnt;
2198
2199 *txidx = frag;
2200
2201 return(0);
2202 }
2203
2204 /*
2205 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2206 * to the mbuf data regions directly in the transmit descriptors.
2207 */
2208 static void ti_start(ifp)
2209 struct ifnet *ifp;
2210 {
2211 struct ti_softc *sc;
2212 struct mbuf *m_head = NULL;
2213 u_int32_t prodidx = 0;
2214
2215 sc = ifp->if_softc;
2216
2217 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2218
2219 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2220 IF_DEQUEUE(&ifp->if_snd, m_head);
2221 if (m_head == NULL)
2222 break;
2223
2224 /*
2225 * Pack the data into the transmit ring. If we
2226 * don't have room, set the OACTIVE flag and wait
2227 * for the NIC to drain the ring.
2228 */
2229 if (ti_encap(sc, m_head, &prodidx)) {
2230 IF_PREPEND(&ifp->if_snd, m_head);
2231 ifp->if_flags |= IFF_OACTIVE;
2232 break;
2233 }
2234
2235 /*
2236 * If there's a BPF listener, bounce a copy of this frame
2237 * to him.
2238 */
2239 #if NBPFILTER > 0
2240 if (ifp->if_bpf)
2241 bpf_mtap(ifp->if_bpf, m_head);
2242 #endif
2243 }
2244
2245 /* Transmit */
2246 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2247
2248 /*
2249 * Set a timeout in case the chip goes out to lunch.
2250 */
2251 ifp->if_timer = 5;
2252
2253 return;
2254 }
2255
2256 static void ti_init(xsc)
2257 void *xsc;
2258 {
2259 struct ti_softc *sc = xsc;
2260 int s;
2261
2262 s = splimp();
2263
2264 /* Cancel pending I/O and flush buffers. */
2265 ti_stop(sc);
2266
2267 /* Init the gen info block, ring control blocks and firmware. */
2268 if (ti_gibinit(sc)) {
2269 printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
2270 splx(s);
2271 return;
2272 }
2273
2274 splx(s);
2275
2276 return;
2277 }
2278
2279 static void ti_init2(sc)
2280 struct ti_softc *sc;
2281 {
2282 struct ti_cmd_desc cmd;
2283 struct ifnet *ifp;
2284 u_int8_t *m;
2285 struct ifmedia *ifm;
2286 int tmp;
2287
2288 ifp = &sc->ethercom.ec_if;
2289
2290 /* Specify MTU and interface index. */
2291 CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
2292 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2293 ETHER_HDR_LEN + ETHER_CRC_LEN);
2294 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2295
2296 /* Load our MAC address. */
2297 m = (u_int8_t *)LLADDR(ifp->if_sadl);
2298 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2299 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2300 | (m[4] << 8) | m[5]);
2301 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2302
2303 /* Enable or disable promiscuous mode as needed. */
2304 if (ifp->if_flags & IFF_PROMISC) {
2305 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2306 } else {
2307 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2308 }
2309
2310 /* Program multicast filter. */
2311 ti_setmulti(sc);
2312
2313 /*
2314 * If this is a Tigon 1, we should tell the
2315 * firmware to use software packet filtering.
2316 */
2317 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2318 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2319 }
2320
2321 /* Init RX ring. */
2322 ti_init_rx_ring_std(sc);
2323
2324 /* Init jumbo RX ring. */
2325 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2326 ti_init_rx_ring_jumbo(sc);
2327
2328 /*
2329 * If this is a Tigon 2, we can also configure the
2330 * mini ring.
2331 */
2332 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2333 ti_init_rx_ring_mini(sc);
2334
2335 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2336 sc->ti_rx_saved_considx = 0;
2337
2338 /* Init TX ring. */
2339 ti_init_tx_ring(sc);
2340
2341 /* Tell firmware we're alive. */
2342 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2343
2344 /* Enable host interrupts. */
2345 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2346
2347 ifp->if_flags |= IFF_RUNNING;
2348 ifp->if_flags &= ~IFF_OACTIVE;
2349
2350 /*
2351 * Make sure to set media properly. We have to do this
2352 * here since we have to issue commands in order to set
2353 * the link negotiation and we can't issue commands until
2354 * the firmware is running.
2355 */
2356 ifm = &sc->ifmedia;
2357 tmp = ifm->ifm_media;
2358 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2359 ti_ifmedia_upd(ifp);
2360 ifm->ifm_media = tmp;
2361
2362 return;
2363 }
2364
2365 /*
2366 * Set media options.
2367 */
2368 static int ti_ifmedia_upd(ifp)
2369 struct ifnet *ifp;
2370 {
2371 struct ti_softc *sc;
2372 struct ifmedia *ifm;
2373 struct ti_cmd_desc cmd;
2374
2375 sc = ifp->if_softc;
2376 ifm = &sc->ifmedia;
2377
2378 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2379 return(EINVAL);
2380
2381 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2382 case IFM_AUTO:
2383 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2384 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2385 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2386 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2387 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2388 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2389 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2390 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2391 break;
2392 case IFM_1000_SX:
2393 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2394 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2395 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2396 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2397 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2398 break;
2399 case IFM_100_FX:
2400 case IFM_10_FL:
2401 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2402 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2403 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2404 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2405 } else {
2406 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2407 }
2408 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2409 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2410 } else {
2411 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2412 }
2413 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2414 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2415 break;
2416 }
2417
2418 sc->ethercom.ec_if.if_baudrate =
2419 ifmedia_baudrate(ifm->ifm_media);
2420
2421 return(0);
2422 }
2423
2424 /*
2425 * Report current media status.
2426 */
2427 static void ti_ifmedia_sts(ifp, ifmr)
2428 struct ifnet *ifp;
2429 struct ifmediareq *ifmr;
2430 {
2431 struct ti_softc *sc;
2432
2433 sc = ifp->if_softc;
2434
2435 ifmr->ifm_status = IFM_AVALID;
2436 ifmr->ifm_active = IFM_ETHER;
2437
2438 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2439 return;
2440
2441 ifmr->ifm_status |= IFM_ACTIVE;
2442
2443 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2444 ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2445 else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2446 u_int32_t media;
2447 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2448 if (media & TI_LNK_100MB)
2449 ifmr->ifm_active |= IFM_100_FX;
2450 if (media & TI_LNK_10MB)
2451 ifmr->ifm_active |= IFM_10_FL;
2452 if (media & TI_LNK_FULL_DUPLEX)
2453 ifmr->ifm_active |= IFM_FDX;
2454 if (media & TI_LNK_HALF_DUPLEX)
2455 ifmr->ifm_active |= IFM_HDX;
2456 }
2457
2458 sc->ethercom.ec_if.if_baudrate =
2459 ifmedia_baudrate(sc->ifmedia.ifm_media);
2460
2461 return;
2462 }
2463
2464 static int
2465 ti_ether_ioctl(ifp, cmd, data)
2466 struct ifnet *ifp;
2467 u_long cmd;
2468 caddr_t data;
2469 {
2470 struct ifaddr *ifa = (struct ifaddr *) data;
2471 struct ti_softc *sc = ifp->if_softc;
2472
2473 switch (cmd) {
2474 case SIOCSIFADDR:
2475 ifp->if_flags |= IFF_UP;
2476
2477 switch (ifa->ifa_addr->sa_family) {
2478 #ifdef INET
2479 case AF_INET:
2480 ti_init(sc);
2481 arp_ifinit(ifp, ifa);
2482 break;
2483 #endif
2484 #ifdef NS
2485 case AF_NS:
2486 {
2487 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
2488
2489 if (ns_nullhost(*ina))
2490 ina->x_host = *(union ns_host *)
2491 LLADDR(ifp->if_sadl);
2492 else
2493 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
2494 ifp->if_addrlen);
2495 /* Set new address. */
2496 ti_init(sc);
2497 break;
2498 }
2499 #endif
2500 default:
2501 ti_init(sc);
2502 break;
2503 }
2504 break;
2505
2506 default:
2507 return (EINVAL);
2508 }
2509
2510 return (0);
2511 }
2512
2513 static int ti_ioctl(ifp, command, data)
2514 struct ifnet *ifp;
2515 u_long command;
2516 caddr_t data;
2517 {
2518 struct ti_softc *sc = ifp->if_softc;
2519 struct ifreq *ifr = (struct ifreq *) data;
2520 int s, error = 0;
2521 struct ti_cmd_desc cmd;
2522
2523 s = splimp();
2524
2525 switch(command) {
2526 case SIOCSIFADDR:
2527 case SIOCGIFADDR:
2528 error = ti_ether_ioctl(ifp, command, data);
2529 break;
2530 case SIOCSIFMTU:
2531 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2532 error = EINVAL;
2533 else {
2534 ifp->if_mtu = ifr->ifr_mtu;
2535 ti_init(sc);
2536 }
2537 break;
2538 case SIOCSIFFLAGS:
2539 if (ifp->if_flags & IFF_UP) {
2540 /*
2541 * If only the state of the PROMISC flag changed,
2542 * then just use the 'set promisc mode' command
2543 * instead of reinitializing the entire NIC. Doing
2544 * a full re-init means reloading the firmware and
2545 * waiting for it to start up, which may take a
2546 * second or two.
2547 */
2548 if (ifp->if_flags & IFF_RUNNING &&
2549 ifp->if_flags & IFF_PROMISC &&
2550 !(sc->ti_if_flags & IFF_PROMISC)) {
2551 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2552 TI_CMD_CODE_PROMISC_ENB, 0);
2553 } else if (ifp->if_flags & IFF_RUNNING &&
2554 !(ifp->if_flags & IFF_PROMISC) &&
2555 sc->ti_if_flags & IFF_PROMISC) {
2556 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2557 TI_CMD_CODE_PROMISC_DIS, 0);
2558 } else
2559 ti_init(sc);
2560 } else {
2561 if (ifp->if_flags & IFF_RUNNING) {
2562 ti_stop(sc);
2563 }
2564 }
2565 sc->ti_if_flags = ifp->if_flags;
2566 error = 0;
2567 break;
2568 case SIOCADDMULTI:
2569 case SIOCDELMULTI:
2570 if (ifp->if_flags & IFF_RUNNING) {
2571 ti_setmulti(sc);
2572 error = 0;
2573 }
2574 break;
2575 case SIOCSIFMEDIA:
2576 case SIOCGIFMEDIA:
2577 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2578 break;
2579 default:
2580 error = EINVAL;
2581 break;
2582 }
2583
2584 (void)splx(s);
2585
2586 return(error);
2587 }
2588
2589 static void ti_watchdog(ifp)
2590 struct ifnet *ifp;
2591 {
2592 struct ti_softc *sc;
2593
2594 sc = ifp->if_softc;
2595
2596 printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
2597 ti_stop(sc);
2598 ti_init(sc);
2599
2600 ifp->if_oerrors++;
2601
2602 return;
2603 }
2604
2605 /*
2606 * Stop the adapter and free any mbufs allocated to the
2607 * RX and TX lists.
2608 */
2609 static void ti_stop(sc)
2610 struct ti_softc *sc;
2611 {
2612 struct ifnet *ifp;
2613 struct ti_cmd_desc cmd;
2614
2615 ifp = &sc->ethercom.ec_if;
2616
2617 /* Disable host interrupts. */
2618 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2619 /*
2620 * Tell firmware we're shutting down.
2621 */
2622 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2623
2624 /* Halt and reinitialize. */
2625 ti_chipinit(sc);
2626 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2627 ti_chipinit(sc);
2628
2629 /* Free the RX lists. */
2630 ti_free_rx_ring_std(sc);
2631
2632 /* Free jumbo RX list. */
2633 ti_free_rx_ring_jumbo(sc);
2634
2635 /* Free mini RX list. */
2636 ti_free_rx_ring_mini(sc);
2637
2638 /* Free TX buffers. */
2639 ti_free_tx_ring(sc);
2640
2641 sc->ti_ev_prodidx.ti_idx = 0;
2642 sc->ti_return_prodidx.ti_idx = 0;
2643 sc->ti_tx_considx.ti_idx = 0;
2644 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2645
2646 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2647
2648 return;
2649 }
2650
2651 /*
2652 * Stop all chip I/O so that the kernel's probe routines don't
2653 * get confused by errant DMAs when rebooting.
2654 */
2655 static void ti_shutdown(v)
2656 void *v;
2657 {
2658 struct ti_softc *sc = v;
2659
2660 ti_chipinit(sc);
2661
2662 return;
2663 }
2664