if_vge.c revision 1.4.4.2 1 1.4.4.2 yamt /* $NetBSD: if_vge.c,v 1.4.4.2 2005/03/19 08:35:11 yamt Exp $ */
2 1.4.4.2 yamt
3 1.4.4.2 yamt /*-
4 1.4.4.2 yamt * Copyright (c) 2004
5 1.4.4.2 yamt * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.4.4.2 yamt *
7 1.4.4.2 yamt * Redistribution and use in source and binary forms, with or without
8 1.4.4.2 yamt * modification, are permitted provided that the following conditions
9 1.4.4.2 yamt * are met:
10 1.4.4.2 yamt * 1. Redistributions of source code must retain the above copyright
11 1.4.4.2 yamt * notice, this list of conditions and the following disclaimer.
12 1.4.4.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.4.4.2 yamt * notice, this list of conditions and the following disclaimer in the
14 1.4.4.2 yamt * documentation and/or other materials provided with the distribution.
15 1.4.4.2 yamt * 3. All advertising materials mentioning features or use of this software
16 1.4.4.2 yamt * must display the following acknowledgement:
17 1.4.4.2 yamt * This product includes software developed by Bill Paul.
18 1.4.4.2 yamt * 4. Neither the name of the author nor the names of any co-contributors
19 1.4.4.2 yamt * may be used to endorse or promote products derived from this software
20 1.4.4.2 yamt * without specific prior written permission.
21 1.4.4.2 yamt *
22 1.4.4.2 yamt * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.4.4.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.4.4.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.4.4.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.4.4.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.4.4.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.4.4.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.4.4.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.4.4.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.4.4.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.4.4.2 yamt * THE POSSIBILITY OF SUCH DAMAGE.
33 1.4.4.2 yamt *
34 1.4.4.2 yamt * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 1.4.4.2 yamt */
36 1.4.4.2 yamt
37 1.4.4.2 yamt #include <sys/cdefs.h>
38 1.4.4.2 yamt __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.4.4.2 2005/03/19 08:35:11 yamt Exp $");
39 1.4.4.2 yamt
40 1.4.4.2 yamt /*
41 1.4.4.2 yamt * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 1.4.4.2 yamt *
43 1.4.4.2 yamt * Written by Bill Paul <wpaul (at) windriver.com>
44 1.4.4.2 yamt * Senior Networking Software Engineer
45 1.4.4.2 yamt * Wind River Systems
46 1.4.4.2 yamt */
47 1.4.4.2 yamt
48 1.4.4.2 yamt /*
49 1.4.4.2 yamt * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
50 1.4.4.2 yamt * combines a tri-speed ethernet MAC and PHY, with the following
51 1.4.4.2 yamt * features:
52 1.4.4.2 yamt *
53 1.4.4.2 yamt * o Jumbo frame support up to 16K
54 1.4.4.2 yamt * o Transmit and receive flow control
55 1.4.4.2 yamt * o IPv4 checksum offload
56 1.4.4.2 yamt * o VLAN tag insertion and stripping
57 1.4.4.2 yamt * o TCP large send
58 1.4.4.2 yamt * o 64-bit multicast hash table filter
59 1.4.4.2 yamt * o 64 entry CAM filter
60 1.4.4.2 yamt * o 16K RX FIFO and 48K TX FIFO memory
61 1.4.4.2 yamt * o Interrupt moderation
62 1.4.4.2 yamt *
63 1.4.4.2 yamt * The VT6122 supports up to four transmit DMA queues. The descriptors
64 1.4.4.2 yamt * in the transmit ring can address up to 7 data fragments; frames which
65 1.4.4.2 yamt * span more than 7 data buffers must be coalesced, but in general the
66 1.4.4.2 yamt * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 1.4.4.2 yamt * long. The receive descriptors address only a single buffer.
68 1.4.4.2 yamt *
69 1.4.4.2 yamt * There are two peculiar design issues with the VT6122. One is that
70 1.4.4.2 yamt * receive data buffers must be aligned on a 32-bit boundary. This is
71 1.4.4.2 yamt * not a problem where the VT6122 is used as a LOM device in x86-based
72 1.4.4.2 yamt * systems, but on architectures that generate unaligned access traps, we
73 1.4.4.2 yamt * have to do some copying.
74 1.4.4.2 yamt *
75 1.4.4.2 yamt * The other issue has to do with the way 64-bit addresses are handled.
76 1.4.4.2 yamt * The DMA descriptors only allow you to specify 48 bits of addressing
77 1.4.4.2 yamt * information. The remaining 16 bits are specified using one of the
78 1.4.4.2 yamt * I/O registers. If you only have a 32-bit system, then this isn't
79 1.4.4.2 yamt * an issue, but if you have a 64-bit system and more than 4GB of
80 1.4.4.2 yamt * memory, you must have to make sure your network data buffers reside
81 1.4.4.2 yamt * in the same 48-bit 'segment.'
82 1.4.4.2 yamt *
83 1.4.4.2 yamt * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 1.4.4.2 yamt * and sample NICs for testing.
85 1.4.4.2 yamt */
86 1.4.4.2 yamt
87 1.4.4.2 yamt #include "bpfilter.h"
88 1.4.4.2 yamt
89 1.4.4.2 yamt #include <sys/param.h>
90 1.4.4.2 yamt #include <sys/endian.h>
91 1.4.4.2 yamt #include <sys/systm.h>
92 1.4.4.2 yamt #include <sys/sockio.h>
93 1.4.4.2 yamt #include <sys/mbuf.h>
94 1.4.4.2 yamt #include <sys/malloc.h>
95 1.4.4.2 yamt #include <sys/kernel.h>
96 1.4.4.2 yamt #include <sys/socket.h>
97 1.4.4.2 yamt
98 1.4.4.2 yamt #include <net/if.h>
99 1.4.4.2 yamt #include <net/if_arp.h>
100 1.4.4.2 yamt #include <net/if_ether.h>
101 1.4.4.2 yamt #include <net/if_dl.h>
102 1.4.4.2 yamt #include <net/if_media.h>
103 1.4.4.2 yamt
104 1.4.4.2 yamt #include <net/bpf.h>
105 1.4.4.2 yamt
106 1.4.4.2 yamt #include <machine/bus.h>
107 1.4.4.2 yamt
108 1.4.4.2 yamt #include <dev/mii/mii.h>
109 1.4.4.2 yamt #include <dev/mii/miivar.h>
110 1.4.4.2 yamt
111 1.4.4.2 yamt #include <dev/pci/pcireg.h>
112 1.4.4.2 yamt #include <dev/pci/pcivar.h>
113 1.4.4.2 yamt #include <dev/pci/pcidevs.h>
114 1.4.4.2 yamt
115 1.4.4.2 yamt #include <dev/pci/if_vgereg.h>
116 1.4.4.2 yamt #include <dev/pci/if_vgevar.h>
117 1.4.4.2 yamt
118 1.4.4.2 yamt static int vge_probe (struct device *, struct cfdata *, void *);
119 1.4.4.2 yamt static void vge_attach (struct device *, struct device *, void *);
120 1.4.4.2 yamt
121 1.4.4.2 yamt static int vge_encap (struct vge_softc *, struct mbuf *, int);
122 1.4.4.2 yamt
123 1.4.4.2 yamt static int vge_dma_map_rx_desc (struct vge_softc *, int);
124 1.4.4.2 yamt static void vge_dma_map_tx_desc (struct vge_softc *, struct mbuf *, int, int);
125 1.4.4.2 yamt static int vge_allocmem (struct vge_softc *);
126 1.4.4.2 yamt static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
127 1.4.4.2 yamt static int vge_rx_list_init (struct vge_softc *);
128 1.4.4.2 yamt static int vge_tx_list_init (struct vge_softc *);
129 1.4.4.2 yamt #ifdef VGE_FIXUP_RX
130 1.4.4.2 yamt static __inline void vge_fixup_rx
131 1.4.4.2 yamt (struct mbuf *);
132 1.4.4.2 yamt #endif
133 1.4.4.2 yamt static void vge_rxeof (struct vge_softc *);
134 1.4.4.2 yamt static void vge_txeof (struct vge_softc *);
135 1.4.4.2 yamt static int vge_intr (void *);
136 1.4.4.2 yamt static void vge_tick (void *);
137 1.4.4.2 yamt static void vge_start (struct ifnet *);
138 1.4.4.2 yamt static int vge_ioctl (struct ifnet *, u_long, caddr_t);
139 1.4.4.2 yamt static int vge_init (struct ifnet *);
140 1.4.4.2 yamt static void vge_stop (struct vge_softc *);
141 1.4.4.2 yamt static void vge_watchdog (struct ifnet *);
142 1.4.4.2 yamt #if VGE_POWER_MANAGEMENT
143 1.4.4.2 yamt static int vge_suspend (struct device *);
144 1.4.4.2 yamt static int vge_resume (struct device *);
145 1.4.4.2 yamt #endif
146 1.4.4.2 yamt static void vge_shutdown (void *);
147 1.4.4.2 yamt static int vge_ifmedia_upd (struct ifnet *);
148 1.4.4.2 yamt static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
149 1.4.4.2 yamt
150 1.4.4.2 yamt static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
151 1.4.4.2 yamt static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int);
152 1.4.4.2 yamt
153 1.4.4.2 yamt static void vge_miipoll_start (struct vge_softc *);
154 1.4.4.2 yamt static void vge_miipoll_stop (struct vge_softc *);
155 1.4.4.2 yamt static int vge_miibus_readreg (struct device *, int, int);
156 1.4.4.2 yamt static void vge_miibus_writereg (struct device *, int, int, int);
157 1.4.4.2 yamt static void vge_miibus_statchg (struct device *);
158 1.4.4.2 yamt
159 1.4.4.2 yamt static void vge_cam_clear (struct vge_softc *);
160 1.4.4.2 yamt static int vge_cam_set (struct vge_softc *, uint8_t *);
161 1.4.4.2 yamt static void vge_setmulti (struct vge_softc *);
162 1.4.4.2 yamt static void vge_reset (struct vge_softc *);
163 1.4.4.2 yamt
164 1.4.4.2 yamt #define VGE_PCI_LOIO 0x10
165 1.4.4.2 yamt #define VGE_PCI_LOMEM 0x14
166 1.4.4.2 yamt
167 1.4.4.2 yamt CFATTACH_DECL(vge, sizeof(struct vge_softc),
168 1.4.4.2 yamt vge_probe, vge_attach, NULL, NULL);
169 1.4.4.2 yamt
170 1.4.4.2 yamt /*
171 1.4.4.2 yamt * Defragment mbuf chain contents to be as linear as possible.
172 1.4.4.2 yamt * Returns new mbuf chain on success, NULL on failure. Old mbuf
173 1.4.4.2 yamt * chain is always freed.
174 1.4.4.2 yamt * XXX temporary until there would be generic function doing this.
175 1.4.4.2 yamt */
176 1.4.4.2 yamt #define m_defrag vge_m_defrag
177 1.4.4.2 yamt struct mbuf * vge_m_defrag(struct mbuf *, int);
178 1.4.4.2 yamt
179 1.4.4.2 yamt struct mbuf *
180 1.4.4.2 yamt vge_m_defrag(struct mbuf *mold, int flags)
181 1.4.4.2 yamt {
182 1.4.4.2 yamt struct mbuf *m0, *mn, *n;
183 1.4.4.2 yamt size_t sz = mold->m_pkthdr.len;
184 1.4.4.2 yamt
185 1.4.4.2 yamt #ifdef DIAGNOSTIC
186 1.4.4.2 yamt if ((mold->m_flags & M_PKTHDR) == 0)
187 1.4.4.2 yamt panic("m_defrag: not a mbuf chain header");
188 1.4.4.2 yamt #endif
189 1.4.4.2 yamt
190 1.4.4.2 yamt MGETHDR(m0, flags, MT_DATA);
191 1.4.4.2 yamt if (m0 == NULL)
192 1.4.4.2 yamt return NULL;
193 1.4.4.2 yamt m0->m_pkthdr.len = mold->m_pkthdr.len;
194 1.4.4.2 yamt mn = m0;
195 1.4.4.2 yamt
196 1.4.4.2 yamt do {
197 1.4.4.2 yamt if (sz > MHLEN) {
198 1.4.4.2 yamt MCLGET(mn, M_DONTWAIT);
199 1.4.4.2 yamt if ((mn->m_flags & M_EXT) == 0) {
200 1.4.4.2 yamt m_freem(m0);
201 1.4.4.2 yamt return NULL;
202 1.4.4.2 yamt }
203 1.4.4.2 yamt }
204 1.4.4.2 yamt
205 1.4.4.2 yamt mn->m_len = MIN(sz, MCLBYTES);
206 1.4.4.2 yamt
207 1.4.4.2 yamt m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
208 1.4.4.2 yamt mtod(mn, caddr_t));
209 1.4.4.2 yamt
210 1.4.4.2 yamt sz -= mn->m_len;
211 1.4.4.2 yamt
212 1.4.4.2 yamt if (sz > 0) {
213 1.4.4.2 yamt /* need more mbufs */
214 1.4.4.2 yamt MGET(n, M_NOWAIT, MT_DATA);
215 1.4.4.2 yamt if (n == NULL) {
216 1.4.4.2 yamt m_freem(m0);
217 1.4.4.2 yamt return NULL;
218 1.4.4.2 yamt }
219 1.4.4.2 yamt
220 1.4.4.2 yamt mn->m_next = n;
221 1.4.4.2 yamt mn = n;
222 1.4.4.2 yamt }
223 1.4.4.2 yamt } while (sz > 0);
224 1.4.4.2 yamt
225 1.4.4.2 yamt return m0;
226 1.4.4.2 yamt }
227 1.4.4.2 yamt
228 1.4.4.2 yamt /*
229 1.4.4.2 yamt * Read a word of data stored in the EEPROM at address 'addr.'
230 1.4.4.2 yamt */
231 1.4.4.2 yamt static void
232 1.4.4.2 yamt vge_eeprom_getword(sc, addr, dest)
233 1.4.4.2 yamt struct vge_softc *sc;
234 1.4.4.2 yamt int addr;
235 1.4.4.2 yamt u_int16_t *dest;
236 1.4.4.2 yamt {
237 1.4.4.2 yamt register int i;
238 1.4.4.2 yamt u_int16_t word = 0;
239 1.4.4.2 yamt
240 1.4.4.2 yamt /*
241 1.4.4.2 yamt * Enter EEPROM embedded programming mode. In order to
242 1.4.4.2 yamt * access the EEPROM at all, we first have to set the
243 1.4.4.2 yamt * EELOAD bit in the CHIPCFG2 register.
244 1.4.4.2 yamt */
245 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247 1.4.4.2 yamt
248 1.4.4.2 yamt /* Select the address of the word we want to read */
249 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_EEADDR, addr);
250 1.4.4.2 yamt
251 1.4.4.2 yamt /* Issue read command */
252 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253 1.4.4.2 yamt
254 1.4.4.2 yamt /* Wait for the done bit to be set. */
255 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
256 1.4.4.2 yamt if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257 1.4.4.2 yamt break;
258 1.4.4.2 yamt }
259 1.4.4.2 yamt
260 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
261 1.4.4.2 yamt printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
262 1.4.4.2 yamt *dest = 0;
263 1.4.4.2 yamt return;
264 1.4.4.2 yamt }
265 1.4.4.2 yamt
266 1.4.4.2 yamt /* Read the result */
267 1.4.4.2 yamt word = CSR_READ_2(sc, VGE_EERDDAT);
268 1.4.4.2 yamt
269 1.4.4.2 yamt /* Turn off EEPROM access mode. */
270 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272 1.4.4.2 yamt
273 1.4.4.2 yamt *dest = word;
274 1.4.4.2 yamt
275 1.4.4.2 yamt return;
276 1.4.4.2 yamt }
277 1.4.4.2 yamt
278 1.4.4.2 yamt /*
279 1.4.4.2 yamt * Read a sequence of words from the EEPROM.
280 1.4.4.2 yamt */
281 1.4.4.2 yamt static void
282 1.4.4.2 yamt vge_read_eeprom(sc, dest, off, cnt, swap)
283 1.4.4.2 yamt struct vge_softc *sc;
284 1.4.4.2 yamt caddr_t dest;
285 1.4.4.2 yamt int off;
286 1.4.4.2 yamt int cnt;
287 1.4.4.2 yamt int swap;
288 1.4.4.2 yamt {
289 1.4.4.2 yamt int i;
290 1.4.4.2 yamt u_int16_t word = 0, *ptr;
291 1.4.4.2 yamt
292 1.4.4.2 yamt for (i = 0; i < cnt; i++) {
293 1.4.4.2 yamt vge_eeprom_getword(sc, off + i, &word);
294 1.4.4.2 yamt ptr = (u_int16_t *)(dest + (i * 2));
295 1.4.4.2 yamt if (swap)
296 1.4.4.2 yamt *ptr = ntohs(word);
297 1.4.4.2 yamt else
298 1.4.4.2 yamt *ptr = word;
299 1.4.4.2 yamt }
300 1.4.4.2 yamt }
301 1.4.4.2 yamt
302 1.4.4.2 yamt static void
303 1.4.4.2 yamt vge_miipoll_stop(sc)
304 1.4.4.2 yamt struct vge_softc *sc;
305 1.4.4.2 yamt {
306 1.4.4.2 yamt int i;
307 1.4.4.2 yamt
308 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_MIICMD, 0);
309 1.4.4.2 yamt
310 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
311 1.4.4.2 yamt DELAY(1);
312 1.4.4.2 yamt if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 1.4.4.2 yamt break;
314 1.4.4.2 yamt }
315 1.4.4.2 yamt
316 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
317 1.4.4.2 yamt printf("%s: failed to idle MII autopoll\n",
318 1.4.4.2 yamt sc->sc_dev.dv_xname);
319 1.4.4.2 yamt }
320 1.4.4.2 yamt
321 1.4.4.2 yamt return;
322 1.4.4.2 yamt }
323 1.4.4.2 yamt
324 1.4.4.2 yamt static void
325 1.4.4.2 yamt vge_miipoll_start(sc)
326 1.4.4.2 yamt struct vge_softc *sc;
327 1.4.4.2 yamt {
328 1.4.4.2 yamt int i;
329 1.4.4.2 yamt
330 1.4.4.2 yamt /* First, make sure we're idle. */
331 1.4.4.2 yamt
332 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334 1.4.4.2 yamt
335 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
336 1.4.4.2 yamt DELAY(1);
337 1.4.4.2 yamt if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 1.4.4.2 yamt break;
339 1.4.4.2 yamt }
340 1.4.4.2 yamt
341 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
342 1.4.4.2 yamt printf("%s: failed to idle MII autopoll\n",
343 1.4.4.2 yamt sc->sc_dev.dv_xname);
344 1.4.4.2 yamt return;
345 1.4.4.2 yamt }
346 1.4.4.2 yamt
347 1.4.4.2 yamt /* Now enable auto poll mode. */
348 1.4.4.2 yamt
349 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
350 1.4.4.2 yamt
351 1.4.4.2 yamt /* And make sure it started. */
352 1.4.4.2 yamt
353 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
354 1.4.4.2 yamt DELAY(1);
355 1.4.4.2 yamt if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
356 1.4.4.2 yamt break;
357 1.4.4.2 yamt }
358 1.4.4.2 yamt
359 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
360 1.4.4.2 yamt printf("%s: failed to start MII autopoll\n",
361 1.4.4.2 yamt sc->sc_dev.dv_xname);
362 1.4.4.2 yamt }
363 1.4.4.2 yamt }
364 1.4.4.2 yamt
365 1.4.4.2 yamt static int
366 1.4.4.2 yamt vge_miibus_readreg(dev, phy, reg)
367 1.4.4.2 yamt struct device *dev;
368 1.4.4.2 yamt int phy, reg;
369 1.4.4.2 yamt {
370 1.4.4.2 yamt struct vge_softc *sc = (struct vge_softc *)dev;
371 1.4.4.2 yamt int i;
372 1.4.4.2 yamt u_int16_t rval = 0;
373 1.4.4.2 yamt
374 1.4.4.2 yamt if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
375 1.4.4.2 yamt return(0);
376 1.4.4.2 yamt
377 1.4.4.2 yamt VGE_LOCK(sc);
378 1.4.4.2 yamt vge_miipoll_stop(sc);
379 1.4.4.2 yamt
380 1.4.4.2 yamt /* Specify the register we want to read. */
381 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_MIIADDR, reg);
382 1.4.4.2 yamt
383 1.4.4.2 yamt /* Issue read command. */
384 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
385 1.4.4.2 yamt
386 1.4.4.2 yamt /* Wait for the read command bit to self-clear. */
387 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
388 1.4.4.2 yamt DELAY(1);
389 1.4.4.2 yamt if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
390 1.4.4.2 yamt break;
391 1.4.4.2 yamt }
392 1.4.4.2 yamt
393 1.4.4.2 yamt if (i == VGE_TIMEOUT)
394 1.4.4.2 yamt printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
395 1.4.4.2 yamt else
396 1.4.4.2 yamt rval = CSR_READ_2(sc, VGE_MIIDATA);
397 1.4.4.2 yamt
398 1.4.4.2 yamt vge_miipoll_start(sc);
399 1.4.4.2 yamt VGE_UNLOCK(sc);
400 1.4.4.2 yamt
401 1.4.4.2 yamt return (rval);
402 1.4.4.2 yamt }
403 1.4.4.2 yamt
404 1.4.4.2 yamt static void
405 1.4.4.2 yamt vge_miibus_writereg(dev, phy, reg, data)
406 1.4.4.2 yamt struct device *dev;
407 1.4.4.2 yamt int phy, reg, data;
408 1.4.4.2 yamt {
409 1.4.4.2 yamt struct vge_softc *sc = (struct vge_softc *)dev;
410 1.4.4.2 yamt int i;
411 1.4.4.2 yamt
412 1.4.4.2 yamt if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
413 1.4.4.2 yamt return;
414 1.4.4.2 yamt
415 1.4.4.2 yamt VGE_LOCK(sc);
416 1.4.4.2 yamt vge_miipoll_stop(sc);
417 1.4.4.2 yamt
418 1.4.4.2 yamt /* Specify the register we want to write. */
419 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_MIIADDR, reg);
420 1.4.4.2 yamt
421 1.4.4.2 yamt /* Specify the data we want to write. */
422 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_MIIDATA, data);
423 1.4.4.2 yamt
424 1.4.4.2 yamt /* Issue write command. */
425 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
426 1.4.4.2 yamt
427 1.4.4.2 yamt /* Wait for the write command bit to self-clear. */
428 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
429 1.4.4.2 yamt DELAY(1);
430 1.4.4.2 yamt if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
431 1.4.4.2 yamt break;
432 1.4.4.2 yamt }
433 1.4.4.2 yamt
434 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
435 1.4.4.2 yamt printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
436 1.4.4.2 yamt }
437 1.4.4.2 yamt
438 1.4.4.2 yamt vge_miipoll_start(sc);
439 1.4.4.2 yamt VGE_UNLOCK(sc);
440 1.4.4.2 yamt }
441 1.4.4.2 yamt
442 1.4.4.2 yamt static void
443 1.4.4.2 yamt vge_cam_clear(sc)
444 1.4.4.2 yamt struct vge_softc *sc;
445 1.4.4.2 yamt {
446 1.4.4.2 yamt int i;
447 1.4.4.2 yamt
448 1.4.4.2 yamt /*
449 1.4.4.2 yamt * Turn off all the mask bits. This tells the chip
450 1.4.4.2 yamt * that none of the entries in the CAM filter are valid.
451 1.4.4.2 yamt * desired entries will be enabled as we fill the filter in.
452 1.4.4.2 yamt */
453 1.4.4.2 yamt
454 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
455 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
456 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
457 1.4.4.2 yamt for (i = 0; i < 8; i++)
458 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
459 1.4.4.2 yamt
460 1.4.4.2 yamt /* Clear the VLAN filter too. */
461 1.4.4.2 yamt
462 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
463 1.4.4.2 yamt for (i = 0; i < 8; i++)
464 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
465 1.4.4.2 yamt
466 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAMADDR, 0);
467 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
469 1.4.4.2 yamt
470 1.4.4.2 yamt sc->vge_camidx = 0;
471 1.4.4.2 yamt
472 1.4.4.2 yamt return;
473 1.4.4.2 yamt }
474 1.4.4.2 yamt
475 1.4.4.2 yamt static int
476 1.4.4.2 yamt vge_cam_set(sc, addr)
477 1.4.4.2 yamt struct vge_softc *sc;
478 1.4.4.2 yamt uint8_t *addr;
479 1.4.4.2 yamt {
480 1.4.4.2 yamt int i, error = 0;
481 1.4.4.2 yamt
482 1.4.4.2 yamt if (sc->vge_camidx == VGE_CAM_MAXADDRS)
483 1.4.4.2 yamt return(ENOSPC);
484 1.4.4.2 yamt
485 1.4.4.2 yamt /* Select the CAM data page. */
486 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
488 1.4.4.2 yamt
489 1.4.4.2 yamt /* Set the filter entry we want to update and enable writing. */
490 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
491 1.4.4.2 yamt
492 1.4.4.2 yamt /* Write the address to the CAM registers */
493 1.4.4.2 yamt for (i = 0; i < ETHER_ADDR_LEN; i++)
494 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
495 1.4.4.2 yamt
496 1.4.4.2 yamt /* Issue a write command. */
497 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
498 1.4.4.2 yamt
499 1.4.4.2 yamt /* Wake for it to clear. */
500 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
501 1.4.4.2 yamt DELAY(1);
502 1.4.4.2 yamt if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
503 1.4.4.2 yamt break;
504 1.4.4.2 yamt }
505 1.4.4.2 yamt
506 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
507 1.4.4.2 yamt printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
508 1.4.4.2 yamt error = EIO;
509 1.4.4.2 yamt goto fail;
510 1.4.4.2 yamt }
511 1.4.4.2 yamt
512 1.4.4.2 yamt /* Select the CAM mask page. */
513 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
515 1.4.4.2 yamt
516 1.4.4.2 yamt /* Set the mask bit that enables this filter. */
517 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
518 1.4.4.2 yamt 1<<(sc->vge_camidx & 7));
519 1.4.4.2 yamt
520 1.4.4.2 yamt sc->vge_camidx++;
521 1.4.4.2 yamt
522 1.4.4.2 yamt fail:
523 1.4.4.2 yamt /* Turn off access to CAM. */
524 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CAMADDR, 0);
525 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
526 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
527 1.4.4.2 yamt
528 1.4.4.2 yamt return (error);
529 1.4.4.2 yamt }
530 1.4.4.2 yamt
531 1.4.4.2 yamt /*
532 1.4.4.2 yamt * Program the multicast filter. We use the 64-entry CAM filter
533 1.4.4.2 yamt * for perfect filtering. If there's more than 64 multicast addresses,
534 1.4.4.2 yamt * we use the hash filter insted.
535 1.4.4.2 yamt */
536 1.4.4.2 yamt static void
537 1.4.4.2 yamt vge_setmulti(sc)
538 1.4.4.2 yamt struct vge_softc *sc;
539 1.4.4.2 yamt {
540 1.4.4.2 yamt struct ifnet *ifp;
541 1.4.4.2 yamt int error = 0;
542 1.4.4.2 yamt u_int32_t h, hashes[2] = { 0, 0 };
543 1.4.4.2 yamt struct ether_multi *enm;
544 1.4.4.2 yamt struct ether_multistep step;
545 1.4.4.2 yamt
546 1.4.4.2 yamt ifp = &sc->sc_ethercom.ec_if;
547 1.4.4.2 yamt
548 1.4.4.2 yamt /* First, zot all the multicast entries. */
549 1.4.4.2 yamt vge_cam_clear(sc);
550 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_MAR0, 0);
551 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_MAR1, 0);
552 1.4.4.2 yamt
553 1.4.4.2 yamt /*
554 1.4.4.2 yamt * If the user wants allmulti or promisc mode, enable reception
555 1.4.4.2 yamt * of all multicast frames.
556 1.4.4.2 yamt */
557 1.4.4.2 yamt if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
558 1.4.4.2 yamt allmulti:
559 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
560 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
561 1.4.4.2 yamt return;
562 1.4.4.2 yamt }
563 1.4.4.2 yamt
564 1.4.4.2 yamt /* Now program new ones */
565 1.4.4.2 yamt ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
566 1.4.4.2 yamt while(enm != NULL) {
567 1.4.4.2 yamt /*
568 1.4.4.2 yamt * If multicast range, fall back to ALLMULTI.
569 1.4.4.2 yamt */
570 1.4.4.2 yamt if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
571 1.4.4.2 yamt ETHER_ADDR_LEN) != 0)
572 1.4.4.2 yamt goto allmulti;
573 1.4.4.2 yamt
574 1.4.4.2 yamt error = vge_cam_set(sc,
575 1.4.4.2 yamt LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
576 1.4.4.2 yamt if (error)
577 1.4.4.2 yamt break;
578 1.4.4.2 yamt
579 1.4.4.2 yamt ETHER_NEXT_MULTI(step, enm);
580 1.4.4.2 yamt }
581 1.4.4.2 yamt
582 1.4.4.2 yamt /* If there were too many addresses, use the hash filter. */
583 1.4.4.2 yamt if (error) {
584 1.4.4.2 yamt vge_cam_clear(sc);
585 1.4.4.2 yamt
586 1.4.4.2 yamt ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
587 1.4.4.2 yamt while(enm != NULL) {
588 1.4.4.2 yamt h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
589 1.4.4.2 yamt enm->enm_addrlo), ETHER_ADDR_LEN) >> 26;
590 1.4.4.2 yamt if (h < 32)
591 1.4.4.2 yamt hashes[0] |= (1 << h);
592 1.4.4.2 yamt else
593 1.4.4.2 yamt hashes[1] |= (1 << (h - 32));
594 1.4.4.2 yamt }
595 1.4.4.2 yamt
596 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
597 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
598 1.4.4.2 yamt }
599 1.4.4.2 yamt
600 1.4.4.2 yamt return;
601 1.4.4.2 yamt }
602 1.4.4.2 yamt
603 1.4.4.2 yamt static void
604 1.4.4.2 yamt vge_reset(sc)
605 1.4.4.2 yamt struct vge_softc *sc;
606 1.4.4.2 yamt {
607 1.4.4.2 yamt register int i;
608 1.4.4.2 yamt
609 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
610 1.4.4.2 yamt
611 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
612 1.4.4.2 yamt DELAY(5);
613 1.4.4.2 yamt if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
614 1.4.4.2 yamt break;
615 1.4.4.2 yamt }
616 1.4.4.2 yamt
617 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
618 1.4.4.2 yamt printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
619 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
620 1.4.4.2 yamt DELAY(2000);
621 1.4.4.2 yamt }
622 1.4.4.2 yamt
623 1.4.4.2 yamt DELAY(5000);
624 1.4.4.2 yamt
625 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
626 1.4.4.2 yamt
627 1.4.4.2 yamt for (i = 0; i < VGE_TIMEOUT; i++) {
628 1.4.4.2 yamt DELAY(5);
629 1.4.4.2 yamt if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
630 1.4.4.2 yamt break;
631 1.4.4.2 yamt }
632 1.4.4.2 yamt
633 1.4.4.2 yamt if (i == VGE_TIMEOUT) {
634 1.4.4.2 yamt printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
635 1.4.4.2 yamt return;
636 1.4.4.2 yamt }
637 1.4.4.2 yamt
638 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
639 1.4.4.2 yamt
640 1.4.4.2 yamt return;
641 1.4.4.2 yamt }
642 1.4.4.2 yamt
643 1.4.4.2 yamt /*
644 1.4.4.2 yamt * Probe for a VIA gigabit chip. Check the PCI vendor and device
645 1.4.4.2 yamt * IDs against our list and return a device name if we find a match.
646 1.4.4.2 yamt */
647 1.4.4.2 yamt static int
648 1.4.4.2 yamt vge_probe(struct device *parent, struct cfdata *match, void *aux)
649 1.4.4.2 yamt {
650 1.4.4.2 yamt struct pci_attach_args *pa = aux;
651 1.4.4.2 yamt
652 1.4.4.2 yamt if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
653 1.4.4.2 yamt && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
654 1.4.4.2 yamt return 1;
655 1.4.4.2 yamt
656 1.4.4.2 yamt return (0);
657 1.4.4.2 yamt }
658 1.4.4.2 yamt
659 1.4.4.2 yamt static int
660 1.4.4.2 yamt vge_dma_map_rx_desc(sc, idx)
661 1.4.4.2 yamt struct vge_softc *sc;
662 1.4.4.2 yamt int idx;
663 1.4.4.2 yamt {
664 1.4.4.2 yamt struct vge_rx_desc *d = NULL;
665 1.4.4.2 yamt bus_dma_segment_t *segs;
666 1.4.4.2 yamt
667 1.4.4.2 yamt /*
668 1.4.4.2 yamt * Map the segment array into descriptors.
669 1.4.4.2 yamt */
670 1.4.4.2 yamt
671 1.4.4.2 yamt d = &sc->vge_ldata.vge_rx_list[idx];
672 1.4.4.2 yamt
673 1.4.4.2 yamt /* If this descriptor is still owned by the chip, bail. */
674 1.4.4.2 yamt
675 1.4.4.2 yamt if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
676 1.4.4.2 yamt printf("%s: tried to map busy descriptor\n",
677 1.4.4.2 yamt sc->sc_dev.dv_xname);
678 1.4.4.2 yamt return (EBUSY);
679 1.4.4.2 yamt }
680 1.4.4.2 yamt
681 1.4.4.2 yamt segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
682 1.4.4.2 yamt
683 1.4.4.2 yamt d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
684 1.4.4.2 yamt d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
685 1.4.4.2 yamt d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
686 1.4.4.2 yamt d->vge_sts = 0;
687 1.4.4.2 yamt d->vge_ctl = 0;
688 1.4.4.2 yamt
689 1.4.4.2 yamt return (0);
690 1.4.4.2 yamt }
691 1.4.4.2 yamt
692 1.4.4.2 yamt static void
693 1.4.4.2 yamt vge_dma_map_tx_desc(sc, m0, idx, flags)
694 1.4.4.2 yamt struct vge_softc *sc;
695 1.4.4.2 yamt struct mbuf *m0;
696 1.4.4.2 yamt int idx, flags;
697 1.4.4.2 yamt {
698 1.4.4.2 yamt struct vge_tx_desc *d = &sc->vge_ldata.vge_tx_list[idx];
699 1.4.4.2 yamt struct vge_tx_frag *f;
700 1.4.4.2 yamt int i = 0;
701 1.4.4.2 yamt bus_dma_segment_t *segs;
702 1.4.4.2 yamt size_t sz;
703 1.4.4.2 yamt bus_dmamap_t map = sc->vge_ldata.vge_tx_dmamap[idx];
704 1.4.4.2 yamt
705 1.4.4.2 yamt /* Map the segment array into descriptors. */
706 1.4.4.2 yamt
707 1.4.4.2 yamt segs = map->dm_segs;
708 1.4.4.2 yamt for (i = 0; i < map->dm_nsegs; i++) {
709 1.4.4.2 yamt f = &d->vge_frag[i];
710 1.4.4.2 yamt f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
711 1.4.4.2 yamt f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
712 1.4.4.2 yamt f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
713 1.4.4.2 yamt }
714 1.4.4.2 yamt
715 1.4.4.2 yamt /* Argh. This chip does not autopad short frames */
716 1.4.4.2 yamt
717 1.4.4.2 yamt sz = m0->m_pkthdr.len;
718 1.4.4.2 yamt if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
719 1.4.4.2 yamt f = &d->vge_frag[i];
720 1.4.4.2 yamt f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
721 1.4.4.2 yamt f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
722 1.4.4.2 yamt f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
723 1.4.4.2 yamt sz = VGE_MIN_FRAMELEN;
724 1.4.4.2 yamt i++;
725 1.4.4.2 yamt }
726 1.4.4.2 yamt
727 1.4.4.2 yamt /*
728 1.4.4.2 yamt * When telling the chip how many segments there are, we
729 1.4.4.2 yamt * must use nsegs + 1 instead of just nsegs. Darned if I
730 1.4.4.2 yamt * know why.
731 1.4.4.2 yamt */
732 1.4.4.2 yamt i++;
733 1.4.4.2 yamt
734 1.4.4.2 yamt d->vge_sts = sz << 16;
735 1.4.4.2 yamt d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
736 1.4.4.2 yamt
737 1.4.4.2 yamt if (sz > ETHERMTU + ETHER_HDR_LEN)
738 1.4.4.2 yamt d->vge_ctl |= VGE_TDCTL_JUMBO;
739 1.4.4.2 yamt }
740 1.4.4.2 yamt
741 1.4.4.2 yamt static int
742 1.4.4.2 yamt vge_allocmem(sc)
743 1.4.4.2 yamt struct vge_softc *sc;
744 1.4.4.2 yamt {
745 1.4.4.2 yamt int error;
746 1.4.4.2 yamt int nseg;
747 1.4.4.2 yamt int i;
748 1.4.4.2 yamt bus_dma_segment_t seg;
749 1.4.4.2 yamt
750 1.4.4.2 yamt /*
751 1.4.4.2 yamt * Allocate map for TX descriptor list.
752 1.4.4.2 yamt */
753 1.4.4.2 yamt error = bus_dmamap_create(sc->vge_dmat,
754 1.4.4.2 yamt round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
755 1.4.4.2 yamt 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
756 1.4.4.2 yamt &sc->vge_ldata.vge_tx_list_map);
757 1.4.4.2 yamt if (error) {
758 1.4.4.2 yamt printf("%s: could not allocate TX dma list map\n",
759 1.4.4.2 yamt sc->sc_dev.dv_xname);
760 1.4.4.2 yamt return (ENOMEM);
761 1.4.4.2 yamt }
762 1.4.4.2 yamt
763 1.4.4.2 yamt /*
764 1.4.4.2 yamt * Allocate memory for TX descriptor list.
765 1.4.4.2 yamt */
766 1.4.4.2 yamt
767 1.4.4.2 yamt error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
768 1.4.4.2 yamt 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
769 1.4.4.2 yamt if (error) {
770 1.4.4.2 yamt printf("%s: could not allocate TX ring dma memory\n",
771 1.4.4.2 yamt sc->sc_dev.dv_xname);
772 1.4.4.2 yamt return (ENOMEM);
773 1.4.4.2 yamt }
774 1.4.4.2 yamt
775 1.4.4.2 yamt /* Map the memory to kernel VA space */
776 1.4.4.2 yamt
777 1.4.4.2 yamt error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
778 1.4.4.2 yamt (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
779 1.4.4.2 yamt if (error) {
780 1.4.4.2 yamt printf("%s: could not map TX ring dma memory\n",
781 1.4.4.2 yamt sc->sc_dev.dv_xname);
782 1.4.4.2 yamt return (ENOMEM);
783 1.4.4.2 yamt }
784 1.4.4.2 yamt
785 1.4.4.2 yamt /* Load the map for the TX ring. */
786 1.4.4.2 yamt error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
787 1.4.4.2 yamt sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
788 1.4.4.2 yamt if (error) {
789 1.4.4.2 yamt printf("%s: could not load TX ring dma memory\n",
790 1.4.4.2 yamt sc->sc_dev.dv_xname);
791 1.4.4.2 yamt return (ENOMEM);
792 1.4.4.2 yamt }
793 1.4.4.2 yamt
794 1.4.4.2 yamt sc->vge_ldata.vge_tx_list_addr =
795 1.4.4.2 yamt sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
796 1.4.4.2 yamt
797 1.4.4.2 yamt /* Create DMA maps for TX buffers */
798 1.4.4.2 yamt
799 1.4.4.2 yamt for (i = 0; i < VGE_TX_DESC_CNT; i++) {
800 1.4.4.2 yamt error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
801 1.4.4.2 yamt VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
802 1.4.4.2 yamt BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
803 1.4.4.2 yamt &sc->vge_ldata.vge_tx_dmamap[i]);
804 1.4.4.2 yamt if (error) {
805 1.4.4.2 yamt printf("%s: can't create DMA map for TX\n",
806 1.4.4.2 yamt sc->sc_dev.dv_xname);
807 1.4.4.2 yamt return (ENOMEM);
808 1.4.4.2 yamt }
809 1.4.4.2 yamt }
810 1.4.4.2 yamt
811 1.4.4.2 yamt /*
812 1.4.4.2 yamt * Allocate map for RX descriptor list.
813 1.4.4.2 yamt */
814 1.4.4.2 yamt error = bus_dmamap_create(sc->vge_dmat,
815 1.4.4.2 yamt round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
816 1.4.4.2 yamt 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
817 1.4.4.2 yamt &sc->vge_ldata.vge_rx_list_map);
818 1.4.4.2 yamt if (error) {
819 1.4.4.2 yamt printf("%s: could not allocate RX dma list map\n",
820 1.4.4.2 yamt sc->sc_dev.dv_xname);
821 1.4.4.2 yamt return (ENOMEM);
822 1.4.4.2 yamt }
823 1.4.4.2 yamt
824 1.4.4.2 yamt /* Allocate DMA'able memory for the RX ring */
825 1.4.4.2 yamt
826 1.4.4.2 yamt error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
827 1.4.4.2 yamt 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
828 1.4.4.2 yamt if (error)
829 1.4.4.2 yamt return (ENOMEM);
830 1.4.4.2 yamt
831 1.4.4.2 yamt /* Map the memory to kernel VA space */
832 1.4.4.2 yamt
833 1.4.4.2 yamt error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
834 1.4.4.2 yamt (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
835 1.4.4.2 yamt if (error)
836 1.4.4.2 yamt return (ENOMEM);
837 1.4.4.2 yamt
838 1.4.4.2 yamt /* Load the map for the RX ring. */
839 1.4.4.2 yamt error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
840 1.4.4.2 yamt sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
841 1.4.4.2 yamt if (error) {
842 1.4.4.2 yamt printf("%s: could not load RX ring dma memory\n",
843 1.4.4.2 yamt sc->sc_dev.dv_xname);
844 1.4.4.2 yamt return (ENOMEM);
845 1.4.4.2 yamt }
846 1.4.4.2 yamt
847 1.4.4.2 yamt sc->vge_ldata.vge_rx_list_addr =
848 1.4.4.2 yamt sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
849 1.4.4.2 yamt
850 1.4.4.2 yamt /* Create DMA maps for RX buffers */
851 1.4.4.2 yamt
852 1.4.4.2 yamt for (i = 0; i < VGE_RX_DESC_CNT; i++) {
853 1.4.4.2 yamt error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
854 1.4.4.2 yamt 1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
855 1.4.4.2 yamt &sc->vge_ldata.vge_rx_dmamap[i]);
856 1.4.4.2 yamt if (error) {
857 1.4.4.2 yamt printf("%s: can't create DMA map for RX\n",
858 1.4.4.2 yamt sc->sc_dev.dv_xname);
859 1.4.4.2 yamt return (ENOMEM);
860 1.4.4.2 yamt }
861 1.4.4.2 yamt }
862 1.4.4.2 yamt
863 1.4.4.2 yamt return (0);
864 1.4.4.2 yamt }
865 1.4.4.2 yamt
866 1.4.4.2 yamt /*
867 1.4.4.2 yamt * Attach the interface. Allocate softc structures, do ifmedia
868 1.4.4.2 yamt * setup and ethernet/BPF attach.
869 1.4.4.2 yamt */
870 1.4.4.2 yamt static void
871 1.4.4.2 yamt vge_attach(struct device *parent, struct device *self, void *aux)
872 1.4.4.2 yamt {
873 1.4.4.2 yamt u_char eaddr[ETHER_ADDR_LEN];
874 1.4.4.2 yamt struct vge_softc *sc = (struct vge_softc *)self;
875 1.4.4.2 yamt struct ifnet *ifp;
876 1.4.4.2 yamt struct pci_attach_args *pa = aux;
877 1.4.4.2 yamt pci_chipset_tag_t pc = pa->pa_pc;
878 1.4.4.2 yamt const char *intrstr;
879 1.4.4.2 yamt pci_intr_handle_t ih;
880 1.4.4.2 yamt
881 1.4.4.2 yamt aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
882 1.4.4.2 yamt PCI_REVISION(pa->pa_class));
883 1.4.4.2 yamt
884 1.4.4.2 yamt /* Make sure bus-mastering is enabled */
885 1.4.4.2 yamt pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
886 1.4.4.2 yamt pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
887 1.4.4.2 yamt PCI_COMMAND_MASTER_ENABLE);
888 1.4.4.2 yamt
889 1.4.4.2 yamt /*
890 1.4.4.2 yamt * Map control/status registers.
891 1.4.4.2 yamt */
892 1.4.4.2 yamt if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
893 1.4.4.2 yamt PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
894 1.4.4.2 yamt &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
895 1.4.4.2 yamt aprint_error("%s: couldn't map memory\n",
896 1.4.4.2 yamt sc->sc_dev.dv_xname);
897 1.4.4.2 yamt return;
898 1.4.4.2 yamt }
899 1.4.4.2 yamt
900 1.4.4.2 yamt /*
901 1.4.4.2 yamt * Map and establish our interrupt.
902 1.4.4.2 yamt */
903 1.4.4.2 yamt if (pci_intr_map(pa, &ih)) {
904 1.4.4.2 yamt aprint_error("%s: unable to map interrupt\n",
905 1.4.4.2 yamt sc->sc_dev.dv_xname);
906 1.4.4.2 yamt return;
907 1.4.4.2 yamt }
908 1.4.4.2 yamt intrstr = pci_intr_string(pc, ih);
909 1.4.4.2 yamt sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
910 1.4.4.2 yamt if (sc->vge_intrhand == NULL) {
911 1.4.4.2 yamt printf("%s: unable to establish interrupt",
912 1.4.4.2 yamt sc->sc_dev.dv_xname);
913 1.4.4.2 yamt if (intrstr != NULL)
914 1.4.4.2 yamt printf(" at %s", intrstr);
915 1.4.4.2 yamt printf("\n");
916 1.4.4.2 yamt return;
917 1.4.4.2 yamt }
918 1.4.4.2 yamt aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
919 1.4.4.2 yamt
920 1.4.4.2 yamt /* Reset the adapter. */
921 1.4.4.2 yamt vge_reset(sc);
922 1.4.4.2 yamt
923 1.4.4.2 yamt /*
924 1.4.4.2 yamt * Get station address from the EEPROM.
925 1.4.4.2 yamt */
926 1.4.4.2 yamt vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
927 1.4.4.2 yamt bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
928 1.4.4.2 yamt
929 1.4.4.2 yamt printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
930 1.4.4.2 yamt ether_sprintf(eaddr));
931 1.4.4.2 yamt
932 1.4.4.2 yamt /*
933 1.4.4.2 yamt * Use the 32bit tag. Hardware supports 48bit physical addresses,
934 1.4.4.2 yamt * but we don't use that for now.
935 1.4.4.2 yamt */
936 1.4.4.2 yamt sc->vge_dmat = pa->pa_dmat;
937 1.4.4.2 yamt
938 1.4.4.2 yamt if (vge_allocmem(sc))
939 1.4.4.2 yamt return;
940 1.4.4.2 yamt
941 1.4.4.2 yamt ifp = &sc->sc_ethercom.ec_if;
942 1.4.4.2 yamt ifp->if_softc = sc;
943 1.4.4.2 yamt strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
944 1.4.4.2 yamt ifp->if_mtu = ETHERMTU;
945 1.4.4.2 yamt ifp->if_baudrate = IF_Gbps(1);
946 1.4.4.2 yamt ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
947 1.4.4.2 yamt ifp->if_ioctl = vge_ioctl;
948 1.4.4.2 yamt ifp->if_start = vge_start;
949 1.4.4.2 yamt
950 1.4.4.2 yamt /*
951 1.4.4.2 yamt * We can support 802.1Q VLAN-sized frames and jumbo
952 1.4.4.2 yamt * Ethernet frames.
953 1.4.4.2 yamt */
954 1.4.4.2 yamt sc->sc_ethercom.ec_capabilities |=
955 1.4.4.2 yamt ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
956 1.4.4.2 yamt ETHERCAP_VLAN_HWTAGGING;
957 1.4.4.2 yamt
958 1.4.4.2 yamt /*
959 1.4.4.2 yamt * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
960 1.4.4.2 yamt */
961 1.4.4.2 yamt ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
962 1.4.4.2 yamt IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
963 1.4.4.2 yamt
964 1.4.4.2 yamt #ifdef DEVICE_POLLING
965 1.4.4.2 yamt #ifdef IFCAP_POLLING
966 1.4.4.2 yamt ifp->if_capabilities |= IFCAP_POLLING;
967 1.4.4.2 yamt #endif
968 1.4.4.2 yamt #endif
969 1.4.4.2 yamt ifp->if_watchdog = vge_watchdog;
970 1.4.4.2 yamt ifp->if_init = vge_init;
971 1.4.4.2 yamt IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
972 1.4.4.2 yamt
973 1.4.4.2 yamt /*
974 1.4.4.2 yamt * Initialize our media structures and probe the MII.
975 1.4.4.2 yamt */
976 1.4.4.2 yamt sc->sc_mii.mii_ifp = ifp;
977 1.4.4.2 yamt sc->sc_mii.mii_readreg = vge_miibus_readreg;
978 1.4.4.2 yamt sc->sc_mii.mii_writereg = vge_miibus_writereg;
979 1.4.4.2 yamt sc->sc_mii.mii_statchg = vge_miibus_statchg;
980 1.4.4.2 yamt ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
981 1.4.4.2 yamt vge_ifmedia_sts);
982 1.4.4.2 yamt mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
983 1.4.4.2 yamt MII_OFFSET_ANY, MIIF_DOPAUSE);
984 1.4.4.2 yamt if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
985 1.4.4.2 yamt ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
986 1.4.4.2 yamt ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
987 1.4.4.2 yamt } else
988 1.4.4.2 yamt ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
989 1.4.4.2 yamt
990 1.4.4.2 yamt /*
991 1.4.4.2 yamt * Attach the interface.
992 1.4.4.2 yamt */
993 1.4.4.2 yamt if_attach(ifp);
994 1.4.4.2 yamt ether_ifattach(ifp, eaddr);
995 1.4.4.2 yamt
996 1.4.4.2 yamt callout_init(&sc->vge_timeout);
997 1.4.4.2 yamt callout_setfunc(&sc->vge_timeout, vge_tick, sc);
998 1.4.4.2 yamt
999 1.4.4.2 yamt /*
1000 1.4.4.2 yamt * Make sure the interface is shutdown during reboot.
1001 1.4.4.2 yamt */
1002 1.4.4.2 yamt if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1003 1.4.4.2 yamt printf("%s: WARNING: unable to establish shutdown hook\n",
1004 1.4.4.2 yamt sc->sc_dev.dv_xname);
1005 1.4.4.2 yamt }
1006 1.4.4.2 yamt }
1007 1.4.4.2 yamt
1008 1.4.4.2 yamt static int
1009 1.4.4.2 yamt vge_newbuf(sc, idx, m)
1010 1.4.4.2 yamt struct vge_softc *sc;
1011 1.4.4.2 yamt int idx;
1012 1.4.4.2 yamt struct mbuf *m;
1013 1.4.4.2 yamt {
1014 1.4.4.2 yamt struct mbuf *n = NULL;
1015 1.4.4.2 yamt int i, error;
1016 1.4.4.2 yamt
1017 1.4.4.2 yamt if (m == NULL) {
1018 1.4.4.2 yamt n = m_gethdr(M_DONTWAIT, MT_DATA);
1019 1.4.4.2 yamt if (n == NULL)
1020 1.4.4.2 yamt return (ENOBUFS);
1021 1.4.4.2 yamt
1022 1.4.4.2 yamt m_clget(n, M_DONTWAIT);
1023 1.4.4.2 yamt if ((n->m_flags & M_EXT) == 0) {
1024 1.4.4.2 yamt m_freem(n);
1025 1.4.4.2 yamt return (ENOBUFS);
1026 1.4.4.2 yamt }
1027 1.4.4.2 yamt
1028 1.4.4.2 yamt m = n;
1029 1.4.4.2 yamt } else
1030 1.4.4.2 yamt m->m_data = m->m_ext.ext_buf;
1031 1.4.4.2 yamt
1032 1.4.4.2 yamt
1033 1.4.4.2 yamt #ifdef VGE_FIXUP_RX
1034 1.4.4.2 yamt /*
1035 1.4.4.2 yamt * This is part of an evil trick to deal with non-x86 platforms.
1036 1.4.4.2 yamt * The VIA chip requires RX buffers to be aligned on 32-bit
1037 1.4.4.2 yamt * boundaries, but that will hose non-x86 machines. To get around
1038 1.4.4.2 yamt * this, we leave some empty space at the start of each buffer
1039 1.4.4.2 yamt * and for non-x86 hosts, we copy the buffer back two bytes
1040 1.4.4.2 yamt * to achieve word alignment. This is slightly more efficient
1041 1.4.4.2 yamt * than allocating a new buffer, copying the contents, and
1042 1.4.4.2 yamt * discarding the old buffer.
1043 1.4.4.2 yamt */
1044 1.4.4.2 yamt m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1045 1.4.4.2 yamt m_adj(m, VGE_ETHER_ALIGN);
1046 1.4.4.2 yamt #else
1047 1.4.4.2 yamt m->m_len = m->m_pkthdr.len = MCLBYTES;
1048 1.4.4.2 yamt #endif
1049 1.4.4.2 yamt
1050 1.4.4.2 yamt error = bus_dmamap_load_mbuf(sc->vge_dmat,
1051 1.4.4.2 yamt sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1052 1.4.4.2 yamt if (error || vge_dma_map_rx_desc(sc, idx)) {
1053 1.4.4.2 yamt if (n != NULL)
1054 1.4.4.2 yamt m_freem(n);
1055 1.4.4.2 yamt return (ENOMEM);
1056 1.4.4.2 yamt }
1057 1.4.4.2 yamt
1058 1.4.4.2 yamt /*
1059 1.4.4.2 yamt * Note: the manual fails to document the fact that for
1060 1.4.4.2 yamt * proper opration, the driver needs to replentish the RX
1061 1.4.4.2 yamt * DMA ring 4 descriptors at a time (rather than one at a
1062 1.4.4.2 yamt * time, like most chips). We can allocate the new buffers
1063 1.4.4.2 yamt * but we should not set the OWN bits until we're ready
1064 1.4.4.2 yamt * to hand back 4 of them in one shot.
1065 1.4.4.2 yamt */
1066 1.4.4.2 yamt
1067 1.4.4.2 yamt #define VGE_RXCHUNK 4
1068 1.4.4.2 yamt sc->vge_rx_consumed++;
1069 1.4.4.2 yamt if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1070 1.4.4.2 yamt for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1071 1.4.4.2 yamt sc->vge_ldata.vge_rx_list[i].vge_sts |=
1072 1.4.4.2 yamt htole32(VGE_RDSTS_OWN);
1073 1.4.4.2 yamt sc->vge_rx_consumed = 0;
1074 1.4.4.2 yamt }
1075 1.4.4.2 yamt
1076 1.4.4.2 yamt sc->vge_ldata.vge_rx_mbuf[idx] = m;
1077 1.4.4.2 yamt
1078 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1079 1.4.4.2 yamt sc->vge_ldata.vge_rx_dmamap[idx],
1080 1.4.4.2 yamt 0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1081 1.4.4.2 yamt BUS_DMASYNC_PREREAD);
1082 1.4.4.2 yamt
1083 1.4.4.2 yamt return (0);
1084 1.4.4.2 yamt }
1085 1.4.4.2 yamt
1086 1.4.4.2 yamt static int
1087 1.4.4.2 yamt vge_tx_list_init(sc)
1088 1.4.4.2 yamt struct vge_softc *sc;
1089 1.4.4.2 yamt {
1090 1.4.4.2 yamt bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1091 1.4.4.2 yamt bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1092 1.4.4.2 yamt (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1093 1.4.4.2 yamt
1094 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1095 1.4.4.2 yamt sc->vge_ldata.vge_tx_list_map,
1096 1.4.4.2 yamt 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1097 1.4.4.2 yamt BUS_DMASYNC_PREWRITE);
1098 1.4.4.2 yamt
1099 1.4.4.2 yamt sc->vge_ldata.vge_tx_prodidx = 0;
1100 1.4.4.2 yamt sc->vge_ldata.vge_tx_considx = 0;
1101 1.4.4.2 yamt sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1102 1.4.4.2 yamt
1103 1.4.4.2 yamt return (0);
1104 1.4.4.2 yamt }
1105 1.4.4.2 yamt
1106 1.4.4.2 yamt static int
1107 1.4.4.2 yamt vge_rx_list_init(sc)
1108 1.4.4.2 yamt struct vge_softc *sc;
1109 1.4.4.2 yamt {
1110 1.4.4.2 yamt int i;
1111 1.4.4.2 yamt
1112 1.4.4.2 yamt bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1113 1.4.4.2 yamt bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1114 1.4.4.2 yamt (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1115 1.4.4.2 yamt
1116 1.4.4.2 yamt sc->vge_rx_consumed = 0;
1117 1.4.4.2 yamt
1118 1.4.4.2 yamt for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1119 1.4.4.2 yamt if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1120 1.4.4.2 yamt return (ENOBUFS);
1121 1.4.4.2 yamt }
1122 1.4.4.2 yamt
1123 1.4.4.2 yamt /* Flush the RX descriptors */
1124 1.4.4.2 yamt
1125 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1126 1.4.4.2 yamt sc->vge_ldata.vge_rx_list_map,
1127 1.4.4.2 yamt 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1128 1.4.4.2 yamt BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1129 1.4.4.2 yamt
1130 1.4.4.2 yamt sc->vge_ldata.vge_rx_prodidx = 0;
1131 1.4.4.2 yamt sc->vge_rx_consumed = 0;
1132 1.4.4.2 yamt sc->vge_head = sc->vge_tail = NULL;
1133 1.4.4.2 yamt
1134 1.4.4.2 yamt return (0);
1135 1.4.4.2 yamt }
1136 1.4.4.2 yamt
1137 1.4.4.2 yamt #ifdef VGE_FIXUP_RX
1138 1.4.4.2 yamt static __inline void
1139 1.4.4.2 yamt vge_fixup_rx(m)
1140 1.4.4.2 yamt struct mbuf *m;
1141 1.4.4.2 yamt {
1142 1.4.4.2 yamt int i;
1143 1.4.4.2 yamt uint16_t *src, *dst;
1144 1.4.4.2 yamt
1145 1.4.4.2 yamt src = mtod(m, uint16_t *);
1146 1.4.4.2 yamt dst = src - 1;
1147 1.4.4.2 yamt
1148 1.4.4.2 yamt for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1149 1.4.4.2 yamt *dst++ = *src++;
1150 1.4.4.2 yamt
1151 1.4.4.2 yamt m->m_data -= ETHER_ALIGN;
1152 1.4.4.2 yamt
1153 1.4.4.2 yamt return;
1154 1.4.4.2 yamt }
1155 1.4.4.2 yamt #endif
1156 1.4.4.2 yamt
1157 1.4.4.2 yamt /*
1158 1.4.4.2 yamt * RX handler. We support the reception of jumbo frames that have
1159 1.4.4.2 yamt * been fragmented across multiple 2K mbuf cluster buffers.
1160 1.4.4.2 yamt */
1161 1.4.4.2 yamt static void
1162 1.4.4.2 yamt vge_rxeof(sc)
1163 1.4.4.2 yamt struct vge_softc *sc;
1164 1.4.4.2 yamt {
1165 1.4.4.2 yamt struct mbuf *m;
1166 1.4.4.2 yamt struct ifnet *ifp;
1167 1.4.4.2 yamt int i, total_len;
1168 1.4.4.2 yamt int lim = 0;
1169 1.4.4.2 yamt struct vge_rx_desc *cur_rx;
1170 1.4.4.2 yamt u_int32_t rxstat, rxctl;
1171 1.4.4.2 yamt
1172 1.4.4.2 yamt VGE_LOCK_ASSERT(sc);
1173 1.4.4.2 yamt ifp = &sc->sc_ethercom.ec_if;
1174 1.4.4.2 yamt i = sc->vge_ldata.vge_rx_prodidx;
1175 1.4.4.2 yamt
1176 1.4.4.2 yamt /* Invalidate the descriptor memory */
1177 1.4.4.2 yamt
1178 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1179 1.4.4.2 yamt sc->vge_ldata.vge_rx_list_map,
1180 1.4.4.2 yamt 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1181 1.4.4.2 yamt BUS_DMASYNC_POSTREAD);
1182 1.4.4.2 yamt
1183 1.4.4.2 yamt while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1184 1.4.4.2 yamt
1185 1.4.4.2 yamt #ifdef DEVICE_POLLING
1186 1.4.4.2 yamt if (ifp->if_flags & IFF_POLLING) {
1187 1.4.4.2 yamt if (sc->rxcycles <= 0)
1188 1.4.4.2 yamt break;
1189 1.4.4.2 yamt sc->rxcycles--;
1190 1.4.4.2 yamt }
1191 1.4.4.2 yamt #endif /* DEVICE_POLLING */
1192 1.4.4.2 yamt
1193 1.4.4.2 yamt cur_rx = &sc->vge_ldata.vge_rx_list[i];
1194 1.4.4.2 yamt m = sc->vge_ldata.vge_rx_mbuf[i];
1195 1.4.4.2 yamt total_len = VGE_RXBYTES(cur_rx);
1196 1.4.4.2 yamt rxstat = le32toh(cur_rx->vge_sts);
1197 1.4.4.2 yamt rxctl = le32toh(cur_rx->vge_ctl);
1198 1.4.4.2 yamt
1199 1.4.4.2 yamt /* Invalidate the RX mbuf and unload its map */
1200 1.4.4.2 yamt
1201 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1202 1.4.4.2 yamt sc->vge_ldata.vge_rx_dmamap[i],
1203 1.4.4.2 yamt 0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1204 1.4.4.2 yamt BUS_DMASYNC_POSTWRITE);
1205 1.4.4.2 yamt bus_dmamap_unload(sc->vge_dmat,
1206 1.4.4.2 yamt sc->vge_ldata.vge_rx_dmamap[i]);
1207 1.4.4.2 yamt
1208 1.4.4.2 yamt /*
1209 1.4.4.2 yamt * If the 'start of frame' bit is set, this indicates
1210 1.4.4.2 yamt * either the first fragment in a multi-fragment receive,
1211 1.4.4.2 yamt * or an intermediate fragment. Either way, we want to
1212 1.4.4.2 yamt * accumulate the buffers.
1213 1.4.4.2 yamt */
1214 1.4.4.2 yamt if (rxstat & VGE_RXPKT_SOF) {
1215 1.4.4.2 yamt m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1216 1.4.4.2 yamt if (sc->vge_head == NULL)
1217 1.4.4.2 yamt sc->vge_head = sc->vge_tail = m;
1218 1.4.4.2 yamt else {
1219 1.4.4.2 yamt m->m_flags &= ~M_PKTHDR;
1220 1.4.4.2 yamt sc->vge_tail->m_next = m;
1221 1.4.4.2 yamt sc->vge_tail = m;
1222 1.4.4.2 yamt }
1223 1.4.4.2 yamt vge_newbuf(sc, i, NULL);
1224 1.4.4.2 yamt VGE_RX_DESC_INC(i);
1225 1.4.4.2 yamt continue;
1226 1.4.4.2 yamt }
1227 1.4.4.2 yamt
1228 1.4.4.2 yamt /*
1229 1.4.4.2 yamt * Bad/error frames will have the RXOK bit cleared.
1230 1.4.4.2 yamt * However, there's one error case we want to allow:
1231 1.4.4.2 yamt * if a VLAN tagged frame arrives and the chip can't
1232 1.4.4.2 yamt * match it against the CAM filter, it considers this
1233 1.4.4.2 yamt * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1234 1.4.4.2 yamt * We don't want to drop the frame though: our VLAN
1235 1.4.4.2 yamt * filtering is done in software.
1236 1.4.4.2 yamt */
1237 1.4.4.2 yamt if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1238 1.4.4.2 yamt && !(rxstat & VGE_RDSTS_CSUMERR)) {
1239 1.4.4.2 yamt ifp->if_ierrors++;
1240 1.4.4.2 yamt /*
1241 1.4.4.2 yamt * If this is part of a multi-fragment packet,
1242 1.4.4.2 yamt * discard all the pieces.
1243 1.4.4.2 yamt */
1244 1.4.4.2 yamt if (sc->vge_head != NULL) {
1245 1.4.4.2 yamt m_freem(sc->vge_head);
1246 1.4.4.2 yamt sc->vge_head = sc->vge_tail = NULL;
1247 1.4.4.2 yamt }
1248 1.4.4.2 yamt vge_newbuf(sc, i, m);
1249 1.4.4.2 yamt VGE_RX_DESC_INC(i);
1250 1.4.4.2 yamt continue;
1251 1.4.4.2 yamt }
1252 1.4.4.2 yamt
1253 1.4.4.2 yamt /*
1254 1.4.4.2 yamt * If allocating a replacement mbuf fails,
1255 1.4.4.2 yamt * reload the current one.
1256 1.4.4.2 yamt */
1257 1.4.4.2 yamt
1258 1.4.4.2 yamt if (vge_newbuf(sc, i, NULL)) {
1259 1.4.4.2 yamt ifp->if_ierrors++;
1260 1.4.4.2 yamt if (sc->vge_head != NULL) {
1261 1.4.4.2 yamt m_freem(sc->vge_head);
1262 1.4.4.2 yamt sc->vge_head = sc->vge_tail = NULL;
1263 1.4.4.2 yamt }
1264 1.4.4.2 yamt vge_newbuf(sc, i, m);
1265 1.4.4.2 yamt VGE_RX_DESC_INC(i);
1266 1.4.4.2 yamt continue;
1267 1.4.4.2 yamt }
1268 1.4.4.2 yamt
1269 1.4.4.2 yamt VGE_RX_DESC_INC(i);
1270 1.4.4.2 yamt
1271 1.4.4.2 yamt if (sc->vge_head != NULL) {
1272 1.4.4.2 yamt m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1273 1.4.4.2 yamt /*
1274 1.4.4.2 yamt * Special case: if there's 4 bytes or less
1275 1.4.4.2 yamt * in this buffer, the mbuf can be discarded:
1276 1.4.4.2 yamt * the last 4 bytes is the CRC, which we don't
1277 1.4.4.2 yamt * care about anyway.
1278 1.4.4.2 yamt */
1279 1.4.4.2 yamt if (m->m_len <= ETHER_CRC_LEN) {
1280 1.4.4.2 yamt sc->vge_tail->m_len -=
1281 1.4.4.2 yamt (ETHER_CRC_LEN - m->m_len);
1282 1.4.4.2 yamt m_freem(m);
1283 1.4.4.2 yamt } else {
1284 1.4.4.2 yamt m->m_len -= ETHER_CRC_LEN;
1285 1.4.4.2 yamt m->m_flags &= ~M_PKTHDR;
1286 1.4.4.2 yamt sc->vge_tail->m_next = m;
1287 1.4.4.2 yamt }
1288 1.4.4.2 yamt m = sc->vge_head;
1289 1.4.4.2 yamt sc->vge_head = sc->vge_tail = NULL;
1290 1.4.4.2 yamt m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1291 1.4.4.2 yamt } else
1292 1.4.4.2 yamt m->m_pkthdr.len = m->m_len =
1293 1.4.4.2 yamt (total_len - ETHER_CRC_LEN);
1294 1.4.4.2 yamt
1295 1.4.4.2 yamt #ifdef VGE_FIXUP_RX
1296 1.4.4.2 yamt vge_fixup_rx(m);
1297 1.4.4.2 yamt #endif
1298 1.4.4.2 yamt ifp->if_ipackets++;
1299 1.4.4.2 yamt m->m_pkthdr.rcvif = ifp;
1300 1.4.4.2 yamt
1301 1.4.4.2 yamt /* Do RX checksumming if enabled */
1302 1.4.4.2 yamt if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1303 1.4.4.2 yamt
1304 1.4.4.2 yamt /* Check IP header checksum */
1305 1.4.4.2 yamt if (rxctl & VGE_RDCTL_IPPKT)
1306 1.4.4.2 yamt m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1307 1.4.4.2 yamt if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1308 1.4.4.2 yamt m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1309 1.4.4.2 yamt }
1310 1.4.4.2 yamt
1311 1.4.4.2 yamt if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1312 1.4.4.2 yamt /* Check UDP checksum */
1313 1.4.4.2 yamt if (rxctl & VGE_RDCTL_TCPPKT)
1314 1.4.4.2 yamt m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1315 1.4.4.2 yamt
1316 1.4.4.2 yamt if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1317 1.4.4.2 yamt m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1318 1.4.4.2 yamt }
1319 1.4.4.2 yamt
1320 1.4.4.2 yamt if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1321 1.4.4.2 yamt /* Check UDP checksum */
1322 1.4.4.2 yamt if (rxctl & VGE_RDCTL_UDPPKT)
1323 1.4.4.2 yamt m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1324 1.4.4.2 yamt
1325 1.4.4.2 yamt if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1326 1.4.4.2 yamt m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1327 1.4.4.2 yamt }
1328 1.4.4.2 yamt
1329 1.4.4.2 yamt if (rxstat & VGE_RDSTS_VTAG)
1330 1.4.4.2 yamt VLAN_INPUT_TAG(ifp, m,
1331 1.4.4.2 yamt ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1332 1.4.4.2 yamt
1333 1.4.4.2 yamt #if NBPFILTER > 0
1334 1.4.4.2 yamt /*
1335 1.4.4.2 yamt * Handle BPF listeners.
1336 1.4.4.2 yamt */
1337 1.4.4.2 yamt if (ifp->if_bpf)
1338 1.4.4.2 yamt bpf_mtap(ifp->if_bpf, m);
1339 1.4.4.2 yamt #endif
1340 1.4.4.2 yamt
1341 1.4.4.2 yamt VGE_UNLOCK(sc);
1342 1.4.4.2 yamt (*ifp->if_input)(ifp, m);
1343 1.4.4.2 yamt VGE_LOCK(sc);
1344 1.4.4.2 yamt
1345 1.4.4.2 yamt lim++;
1346 1.4.4.2 yamt if (lim == VGE_RX_DESC_CNT)
1347 1.4.4.2 yamt break;
1348 1.4.4.2 yamt
1349 1.4.4.2 yamt }
1350 1.4.4.2 yamt
1351 1.4.4.2 yamt /* Flush the RX DMA ring */
1352 1.4.4.2 yamt
1353 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1354 1.4.4.2 yamt sc->vge_ldata.vge_rx_list_map,
1355 1.4.4.2 yamt 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1356 1.4.4.2 yamt BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1357 1.4.4.2 yamt
1358 1.4.4.2 yamt sc->vge_ldata.vge_rx_prodidx = i;
1359 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1360 1.4.4.2 yamt
1361 1.4.4.2 yamt
1362 1.4.4.2 yamt return;
1363 1.4.4.2 yamt }
1364 1.4.4.2 yamt
1365 1.4.4.2 yamt static void
1366 1.4.4.2 yamt vge_txeof(sc)
1367 1.4.4.2 yamt struct vge_softc *sc;
1368 1.4.4.2 yamt {
1369 1.4.4.2 yamt struct ifnet *ifp;
1370 1.4.4.2 yamt u_int32_t txstat;
1371 1.4.4.2 yamt int idx;
1372 1.4.4.2 yamt
1373 1.4.4.2 yamt ifp = &sc->sc_ethercom.ec_if;
1374 1.4.4.2 yamt idx = sc->vge_ldata.vge_tx_considx;
1375 1.4.4.2 yamt
1376 1.4.4.2 yamt /* Invalidate the TX descriptor list */
1377 1.4.4.2 yamt
1378 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1379 1.4.4.2 yamt sc->vge_ldata.vge_tx_list_map,
1380 1.4.4.2 yamt 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1381 1.4.4.2 yamt BUS_DMASYNC_POSTREAD);
1382 1.4.4.2 yamt
1383 1.4.4.2 yamt while (idx != sc->vge_ldata.vge_tx_prodidx) {
1384 1.4.4.2 yamt
1385 1.4.4.2 yamt txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1386 1.4.4.2 yamt if (txstat & VGE_TDSTS_OWN)
1387 1.4.4.2 yamt break;
1388 1.4.4.2 yamt
1389 1.4.4.2 yamt m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1390 1.4.4.2 yamt sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1391 1.4.4.2 yamt bus_dmamap_unload(sc->vge_dmat,
1392 1.4.4.2 yamt sc->vge_ldata.vge_tx_dmamap[idx]);
1393 1.4.4.2 yamt if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1394 1.4.4.2 yamt ifp->if_collisions++;
1395 1.4.4.2 yamt if (txstat & VGE_TDSTS_TXERR)
1396 1.4.4.2 yamt ifp->if_oerrors++;
1397 1.4.4.2 yamt else
1398 1.4.4.2 yamt ifp->if_opackets++;
1399 1.4.4.2 yamt
1400 1.4.4.2 yamt sc->vge_ldata.vge_tx_free++;
1401 1.4.4.2 yamt VGE_TX_DESC_INC(idx);
1402 1.4.4.2 yamt }
1403 1.4.4.2 yamt
1404 1.4.4.2 yamt /* No changes made to the TX ring, so no flush needed */
1405 1.4.4.2 yamt
1406 1.4.4.2 yamt if (idx != sc->vge_ldata.vge_tx_considx) {
1407 1.4.4.2 yamt sc->vge_ldata.vge_tx_considx = idx;
1408 1.4.4.2 yamt ifp->if_flags &= ~IFF_OACTIVE;
1409 1.4.4.2 yamt ifp->if_timer = 0;
1410 1.4.4.2 yamt }
1411 1.4.4.2 yamt
1412 1.4.4.2 yamt /*
1413 1.4.4.2 yamt * If not all descriptors have been released reaped yet,
1414 1.4.4.2 yamt * reload the timer so that we will eventually get another
1415 1.4.4.2 yamt * interrupt that will cause us to re-enter this routine.
1416 1.4.4.2 yamt * This is done in case the transmitter has gone idle.
1417 1.4.4.2 yamt */
1418 1.4.4.2 yamt if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1419 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1420 1.4.4.2 yamt }
1421 1.4.4.2 yamt
1422 1.4.4.2 yamt return;
1423 1.4.4.2 yamt }
1424 1.4.4.2 yamt
1425 1.4.4.2 yamt static void
1426 1.4.4.2 yamt vge_tick(xsc)
1427 1.4.4.2 yamt void *xsc;
1428 1.4.4.2 yamt {
1429 1.4.4.2 yamt struct vge_softc *sc = xsc;
1430 1.4.4.2 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 1.4.4.2 yamt struct mii_data *mii = &sc->sc_mii;
1432 1.4.4.2 yamt int s;
1433 1.4.4.2 yamt
1434 1.4.4.2 yamt s = splnet();
1435 1.4.4.2 yamt
1436 1.4.4.2 yamt VGE_LOCK(sc);
1437 1.4.4.2 yamt
1438 1.4.4.2 yamt callout_schedule(&sc->vge_timeout, hz);
1439 1.4.4.2 yamt
1440 1.4.4.2 yamt mii_tick(mii);
1441 1.4.4.2 yamt if (sc->vge_link) {
1442 1.4.4.2 yamt if (!(mii->mii_media_status & IFM_ACTIVE))
1443 1.4.4.2 yamt sc->vge_link = 0;
1444 1.4.4.2 yamt } else {
1445 1.4.4.2 yamt if (mii->mii_media_status & IFM_ACTIVE &&
1446 1.4.4.2 yamt IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1447 1.4.4.2 yamt sc->vge_link = 1;
1448 1.4.4.2 yamt if (!IFQ_IS_EMPTY(&ifp->if_snd))
1449 1.4.4.2 yamt vge_start(ifp);
1450 1.4.4.2 yamt }
1451 1.4.4.2 yamt }
1452 1.4.4.2 yamt
1453 1.4.4.2 yamt VGE_UNLOCK(sc);
1454 1.4.4.2 yamt
1455 1.4.4.2 yamt splx(s);
1456 1.4.4.2 yamt }
1457 1.4.4.2 yamt
1458 1.4.4.2 yamt #ifdef DEVICE_POLLING
1459 1.4.4.2 yamt static void
1460 1.4.4.2 yamt vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1461 1.4.4.2 yamt {
1462 1.4.4.2 yamt struct vge_softc *sc = ifp->if_softc;
1463 1.4.4.2 yamt
1464 1.4.4.2 yamt VGE_LOCK(sc);
1465 1.4.4.2 yamt #ifdef IFCAP_POLLING
1466 1.4.4.2 yamt if (!(ifp->if_capenable & IFCAP_POLLING)) {
1467 1.4.4.2 yamt ether_poll_deregister(ifp);
1468 1.4.4.2 yamt cmd = POLL_DEREGISTER;
1469 1.4.4.2 yamt }
1470 1.4.4.2 yamt #endif
1471 1.4.4.2 yamt if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1472 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1473 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1474 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1475 1.4.4.2 yamt goto done;
1476 1.4.4.2 yamt }
1477 1.4.4.2 yamt
1478 1.4.4.2 yamt sc->rxcycles = count;
1479 1.4.4.2 yamt vge_rxeof(sc);
1480 1.4.4.2 yamt vge_txeof(sc);
1481 1.4.4.2 yamt
1482 1.4.4.2 yamt #if __FreeBSD_version < 502114
1483 1.4.4.2 yamt if (ifp->if_snd.ifq_head != NULL)
1484 1.4.4.2 yamt #else
1485 1.4.4.2 yamt if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1486 1.4.4.2 yamt #endif
1487 1.4.4.2 yamt taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1488 1.4.4.2 yamt
1489 1.4.4.2 yamt if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1490 1.4.4.2 yamt u_int32_t status;
1491 1.4.4.2 yamt status = CSR_READ_4(sc, VGE_ISR);
1492 1.4.4.2 yamt if (status == 0xFFFFFFFF)
1493 1.4.4.2 yamt goto done;
1494 1.4.4.2 yamt if (status)
1495 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_ISR, status);
1496 1.4.4.2 yamt
1497 1.4.4.2 yamt /*
1498 1.4.4.2 yamt * XXX check behaviour on receiver stalls.
1499 1.4.4.2 yamt */
1500 1.4.4.2 yamt
1501 1.4.4.2 yamt if (status & VGE_ISR_TXDMA_STALL ||
1502 1.4.4.2 yamt status & VGE_ISR_RXDMA_STALL)
1503 1.4.4.2 yamt vge_init(sc);
1504 1.4.4.2 yamt
1505 1.4.4.2 yamt if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1506 1.4.4.2 yamt vge_rxeof(sc);
1507 1.4.4.2 yamt ifp->if_ierrors++;
1508 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1509 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1510 1.4.4.2 yamt }
1511 1.4.4.2 yamt }
1512 1.4.4.2 yamt done:
1513 1.4.4.2 yamt VGE_UNLOCK(sc);
1514 1.4.4.2 yamt }
1515 1.4.4.2 yamt #endif /* DEVICE_POLLING */
1516 1.4.4.2 yamt
1517 1.4.4.2 yamt static int
1518 1.4.4.2 yamt vge_intr(arg)
1519 1.4.4.2 yamt void *arg;
1520 1.4.4.2 yamt {
1521 1.4.4.2 yamt struct vge_softc *sc = arg;
1522 1.4.4.2 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1523 1.4.4.2 yamt u_int32_t status;
1524 1.4.4.2 yamt int claim = 0;
1525 1.4.4.2 yamt
1526 1.4.4.2 yamt if (sc->suspended) {
1527 1.4.4.2 yamt return claim;
1528 1.4.4.2 yamt }
1529 1.4.4.2 yamt
1530 1.4.4.2 yamt VGE_LOCK(sc);
1531 1.4.4.2 yamt
1532 1.4.4.2 yamt if (!(ifp->if_flags & IFF_UP)) {
1533 1.4.4.2 yamt VGE_UNLOCK(sc);
1534 1.4.4.2 yamt return claim;
1535 1.4.4.2 yamt }
1536 1.4.4.2 yamt
1537 1.4.4.2 yamt #ifdef DEVICE_POLLING
1538 1.4.4.2 yamt if (ifp->if_flags & IFF_POLLING)
1539 1.4.4.2 yamt goto done;
1540 1.4.4.2 yamt if (
1541 1.4.4.2 yamt #ifdef IFCAP_POLLING
1542 1.4.4.2 yamt (ifp->if_capenable & IFCAP_POLLING) &&
1543 1.4.4.2 yamt #endif
1544 1.4.4.2 yamt ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1545 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_IMR, 0);
1546 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1547 1.4.4.2 yamt vge_poll(ifp, 0, 1);
1548 1.4.4.2 yamt goto done;
1549 1.4.4.2 yamt }
1550 1.4.4.2 yamt
1551 1.4.4.2 yamt #endif /* DEVICE_POLLING */
1552 1.4.4.2 yamt
1553 1.4.4.2 yamt /* Disable interrupts */
1554 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1555 1.4.4.2 yamt
1556 1.4.4.2 yamt for (;;) {
1557 1.4.4.2 yamt
1558 1.4.4.2 yamt status = CSR_READ_4(sc, VGE_ISR);
1559 1.4.4.2 yamt /* If the card has gone away the read returns 0xffff. */
1560 1.4.4.2 yamt if (status == 0xFFFFFFFF)
1561 1.4.4.2 yamt break;
1562 1.4.4.2 yamt
1563 1.4.4.2 yamt if (status) {
1564 1.4.4.2 yamt claim = 1;
1565 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_ISR, status);
1566 1.4.4.2 yamt }
1567 1.4.4.2 yamt
1568 1.4.4.2 yamt if ((status & VGE_INTRS) == 0)
1569 1.4.4.2 yamt break;
1570 1.4.4.2 yamt
1571 1.4.4.2 yamt if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1572 1.4.4.2 yamt vge_rxeof(sc);
1573 1.4.4.2 yamt
1574 1.4.4.2 yamt if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1575 1.4.4.2 yamt vge_rxeof(sc);
1576 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1577 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1578 1.4.4.2 yamt }
1579 1.4.4.2 yamt
1580 1.4.4.2 yamt if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1581 1.4.4.2 yamt vge_txeof(sc);
1582 1.4.4.2 yamt
1583 1.4.4.2 yamt if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1584 1.4.4.2 yamt vge_init(ifp);
1585 1.4.4.2 yamt
1586 1.4.4.2 yamt if (status & VGE_ISR_LINKSTS)
1587 1.4.4.2 yamt vge_tick(sc);
1588 1.4.4.2 yamt }
1589 1.4.4.2 yamt
1590 1.4.4.2 yamt /* Re-enable interrupts */
1591 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1592 1.4.4.2 yamt
1593 1.4.4.2 yamt #ifdef DEVICE_POLLING
1594 1.4.4.2 yamt done:
1595 1.4.4.2 yamt #endif
1596 1.4.4.2 yamt VGE_UNLOCK(sc);
1597 1.4.4.2 yamt
1598 1.4.4.2 yamt if (!IFQ_IS_EMPTY(&ifp->if_snd))
1599 1.4.4.2 yamt vge_start(ifp);
1600 1.4.4.2 yamt
1601 1.4.4.2 yamt return claim;
1602 1.4.4.2 yamt }
1603 1.4.4.2 yamt
1604 1.4.4.2 yamt static int
1605 1.4.4.2 yamt vge_encap(sc, m_head, idx)
1606 1.4.4.2 yamt struct vge_softc *sc;
1607 1.4.4.2 yamt struct mbuf *m_head;
1608 1.4.4.2 yamt int idx;
1609 1.4.4.2 yamt {
1610 1.4.4.2 yamt struct mbuf *m_new = NULL;
1611 1.4.4.2 yamt bus_dmamap_t map;
1612 1.4.4.2 yamt int error, flags;
1613 1.4.4.2 yamt struct m_tag *mtag;
1614 1.4.4.2 yamt
1615 1.4.4.2 yamt /* If this descriptor is still owned by the chip, bail. */
1616 1.4.4.2 yamt if (sc->vge_ldata.vge_tx_free <= 2
1617 1.4.4.2 yamt || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
1618 1.4.4.2 yamt return (ENOBUFS);
1619 1.4.4.2 yamt
1620 1.4.4.2 yamt flags = 0;
1621 1.4.4.2 yamt
1622 1.4.4.2 yamt if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1623 1.4.4.2 yamt flags |= VGE_TDCTL_IPCSUM;
1624 1.4.4.2 yamt if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1625 1.4.4.2 yamt flags |= VGE_TDCTL_TCPCSUM;
1626 1.4.4.2 yamt if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1627 1.4.4.2 yamt flags |= VGE_TDCTL_UDPCSUM;
1628 1.4.4.2 yamt
1629 1.4.4.2 yamt map = sc->vge_ldata.vge_tx_dmamap[idx];
1630 1.4.4.2 yamt error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1631 1.4.4.2 yamt m_head, BUS_DMA_NOWAIT);
1632 1.4.4.2 yamt
1633 1.4.4.2 yamt /* If too many segments to map, coalesce */
1634 1.4.4.2 yamt if (error == EFBIG) {
1635 1.4.4.2 yamt m_new = m_defrag(m_head, M_DONTWAIT);
1636 1.4.4.2 yamt if (m_new == NULL)
1637 1.4.4.2 yamt return (error);
1638 1.4.4.2 yamt
1639 1.4.4.2 yamt error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1640 1.4.4.2 yamt m_new, BUS_DMA_NOWAIT);
1641 1.4.4.2 yamt if (error) {
1642 1.4.4.2 yamt m_freem(m_new);
1643 1.4.4.2 yamt return (error);
1644 1.4.4.2 yamt }
1645 1.4.4.2 yamt
1646 1.4.4.2 yamt m_head = m_new;
1647 1.4.4.2 yamt } else if (error)
1648 1.4.4.2 yamt return (error);
1649 1.4.4.2 yamt
1650 1.4.4.2 yamt vge_dma_map_tx_desc(sc, m_head, idx, flags);
1651 1.4.4.2 yamt
1652 1.4.4.2 yamt sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1653 1.4.4.2 yamt sc->vge_ldata.vge_tx_free--;
1654 1.4.4.2 yamt
1655 1.4.4.2 yamt /*
1656 1.4.4.2 yamt * Set up hardware VLAN tagging.
1657 1.4.4.2 yamt */
1658 1.4.4.2 yamt
1659 1.4.4.2 yamt mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1660 1.4.4.2 yamt if (mtag != NULL)
1661 1.4.4.2 yamt sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1662 1.4.4.2 yamt htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1663 1.4.4.2 yamt
1664 1.4.4.2 yamt sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1665 1.4.4.2 yamt
1666 1.4.4.2 yamt return (0);
1667 1.4.4.2 yamt }
1668 1.4.4.2 yamt
1669 1.4.4.2 yamt /*
1670 1.4.4.2 yamt * Main transmit routine.
1671 1.4.4.2 yamt */
1672 1.4.4.2 yamt
1673 1.4.4.2 yamt static void
1674 1.4.4.2 yamt vge_start(ifp)
1675 1.4.4.2 yamt struct ifnet *ifp;
1676 1.4.4.2 yamt {
1677 1.4.4.2 yamt struct vge_softc *sc;
1678 1.4.4.2 yamt struct mbuf *m_head = NULL;
1679 1.4.4.2 yamt int idx, pidx = 0, error;
1680 1.4.4.2 yamt
1681 1.4.4.2 yamt sc = ifp->if_softc;
1682 1.4.4.2 yamt VGE_LOCK(sc);
1683 1.4.4.2 yamt
1684 1.4.4.2 yamt if (!sc->vge_link
1685 1.4.4.2 yamt || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1686 1.4.4.2 yamt VGE_UNLOCK(sc);
1687 1.4.4.2 yamt return;
1688 1.4.4.2 yamt }
1689 1.4.4.2 yamt
1690 1.4.4.2 yamt idx = sc->vge_ldata.vge_tx_prodidx;
1691 1.4.4.2 yamt
1692 1.4.4.2 yamt pidx = idx - 1;
1693 1.4.4.2 yamt if (pidx < 0)
1694 1.4.4.2 yamt pidx = VGE_TX_DESC_CNT - 1;
1695 1.4.4.2 yamt
1696 1.4.4.2 yamt /*
1697 1.4.4.2 yamt * Loop through the send queue, setting up transmit descriptors
1698 1.4.4.2 yamt * until we drain the queue, or use up all available transmit
1699 1.4.4.2 yamt * descriptors.
1700 1.4.4.2 yamt */
1701 1.4.4.2 yamt for(;;) {
1702 1.4.4.2 yamt /* Grab a packet off the queue. */
1703 1.4.4.2 yamt IFQ_POLL(&ifp->if_snd, m_head);
1704 1.4.4.2 yamt if (m_head == NULL)
1705 1.4.4.2 yamt break;
1706 1.4.4.2 yamt
1707 1.4.4.2 yamt if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1708 1.4.4.2 yamt /*
1709 1.4.4.2 yamt * Slot already used, stop for now.
1710 1.4.4.2 yamt */
1711 1.4.4.2 yamt ifp->if_flags |= IFF_OACTIVE;
1712 1.4.4.2 yamt break;
1713 1.4.4.2 yamt }
1714 1.4.4.2 yamt
1715 1.4.4.2 yamt if ((error = vge_encap(sc, m_head, idx))) {
1716 1.4.4.2 yamt if (error == EFBIG) {
1717 1.4.4.2 yamt printf("%s: Tx packet consumes too many "
1718 1.4.4.2 yamt "DMA segments, dropping...\n",
1719 1.4.4.2 yamt sc->sc_dev.dv_xname);
1720 1.4.4.2 yamt IFQ_DEQUEUE(&ifp->if_snd, m_head);
1721 1.4.4.2 yamt m_freem(m_head);
1722 1.4.4.2 yamt continue;
1723 1.4.4.2 yamt }
1724 1.4.4.2 yamt
1725 1.4.4.2 yamt /*
1726 1.4.4.2 yamt * Short on resources, just stop for now.
1727 1.4.4.2 yamt */
1728 1.4.4.2 yamt if (error == ENOBUFS)
1729 1.4.4.2 yamt ifp->if_flags |= IFF_OACTIVE;
1730 1.4.4.2 yamt break;
1731 1.4.4.2 yamt }
1732 1.4.4.2 yamt
1733 1.4.4.2 yamt IFQ_DEQUEUE(&ifp->if_snd, m_head);
1734 1.4.4.2 yamt
1735 1.4.4.2 yamt /*
1736 1.4.4.2 yamt * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1737 1.4.4.2 yamt */
1738 1.4.4.2 yamt
1739 1.4.4.2 yamt sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1740 1.4.4.2 yamt htole16(VGE_TXDESC_Q);
1741 1.4.4.2 yamt
1742 1.4.4.2 yamt if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
1743 1.4.4.2 yamt m_freem(m_head);
1744 1.4.4.2 yamt m_head = sc->vge_ldata.vge_tx_mbuf[idx];
1745 1.4.4.2 yamt }
1746 1.4.4.2 yamt
1747 1.4.4.2 yamt pidx = idx;
1748 1.4.4.2 yamt VGE_TX_DESC_INC(idx);
1749 1.4.4.2 yamt
1750 1.4.4.2 yamt /*
1751 1.4.4.2 yamt * If there's a BPF listener, bounce a copy of this frame
1752 1.4.4.2 yamt * to him.
1753 1.4.4.2 yamt */
1754 1.4.4.2 yamt #if NBPFILTER > 0
1755 1.4.4.2 yamt if (ifp->if_bpf)
1756 1.4.4.2 yamt bpf_mtap(ifp->if_bpf, m_head);
1757 1.4.4.2 yamt #endif
1758 1.4.4.2 yamt }
1759 1.4.4.2 yamt
1760 1.4.4.2 yamt if (idx == sc->vge_ldata.vge_tx_prodidx) {
1761 1.4.4.2 yamt VGE_UNLOCK(sc);
1762 1.4.4.2 yamt return;
1763 1.4.4.2 yamt }
1764 1.4.4.2 yamt
1765 1.4.4.2 yamt /* Flush the TX descriptors */
1766 1.4.4.2 yamt
1767 1.4.4.2 yamt bus_dmamap_sync(sc->vge_dmat,
1768 1.4.4.2 yamt sc->vge_ldata.vge_tx_list_map,
1769 1.4.4.2 yamt 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1770 1.4.4.2 yamt BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1771 1.4.4.2 yamt
1772 1.4.4.2 yamt /* Issue a transmit command. */
1773 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1774 1.4.4.2 yamt
1775 1.4.4.2 yamt sc->vge_ldata.vge_tx_prodidx = idx;
1776 1.4.4.2 yamt
1777 1.4.4.2 yamt /*
1778 1.4.4.2 yamt * Use the countdown timer for interrupt moderation.
1779 1.4.4.2 yamt * 'TX done' interrupts are disabled. Instead, we reset the
1780 1.4.4.2 yamt * countdown timer, which will begin counting until it hits
1781 1.4.4.2 yamt * the value in the SSTIMER register, and then trigger an
1782 1.4.4.2 yamt * interrupt. Each time we set the TIMER0_ENABLE bit, the
1783 1.4.4.2 yamt * the timer count is reloaded. Only when the transmitter
1784 1.4.4.2 yamt * is idle will the timer hit 0 and an interrupt fire.
1785 1.4.4.2 yamt */
1786 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1787 1.4.4.2 yamt
1788 1.4.4.2 yamt VGE_UNLOCK(sc);
1789 1.4.4.2 yamt
1790 1.4.4.2 yamt /*
1791 1.4.4.2 yamt * Set a timeout in case the chip goes out to lunch.
1792 1.4.4.2 yamt */
1793 1.4.4.2 yamt ifp->if_timer = 5;
1794 1.4.4.2 yamt
1795 1.4.4.2 yamt return;
1796 1.4.4.2 yamt }
1797 1.4.4.2 yamt
1798 1.4.4.2 yamt static int
1799 1.4.4.2 yamt vge_init(ifp)
1800 1.4.4.2 yamt struct ifnet *ifp;
1801 1.4.4.2 yamt {
1802 1.4.4.2 yamt struct vge_softc *sc = ifp->if_softc;
1803 1.4.4.2 yamt struct mii_data *mii = &sc->sc_mii;
1804 1.4.4.2 yamt int i;
1805 1.4.4.2 yamt
1806 1.4.4.2 yamt VGE_LOCK(sc);
1807 1.4.4.2 yamt
1808 1.4.4.2 yamt /*
1809 1.4.4.2 yamt * Cancel pending I/O and free all RX/TX buffers.
1810 1.4.4.2 yamt */
1811 1.4.4.2 yamt vge_stop(sc);
1812 1.4.4.2 yamt vge_reset(sc);
1813 1.4.4.2 yamt
1814 1.4.4.2 yamt /*
1815 1.4.4.2 yamt * Initialize the RX and TX descriptors and mbufs.
1816 1.4.4.2 yamt */
1817 1.4.4.2 yamt
1818 1.4.4.2 yamt vge_rx_list_init(sc);
1819 1.4.4.2 yamt vge_tx_list_init(sc);
1820 1.4.4.2 yamt
1821 1.4.4.2 yamt /* Set our station address */
1822 1.4.4.2 yamt for (i = 0; i < ETHER_ADDR_LEN; i++)
1823 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1824 1.4.4.2 yamt
1825 1.4.4.2 yamt /*
1826 1.4.4.2 yamt * Set receive FIFO threshold. Also allow transmission and
1827 1.4.4.2 yamt * reception of VLAN tagged frames.
1828 1.4.4.2 yamt */
1829 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1830 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1831 1.4.4.2 yamt
1832 1.4.4.2 yamt /* Set DMA burst length */
1833 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1834 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1835 1.4.4.2 yamt
1836 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1837 1.4.4.2 yamt
1838 1.4.4.2 yamt /* Set collision backoff algorithm */
1839 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1840 1.4.4.2 yamt VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1841 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1842 1.4.4.2 yamt
1843 1.4.4.2 yamt /* Disable LPSEL field in priority resolution */
1844 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1845 1.4.4.2 yamt
1846 1.4.4.2 yamt /*
1847 1.4.4.2 yamt * Load the addresses of the DMA queues into the chip.
1848 1.4.4.2 yamt * Note that we only use one transmit queue.
1849 1.4.4.2 yamt */
1850 1.4.4.2 yamt
1851 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1852 1.4.4.2 yamt VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1853 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1854 1.4.4.2 yamt
1855 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1856 1.4.4.2 yamt VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1857 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1858 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1859 1.4.4.2 yamt
1860 1.4.4.2 yamt /* Enable and wake up the RX descriptor queue */
1861 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1862 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1863 1.4.4.2 yamt
1864 1.4.4.2 yamt /* Enable the TX descriptor queue */
1865 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1866 1.4.4.2 yamt
1867 1.4.4.2 yamt /* Set up the receive filter -- allow large frames for VLANs. */
1868 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1869 1.4.4.2 yamt
1870 1.4.4.2 yamt /* If we want promiscuous mode, set the allframes bit. */
1871 1.4.4.2 yamt if (ifp->if_flags & IFF_PROMISC) {
1872 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1873 1.4.4.2 yamt }
1874 1.4.4.2 yamt
1875 1.4.4.2 yamt /* Set capture broadcast bit to capture broadcast frames. */
1876 1.4.4.2 yamt if (ifp->if_flags & IFF_BROADCAST) {
1877 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1878 1.4.4.2 yamt }
1879 1.4.4.2 yamt
1880 1.4.4.2 yamt /* Set multicast bit to capture multicast frames. */
1881 1.4.4.2 yamt if (ifp->if_flags & IFF_MULTICAST) {
1882 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1883 1.4.4.2 yamt }
1884 1.4.4.2 yamt
1885 1.4.4.2 yamt /* Init the cam filter. */
1886 1.4.4.2 yamt vge_cam_clear(sc);
1887 1.4.4.2 yamt
1888 1.4.4.2 yamt /* Init the multicast filter. */
1889 1.4.4.2 yamt vge_setmulti(sc);
1890 1.4.4.2 yamt
1891 1.4.4.2 yamt /* Enable flow control */
1892 1.4.4.2 yamt
1893 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1894 1.4.4.2 yamt
1895 1.4.4.2 yamt /* Enable jumbo frame reception (if desired) */
1896 1.4.4.2 yamt
1897 1.4.4.2 yamt /* Start the MAC. */
1898 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1899 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1900 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS0,
1901 1.4.4.2 yamt VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1902 1.4.4.2 yamt
1903 1.4.4.2 yamt /*
1904 1.4.4.2 yamt * Configure one-shot timer for microsecond
1905 1.4.4.2 yamt * resulution and load it for 500 usecs.
1906 1.4.4.2 yamt */
1907 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1908 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1909 1.4.4.2 yamt
1910 1.4.4.2 yamt /*
1911 1.4.4.2 yamt * Configure interrupt moderation for receive. Enable
1912 1.4.4.2 yamt * the holdoff counter and load it, and set the RX
1913 1.4.4.2 yamt * suppression count to the number of descriptors we
1914 1.4.4.2 yamt * want to allow before triggering an interrupt.
1915 1.4.4.2 yamt * The holdoff timer is in units of 20 usecs.
1916 1.4.4.2 yamt */
1917 1.4.4.2 yamt
1918 1.4.4.2 yamt #ifdef notyet
1919 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1920 1.4.4.2 yamt /* Select the interrupt holdoff timer page. */
1921 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1922 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1923 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1924 1.4.4.2 yamt
1925 1.4.4.2 yamt /* Enable use of the holdoff timer. */
1926 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1927 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1928 1.4.4.2 yamt
1929 1.4.4.2 yamt /* Select the RX suppression threshold page. */
1930 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1931 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1932 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1933 1.4.4.2 yamt
1934 1.4.4.2 yamt /* Restore the page select bits. */
1935 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1936 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1937 1.4.4.2 yamt #endif
1938 1.4.4.2 yamt
1939 1.4.4.2 yamt #ifdef DEVICE_POLLING
1940 1.4.4.2 yamt /*
1941 1.4.4.2 yamt * Disable interrupts if we are polling.
1942 1.4.4.2 yamt */
1943 1.4.4.2 yamt if (ifp->if_flags & IFF_POLLING) {
1944 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_IMR, 0);
1945 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1946 1.4.4.2 yamt } else /* otherwise ... */
1947 1.4.4.2 yamt #endif /* DEVICE_POLLING */
1948 1.4.4.2 yamt {
1949 1.4.4.2 yamt /*
1950 1.4.4.2 yamt * Enable interrupts.
1951 1.4.4.2 yamt */
1952 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1953 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_ISR, 0);
1954 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1955 1.4.4.2 yamt }
1956 1.4.4.2 yamt
1957 1.4.4.2 yamt mii_mediachg(mii);
1958 1.4.4.2 yamt
1959 1.4.4.2 yamt ifp->if_flags |= IFF_RUNNING;
1960 1.4.4.2 yamt ifp->if_flags &= ~IFF_OACTIVE;
1961 1.4.4.2 yamt
1962 1.4.4.2 yamt sc->vge_if_flags = 0;
1963 1.4.4.2 yamt sc->vge_link = 0;
1964 1.4.4.2 yamt
1965 1.4.4.2 yamt VGE_UNLOCK(sc);
1966 1.4.4.2 yamt
1967 1.4.4.2 yamt callout_schedule(&sc->vge_timeout, hz);
1968 1.4.4.2 yamt
1969 1.4.4.2 yamt return (0);
1970 1.4.4.2 yamt }
1971 1.4.4.2 yamt
1972 1.4.4.2 yamt /*
1973 1.4.4.2 yamt * Set media options.
1974 1.4.4.2 yamt */
1975 1.4.4.2 yamt static int
1976 1.4.4.2 yamt vge_ifmedia_upd(ifp)
1977 1.4.4.2 yamt struct ifnet *ifp;
1978 1.4.4.2 yamt {
1979 1.4.4.2 yamt struct vge_softc *sc = ifp->if_softc;
1980 1.4.4.2 yamt struct mii_data *mii = &sc->sc_mii;
1981 1.4.4.2 yamt
1982 1.4.4.2 yamt mii_mediachg(mii);
1983 1.4.4.2 yamt
1984 1.4.4.2 yamt return (0);
1985 1.4.4.2 yamt }
1986 1.4.4.2 yamt
1987 1.4.4.2 yamt /*
1988 1.4.4.2 yamt * Report current media status.
1989 1.4.4.2 yamt */
1990 1.4.4.2 yamt static void
1991 1.4.4.2 yamt vge_ifmedia_sts(ifp, ifmr)
1992 1.4.4.2 yamt struct ifnet *ifp;
1993 1.4.4.2 yamt struct ifmediareq *ifmr;
1994 1.4.4.2 yamt {
1995 1.4.4.2 yamt struct vge_softc *sc = ifp->if_softc;
1996 1.4.4.2 yamt struct mii_data *mii = &sc->sc_mii;
1997 1.4.4.2 yamt
1998 1.4.4.2 yamt mii_pollstat(mii);
1999 1.4.4.2 yamt ifmr->ifm_active = mii->mii_media_active;
2000 1.4.4.2 yamt ifmr->ifm_status = mii->mii_media_status;
2001 1.4.4.2 yamt
2002 1.4.4.2 yamt return;
2003 1.4.4.2 yamt }
2004 1.4.4.2 yamt
2005 1.4.4.2 yamt static void
2006 1.4.4.2 yamt vge_miibus_statchg(self)
2007 1.4.4.2 yamt struct device *self;
2008 1.4.4.2 yamt {
2009 1.4.4.2 yamt struct vge_softc *sc = (struct vge_softc *) self;
2010 1.4.4.2 yamt struct mii_data *mii = &sc->sc_mii;
2011 1.4.4.2 yamt struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
2012 1.4.4.2 yamt
2013 1.4.4.2 yamt /*
2014 1.4.4.2 yamt * If the user manually selects a media mode, we need to turn
2015 1.4.4.2 yamt * on the forced MAC mode bit in the DIAGCTL register. If the
2016 1.4.4.2 yamt * user happens to choose a full duplex mode, we also need to
2017 1.4.4.2 yamt * set the 'force full duplex' bit. This applies only to
2018 1.4.4.2 yamt * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2019 1.4.4.2 yamt * mode is disabled, and in 1000baseT mode, full duplex is
2020 1.4.4.2 yamt * always implied, so we turn on the forced mode bit but leave
2021 1.4.4.2 yamt * the FDX bit cleared.
2022 1.4.4.2 yamt */
2023 1.4.4.2 yamt
2024 1.4.4.2 yamt switch (IFM_SUBTYPE(ife->ifm_media)) {
2025 1.4.4.2 yamt case IFM_AUTO:
2026 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2027 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2028 1.4.4.2 yamt break;
2029 1.4.4.2 yamt case IFM_1000_T:
2030 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2031 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2032 1.4.4.2 yamt break;
2033 1.4.4.2 yamt case IFM_100_TX:
2034 1.4.4.2 yamt case IFM_10_T:
2035 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2036 1.4.4.2 yamt if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2037 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2038 1.4.4.2 yamt } else {
2039 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2040 1.4.4.2 yamt }
2041 1.4.4.2 yamt break;
2042 1.4.4.2 yamt default:
2043 1.4.4.2 yamt printf("%s: unknown media type: %x\n",
2044 1.4.4.2 yamt sc->sc_dev.dv_xname,
2045 1.4.4.2 yamt IFM_SUBTYPE(ife->ifm_media));
2046 1.4.4.2 yamt break;
2047 1.4.4.2 yamt }
2048 1.4.4.2 yamt
2049 1.4.4.2 yamt return;
2050 1.4.4.2 yamt }
2051 1.4.4.2 yamt
2052 1.4.4.2 yamt static int
2053 1.4.4.2 yamt vge_ioctl(ifp, command, data)
2054 1.4.4.2 yamt struct ifnet *ifp;
2055 1.4.4.2 yamt u_long command;
2056 1.4.4.2 yamt caddr_t data;
2057 1.4.4.2 yamt {
2058 1.4.4.2 yamt struct vge_softc *sc = ifp->if_softc;
2059 1.4.4.2 yamt struct ifreq *ifr = (struct ifreq *) data;
2060 1.4.4.2 yamt struct mii_data *mii;
2061 1.4.4.2 yamt int error = 0;
2062 1.4.4.2 yamt
2063 1.4.4.2 yamt switch (command) {
2064 1.4.4.2 yamt case SIOCSIFMTU:
2065 1.4.4.2 yamt if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2066 1.4.4.2 yamt error = EINVAL;
2067 1.4.4.2 yamt ifp->if_mtu = ifr->ifr_mtu;
2068 1.4.4.2 yamt break;
2069 1.4.4.2 yamt case SIOCSIFFLAGS:
2070 1.4.4.2 yamt if (ifp->if_flags & IFF_UP) {
2071 1.4.4.2 yamt if (ifp->if_flags & IFF_RUNNING &&
2072 1.4.4.2 yamt ifp->if_flags & IFF_PROMISC &&
2073 1.4.4.2 yamt !(sc->vge_if_flags & IFF_PROMISC)) {
2074 1.4.4.2 yamt CSR_SETBIT_1(sc, VGE_RXCTL,
2075 1.4.4.2 yamt VGE_RXCTL_RX_PROMISC);
2076 1.4.4.2 yamt vge_setmulti(sc);
2077 1.4.4.2 yamt } else if (ifp->if_flags & IFF_RUNNING &&
2078 1.4.4.2 yamt !(ifp->if_flags & IFF_PROMISC) &&
2079 1.4.4.2 yamt sc->vge_if_flags & IFF_PROMISC) {
2080 1.4.4.2 yamt CSR_CLRBIT_1(sc, VGE_RXCTL,
2081 1.4.4.2 yamt VGE_RXCTL_RX_PROMISC);
2082 1.4.4.2 yamt vge_setmulti(sc);
2083 1.4.4.2 yamt } else
2084 1.4.4.2 yamt vge_init(ifp);
2085 1.4.4.2 yamt } else {
2086 1.4.4.2 yamt if (ifp->if_flags & IFF_RUNNING)
2087 1.4.4.2 yamt vge_stop(sc);
2088 1.4.4.2 yamt }
2089 1.4.4.2 yamt sc->vge_if_flags = ifp->if_flags;
2090 1.4.4.2 yamt break;
2091 1.4.4.2 yamt case SIOCADDMULTI:
2092 1.4.4.2 yamt case SIOCDELMULTI:
2093 1.4.4.2 yamt vge_setmulti(sc);
2094 1.4.4.2 yamt break;
2095 1.4.4.2 yamt case SIOCGIFMEDIA:
2096 1.4.4.2 yamt case SIOCSIFMEDIA:
2097 1.4.4.2 yamt mii = &sc->sc_mii;
2098 1.4.4.2 yamt error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2099 1.4.4.2 yamt break;
2100 1.4.4.2 yamt default:
2101 1.4.4.2 yamt error = ether_ioctl(ifp, command, data);
2102 1.4.4.2 yamt break;
2103 1.4.4.2 yamt }
2104 1.4.4.2 yamt
2105 1.4.4.2 yamt return (error);
2106 1.4.4.2 yamt }
2107 1.4.4.2 yamt
2108 1.4.4.2 yamt static void
2109 1.4.4.2 yamt vge_watchdog(ifp)
2110 1.4.4.2 yamt struct ifnet *ifp;
2111 1.4.4.2 yamt {
2112 1.4.4.2 yamt struct vge_softc *sc;
2113 1.4.4.2 yamt
2114 1.4.4.2 yamt sc = ifp->if_softc;
2115 1.4.4.2 yamt VGE_LOCK(sc);
2116 1.4.4.2 yamt printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2117 1.4.4.2 yamt ifp->if_oerrors++;
2118 1.4.4.2 yamt
2119 1.4.4.2 yamt vge_txeof(sc);
2120 1.4.4.2 yamt vge_rxeof(sc);
2121 1.4.4.2 yamt
2122 1.4.4.2 yamt vge_init(ifp);
2123 1.4.4.2 yamt
2124 1.4.4.2 yamt VGE_UNLOCK(sc);
2125 1.4.4.2 yamt
2126 1.4.4.2 yamt return;
2127 1.4.4.2 yamt }
2128 1.4.4.2 yamt
2129 1.4.4.2 yamt /*
2130 1.4.4.2 yamt * Stop the adapter and free any mbufs allocated to the
2131 1.4.4.2 yamt * RX and TX lists.
2132 1.4.4.2 yamt */
2133 1.4.4.2 yamt static void
2134 1.4.4.2 yamt vge_stop(sc)
2135 1.4.4.2 yamt struct vge_softc *sc;
2136 1.4.4.2 yamt {
2137 1.4.4.2 yamt register int i;
2138 1.4.4.2 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2139 1.4.4.2 yamt
2140 1.4.4.2 yamt VGE_LOCK(sc);
2141 1.4.4.2 yamt ifp->if_timer = 0;
2142 1.4.4.2 yamt
2143 1.4.4.2 yamt ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2144 1.4.4.2 yamt #ifdef DEVICE_POLLING
2145 1.4.4.2 yamt ether_poll_deregister(ifp);
2146 1.4.4.2 yamt #endif /* DEVICE_POLLING */
2147 1.4.4.2 yamt
2148 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2149 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2150 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2151 1.4.4.2 yamt CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2152 1.4.4.2 yamt CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2153 1.4.4.2 yamt CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2154 1.4.4.2 yamt
2155 1.4.4.2 yamt if (sc->vge_head != NULL) {
2156 1.4.4.2 yamt m_freem(sc->vge_head);
2157 1.4.4.2 yamt sc->vge_head = sc->vge_tail = NULL;
2158 1.4.4.2 yamt }
2159 1.4.4.2 yamt
2160 1.4.4.2 yamt /* Free the TX list buffers. */
2161 1.4.4.2 yamt
2162 1.4.4.2 yamt for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2163 1.4.4.2 yamt if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2164 1.4.4.2 yamt bus_dmamap_unload(sc->vge_dmat,
2165 1.4.4.2 yamt sc->vge_ldata.vge_tx_dmamap[i]);
2166 1.4.4.2 yamt m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2167 1.4.4.2 yamt sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2168 1.4.4.2 yamt }
2169 1.4.4.2 yamt }
2170 1.4.4.2 yamt
2171 1.4.4.2 yamt /* Free the RX list buffers. */
2172 1.4.4.2 yamt
2173 1.4.4.2 yamt for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2174 1.4.4.2 yamt if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2175 1.4.4.2 yamt bus_dmamap_unload(sc->vge_dmat,
2176 1.4.4.2 yamt sc->vge_ldata.vge_rx_dmamap[i]);
2177 1.4.4.2 yamt m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2178 1.4.4.2 yamt sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2179 1.4.4.2 yamt }
2180 1.4.4.2 yamt }
2181 1.4.4.2 yamt
2182 1.4.4.2 yamt VGE_UNLOCK(sc);
2183 1.4.4.2 yamt
2184 1.4.4.2 yamt return;
2185 1.4.4.2 yamt }
2186 1.4.4.2 yamt
2187 1.4.4.2 yamt #if VGE_POWER_MANAGEMENT
2188 1.4.4.2 yamt /*
2189 1.4.4.2 yamt * Device suspend routine. Stop the interface and save some PCI
2190 1.4.4.2 yamt * settings in case the BIOS doesn't restore them properly on
2191 1.4.4.2 yamt * resume.
2192 1.4.4.2 yamt */
2193 1.4.4.2 yamt static int
2194 1.4.4.2 yamt vge_suspend(dev)
2195 1.4.4.2 yamt struct device * dev;
2196 1.4.4.2 yamt {
2197 1.4.4.2 yamt struct vge_softc *sc;
2198 1.4.4.2 yamt int i;
2199 1.4.4.2 yamt
2200 1.4.4.2 yamt sc = device_get_softc(dev);
2201 1.4.4.2 yamt
2202 1.4.4.2 yamt vge_stop(sc);
2203 1.4.4.2 yamt
2204 1.4.4.2 yamt for (i = 0; i < 5; i++)
2205 1.4.4.2 yamt sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2206 1.4.4.2 yamt sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2207 1.4.4.2 yamt sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2208 1.4.4.2 yamt sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2209 1.4.4.2 yamt sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2210 1.4.4.2 yamt
2211 1.4.4.2 yamt sc->suspended = 1;
2212 1.4.4.2 yamt
2213 1.4.4.2 yamt return (0);
2214 1.4.4.2 yamt }
2215 1.4.4.2 yamt
2216 1.4.4.2 yamt /*
2217 1.4.4.2 yamt * Device resume routine. Restore some PCI settings in case the BIOS
2218 1.4.4.2 yamt * doesn't, re-enable busmastering, and restart the interface if
2219 1.4.4.2 yamt * appropriate.
2220 1.4.4.2 yamt */
2221 1.4.4.2 yamt static int
2222 1.4.4.2 yamt vge_resume(dev)
2223 1.4.4.2 yamt struct device * dev;
2224 1.4.4.2 yamt {
2225 1.4.4.2 yamt struct vge_softc *sc = (struct vge_softc *)dev;
2226 1.4.4.2 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2227 1.4.4.2 yamt int i;
2228 1.4.4.2 yamt
2229 1.4.4.2 yamt /* better way to do this? */
2230 1.4.4.2 yamt for (i = 0; i < 5; i++)
2231 1.4.4.2 yamt pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2232 1.4.4.2 yamt pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2233 1.4.4.2 yamt pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2234 1.4.4.2 yamt pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2235 1.4.4.2 yamt pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2236 1.4.4.2 yamt
2237 1.4.4.2 yamt /* reenable busmastering */
2238 1.4.4.2 yamt pci_enable_busmaster(dev);
2239 1.4.4.2 yamt pci_enable_io(dev, SYS_RES_MEMORY);
2240 1.4.4.2 yamt
2241 1.4.4.2 yamt /* reinitialize interface if necessary */
2242 1.4.4.2 yamt if (ifp->if_flags & IFF_UP)
2243 1.4.4.2 yamt vge_init(sc);
2244 1.4.4.2 yamt
2245 1.4.4.2 yamt sc->suspended = 0;
2246 1.4.4.2 yamt
2247 1.4.4.2 yamt return (0);
2248 1.4.4.2 yamt }
2249 1.4.4.2 yamt #endif
2250 1.4.4.2 yamt
2251 1.4.4.2 yamt /*
2252 1.4.4.2 yamt * Stop all chip I/O so that the kernel's probe routines don't
2253 1.4.4.2 yamt * get confused by errant DMAs when rebooting.
2254 1.4.4.2 yamt */
2255 1.4.4.2 yamt static void
2256 1.4.4.2 yamt vge_shutdown(arg)
2257 1.4.4.2 yamt void *arg;
2258 1.4.4.2 yamt {
2259 1.4.4.2 yamt struct vge_softc *sc = (struct vge_softc *)arg;
2260 1.4.4.2 yamt
2261 1.4.4.2 yamt vge_stop(sc);
2262 1.4.4.2 yamt }
2263