Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.10
      1 /* $NetBSD: if_vge.c,v 1.10 2006/10/12 01:31:30 christos Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.10 2006/10/12 01:31:30 christos Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 #include <dev/pci/if_vgevar.h>
    117 
    118 static int vge_probe	(struct device *, struct cfdata *, void *);
    119 static void vge_attach	(struct device *, struct device *, void *);
    120 
    121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
    122 
    123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
    124 static void vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
    125 static int vge_allocmem		(struct vge_softc *);
    126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
    127 static int vge_rx_list_init	(struct vge_softc *);
    128 static int vge_tx_list_init	(struct vge_softc *);
    129 #ifdef VGE_FIXUP_RX
    130 static inline void vge_fixup_rx
    131 				(struct mbuf *);
    132 #endif
    133 static void vge_rxeof		(struct vge_softc *);
    134 static void vge_txeof		(struct vge_softc *);
    135 static int vge_intr		(void *);
    136 static void vge_tick		(void *);
    137 static void vge_start		(struct ifnet *);
    138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
    139 static int vge_init		(struct ifnet *);
    140 static void vge_stop		(struct vge_softc *);
    141 static void vge_watchdog	(struct ifnet *);
    142 #if VGE_POWER_MANAGEMENT
    143 static int vge_suspend		(struct device *);
    144 static int vge_resume		(struct device *);
    145 #endif
    146 static void vge_shutdown	(void *);
    147 static int vge_ifmedia_upd	(struct ifnet *);
    148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
    149 
    150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
    151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
    152 
    153 static void vge_miipoll_start	(struct vge_softc *);
    154 static void vge_miipoll_stop	(struct vge_softc *);
    155 static int vge_miibus_readreg	(struct device *, int, int);
    156 static void vge_miibus_writereg	(struct device *, int, int, int);
    157 static void vge_miibus_statchg	(struct device *);
    158 
    159 static void vge_cam_clear	(struct vge_softc *);
    160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
    161 static void vge_setmulti	(struct vge_softc *);
    162 static void vge_reset		(struct vge_softc *);
    163 
    164 #define VGE_PCI_LOIO             0x10
    165 #define VGE_PCI_LOMEM            0x14
    166 
    167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    168     vge_probe, vge_attach, NULL, NULL);
    169 
    170 /*
    171  * Defragment mbuf chain contents to be as linear as possible.
    172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    173  * chain is always freed.
    174  * XXX temporary until there would be generic function doing this.
    175  */
    176 #define m_defrag	vge_m_defrag
    177 struct mbuf * vge_m_defrag(struct mbuf *, int);
    178 
    179 struct mbuf *
    180 vge_m_defrag(struct mbuf *mold, int flags)
    181 {
    182 	struct mbuf *m0, *mn, *n;
    183 	size_t sz = mold->m_pkthdr.len;
    184 
    185 #ifdef DIAGNOSTIC
    186 	if ((mold->m_flags & M_PKTHDR) == 0)
    187 		panic("m_defrag: not a mbuf chain header");
    188 #endif
    189 
    190 	MGETHDR(m0, flags, MT_DATA);
    191 	if (m0 == NULL)
    192 		return NULL;
    193 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    194 	mn = m0;
    195 
    196 	do {
    197 		if (sz > MHLEN) {
    198 			MCLGET(mn, M_DONTWAIT);
    199 			if ((mn->m_flags & M_EXT) == 0) {
    200 				m_freem(m0);
    201 				return NULL;
    202 			}
    203 		}
    204 
    205 		mn->m_len = MIN(sz, MCLBYTES);
    206 
    207 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    208 		     mtod(mn, caddr_t));
    209 
    210 		sz -= mn->m_len;
    211 
    212 		if (sz > 0) {
    213 			/* need more mbufs */
    214 			MGET(n, M_NOWAIT, MT_DATA);
    215 			if (n == NULL) {
    216 				m_freem(m0);
    217 				return NULL;
    218 			}
    219 
    220 			mn->m_next = n;
    221 			mn = n;
    222 		}
    223 	} while (sz > 0);
    224 
    225 	return m0;
    226 }
    227 
    228 /*
    229  * Read a word of data stored in the EEPROM at address 'addr.'
    230  */
    231 static void
    232 vge_eeprom_getword(sc, addr, dest)
    233 	struct vge_softc	*sc;
    234 	int			addr;
    235 	u_int16_t		*dest;
    236 {
    237 	register int		i;
    238 	u_int16_t		word = 0;
    239 
    240 	/*
    241 	 * Enter EEPROM embedded programming mode. In order to
    242 	 * access the EEPROM at all, we first have to set the
    243 	 * EELOAD bit in the CHIPCFG2 register.
    244 	 */
    245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    247 
    248 	/* Select the address of the word we want to read */
    249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    250 
    251 	/* Issue read command */
    252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    253 
    254 	/* Wait for the done bit to be set. */
    255 	for (i = 0; i < VGE_TIMEOUT; i++) {
    256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    257 			break;
    258 	}
    259 
    260 	if (i == VGE_TIMEOUT) {
    261 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
    262 		*dest = 0;
    263 		return;
    264 	}
    265 
    266 	/* Read the result */
    267 	word = CSR_READ_2(sc, VGE_EERDDAT);
    268 
    269 	/* Turn off EEPROM access mode. */
    270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    272 
    273 	*dest = word;
    274 
    275 	return;
    276 }
    277 
    278 /*
    279  * Read a sequence of words from the EEPROM.
    280  */
    281 static void
    282 vge_read_eeprom(sc, dest, off, cnt, swap)
    283 	struct vge_softc	*sc;
    284 	caddr_t			dest;
    285 	int			off;
    286 	int			cnt;
    287 	int			swap;
    288 {
    289 	int			i;
    290 	u_int16_t		word = 0, *ptr;
    291 
    292 	for (i = 0; i < cnt; i++) {
    293 		vge_eeprom_getword(sc, off + i, &word);
    294 		ptr = (u_int16_t *)(dest + (i * 2));
    295 		if (swap)
    296 			*ptr = ntohs(word);
    297 		else
    298 			*ptr = word;
    299 	}
    300 }
    301 
    302 static void
    303 vge_miipoll_stop(sc)
    304 	struct vge_softc	*sc;
    305 {
    306 	int			i;
    307 
    308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    309 
    310 	for (i = 0; i < VGE_TIMEOUT; i++) {
    311 		DELAY(1);
    312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    313 			break;
    314 	}
    315 
    316 	if (i == VGE_TIMEOUT) {
    317 		printf("%s: failed to idle MII autopoll\n",
    318 		    sc->sc_dev.dv_xname);
    319 	}
    320 
    321 	return;
    322 }
    323 
    324 static void
    325 vge_miipoll_start(sc)
    326 	struct vge_softc	*sc;
    327 {
    328 	int			i;
    329 
    330 	/* First, make sure we're idle. */
    331 
    332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    334 
    335 	for (i = 0; i < VGE_TIMEOUT; i++) {
    336 		DELAY(1);
    337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    338 			break;
    339 	}
    340 
    341 	if (i == VGE_TIMEOUT) {
    342 		printf("%s: failed to idle MII autopoll\n",
    343 		    sc->sc_dev.dv_xname);
    344 		return;
    345 	}
    346 
    347 	/* Now enable auto poll mode. */
    348 
    349 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    350 
    351 	/* And make sure it started. */
    352 
    353 	for (i = 0; i < VGE_TIMEOUT; i++) {
    354 		DELAY(1);
    355 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    356 			break;
    357 	}
    358 
    359 	if (i == VGE_TIMEOUT) {
    360 		printf("%s: failed to start MII autopoll\n",
    361 		    sc->sc_dev.dv_xname);
    362 	}
    363 }
    364 
    365 static int
    366 vge_miibus_readreg(dev, phy, reg)
    367 	struct device *dev;
    368 	int phy, reg;
    369 {
    370 	struct vge_softc	*sc = (struct vge_softc *)dev;
    371 	int			i;
    372 	u_int16_t		rval = 0;
    373 
    374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    375 		return(0);
    376 
    377 	VGE_LOCK(sc);
    378 	vge_miipoll_stop(sc);
    379 
    380 	/* Specify the register we want to read. */
    381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    382 
    383 	/* Issue read command. */
    384 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    385 
    386 	/* Wait for the read command bit to self-clear. */
    387 	for (i = 0; i < VGE_TIMEOUT; i++) {
    388 		DELAY(1);
    389 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    390 			break;
    391 	}
    392 
    393 	if (i == VGE_TIMEOUT)
    394 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    395 	else
    396 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    397 
    398 	vge_miipoll_start(sc);
    399 	VGE_UNLOCK(sc);
    400 
    401 	return (rval);
    402 }
    403 
    404 static void
    405 vge_miibus_writereg(dev, phy, reg, data)
    406 	struct device	*dev;
    407 	int		phy, reg, data;
    408 {
    409 	struct vge_softc	*sc = (struct vge_softc *)dev;
    410 	int			i;
    411 
    412 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    413 		return;
    414 
    415 	VGE_LOCK(sc);
    416 	vge_miipoll_stop(sc);
    417 
    418 	/* Specify the register we want to write. */
    419 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    420 
    421 	/* Specify the data we want to write. */
    422 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    423 
    424 	/* Issue write command. */
    425 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    426 
    427 	/* Wait for the write command bit to self-clear. */
    428 	for (i = 0; i < VGE_TIMEOUT; i++) {
    429 		DELAY(1);
    430 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    431 			break;
    432 	}
    433 
    434 	if (i == VGE_TIMEOUT) {
    435 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    436 	}
    437 
    438 	vge_miipoll_start(sc);
    439 	VGE_UNLOCK(sc);
    440 }
    441 
    442 static void
    443 vge_cam_clear(sc)
    444 	struct vge_softc	*sc;
    445 {
    446 	int			i;
    447 
    448 	/*
    449 	 * Turn off all the mask bits. This tells the chip
    450 	 * that none of the entries in the CAM filter are valid.
    451 	 * desired entries will be enabled as we fill the filter in.
    452 	 */
    453 
    454 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    456 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    457 	for (i = 0; i < 8; i++)
    458 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    459 
    460 	/* Clear the VLAN filter too. */
    461 
    462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    463 	for (i = 0; i < 8; i++)
    464 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    465 
    466 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    469 
    470 	sc->vge_camidx = 0;
    471 
    472 	return;
    473 }
    474 
    475 static int
    476 vge_cam_set(sc, addr)
    477 	struct vge_softc	*sc;
    478 	uint8_t			*addr;
    479 {
    480 	int			i, error = 0;
    481 
    482 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
    483 		return(ENOSPC);
    484 
    485 	/* Select the CAM data page. */
    486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    488 
    489 	/* Set the filter entry we want to update and enable writing. */
    490 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
    491 
    492 	/* Write the address to the CAM registers */
    493 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    494 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    495 
    496 	/* Issue a write command. */
    497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    498 
    499 	/* Wake for it to clear. */
    500 	for (i = 0; i < VGE_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    503 			break;
    504 	}
    505 
    506 	if (i == VGE_TIMEOUT) {
    507 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
    508 		error = EIO;
    509 		goto fail;
    510 	}
    511 
    512 	/* Select the CAM mask page. */
    513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    515 
    516 	/* Set the mask bit that enables this filter. */
    517 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
    518 	    1<<(sc->vge_camidx & 7));
    519 
    520 	sc->vge_camidx++;
    521 
    522 fail:
    523 	/* Turn off access to CAM. */
    524 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    525 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    526 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    527 
    528 	return (error);
    529 }
    530 
    531 /*
    532  * Program the multicast filter. We use the 64-entry CAM filter
    533  * for perfect filtering. If there's more than 64 multicast addresses,
    534  * we use the hash filter insted.
    535  */
    536 static void
    537 vge_setmulti(sc)
    538 	struct vge_softc	*sc;
    539 {
    540 	struct ifnet		*ifp;
    541 	int			error = 0;
    542 	u_int32_t		h, hashes[2] = { 0, 0 };
    543 	struct ether_multi *enm;
    544 	struct ether_multistep step;
    545 
    546 	ifp = &sc->sc_ethercom.ec_if;
    547 
    548 	/* First, zot all the multicast entries. */
    549 	vge_cam_clear(sc);
    550 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    551 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    552 	ifp->if_flags &= ~IFF_ALLMULTI;
    553 
    554 	/*
    555 	 * If the user wants allmulti or promisc mode, enable reception
    556 	 * of all multicast frames.
    557 	 */
    558 	if (ifp->if_flags & IFF_PROMISC) {
    559     allmulti:
    560 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    561 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    562 		ifp->if_flags |= IFF_ALLMULTI;
    563 		return;
    564 	}
    565 
    566 	/* Now program new ones */
    567 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    568 	while(enm != NULL) {
    569 		/*
    570 		 * If multicast range, fall back to ALLMULTI.
    571 		 */
    572 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    573 				ETHER_ADDR_LEN) != 0)
    574 			goto allmulti;
    575 
    576 		error = vge_cam_set(sc, enm->enm_addrlo);
    577 		if (error)
    578 			break;
    579 
    580 		ETHER_NEXT_MULTI(step, enm);
    581 	}
    582 
    583 	/* If there were too many addresses, use the hash filter. */
    584 	if (error) {
    585 		vge_cam_clear(sc);
    586 
    587 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    588 		while(enm != NULL) {
    589 			/*
    590 			 * If multicast range, fall back to ALLMULTI.
    591 			 */
    592 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    593 					ETHER_ADDR_LEN) != 0)
    594 				goto allmulti;
    595 
    596 			h = ether_crc32_be(enm->enm_addrlo,
    597 			    ETHER_ADDR_LEN) >> 26;
    598 			hashes[h >> 5] |= 1 << (h & 0x1f);
    599 
    600 			ETHER_NEXT_MULTI(step, enm);
    601 		}
    602 
    603 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    604 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    605 	}
    606 
    607 	return;
    608 }
    609 
    610 static void
    611 vge_reset(sc)
    612 	struct vge_softc		*sc;
    613 {
    614 	register int		i;
    615 
    616 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    617 
    618 	for (i = 0; i < VGE_TIMEOUT; i++) {
    619 		DELAY(5);
    620 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    621 			break;
    622 	}
    623 
    624 	if (i == VGE_TIMEOUT) {
    625 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
    626 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    627 		DELAY(2000);
    628 	}
    629 
    630 	DELAY(5000);
    631 
    632 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    633 
    634 	for (i = 0; i < VGE_TIMEOUT; i++) {
    635 		DELAY(5);
    636 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    637 			break;
    638 	}
    639 
    640 	if (i == VGE_TIMEOUT) {
    641 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
    642 		return;
    643 	}
    644 
    645 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    646 
    647 	return;
    648 }
    649 
    650 /*
    651  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    652  * IDs against our list and return a device name if we find a match.
    653  */
    654 static int
    655 vge_probe(struct device *parent __unused, struct cfdata *match __unused,
    656     void *aux)
    657 {
    658 	struct pci_attach_args *pa = aux;
    659 
    660 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    661 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    662 		return 1;
    663 
    664 	return (0);
    665 }
    666 
    667 static int
    668 vge_dma_map_rx_desc(sc, idx)
    669 	struct vge_softc	*sc;
    670 	int			idx;
    671 {
    672 	struct vge_rx_desc	*d = NULL;
    673 	bus_dma_segment_t	*segs;
    674 
    675 	/*
    676 	 * Map the segment array into descriptors.
    677 	 */
    678 
    679 	d = &sc->vge_ldata.vge_rx_list[idx];
    680 
    681 	/* If this descriptor is still owned by the chip, bail. */
    682 
    683 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
    684 		printf("%s: tried to map busy descriptor\n",
    685 		    sc->sc_dev.dv_xname);
    686 		return (EBUSY);
    687 	}
    688 
    689 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
    690 
    691 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
    692 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
    693 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
    694 	d->vge_sts = 0;
    695 	d->vge_ctl = 0;
    696 
    697 	return (0);
    698 }
    699 
    700 static void
    701 vge_dma_map_tx_desc(sc, m0, idx, flags)
    702 	struct vge_softc	*sc;
    703 	struct mbuf		*m0;
    704 	int			idx, flags;
    705 {
    706 	struct vge_tx_desc	*d = &sc->vge_ldata.vge_tx_list[idx];
    707 	struct vge_tx_frag	*f;
    708 	int			i = 0;
    709 	bus_dma_segment_t	*segs;
    710 	size_t			sz;
    711 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
    712 
    713 	/* Map the segment array into descriptors. */
    714 
    715 	segs = map->dm_segs;
    716 	for (i = 0; i < map->dm_nsegs; i++) {
    717 		f = &d->vge_frag[i];
    718 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
    719 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
    720 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
    721 	}
    722 
    723 	/* Argh. This chip does not autopad short frames */
    724 
    725 	sz = m0->m_pkthdr.len;
    726 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
    727 		f = &d->vge_frag[i];
    728 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
    729 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
    730 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
    731 		sz = VGE_MIN_FRAMELEN;
    732 		i++;
    733 	}
    734 
    735 	/*
    736 	 * When telling the chip how many segments there are, we
    737 	 * must use nsegs + 1 instead of just nsegs. Darned if I
    738 	 * know why.
    739 	 */
    740 	i++;
    741 
    742 	d->vge_sts = sz << 16;
    743 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
    744 
    745 	if (sz > ETHERMTU + ETHER_HDR_LEN)
    746 		d->vge_ctl |= VGE_TDCTL_JUMBO;
    747 }
    748 
    749 static int
    750 vge_allocmem(sc)
    751 	struct vge_softc *sc;
    752 {
    753 	int			error;
    754 	int			nseg;
    755 	int			i;
    756 	bus_dma_segment_t	seg;
    757 
    758 	/*
    759 	 * Allocate map for TX descriptor list.
    760 	 */
    761 	error = bus_dmamap_create(sc->vge_dmat,
    762 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
    763 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
    764 	    &sc->vge_ldata.vge_tx_list_map);
    765 	if (error) {
    766 		printf("%s: could not allocate TX dma list map\n",
    767 		    sc->sc_dev.dv_xname);
    768 		return (ENOMEM);
    769 	}
    770 
    771 	/*
    772 	 * Allocate memory for TX descriptor list.
    773 	 */
    774 
    775 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
    776 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    777 	if (error) {
    778 		printf("%s: could not allocate TX ring dma memory\n",
    779 		    sc->sc_dev.dv_xname);
    780 		return (ENOMEM);
    781 	}
    782 
    783 	/* Map the memory to kernel VA space */
    784 
    785 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
    786 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
    787 	if (error) {
    788 		printf("%s: could not map TX ring dma memory\n",
    789 		    sc->sc_dev.dv_xname);
    790 		return (ENOMEM);
    791 	}
    792 
    793 	/* Load the map for the TX ring. */
    794 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
    795 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
    796 	if (error) {
    797 		printf("%s: could not load TX ring dma memory\n",
    798 		    sc->sc_dev.dv_xname);
    799 		return (ENOMEM);
    800 	}
    801 
    802 	sc->vge_ldata.vge_tx_list_addr =
    803 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
    804 
    805 	/* Create DMA maps for TX buffers */
    806 
    807 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
    808 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
    809 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
    810 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    811 		    &sc->vge_ldata.vge_tx_dmamap[i]);
    812 		if (error) {
    813 			printf("%s: can't create DMA map for TX\n",
    814 			    sc->sc_dev.dv_xname);
    815 			return (ENOMEM);
    816 		}
    817 	}
    818 
    819 	/*
    820 	 * Allocate map for RX descriptor list.
    821 	 */
    822 	error = bus_dmamap_create(sc->vge_dmat,
    823 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
    824 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
    825 	    &sc->vge_ldata.vge_rx_list_map);
    826 	if (error) {
    827 		printf("%s: could not allocate RX dma list map\n",
    828 		    sc->sc_dev.dv_xname);
    829 		return (ENOMEM);
    830 	}
    831 
    832 	/* Allocate DMA'able memory for the RX ring */
    833 
    834 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
    835 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    836 	if (error)
    837 		return (ENOMEM);
    838 
    839 	/* Map the memory to kernel VA space */
    840 
    841 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
    842 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
    843 	if (error)
    844 		return (ENOMEM);
    845 
    846 	/* Load the map for the RX ring. */
    847 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
    848 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
    849 	if (error) {
    850 		printf("%s: could not load RX ring dma memory\n",
    851 		    sc->sc_dev.dv_xname);
    852 		return (ENOMEM);
    853 	}
    854 
    855 	sc->vge_ldata.vge_rx_list_addr =
    856 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
    857 
    858 	/* Create DMA maps for RX buffers */
    859 
    860 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
    861 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
    862 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    863 		    &sc->vge_ldata.vge_rx_dmamap[i]);
    864 		if (error) {
    865 			printf("%s: can't create DMA map for RX\n",
    866 			     sc->sc_dev.dv_xname);
    867 			return (ENOMEM);
    868 		}
    869 	}
    870 
    871 	return (0);
    872 }
    873 
    874 /*
    875  * Attach the interface. Allocate softc structures, do ifmedia
    876  * setup and ethernet/BPF attach.
    877  */
    878 static void
    879 vge_attach(struct device *parent __unused, struct device *self, void *aux)
    880 {
    881 	u_char			eaddr[ETHER_ADDR_LEN];
    882 	struct vge_softc	*sc = (struct vge_softc *)self;
    883 	struct ifnet		*ifp;
    884 	struct pci_attach_args *pa = aux;
    885 	pci_chipset_tag_t pc = pa->pa_pc;
    886 	const char *intrstr;
    887 	pci_intr_handle_t ih;
    888 
    889 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    890 		PCI_REVISION(pa->pa_class));
    891 
    892 	/* Make sure bus-mastering is enabled */
    893         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    894 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    895 		PCI_COMMAND_MASTER_ENABLE);
    896 
    897 	/*
    898 	 * Map control/status registers.
    899 	 */
    900 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
    901 	    PCI_MAPREG_TYPE_MEM, 0,
    902 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
    903 		aprint_error("%s: couldn't map memory\n",
    904 			sc->sc_dev.dv_xname);
    905 		return;
    906 	}
    907 
    908         /*
    909          * Map and establish our interrupt.
    910          */
    911 	if (pci_intr_map(pa, &ih)) {
    912 		aprint_error("%s: unable to map interrupt\n",
    913 		    sc->sc_dev.dv_xname);
    914 		return;
    915 	}
    916 	intrstr = pci_intr_string(pc, ih);
    917 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    918 	if (sc->vge_intrhand == NULL) {
    919 		printf("%s: unable to establish interrupt",
    920 		    sc->sc_dev.dv_xname);
    921 		if (intrstr != NULL)
    922 			printf(" at %s", intrstr);
    923 		printf("\n");
    924 		return;
    925 	}
    926 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    927 
    928 	/* Reset the adapter. */
    929 	vge_reset(sc);
    930 
    931 	/*
    932 	 * Get station address from the EEPROM.
    933 	 */
    934 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
    935 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
    936 
    937 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    938 	    ether_sprintf(eaddr));
    939 
    940 	/*
    941 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    942 	 * but we don't use that for now.
    943 	 */
    944 	sc->vge_dmat = pa->pa_dmat;
    945 
    946 	if (vge_allocmem(sc))
    947 		return;
    948 
    949 	ifp = &sc->sc_ethercom.ec_if;
    950 	ifp->if_softc = sc;
    951 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    952 	ifp->if_mtu = ETHERMTU;
    953 	ifp->if_baudrate = IF_Gbps(1);
    954 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    955 	ifp->if_ioctl = vge_ioctl;
    956 	ifp->if_start = vge_start;
    957 
    958 	/*
    959 	 * We can support 802.1Q VLAN-sized frames and jumbo
    960 	 * Ethernet frames.
    961 	 */
    962 	sc->sc_ethercom.ec_capabilities |=
    963 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    964 	    ETHERCAP_VLAN_HWTAGGING;
    965 
    966 	/*
    967 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    968 	 */
    969 	ifp->if_capabilities |=
    970 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    971 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    972 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    973 
    974 #ifdef DEVICE_POLLING
    975 #ifdef IFCAP_POLLING
    976 	ifp->if_capabilities |= IFCAP_POLLING;
    977 #endif
    978 #endif
    979 	ifp->if_watchdog = vge_watchdog;
    980 	ifp->if_init = vge_init;
    981 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    982 
    983 	/*
    984 	 * Initialize our media structures and probe the MII.
    985 	 */
    986 	sc->sc_mii.mii_ifp = ifp;
    987 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    988 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    989 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
    990 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
    991 	    vge_ifmedia_sts);
    992 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    993 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    994 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    995 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    996 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    997 	} else
    998 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    999 
   1000 	/*
   1001 	 * Attach the interface.
   1002 	 */
   1003 	if_attach(ifp);
   1004 	ether_ifattach(ifp, eaddr);
   1005 
   1006 	callout_init(&sc->vge_timeout);
   1007 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
   1008 
   1009 	/*
   1010 	 * Make sure the interface is shutdown during reboot.
   1011 	 */
   1012 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
   1013 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1014 		    sc->sc_dev.dv_xname);
   1015 	}
   1016 }
   1017 
   1018 static int
   1019 vge_newbuf(sc, idx, m)
   1020 	struct vge_softc	*sc;
   1021 	int			idx;
   1022 	struct mbuf		*m;
   1023 {
   1024 	struct mbuf		*n = NULL;
   1025 	int			i, error;
   1026 
   1027 	if (m == NULL) {
   1028 		n = m_gethdr(M_DONTWAIT, MT_DATA);
   1029 		if (n == NULL)
   1030 			return (ENOBUFS);
   1031 
   1032 		m_clget(n, M_DONTWAIT);
   1033 		if ((n->m_flags & M_EXT) == 0) {
   1034 			m_freem(n);
   1035 			return (ENOBUFS);
   1036 		}
   1037 
   1038 		m = n;
   1039 	} else
   1040 		m->m_data = m->m_ext.ext_buf;
   1041 
   1042 
   1043 #ifdef VGE_FIXUP_RX
   1044 	/*
   1045 	 * This is part of an evil trick to deal with non-x86 platforms.
   1046 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1047 	 * boundaries, but that will hose non-x86 machines. To get around
   1048 	 * this, we leave some empty space at the start of each buffer
   1049 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1050 	 * to achieve word alignment. This is slightly more efficient
   1051 	 * than allocating a new buffer, copying the contents, and
   1052 	 * discarding the old buffer.
   1053 	 */
   1054 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
   1055 	m_adj(m, VGE_ETHER_ALIGN);
   1056 #else
   1057 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1058 #endif
   1059 
   1060 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
   1061 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
   1062 	if (error || vge_dma_map_rx_desc(sc, idx)) {
   1063 		if (n != NULL)
   1064 			m_freem(n);
   1065 		return (ENOMEM);
   1066 	}
   1067 
   1068 	/*
   1069 	 * Note: the manual fails to document the fact that for
   1070 	 * proper opration, the driver needs to replentish the RX
   1071 	 * DMA ring 4 descriptors at a time (rather than one at a
   1072 	 * time, like most chips). We can allocate the new buffers
   1073 	 * but we should not set the OWN bits until we're ready
   1074 	 * to hand back 4 of them in one shot.
   1075 	 */
   1076 
   1077 #define VGE_RXCHUNK 4
   1078 	sc->vge_rx_consumed++;
   1079 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
   1080 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
   1081 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
   1082 			    htole32(VGE_RDSTS_OWN);
   1083 		sc->vge_rx_consumed = 0;
   1084 	}
   1085 
   1086 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
   1087 
   1088 	bus_dmamap_sync(sc->vge_dmat,
   1089 	    sc->vge_ldata.vge_rx_dmamap[idx],
   1090 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
   1091 	    BUS_DMASYNC_PREREAD);
   1092 
   1093 	return (0);
   1094 }
   1095 
   1096 static int
   1097 vge_tx_list_init(sc)
   1098 	struct vge_softc		*sc;
   1099 {
   1100 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
   1101 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
   1102 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
   1103 
   1104 	bus_dmamap_sync(sc->vge_dmat,
   1105 	    sc->vge_ldata.vge_tx_list_map,
   1106 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1107 	    BUS_DMASYNC_PREWRITE);
   1108 
   1109 	sc->vge_ldata.vge_tx_prodidx = 0;
   1110 	sc->vge_ldata.vge_tx_considx = 0;
   1111 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
   1112 
   1113 	return (0);
   1114 }
   1115 
   1116 static int
   1117 vge_rx_list_init(sc)
   1118 	struct vge_softc		*sc;
   1119 {
   1120 	int			i;
   1121 
   1122 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
   1123 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
   1124 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
   1125 
   1126 	sc->vge_rx_consumed = 0;
   1127 
   1128 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   1129 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
   1130 			return (ENOBUFS);
   1131 	}
   1132 
   1133 	/* Flush the RX descriptors */
   1134 
   1135 	bus_dmamap_sync(sc->vge_dmat,
   1136 	    sc->vge_ldata.vge_rx_list_map,
   1137 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1138 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1139 
   1140 	sc->vge_ldata.vge_rx_prodidx = 0;
   1141 	sc->vge_rx_consumed = 0;
   1142 	sc->vge_head = sc->vge_tail = NULL;
   1143 
   1144 	return (0);
   1145 }
   1146 
   1147 #ifdef VGE_FIXUP_RX
   1148 static inline void
   1149 vge_fixup_rx(m)
   1150 	struct mbuf		*m;
   1151 {
   1152 	int			i;
   1153 	uint16_t		*src, *dst;
   1154 
   1155 	src = mtod(m, uint16_t *);
   1156 	dst = src - 1;
   1157 
   1158 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1159 		*dst++ = *src++;
   1160 
   1161 	m->m_data -= ETHER_ALIGN;
   1162 
   1163 	return;
   1164 }
   1165 #endif
   1166 
   1167 /*
   1168  * RX handler. We support the reception of jumbo frames that have
   1169  * been fragmented across multiple 2K mbuf cluster buffers.
   1170  */
   1171 static void
   1172 vge_rxeof(sc)
   1173 	struct vge_softc	*sc;
   1174 {
   1175 	struct mbuf		*m;
   1176 	struct ifnet		*ifp;
   1177 	int			i, total_len;
   1178 	int			lim = 0;
   1179 	struct vge_rx_desc	*cur_rx;
   1180 	u_int32_t		rxstat, rxctl;
   1181 
   1182 	VGE_LOCK_ASSERT(sc);
   1183 	ifp = &sc->sc_ethercom.ec_if;
   1184 	i = sc->vge_ldata.vge_rx_prodidx;
   1185 
   1186 	/* Invalidate the descriptor memory */
   1187 
   1188 	bus_dmamap_sync(sc->vge_dmat,
   1189 	    sc->vge_ldata.vge_rx_list_map,
   1190 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1191 	    BUS_DMASYNC_POSTREAD);
   1192 
   1193 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
   1194 
   1195 #ifdef DEVICE_POLLING
   1196 		if (ifp->if_flags & IFF_POLLING) {
   1197 			if (sc->rxcycles <= 0)
   1198 				break;
   1199 			sc->rxcycles--;
   1200 		}
   1201 #endif /* DEVICE_POLLING */
   1202 
   1203 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
   1204 		m = sc->vge_ldata.vge_rx_mbuf[i];
   1205 		total_len = VGE_RXBYTES(cur_rx);
   1206 		rxstat = le32toh(cur_rx->vge_sts);
   1207 		rxctl = le32toh(cur_rx->vge_ctl);
   1208 
   1209 		/* Invalidate the RX mbuf and unload its map */
   1210 
   1211 		bus_dmamap_sync(sc->vge_dmat,
   1212 		    sc->vge_ldata.vge_rx_dmamap[i],
   1213 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
   1214 		    BUS_DMASYNC_POSTWRITE);
   1215 		bus_dmamap_unload(sc->vge_dmat,
   1216 		    sc->vge_ldata.vge_rx_dmamap[i]);
   1217 
   1218 		/*
   1219 		 * If the 'start of frame' bit is set, this indicates
   1220 		 * either the first fragment in a multi-fragment receive,
   1221 		 * or an intermediate fragment. Either way, we want to
   1222 		 * accumulate the buffers.
   1223 		 */
   1224 		if (rxstat & VGE_RXPKT_SOF) {
   1225 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
   1226 			if (sc->vge_head == NULL)
   1227 				sc->vge_head = sc->vge_tail = m;
   1228 			else {
   1229 				m->m_flags &= ~M_PKTHDR;
   1230 				sc->vge_tail->m_next = m;
   1231 				sc->vge_tail = m;
   1232 			}
   1233 			vge_newbuf(sc, i, NULL);
   1234 			VGE_RX_DESC_INC(i);
   1235 			continue;
   1236 		}
   1237 
   1238 		/*
   1239 		 * Bad/error frames will have the RXOK bit cleared.
   1240 		 * However, there's one error case we want to allow:
   1241 		 * if a VLAN tagged frame arrives and the chip can't
   1242 		 * match it against the CAM filter, it considers this
   1243 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1244 		 * We don't want to drop the frame though: our VLAN
   1245 		 * filtering is done in software.
   1246 		 */
   1247 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1248 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1249 			ifp->if_ierrors++;
   1250 			/*
   1251 			 * If this is part of a multi-fragment packet,
   1252 			 * discard all the pieces.
   1253 			 */
   1254 			if (sc->vge_head != NULL) {
   1255 				m_freem(sc->vge_head);
   1256 				sc->vge_head = sc->vge_tail = NULL;
   1257 			}
   1258 			vge_newbuf(sc, i, m);
   1259 			VGE_RX_DESC_INC(i);
   1260 			continue;
   1261 		}
   1262 
   1263 		/*
   1264 		 * If allocating a replacement mbuf fails,
   1265 		 * reload the current one.
   1266 		 */
   1267 
   1268 		if (vge_newbuf(sc, i, NULL)) {
   1269 			ifp->if_ierrors++;
   1270 			if (sc->vge_head != NULL) {
   1271 				m_freem(sc->vge_head);
   1272 				sc->vge_head = sc->vge_tail = NULL;
   1273 			}
   1274 			vge_newbuf(sc, i, m);
   1275 			VGE_RX_DESC_INC(i);
   1276 			continue;
   1277 		}
   1278 
   1279 		VGE_RX_DESC_INC(i);
   1280 
   1281 		if (sc->vge_head != NULL) {
   1282 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
   1283 			/*
   1284 			 * Special case: if there's 4 bytes or less
   1285 			 * in this buffer, the mbuf can be discarded:
   1286 			 * the last 4 bytes is the CRC, which we don't
   1287 			 * care about anyway.
   1288 			 */
   1289 			if (m->m_len <= ETHER_CRC_LEN) {
   1290 				sc->vge_tail->m_len -=
   1291 				    (ETHER_CRC_LEN - m->m_len);
   1292 				m_freem(m);
   1293 			} else {
   1294 				m->m_len -= ETHER_CRC_LEN;
   1295 				m->m_flags &= ~M_PKTHDR;
   1296 				sc->vge_tail->m_next = m;
   1297 			}
   1298 			m = sc->vge_head;
   1299 			sc->vge_head = sc->vge_tail = NULL;
   1300 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1301 		} else
   1302 			m->m_pkthdr.len = m->m_len =
   1303 			    (total_len - ETHER_CRC_LEN);
   1304 
   1305 #ifdef VGE_FIXUP_RX
   1306 		vge_fixup_rx(m);
   1307 #endif
   1308 		ifp->if_ipackets++;
   1309 		m->m_pkthdr.rcvif = ifp;
   1310 
   1311 		/* Do RX checksumming if enabled */
   1312 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1313 
   1314 			/* Check IP header checksum */
   1315 			if (rxctl & VGE_RDCTL_IPPKT)
   1316 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1317 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1318 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1319 		}
   1320 
   1321 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1322 			/* Check UDP checksum */
   1323 			if (rxctl & VGE_RDCTL_TCPPKT)
   1324 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1325 
   1326 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1327 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1328 		}
   1329 
   1330 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1331 			/* Check UDP checksum */
   1332 			if (rxctl & VGE_RDCTL_UDPPKT)
   1333 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1334 
   1335 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1336 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1337 		}
   1338 
   1339 		if (rxstat & VGE_RDSTS_VTAG)
   1340 			VLAN_INPUT_TAG(ifp, m,
   1341 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
   1342 
   1343 #if NBPFILTER > 0
   1344 		/*
   1345 		 * Handle BPF listeners.
   1346 		 */
   1347 		if (ifp->if_bpf)
   1348 			bpf_mtap(ifp->if_bpf, m);
   1349 #endif
   1350 
   1351 		VGE_UNLOCK(sc);
   1352 		(*ifp->if_input)(ifp, m);
   1353 		VGE_LOCK(sc);
   1354 
   1355 		lim++;
   1356 		if (lim == VGE_RX_DESC_CNT)
   1357 			break;
   1358 
   1359 	}
   1360 
   1361 	/* Flush the RX DMA ring */
   1362 
   1363 	bus_dmamap_sync(sc->vge_dmat,
   1364 	    sc->vge_ldata.vge_rx_list_map,
   1365 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1366 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1367 
   1368 	sc->vge_ldata.vge_rx_prodidx = i;
   1369 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1370 
   1371 
   1372 	return;
   1373 }
   1374 
   1375 static void
   1376 vge_txeof(sc)
   1377 	struct vge_softc		*sc;
   1378 {
   1379 	struct ifnet		*ifp;
   1380 	u_int32_t		txstat;
   1381 	int			idx;
   1382 
   1383 	ifp = &sc->sc_ethercom.ec_if;
   1384 	idx = sc->vge_ldata.vge_tx_considx;
   1385 
   1386 	/* Invalidate the TX descriptor list */
   1387 
   1388 	bus_dmamap_sync(sc->vge_dmat,
   1389 	    sc->vge_ldata.vge_tx_list_map,
   1390 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1391 	    BUS_DMASYNC_POSTREAD);
   1392 
   1393 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
   1394 
   1395 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
   1396 		if (txstat & VGE_TDSTS_OWN)
   1397 			break;
   1398 
   1399 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
   1400 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
   1401 		bus_dmamap_unload(sc->vge_dmat,
   1402 		    sc->vge_ldata.vge_tx_dmamap[idx]);
   1403 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1404 			ifp->if_collisions++;
   1405 		if (txstat & VGE_TDSTS_TXERR)
   1406 			ifp->if_oerrors++;
   1407 		else
   1408 			ifp->if_opackets++;
   1409 
   1410 		sc->vge_ldata.vge_tx_free++;
   1411 		VGE_TX_DESC_INC(idx);
   1412 	}
   1413 
   1414 	/* No changes made to the TX ring, so no flush needed */
   1415 
   1416 	if (idx != sc->vge_ldata.vge_tx_considx) {
   1417 		sc->vge_ldata.vge_tx_considx = idx;
   1418 		ifp->if_flags &= ~IFF_OACTIVE;
   1419 		ifp->if_timer = 0;
   1420 	}
   1421 
   1422 	/*
   1423 	 * If not all descriptors have been released reaped yet,
   1424 	 * reload the timer so that we will eventually get another
   1425 	 * interrupt that will cause us to re-enter this routine.
   1426 	 * This is done in case the transmitter has gone idle.
   1427 	 */
   1428 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
   1429 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1430 	}
   1431 
   1432 	return;
   1433 }
   1434 
   1435 static void
   1436 vge_tick(xsc)
   1437 	void			*xsc;
   1438 {
   1439 	struct vge_softc	*sc = xsc;
   1440 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1441 	struct mii_data		*mii = &sc->sc_mii;
   1442 	int s;
   1443 
   1444 	s = splnet();
   1445 
   1446 	VGE_LOCK(sc);
   1447 
   1448 	callout_schedule(&sc->vge_timeout, hz);
   1449 
   1450 	mii_tick(mii);
   1451 	if (sc->vge_link) {
   1452 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1453 			sc->vge_link = 0;
   1454 	} else {
   1455 		if (mii->mii_media_status & IFM_ACTIVE &&
   1456 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1457 			sc->vge_link = 1;
   1458 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1459 				vge_start(ifp);
   1460 		}
   1461 	}
   1462 
   1463 	VGE_UNLOCK(sc);
   1464 
   1465 	splx(s);
   1466 }
   1467 
   1468 #ifdef DEVICE_POLLING
   1469 static void
   1470 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
   1471 {
   1472 	struct vge_softc *sc = ifp->if_softc;
   1473 
   1474 	VGE_LOCK(sc);
   1475 #ifdef IFCAP_POLLING
   1476 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1477 		ether_poll_deregister(ifp);
   1478 		cmd = POLL_DEREGISTER;
   1479 	}
   1480 #endif
   1481 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1482 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1483 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   1484 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1485 		goto done;
   1486 	}
   1487 
   1488 	sc->rxcycles = count;
   1489 	vge_rxeof(sc);
   1490 	vge_txeof(sc);
   1491 
   1492 #if __FreeBSD_version < 502114
   1493 	if (ifp->if_snd.ifq_head != NULL)
   1494 #else
   1495 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
   1496 #endif
   1497 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
   1498 
   1499 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1500 		u_int32_t       status;
   1501 		status = CSR_READ_4(sc, VGE_ISR);
   1502 		if (status == 0xFFFFFFFF)
   1503 			goto done;
   1504 		if (status)
   1505 			CSR_WRITE_4(sc, VGE_ISR, status);
   1506 
   1507 		/*
   1508 		 * XXX check behaviour on receiver stalls.
   1509 		 */
   1510 
   1511 		if (status & VGE_ISR_TXDMA_STALL ||
   1512 		    status & VGE_ISR_RXDMA_STALL)
   1513 			vge_init(sc);
   1514 
   1515 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1516 			vge_rxeof(sc);
   1517 			ifp->if_ierrors++;
   1518 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1519 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1520 		}
   1521 	}
   1522 done:
   1523 	VGE_UNLOCK(sc);
   1524 }
   1525 #endif /* DEVICE_POLLING */
   1526 
   1527 static int
   1528 vge_intr(arg)
   1529 	void			*arg;
   1530 {
   1531 	struct vge_softc	*sc = arg;
   1532 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1533 	u_int32_t		status;
   1534 	int claim = 0;
   1535 
   1536 	if (sc->suspended) {
   1537 		return claim;
   1538 	}
   1539 
   1540 	VGE_LOCK(sc);
   1541 
   1542 	if (!(ifp->if_flags & IFF_UP)) {
   1543 		VGE_UNLOCK(sc);
   1544 		return claim;
   1545 	}
   1546 
   1547 #ifdef DEVICE_POLLING
   1548 	if  (ifp->if_flags & IFF_POLLING)
   1549 		goto done;
   1550 	if (
   1551 #ifdef IFCAP_POLLING
   1552 	    (ifp->if_capenable & IFCAP_POLLING) &&
   1553 #endif
   1554 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
   1555 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1556 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1557 		vge_poll(ifp, 0, 1);
   1558 		goto done;
   1559 	}
   1560 
   1561 #endif /* DEVICE_POLLING */
   1562 
   1563 	/* Disable interrupts */
   1564 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1565 
   1566 	for (;;) {
   1567 
   1568 		status = CSR_READ_4(sc, VGE_ISR);
   1569 		/* If the card has gone away the read returns 0xffff. */
   1570 		if (status == 0xFFFFFFFF)
   1571 			break;
   1572 
   1573 		if (status) {
   1574 			claim = 1;
   1575 			CSR_WRITE_4(sc, VGE_ISR, status);
   1576 		}
   1577 
   1578 		if ((status & VGE_INTRS) == 0)
   1579 			break;
   1580 
   1581 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1582 			vge_rxeof(sc);
   1583 
   1584 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1585 			vge_rxeof(sc);
   1586 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1587 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1588 		}
   1589 
   1590 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1591 			vge_txeof(sc);
   1592 
   1593 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1594 			vge_init(ifp);
   1595 
   1596 		if (status & VGE_ISR_LINKSTS)
   1597 			vge_tick(sc);
   1598 	}
   1599 
   1600 	/* Re-enable interrupts */
   1601 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1602 
   1603 #ifdef DEVICE_POLLING
   1604 done:
   1605 #endif
   1606 	VGE_UNLOCK(sc);
   1607 
   1608 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1609 		vge_start(ifp);
   1610 
   1611 	return claim;
   1612 }
   1613 
   1614 static int
   1615 vge_encap(sc, m_head, idx)
   1616 	struct vge_softc	*sc;
   1617 	struct mbuf		*m_head;
   1618 	int			idx;
   1619 {
   1620 	struct mbuf		*m_new = NULL;
   1621 	bus_dmamap_t		map;
   1622 	int			error, flags;
   1623 	struct m_tag		*mtag;
   1624 
   1625 	/* If this descriptor is still owned by the chip, bail. */
   1626 	if (sc->vge_ldata.vge_tx_free <= 2
   1627 	    || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
   1628 		return (ENOBUFS);
   1629 
   1630 	flags = 0;
   1631 
   1632 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1633 		flags |= VGE_TDCTL_IPCSUM;
   1634 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1635 		flags |= VGE_TDCTL_TCPCSUM;
   1636 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1637 		flags |= VGE_TDCTL_UDPCSUM;
   1638 
   1639 	map = sc->vge_ldata.vge_tx_dmamap[idx];
   1640 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1641 	    m_head, BUS_DMA_NOWAIT);
   1642 
   1643 	/* If too many segments to map, coalesce */
   1644 	if (error == EFBIG) {
   1645 		m_new = m_defrag(m_head, M_DONTWAIT);
   1646 		if (m_new == NULL)
   1647 			return (error);
   1648 
   1649 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1650 		    m_new, BUS_DMA_NOWAIT);
   1651 		if (error) {
   1652 			m_freem(m_new);
   1653 			return (error);
   1654 		}
   1655 
   1656 		m_head = m_new;
   1657 	} else if (error)
   1658 		return (error);
   1659 
   1660 	vge_dma_map_tx_desc(sc, m_head, idx, flags);
   1661 
   1662 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
   1663 	sc->vge_ldata.vge_tx_free--;
   1664 
   1665 	/*
   1666 	 * Set up hardware VLAN tagging.
   1667 	 */
   1668 
   1669 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1670 	if (mtag != NULL)
   1671 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
   1672 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
   1673 
   1674 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
   1675 
   1676 	return (0);
   1677 }
   1678 
   1679 /*
   1680  * Main transmit routine.
   1681  */
   1682 
   1683 static void
   1684 vge_start(ifp)
   1685 	struct ifnet		*ifp;
   1686 {
   1687 	struct vge_softc	*sc;
   1688 	struct mbuf		*m_head = NULL;
   1689 	int			idx, pidx = 0, error;
   1690 
   1691 	sc = ifp->if_softc;
   1692 	VGE_LOCK(sc);
   1693 
   1694 	if (!sc->vge_link
   1695 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1696 		VGE_UNLOCK(sc);
   1697 		return;
   1698 	}
   1699 
   1700 	idx = sc->vge_ldata.vge_tx_prodidx;
   1701 
   1702 	pidx = idx - 1;
   1703 	if (pidx < 0)
   1704 		pidx = VGE_TX_DESC_CNT - 1;
   1705 
   1706 	/*
   1707 	 * Loop through the send queue, setting up transmit descriptors
   1708 	 * until we drain the queue, or use up all available transmit
   1709 	 * descriptors.
   1710 	 */
   1711 	for(;;) {
   1712 		/* Grab a packet off the queue. */
   1713 		IFQ_POLL(&ifp->if_snd, m_head);
   1714 		if (m_head == NULL)
   1715 			break;
   1716 
   1717 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
   1718 			/*
   1719 			 * Slot already used, stop for now.
   1720 			 */
   1721 			ifp->if_flags |= IFF_OACTIVE;
   1722 			break;
   1723 		}
   1724 
   1725 		if ((error = vge_encap(sc, m_head, idx))) {
   1726 			if (error == EFBIG) {
   1727 				printf("%s: Tx packet consumes too many "
   1728 				    "DMA segments, dropping...\n",
   1729 				    sc->sc_dev.dv_xname);
   1730 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1731 				m_freem(m_head);
   1732 				continue;
   1733 			}
   1734 
   1735 			/*
   1736 			 * Short on resources, just stop for now.
   1737 			 */
   1738 			if (error == ENOBUFS)
   1739 				ifp->if_flags |= IFF_OACTIVE;
   1740 			break;
   1741 		}
   1742 
   1743 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1744 
   1745 		/*
   1746 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1747 		 */
   1748 
   1749 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
   1750 		    htole16(VGE_TXDESC_Q);
   1751 
   1752 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
   1753 			m_freem(m_head);
   1754 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
   1755 		}
   1756 
   1757 		pidx = idx;
   1758 		VGE_TX_DESC_INC(idx);
   1759 
   1760 		/*
   1761 		 * If there's a BPF listener, bounce a copy of this frame
   1762 		 * to him.
   1763 		 */
   1764 #if NBPFILTER > 0
   1765 		if (ifp->if_bpf)
   1766 			bpf_mtap(ifp->if_bpf, m_head);
   1767 #endif
   1768 	}
   1769 
   1770 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
   1771 		VGE_UNLOCK(sc);
   1772 		return;
   1773 	}
   1774 
   1775 	/* Flush the TX descriptors */
   1776 
   1777 	bus_dmamap_sync(sc->vge_dmat,
   1778 	    sc->vge_ldata.vge_tx_list_map,
   1779 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1780 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1781 
   1782 	/* Issue a transmit command. */
   1783 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1784 
   1785 	sc->vge_ldata.vge_tx_prodidx = idx;
   1786 
   1787 	/*
   1788 	 * Use the countdown timer for interrupt moderation.
   1789 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1790 	 * countdown timer, which will begin counting until it hits
   1791 	 * the value in the SSTIMER register, and then trigger an
   1792 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1793 	 * the timer count is reloaded. Only when the transmitter
   1794 	 * is idle will the timer hit 0 and an interrupt fire.
   1795 	 */
   1796 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1797 
   1798 	VGE_UNLOCK(sc);
   1799 
   1800 	/*
   1801 	 * Set a timeout in case the chip goes out to lunch.
   1802 	 */
   1803 	ifp->if_timer = 5;
   1804 
   1805 	return;
   1806 }
   1807 
   1808 static int
   1809 vge_init(ifp)
   1810 	struct ifnet *ifp;
   1811 {
   1812 	struct vge_softc	*sc = ifp->if_softc;
   1813 	struct mii_data		*mii = &sc->sc_mii;
   1814 	int			i;
   1815 
   1816 	VGE_LOCK(sc);
   1817 
   1818 	/*
   1819 	 * Cancel pending I/O and free all RX/TX buffers.
   1820 	 */
   1821 	vge_stop(sc);
   1822 	vge_reset(sc);
   1823 
   1824 	/*
   1825 	 * Initialize the RX and TX descriptors and mbufs.
   1826 	 */
   1827 
   1828 	vge_rx_list_init(sc);
   1829 	vge_tx_list_init(sc);
   1830 
   1831 	/* Set our station address */
   1832 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1833 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
   1834 
   1835 	/*
   1836 	 * Set receive FIFO threshold. Also allow transmission and
   1837 	 * reception of VLAN tagged frames.
   1838 	 */
   1839 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1840 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1841 
   1842 	/* Set DMA burst length */
   1843 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1844 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1845 
   1846 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1847 
   1848 	/* Set collision backoff algorithm */
   1849 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1850 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1851 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1852 
   1853 	/* Disable LPSEL field in priority resolution */
   1854 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1855 
   1856 	/*
   1857 	 * Load the addresses of the DMA queues into the chip.
   1858 	 * Note that we only use one transmit queue.
   1859 	 */
   1860 
   1861 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
   1862 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
   1863 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
   1864 
   1865 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
   1866 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
   1867 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
   1868 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
   1869 
   1870 	/* Enable and wake up the RX descriptor queue */
   1871 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1872 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1873 
   1874 	/* Enable the TX descriptor queue */
   1875 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1876 
   1877 	/* Set up the receive filter -- allow large frames for VLANs. */
   1878 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1879 
   1880 	/* If we want promiscuous mode, set the allframes bit. */
   1881 	if (ifp->if_flags & IFF_PROMISC) {
   1882 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1883 	}
   1884 
   1885 	/* Set capture broadcast bit to capture broadcast frames. */
   1886 	if (ifp->if_flags & IFF_BROADCAST) {
   1887 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1888 	}
   1889 
   1890 	/* Set multicast bit to capture multicast frames. */
   1891 	if (ifp->if_flags & IFF_MULTICAST) {
   1892 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1893 	}
   1894 
   1895 	/* Init the cam filter. */
   1896 	vge_cam_clear(sc);
   1897 
   1898 	/* Init the multicast filter. */
   1899 	vge_setmulti(sc);
   1900 
   1901 	/* Enable flow control */
   1902 
   1903 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1904 
   1905 	/* Enable jumbo frame reception (if desired) */
   1906 
   1907 	/* Start the MAC. */
   1908 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1909 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1910 	CSR_WRITE_1(sc, VGE_CRS0,
   1911 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1912 
   1913 	/*
   1914 	 * Configure one-shot timer for microsecond
   1915 	 * resulution and load it for 500 usecs.
   1916 	 */
   1917 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1918 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1919 
   1920 	/*
   1921 	 * Configure interrupt moderation for receive. Enable
   1922 	 * the holdoff counter and load it, and set the RX
   1923 	 * suppression count to the number of descriptors we
   1924 	 * want to allow before triggering an interrupt.
   1925 	 * The holdoff timer is in units of 20 usecs.
   1926 	 */
   1927 
   1928 #ifdef notyet
   1929 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1930 	/* Select the interrupt holdoff timer page. */
   1931 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1932 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1933 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1934 
   1935 	/* Enable use of the holdoff timer. */
   1936 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1937 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1938 
   1939 	/* Select the RX suppression threshold page. */
   1940 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1941 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1942 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1943 
   1944 	/* Restore the page select bits. */
   1945 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1946 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1947 #endif
   1948 
   1949 #ifdef DEVICE_POLLING
   1950 	/*
   1951 	 * Disable interrupts if we are polling.
   1952 	 */
   1953 	if (ifp->if_flags & IFF_POLLING) {
   1954 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1955 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1956 	} else	/* otherwise ... */
   1957 #endif /* DEVICE_POLLING */
   1958 	{
   1959 	/*
   1960 	 * Enable interrupts.
   1961 	 */
   1962 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1963 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1964 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1965 	}
   1966 
   1967 	mii_mediachg(mii);
   1968 
   1969 	ifp->if_flags |= IFF_RUNNING;
   1970 	ifp->if_flags &= ~IFF_OACTIVE;
   1971 
   1972 	sc->vge_if_flags = 0;
   1973 	sc->vge_link = 0;
   1974 
   1975 	VGE_UNLOCK(sc);
   1976 
   1977 	callout_schedule(&sc->vge_timeout, hz);
   1978 
   1979 	return (0);
   1980 }
   1981 
   1982 /*
   1983  * Set media options.
   1984  */
   1985 static int
   1986 vge_ifmedia_upd(ifp)
   1987 	struct ifnet		*ifp;
   1988 {
   1989 	struct vge_softc	*sc = ifp->if_softc;
   1990 	struct mii_data		*mii = &sc->sc_mii;
   1991 
   1992 	mii_mediachg(mii);
   1993 
   1994 	return (0);
   1995 }
   1996 
   1997 /*
   1998  * Report current media status.
   1999  */
   2000 static void
   2001 vge_ifmedia_sts(ifp, ifmr)
   2002 	struct ifnet		*ifp;
   2003 	struct ifmediareq	*ifmr;
   2004 {
   2005 	struct vge_softc	*sc = ifp->if_softc;
   2006 	struct mii_data		*mii = &sc->sc_mii;
   2007 
   2008 	mii_pollstat(mii);
   2009 	ifmr->ifm_active = mii->mii_media_active;
   2010 	ifmr->ifm_status = mii->mii_media_status;
   2011 
   2012 	return;
   2013 }
   2014 
   2015 static void
   2016 vge_miibus_statchg(self)
   2017 	struct device	*self;
   2018 {
   2019 	struct vge_softc	*sc = (struct vge_softc *) self;
   2020 	struct mii_data		*mii = &sc->sc_mii;
   2021 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
   2022 
   2023 	/*
   2024 	 * If the user manually selects a media mode, we need to turn
   2025 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   2026 	 * user happens to choose a full duplex mode, we also need to
   2027 	 * set the 'force full duplex' bit. This applies only to
   2028 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   2029 	 * mode is disabled, and in 1000baseT mode, full duplex is
   2030 	 * always implied, so we turn on the forced mode bit but leave
   2031 	 * the FDX bit cleared.
   2032 	 */
   2033 
   2034 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   2035 	case IFM_AUTO:
   2036 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2037 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2038 		break;
   2039 	case IFM_1000_T:
   2040 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2041 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2042 		break;
   2043 	case IFM_100_TX:
   2044 	case IFM_10_T:
   2045 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2046 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   2047 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2048 		} else {
   2049 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2050 		}
   2051 		break;
   2052 	default:
   2053 		printf("%s: unknown media type: %x\n",
   2054 		    sc->sc_dev.dv_xname,
   2055 		    IFM_SUBTYPE(ife->ifm_media));
   2056 		break;
   2057 	}
   2058 
   2059 	return;
   2060 }
   2061 
   2062 static int
   2063 vge_ioctl(ifp, command, data)
   2064 	struct ifnet		*ifp;
   2065 	u_long			command;
   2066 	caddr_t			data;
   2067 {
   2068 	struct vge_softc	*sc = ifp->if_softc;
   2069 	struct ifreq		*ifr = (struct ifreq *) data;
   2070 	struct mii_data		*mii;
   2071 	int			s, error = 0;
   2072 
   2073 	s = splnet();
   2074 
   2075 	switch (command) {
   2076 	case SIOCSIFMTU:
   2077 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   2078 			error = EINVAL;
   2079 		ifp->if_mtu = ifr->ifr_mtu;
   2080 		break;
   2081 	case SIOCSIFFLAGS:
   2082 		if (ifp->if_flags & IFF_UP) {
   2083 			if (ifp->if_flags & IFF_RUNNING &&
   2084 			    ifp->if_flags & IFF_PROMISC &&
   2085 			    !(sc->vge_if_flags & IFF_PROMISC)) {
   2086 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2087 				    VGE_RXCTL_RX_PROMISC);
   2088 				vge_setmulti(sc);
   2089 			} else if (ifp->if_flags & IFF_RUNNING &&
   2090 			    !(ifp->if_flags & IFF_PROMISC) &&
   2091 			    sc->vge_if_flags & IFF_PROMISC) {
   2092 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2093 				    VGE_RXCTL_RX_PROMISC);
   2094 				vge_setmulti(sc);
   2095                         } else
   2096 				vge_init(ifp);
   2097 		} else {
   2098 			if (ifp->if_flags & IFF_RUNNING)
   2099 				vge_stop(sc);
   2100 		}
   2101 		sc->vge_if_flags = ifp->if_flags;
   2102 		break;
   2103 	case SIOCADDMULTI:
   2104 	case SIOCDELMULTI:
   2105 		error = (command == SIOCADDMULTI) ?
   2106 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   2107 		    ether_delmulti(ifr, &sc->sc_ethercom);
   2108 
   2109 		if (error == ENETRESET) {
   2110 			/*
   2111 			 * Multicast list has changed; set the hardware filter
   2112 			 * accordingly.
   2113 			 */
   2114 			if (ifp->if_flags & IFF_RUNNING)
   2115 				vge_setmulti(sc);
   2116 			error = 0;
   2117 		}
   2118 		break;
   2119 	case SIOCGIFMEDIA:
   2120 	case SIOCSIFMEDIA:
   2121 		mii = &sc->sc_mii;
   2122 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2123 		break;
   2124 	default:
   2125 		error = ether_ioctl(ifp, command, data);
   2126 		break;
   2127 	}
   2128 
   2129 	splx(s);
   2130 	return (error);
   2131 }
   2132 
   2133 static void
   2134 vge_watchdog(ifp)
   2135 	struct ifnet		*ifp;
   2136 {
   2137 	struct vge_softc		*sc;
   2138 
   2139 	sc = ifp->if_softc;
   2140 	VGE_LOCK(sc);
   2141 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2142 	ifp->if_oerrors++;
   2143 
   2144 	vge_txeof(sc);
   2145 	vge_rxeof(sc);
   2146 
   2147 	vge_init(ifp);
   2148 
   2149 	VGE_UNLOCK(sc);
   2150 
   2151 	return;
   2152 }
   2153 
   2154 /*
   2155  * Stop the adapter and free any mbufs allocated to the
   2156  * RX and TX lists.
   2157  */
   2158 static void
   2159 vge_stop(sc)
   2160 	struct vge_softc		*sc;
   2161 {
   2162 	register int		i;
   2163 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2164 
   2165 	VGE_LOCK(sc);
   2166 	ifp->if_timer = 0;
   2167 
   2168 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2169 #ifdef DEVICE_POLLING
   2170 	ether_poll_deregister(ifp);
   2171 #endif /* DEVICE_POLLING */
   2172 
   2173 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2174 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2175 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2176 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2177 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2178 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2179 
   2180 	if (sc->vge_head != NULL) {
   2181 		m_freem(sc->vge_head);
   2182 		sc->vge_head = sc->vge_tail = NULL;
   2183 	}
   2184 
   2185 	/* Free the TX list buffers. */
   2186 
   2187 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
   2188 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
   2189 			bus_dmamap_unload(sc->vge_dmat,
   2190 			    sc->vge_ldata.vge_tx_dmamap[i]);
   2191 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
   2192 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
   2193 		}
   2194 	}
   2195 
   2196 	/* Free the RX list buffers. */
   2197 
   2198 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   2199 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
   2200 			bus_dmamap_unload(sc->vge_dmat,
   2201 			    sc->vge_ldata.vge_rx_dmamap[i]);
   2202 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
   2203 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
   2204 		}
   2205 	}
   2206 
   2207 	VGE_UNLOCK(sc);
   2208 
   2209 	return;
   2210 }
   2211 
   2212 #if VGE_POWER_MANAGEMENT
   2213 /*
   2214  * Device suspend routine.  Stop the interface and save some PCI
   2215  * settings in case the BIOS doesn't restore them properly on
   2216  * resume.
   2217  */
   2218 static int
   2219 vge_suspend(dev)
   2220 	struct device *		dev;
   2221 {
   2222 	struct vge_softc	*sc;
   2223 	int			i;
   2224 
   2225 	sc = device_get_softc(dev);
   2226 
   2227 	vge_stop(sc);
   2228 
   2229         for (i = 0; i < 5; i++)
   2230 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2231 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2232 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2233 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2234 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2235 
   2236 	sc->suspended = 1;
   2237 
   2238 	return (0);
   2239 }
   2240 
   2241 /*
   2242  * Device resume routine.  Restore some PCI settings in case the BIOS
   2243  * doesn't, re-enable busmastering, and restart the interface if
   2244  * appropriate.
   2245  */
   2246 static int
   2247 vge_resume(dev)
   2248 	struct device *		dev;
   2249 {
   2250 	struct vge_softc	*sc = (struct vge_softc *)dev;
   2251 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2252 	int			i;
   2253 
   2254         /* better way to do this? */
   2255 	for (i = 0; i < 5; i++)
   2256 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
   2257 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
   2258 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
   2259 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
   2260 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
   2261 
   2262 	/* reenable busmastering */
   2263 	pci_enable_busmaster(dev);
   2264 	pci_enable_io(dev, SYS_RES_MEMORY);
   2265 
   2266 	/* reinitialize interface if necessary */
   2267 	if (ifp->if_flags & IFF_UP)
   2268 		vge_init(sc);
   2269 
   2270 	sc->suspended = 0;
   2271 
   2272 	return (0);
   2273 }
   2274 #endif
   2275 
   2276 /*
   2277  * Stop all chip I/O so that the kernel's probe routines don't
   2278  * get confused by errant DMAs when rebooting.
   2279  */
   2280 static void
   2281 vge_shutdown(arg)
   2282 	void *arg;
   2283 {
   2284 	struct vge_softc *sc = (struct vge_softc *)arg;
   2285 
   2286 	vge_stop(sc);
   2287 }
   2288