if_vge.c revision 1.13 1 /* $NetBSD: if_vge.c,v 1.13 2006/10/14 16:45:46 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.13 2006/10/14 16:45:46 tsutsui Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <machine/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117
118 static int vge_probe (struct device *, struct cfdata *, void *);
119 static void vge_attach (struct device *, struct device *, void *);
120
121 static int vge_encap (struct vge_softc *, struct mbuf *, int);
122
123 static int vge_dma_map_rx_desc (struct vge_softc *, int);
124 static void vge_dma_map_tx_desc (struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem (struct vge_softc *);
126 static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init (struct vge_softc *);
128 static int vge_tx_list_init (struct vge_softc *);
129 #ifndef __NO_STRICT_ALIGNMENT
130 static inline void vge_fixup_rx
131 (struct mbuf *);
132 #endif
133 static void vge_rxeof (struct vge_softc *);
134 static void vge_txeof (struct vge_softc *);
135 static int vge_intr (void *);
136 static void vge_tick (void *);
137 static void vge_start (struct ifnet *);
138 static int vge_ioctl (struct ifnet *, u_long, caddr_t);
139 static int vge_init (struct ifnet *);
140 static void vge_stop (struct vge_softc *);
141 static void vge_watchdog (struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend (struct device *);
144 static int vge_resume (struct device *);
145 #endif
146 static void vge_shutdown (void *);
147 static int vge_ifmedia_upd (struct ifnet *);
148 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
149
150 static uint16_t vge_read_eeprom (struct vge_softc *, int);
151
152 static void vge_miipoll_start (struct vge_softc *);
153 static void vge_miipoll_stop (struct vge_softc *);
154 static int vge_miibus_readreg (struct device *, int, int);
155 static void vge_miibus_writereg (struct device *, int, int, int);
156 static void vge_miibus_statchg (struct device *);
157
158 static void vge_cam_clear (struct vge_softc *);
159 static int vge_cam_set (struct vge_softc *, uint8_t *);
160 static void vge_setmulti (struct vge_softc *);
161 static void vge_reset (struct vge_softc *);
162
163 #define VGE_PCI_LOIO 0x10
164 #define VGE_PCI_LOMEM 0x14
165
166 CFATTACH_DECL(vge, sizeof(struct vge_softc),
167 vge_probe, vge_attach, NULL, NULL);
168
169 /*
170 * Defragment mbuf chain contents to be as linear as possible.
171 * Returns new mbuf chain on success, NULL on failure. Old mbuf
172 * chain is always freed.
173 * XXX temporary until there would be generic function doing this.
174 */
175 #define m_defrag vge_m_defrag
176 struct mbuf * vge_m_defrag(struct mbuf *, int);
177
178 struct mbuf *
179 vge_m_defrag(struct mbuf *mold, int flags)
180 {
181 struct mbuf *m0, *mn, *n;
182 size_t sz = mold->m_pkthdr.len;
183
184 #ifdef DIAGNOSTIC
185 if ((mold->m_flags & M_PKTHDR) == 0)
186 panic("m_defrag: not a mbuf chain header");
187 #endif
188
189 MGETHDR(m0, flags, MT_DATA);
190 if (m0 == NULL)
191 return NULL;
192 m0->m_pkthdr.len = mold->m_pkthdr.len;
193 mn = m0;
194
195 do {
196 if (sz > MHLEN) {
197 MCLGET(mn, M_DONTWAIT);
198 if ((mn->m_flags & M_EXT) == 0) {
199 m_freem(m0);
200 return NULL;
201 }
202 }
203
204 mn->m_len = MIN(sz, MCLBYTES);
205
206 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
207 mtod(mn, caddr_t));
208
209 sz -= mn->m_len;
210
211 if (sz > 0) {
212 /* need more mbufs */
213 MGET(n, M_NOWAIT, MT_DATA);
214 if (n == NULL) {
215 m_freem(m0);
216 return NULL;
217 }
218
219 mn->m_next = n;
220 mn = n;
221 }
222 } while (sz > 0);
223
224 return m0;
225 }
226
227 /*
228 * Read a word of data stored in the EEPROM at address 'addr.'
229 */
230 static uint16_t
231 vge_read_eeprom(struct vge_softc *sc, int addr)
232 {
233 int i;
234 uint16_t word = 0;
235
236 /*
237 * Enter EEPROM embedded programming mode. In order to
238 * access the EEPROM at all, we first have to set the
239 * EELOAD bit in the CHIPCFG2 register.
240 */
241 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
242 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
243
244 /* Select the address of the word we want to read */
245 CSR_WRITE_1(sc, VGE_EEADDR, addr);
246
247 /* Issue read command */
248 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
249
250 /* Wait for the done bit to be set. */
251 for (i = 0; i < VGE_TIMEOUT; i++) {
252 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
253 break;
254 }
255
256 if (i == VGE_TIMEOUT) {
257 printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
258 return 0;
259 }
260
261 /* Read the result */
262 word = CSR_READ_2(sc, VGE_EERDDAT);
263
264 /* Turn off EEPROM access mode. */
265 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
266 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
267
268 return word;
269 }
270
271 static void
272 vge_miipoll_stop(sc)
273 struct vge_softc *sc;
274 {
275 int i;
276
277 CSR_WRITE_1(sc, VGE_MIICMD, 0);
278
279 for (i = 0; i < VGE_TIMEOUT; i++) {
280 DELAY(1);
281 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
282 break;
283 }
284
285 if (i == VGE_TIMEOUT) {
286 printf("%s: failed to idle MII autopoll\n",
287 sc->sc_dev.dv_xname);
288 }
289
290 return;
291 }
292
293 static void
294 vge_miipoll_start(sc)
295 struct vge_softc *sc;
296 {
297 int i;
298
299 /* First, make sure we're idle. */
300
301 CSR_WRITE_1(sc, VGE_MIICMD, 0);
302 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
303
304 for (i = 0; i < VGE_TIMEOUT; i++) {
305 DELAY(1);
306 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
307 break;
308 }
309
310 if (i == VGE_TIMEOUT) {
311 printf("%s: failed to idle MII autopoll\n",
312 sc->sc_dev.dv_xname);
313 return;
314 }
315
316 /* Now enable auto poll mode. */
317
318 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
319
320 /* And make sure it started. */
321
322 for (i = 0; i < VGE_TIMEOUT; i++) {
323 DELAY(1);
324 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
325 break;
326 }
327
328 if (i == VGE_TIMEOUT) {
329 printf("%s: failed to start MII autopoll\n",
330 sc->sc_dev.dv_xname);
331 }
332 }
333
334 static int
335 vge_miibus_readreg(dev, phy, reg)
336 struct device *dev;
337 int phy, reg;
338 {
339 struct vge_softc *sc = (struct vge_softc *)dev;
340 int i;
341 u_int16_t rval = 0;
342
343 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
344 return(0);
345
346 VGE_LOCK(sc);
347 vge_miipoll_stop(sc);
348
349 /* Specify the register we want to read. */
350 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
351
352 /* Issue read command. */
353 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
354
355 /* Wait for the read command bit to self-clear. */
356 for (i = 0; i < VGE_TIMEOUT; i++) {
357 DELAY(1);
358 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
359 break;
360 }
361
362 if (i == VGE_TIMEOUT)
363 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
364 else
365 rval = CSR_READ_2(sc, VGE_MIIDATA);
366
367 vge_miipoll_start(sc);
368 VGE_UNLOCK(sc);
369
370 return (rval);
371 }
372
373 static void
374 vge_miibus_writereg(dev, phy, reg, data)
375 struct device *dev;
376 int phy, reg, data;
377 {
378 struct vge_softc *sc = (struct vge_softc *)dev;
379 int i;
380
381 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
382 return;
383
384 VGE_LOCK(sc);
385 vge_miipoll_stop(sc);
386
387 /* Specify the register we want to write. */
388 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
389
390 /* Specify the data we want to write. */
391 CSR_WRITE_2(sc, VGE_MIIDATA, data);
392
393 /* Issue write command. */
394 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
395
396 /* Wait for the write command bit to self-clear. */
397 for (i = 0; i < VGE_TIMEOUT; i++) {
398 DELAY(1);
399 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
400 break;
401 }
402
403 if (i == VGE_TIMEOUT) {
404 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
405 }
406
407 vge_miipoll_start(sc);
408 VGE_UNLOCK(sc);
409 }
410
411 static void
412 vge_cam_clear(sc)
413 struct vge_softc *sc;
414 {
415 int i;
416
417 /*
418 * Turn off all the mask bits. This tells the chip
419 * that none of the entries in the CAM filter are valid.
420 * desired entries will be enabled as we fill the filter in.
421 */
422
423 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
424 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
425 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
426 for (i = 0; i < 8; i++)
427 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
428
429 /* Clear the VLAN filter too. */
430
431 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
432 for (i = 0; i < 8; i++)
433 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
434
435 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
436 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
437 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
438
439 sc->vge_camidx = 0;
440
441 return;
442 }
443
444 static int
445 vge_cam_set(sc, addr)
446 struct vge_softc *sc;
447 uint8_t *addr;
448 {
449 int i, error = 0;
450
451 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
452 return(ENOSPC);
453
454 /* Select the CAM data page. */
455 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
457
458 /* Set the filter entry we want to update and enable writing. */
459 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
460
461 /* Write the address to the CAM registers */
462 for (i = 0; i < ETHER_ADDR_LEN; i++)
463 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
464
465 /* Issue a write command. */
466 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
467
468 /* Wake for it to clear. */
469 for (i = 0; i < VGE_TIMEOUT; i++) {
470 DELAY(1);
471 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
472 break;
473 }
474
475 if (i == VGE_TIMEOUT) {
476 printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
477 error = EIO;
478 goto fail;
479 }
480
481 /* Select the CAM mask page. */
482 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
483 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
484
485 /* Set the mask bit that enables this filter. */
486 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
487 1<<(sc->vge_camidx & 7));
488
489 sc->vge_camidx++;
490
491 fail:
492 /* Turn off access to CAM. */
493 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
494 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
496
497 return (error);
498 }
499
500 /*
501 * Program the multicast filter. We use the 64-entry CAM filter
502 * for perfect filtering. If there's more than 64 multicast addresses,
503 * we use the hash filter insted.
504 */
505 static void
506 vge_setmulti(sc)
507 struct vge_softc *sc;
508 {
509 struct ifnet *ifp;
510 int error = 0;
511 u_int32_t h, hashes[2] = { 0, 0 };
512 struct ether_multi *enm;
513 struct ether_multistep step;
514
515 ifp = &sc->sc_ethercom.ec_if;
516
517 /* First, zot all the multicast entries. */
518 vge_cam_clear(sc);
519 CSR_WRITE_4(sc, VGE_MAR0, 0);
520 CSR_WRITE_4(sc, VGE_MAR1, 0);
521 ifp->if_flags &= ~IFF_ALLMULTI;
522
523 /*
524 * If the user wants allmulti or promisc mode, enable reception
525 * of all multicast frames.
526 */
527 if (ifp->if_flags & IFF_PROMISC) {
528 allmulti:
529 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
530 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
531 ifp->if_flags |= IFF_ALLMULTI;
532 return;
533 }
534
535 /* Now program new ones */
536 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
537 while(enm != NULL) {
538 /*
539 * If multicast range, fall back to ALLMULTI.
540 */
541 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
542 ETHER_ADDR_LEN) != 0)
543 goto allmulti;
544
545 error = vge_cam_set(sc, enm->enm_addrlo);
546 if (error)
547 break;
548
549 ETHER_NEXT_MULTI(step, enm);
550 }
551
552 /* If there were too many addresses, use the hash filter. */
553 if (error) {
554 vge_cam_clear(sc);
555
556 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
557 while(enm != NULL) {
558 /*
559 * If multicast range, fall back to ALLMULTI.
560 */
561 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
562 ETHER_ADDR_LEN) != 0)
563 goto allmulti;
564
565 h = ether_crc32_be(enm->enm_addrlo,
566 ETHER_ADDR_LEN) >> 26;
567 hashes[h >> 5] |= 1 << (h & 0x1f);
568
569 ETHER_NEXT_MULTI(step, enm);
570 }
571
572 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
573 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
574 }
575
576 return;
577 }
578
579 static void
580 vge_reset(sc)
581 struct vge_softc *sc;
582 {
583 register int i;
584
585 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
586
587 for (i = 0; i < VGE_TIMEOUT; i++) {
588 DELAY(5);
589 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
590 break;
591 }
592
593 if (i == VGE_TIMEOUT) {
594 printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
595 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
596 DELAY(2000);
597 }
598
599 DELAY(5000);
600
601 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
602
603 for (i = 0; i < VGE_TIMEOUT; i++) {
604 DELAY(5);
605 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
606 break;
607 }
608
609 if (i == VGE_TIMEOUT) {
610 printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
611 return;
612 }
613
614 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
615
616 return;
617 }
618
619 /*
620 * Probe for a VIA gigabit chip. Check the PCI vendor and device
621 * IDs against our list and return a device name if we find a match.
622 */
623 static int
624 vge_probe(struct device *parent __unused, struct cfdata *match __unused,
625 void *aux)
626 {
627 struct pci_attach_args *pa = aux;
628
629 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
630 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
631 return 1;
632
633 return (0);
634 }
635
636 static int
637 vge_dma_map_rx_desc(sc, idx)
638 struct vge_softc *sc;
639 int idx;
640 {
641 struct vge_rx_desc *d = NULL;
642 bus_dma_segment_t *segs;
643
644 /*
645 * Map the segment array into descriptors.
646 */
647
648 d = &sc->vge_ldata.vge_rx_list[idx];
649
650 /* If this descriptor is still owned by the chip, bail. */
651
652 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
653 printf("%s: tried to map busy descriptor\n",
654 sc->sc_dev.dv_xname);
655 return (EBUSY);
656 }
657
658 segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
659
660 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
661 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
662 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
663 d->vge_sts = 0;
664 d->vge_ctl = 0;
665
666 return (0);
667 }
668
669 static void
670 vge_dma_map_tx_desc(sc, m0, idx, flags)
671 struct vge_softc *sc;
672 struct mbuf *m0;
673 int idx, flags;
674 {
675 struct vge_tx_desc *d = &sc->vge_ldata.vge_tx_list[idx];
676 struct vge_tx_frag *f;
677 int i = 0;
678 bus_dma_segment_t *segs;
679 size_t sz;
680 bus_dmamap_t map = sc->vge_ldata.vge_tx_dmamap[idx];
681
682 /* Map the segment array into descriptors. */
683
684 segs = map->dm_segs;
685 for (i = 0; i < map->dm_nsegs; i++) {
686 f = &d->vge_frag[i];
687 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
688 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
689 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
690 }
691
692 /* Argh. This chip does not autopad short frames */
693
694 sz = m0->m_pkthdr.len;
695 if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
696 f = &d->vge_frag[i];
697 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
698 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
699 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
700 sz = VGE_MIN_FRAMELEN;
701 i++;
702 }
703
704 /*
705 * When telling the chip how many segments there are, we
706 * must use nsegs + 1 instead of just nsegs. Darned if I
707 * know why.
708 */
709 i++;
710
711 d->vge_sts = htole32(sz << 16);
712 d->vge_ctl = htole32(flags|(i << 28)|VGE_TD_LS_NORM);
713
714 if (sz > ETHERMTU + ETHER_HDR_LEN)
715 d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
716 }
717
718 static int
719 vge_allocmem(sc)
720 struct vge_softc *sc;
721 {
722 int error;
723 int nseg;
724 int i;
725 bus_dma_segment_t seg;
726
727 /*
728 * Allocate map for TX descriptor list.
729 */
730 error = bus_dmamap_create(sc->vge_dmat,
731 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT,
732 &sc->vge_ldata.vge_tx_list_map);
733 if (error) {
734 printf("%s: could not allocate TX dma list map\n",
735 sc->sc_dev.dv_xname);
736 return (ENOMEM);
737 }
738
739 /*
740 * Allocate memory for TX descriptor list.
741 */
742
743 error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
744 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
745 if (error) {
746 printf("%s: could not allocate TX ring dma memory\n",
747 sc->sc_dev.dv_xname);
748 return (ENOMEM);
749 }
750
751 /* Map the memory to kernel VA space */
752
753 error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_TX_LIST_SZ,
754 (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
755 if (error) {
756 printf("%s: could not map TX ring dma memory\n",
757 sc->sc_dev.dv_xname);
758 return (ENOMEM);
759 }
760
761 /* Load the map for the TX ring. */
762 error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
763 sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
764 if (error) {
765 printf("%s: could not load TX ring dma memory\n",
766 sc->sc_dev.dv_xname);
767 return (ENOMEM);
768 }
769
770 /* Create DMA maps for TX buffers */
771
772 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
773 error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
774 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
775 BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
776 &sc->vge_ldata.vge_tx_dmamap[i]);
777 if (error) {
778 printf("%s: can't create DMA map for TX\n",
779 sc->sc_dev.dv_xname);
780 return (ENOMEM);
781 }
782 }
783
784 /*
785 * Allocate map for RX descriptor list.
786 */
787 error = bus_dmamap_create(sc->vge_dmat,
788 VGE_RX_LIST_SZ, 1, VGE_RX_LIST_SZ, 0, BUS_DMA_NOWAIT,
789 &sc->vge_ldata.vge_rx_list_map);
790 if (error) {
791 printf("%s: could not allocate RX dma list map\n",
792 sc->sc_dev.dv_xname);
793 return (ENOMEM);
794 }
795
796 /* Allocate DMA'able memory for the RX ring */
797
798 error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
799 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
800 if (error)
801 return (ENOMEM);
802
803 /* Map the memory to kernel VA space */
804
805 error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_RX_LIST_SZ,
806 (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
807 if (error)
808 return (ENOMEM);
809
810 /* Load the map for the RX ring. */
811 error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
812 sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
813 if (error) {
814 printf("%s: could not load RX ring dma memory\n",
815 sc->sc_dev.dv_xname);
816 return (ENOMEM);
817 }
818
819 /* Create DMA maps for RX buffers */
820
821 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
822 error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
823 1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
824 &sc->vge_ldata.vge_rx_dmamap[i]);
825 if (error) {
826 printf("%s: can't create DMA map for RX\n",
827 sc->sc_dev.dv_xname);
828 return (ENOMEM);
829 }
830 }
831
832 return (0);
833 }
834
835 /*
836 * Attach the interface. Allocate softc structures, do ifmedia
837 * setup and ethernet/BPF attach.
838 */
839 static void
840 vge_attach(struct device *parent __unused, struct device *self, void *aux)
841 {
842 uint8_t *eaddr;
843 struct vge_softc *sc = (struct vge_softc *)self;
844 struct ifnet *ifp;
845 struct pci_attach_args *pa = aux;
846 pci_chipset_tag_t pc = pa->pa_pc;
847 const char *intrstr;
848 pci_intr_handle_t ih;
849 uint16_t val;
850
851 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
852 PCI_REVISION(pa->pa_class));
853
854 /* Make sure bus-mastering is enabled */
855 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
856 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
857 PCI_COMMAND_MASTER_ENABLE);
858
859 /*
860 * Map control/status registers.
861 */
862 if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
863 PCI_MAPREG_TYPE_MEM, 0,
864 &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
865 aprint_error("%s: couldn't map memory\n",
866 sc->sc_dev.dv_xname);
867 return;
868 }
869
870 /*
871 * Map and establish our interrupt.
872 */
873 if (pci_intr_map(pa, &ih)) {
874 aprint_error("%s: unable to map interrupt\n",
875 sc->sc_dev.dv_xname);
876 return;
877 }
878 intrstr = pci_intr_string(pc, ih);
879 sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
880 if (sc->vge_intrhand == NULL) {
881 printf("%s: unable to establish interrupt",
882 sc->sc_dev.dv_xname);
883 if (intrstr != NULL)
884 printf(" at %s", intrstr);
885 printf("\n");
886 return;
887 }
888 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
889
890 /* Reset the adapter. */
891 vge_reset(sc);
892
893 /*
894 * Get station address from the EEPROM.
895 */
896 eaddr = sc->vge_eaddr;
897 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
898 eaddr[0] = val & 0xff;
899 eaddr[1] = val >> 8;
900 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
901 eaddr[2] = val & 0xff;
902 eaddr[3] = val >> 8;
903 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
904 eaddr[4] = val & 0xff;
905 eaddr[5] = val >> 8;
906
907 printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
908 ether_sprintf(eaddr));
909
910 /*
911 * Use the 32bit tag. Hardware supports 48bit physical addresses,
912 * but we don't use that for now.
913 */
914 sc->vge_dmat = pa->pa_dmat;
915
916 if (vge_allocmem(sc))
917 return;
918
919 ifp = &sc->sc_ethercom.ec_if;
920 ifp->if_softc = sc;
921 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
922 ifp->if_mtu = ETHERMTU;
923 ifp->if_baudrate = IF_Gbps(1);
924 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
925 ifp->if_ioctl = vge_ioctl;
926 ifp->if_start = vge_start;
927
928 /*
929 * We can support 802.1Q VLAN-sized frames and jumbo
930 * Ethernet frames.
931 */
932 sc->sc_ethercom.ec_capabilities |=
933 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
934 ETHERCAP_VLAN_HWTAGGING;
935
936 /*
937 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
938 */
939 ifp->if_capabilities |=
940 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
941 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
942 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
943
944 #ifdef DEVICE_POLLING
945 #ifdef IFCAP_POLLING
946 ifp->if_capabilities |= IFCAP_POLLING;
947 #endif
948 #endif
949 ifp->if_watchdog = vge_watchdog;
950 ifp->if_init = vge_init;
951 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
952
953 /*
954 * Initialize our media structures and probe the MII.
955 */
956 sc->sc_mii.mii_ifp = ifp;
957 sc->sc_mii.mii_readreg = vge_miibus_readreg;
958 sc->sc_mii.mii_writereg = vge_miibus_writereg;
959 sc->sc_mii.mii_statchg = vge_miibus_statchg;
960 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
961 vge_ifmedia_sts);
962 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
963 MII_OFFSET_ANY, MIIF_DOPAUSE);
964 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
965 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
966 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
967 } else
968 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
969
970 /*
971 * Attach the interface.
972 */
973 if_attach(ifp);
974 ether_ifattach(ifp, eaddr);
975
976 callout_init(&sc->vge_timeout);
977 callout_setfunc(&sc->vge_timeout, vge_tick, sc);
978
979 /*
980 * Make sure the interface is shutdown during reboot.
981 */
982 if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
983 printf("%s: WARNING: unable to establish shutdown hook\n",
984 sc->sc_dev.dv_xname);
985 }
986 }
987
988 static int
989 vge_newbuf(sc, idx, m)
990 struct vge_softc *sc;
991 int idx;
992 struct mbuf *m;
993 {
994 struct mbuf *n = NULL;
995 int i, error;
996
997 if (m == NULL) {
998 n = m_gethdr(M_DONTWAIT, MT_DATA);
999 if (n == NULL)
1000 return (ENOBUFS);
1001
1002 m_clget(n, M_DONTWAIT);
1003 if ((n->m_flags & M_EXT) == 0) {
1004 m_freem(n);
1005 return (ENOBUFS);
1006 }
1007
1008 m = n;
1009 } else
1010 m->m_data = m->m_ext.ext_buf;
1011
1012
1013 #ifndef __NO_STRICT_ALIGNMENT
1014 /*
1015 * This is part of an evil trick to deal with non-x86 platforms.
1016 * The VIA chip requires RX buffers to be aligned on 32-bit
1017 * boundaries, but that will hose non-x86 machines. To get around
1018 * this, we leave some empty space at the start of each buffer
1019 * and for non-x86 hosts, we copy the buffer back two bytes
1020 * to achieve word alignment. This is slightly more efficient
1021 * than allocating a new buffer, copying the contents, and
1022 * discarding the old buffer.
1023 */
1024 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1025 m_adj(m, VGE_ETHER_ALIGN);
1026 #else
1027 m->m_len = m->m_pkthdr.len = MCLBYTES;
1028 #endif
1029
1030 error = bus_dmamap_load_mbuf(sc->vge_dmat,
1031 sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1032 if (error || vge_dma_map_rx_desc(sc, idx)) {
1033 if (n != NULL)
1034 m_freem(n);
1035 return (ENOMEM);
1036 }
1037
1038 /*
1039 * Note: the manual fails to document the fact that for
1040 * proper opration, the driver needs to replentish the RX
1041 * DMA ring 4 descriptors at a time (rather than one at a
1042 * time, like most chips). We can allocate the new buffers
1043 * but we should not set the OWN bits until we're ready
1044 * to hand back 4 of them in one shot.
1045 */
1046
1047 #define VGE_RXCHUNK 4
1048 sc->vge_rx_consumed++;
1049 if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1050 for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1051 sc->vge_ldata.vge_rx_list[i].vge_sts |=
1052 htole32(VGE_RDSTS_OWN);
1053 sc->vge_rx_consumed = 0;
1054 }
1055
1056 sc->vge_ldata.vge_rx_mbuf[idx] = m;
1057
1058 bus_dmamap_sync(sc->vge_dmat,
1059 sc->vge_ldata.vge_rx_dmamap[idx],
1060 0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1061 BUS_DMASYNC_PREREAD);
1062
1063 return (0);
1064 }
1065
1066 static int
1067 vge_tx_list_init(sc)
1068 struct vge_softc *sc;
1069 {
1070 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1071 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1072 (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1073
1074 bus_dmamap_sync(sc->vge_dmat,
1075 sc->vge_ldata.vge_tx_list_map,
1076 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1077 BUS_DMASYNC_PREWRITE);
1078
1079 sc->vge_ldata.vge_tx_prodidx = 0;
1080 sc->vge_ldata.vge_tx_considx = 0;
1081 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1082
1083 return (0);
1084 }
1085
1086 static int
1087 vge_rx_list_init(sc)
1088 struct vge_softc *sc;
1089 {
1090 int i;
1091
1092 bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1093 bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1094 (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1095
1096 sc->vge_rx_consumed = 0;
1097
1098 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1099 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1100 return (ENOBUFS);
1101 }
1102
1103 /* Flush the RX descriptors */
1104
1105 bus_dmamap_sync(sc->vge_dmat,
1106 sc->vge_ldata.vge_rx_list_map,
1107 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1108 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1109
1110 sc->vge_ldata.vge_rx_prodidx = 0;
1111 sc->vge_rx_consumed = 0;
1112 sc->vge_head = sc->vge_tail = NULL;
1113
1114 return (0);
1115 }
1116
1117 #ifndef __NO_STRICT_ALIGNMENT
1118 static inline void
1119 vge_fixup_rx(m)
1120 struct mbuf *m;
1121 {
1122 int i;
1123 uint16_t *src, *dst;
1124
1125 src = mtod(m, uint16_t *);
1126 dst = src - 1;
1127
1128 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1129 *dst++ = *src++;
1130
1131 m->m_data -= ETHER_ALIGN;
1132
1133 return;
1134 }
1135 #endif
1136
1137 /*
1138 * RX handler. We support the reception of jumbo frames that have
1139 * been fragmented across multiple 2K mbuf cluster buffers.
1140 */
1141 static void
1142 vge_rxeof(sc)
1143 struct vge_softc *sc;
1144 {
1145 struct mbuf *m;
1146 struct ifnet *ifp;
1147 int i, total_len;
1148 int lim = 0;
1149 struct vge_rx_desc *cur_rx;
1150 u_int32_t rxstat, rxctl;
1151
1152 VGE_LOCK_ASSERT(sc);
1153 ifp = &sc->sc_ethercom.ec_if;
1154 i = sc->vge_ldata.vge_rx_prodidx;
1155
1156 /* Invalidate the descriptor memory */
1157
1158 bus_dmamap_sync(sc->vge_dmat,
1159 sc->vge_ldata.vge_rx_list_map,
1160 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1161 BUS_DMASYNC_POSTREAD);
1162
1163 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1164
1165 #ifdef DEVICE_POLLING
1166 if (ifp->if_flags & IFF_POLLING) {
1167 if (sc->rxcycles <= 0)
1168 break;
1169 sc->rxcycles--;
1170 }
1171 #endif /* DEVICE_POLLING */
1172
1173 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1174 m = sc->vge_ldata.vge_rx_mbuf[i];
1175 total_len = VGE_RXBYTES(cur_rx);
1176 rxstat = le32toh(cur_rx->vge_sts);
1177 rxctl = le32toh(cur_rx->vge_ctl);
1178
1179 /* Invalidate the RX mbuf and unload its map */
1180
1181 bus_dmamap_sync(sc->vge_dmat,
1182 sc->vge_ldata.vge_rx_dmamap[i],
1183 0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1184 BUS_DMASYNC_POSTWRITE);
1185 bus_dmamap_unload(sc->vge_dmat,
1186 sc->vge_ldata.vge_rx_dmamap[i]);
1187
1188 /*
1189 * If the 'start of frame' bit is set, this indicates
1190 * either the first fragment in a multi-fragment receive,
1191 * or an intermediate fragment. Either way, we want to
1192 * accumulate the buffers.
1193 */
1194 if (rxstat & VGE_RXPKT_SOF) {
1195 m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1196 if (sc->vge_head == NULL)
1197 sc->vge_head = sc->vge_tail = m;
1198 else {
1199 m->m_flags &= ~M_PKTHDR;
1200 sc->vge_tail->m_next = m;
1201 sc->vge_tail = m;
1202 }
1203 vge_newbuf(sc, i, NULL);
1204 VGE_RX_DESC_INC(i);
1205 continue;
1206 }
1207
1208 /*
1209 * Bad/error frames will have the RXOK bit cleared.
1210 * However, there's one error case we want to allow:
1211 * if a VLAN tagged frame arrives and the chip can't
1212 * match it against the CAM filter, it considers this
1213 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1214 * We don't want to drop the frame though: our VLAN
1215 * filtering is done in software.
1216 */
1217 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1218 && !(rxstat & VGE_RDSTS_CSUMERR)) {
1219 ifp->if_ierrors++;
1220 /*
1221 * If this is part of a multi-fragment packet,
1222 * discard all the pieces.
1223 */
1224 if (sc->vge_head != NULL) {
1225 m_freem(sc->vge_head);
1226 sc->vge_head = sc->vge_tail = NULL;
1227 }
1228 vge_newbuf(sc, i, m);
1229 VGE_RX_DESC_INC(i);
1230 continue;
1231 }
1232
1233 /*
1234 * If allocating a replacement mbuf fails,
1235 * reload the current one.
1236 */
1237
1238 if (vge_newbuf(sc, i, NULL)) {
1239 ifp->if_ierrors++;
1240 if (sc->vge_head != NULL) {
1241 m_freem(sc->vge_head);
1242 sc->vge_head = sc->vge_tail = NULL;
1243 }
1244 vge_newbuf(sc, i, m);
1245 VGE_RX_DESC_INC(i);
1246 continue;
1247 }
1248
1249 VGE_RX_DESC_INC(i);
1250
1251 if (sc->vge_head != NULL) {
1252 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1253 /*
1254 * Special case: if there's 4 bytes or less
1255 * in this buffer, the mbuf can be discarded:
1256 * the last 4 bytes is the CRC, which we don't
1257 * care about anyway.
1258 */
1259 if (m->m_len <= ETHER_CRC_LEN) {
1260 sc->vge_tail->m_len -=
1261 (ETHER_CRC_LEN - m->m_len);
1262 m_freem(m);
1263 } else {
1264 m->m_len -= ETHER_CRC_LEN;
1265 m->m_flags &= ~M_PKTHDR;
1266 sc->vge_tail->m_next = m;
1267 }
1268 m = sc->vge_head;
1269 sc->vge_head = sc->vge_tail = NULL;
1270 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1271 } else
1272 m->m_pkthdr.len = m->m_len =
1273 (total_len - ETHER_CRC_LEN);
1274
1275 #ifndef __NO_STRICT_ALIGNMENT
1276 vge_fixup_rx(m);
1277 #endif
1278 ifp->if_ipackets++;
1279 m->m_pkthdr.rcvif = ifp;
1280
1281 /* Do RX checksumming if enabled */
1282 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1283
1284 /* Check IP header checksum */
1285 if (rxctl & VGE_RDCTL_IPPKT)
1286 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1287 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1288 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1289 }
1290
1291 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1292 /* Check UDP checksum */
1293 if (rxctl & VGE_RDCTL_TCPPKT)
1294 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1295
1296 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1297 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1298 }
1299
1300 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1301 /* Check UDP checksum */
1302 if (rxctl & VGE_RDCTL_UDPPKT)
1303 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1304
1305 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1306 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1307 }
1308
1309 if (rxstat & VGE_RDSTS_VTAG)
1310 VLAN_INPUT_TAG(ifp, m,
1311 ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1312
1313 #if NBPFILTER > 0
1314 /*
1315 * Handle BPF listeners.
1316 */
1317 if (ifp->if_bpf)
1318 bpf_mtap(ifp->if_bpf, m);
1319 #endif
1320
1321 VGE_UNLOCK(sc);
1322 (*ifp->if_input)(ifp, m);
1323 VGE_LOCK(sc);
1324
1325 lim++;
1326 if (lim == VGE_RX_DESC_CNT)
1327 break;
1328
1329 }
1330
1331 /* Flush the RX DMA ring */
1332
1333 bus_dmamap_sync(sc->vge_dmat,
1334 sc->vge_ldata.vge_rx_list_map,
1335 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1336 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1337
1338 sc->vge_ldata.vge_rx_prodidx = i;
1339 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1340
1341
1342 return;
1343 }
1344
1345 static void
1346 vge_txeof(sc)
1347 struct vge_softc *sc;
1348 {
1349 struct ifnet *ifp;
1350 u_int32_t txstat;
1351 int idx;
1352
1353 ifp = &sc->sc_ethercom.ec_if;
1354 idx = sc->vge_ldata.vge_tx_considx;
1355
1356 /* Invalidate the TX descriptor list */
1357
1358 bus_dmamap_sync(sc->vge_dmat,
1359 sc->vge_ldata.vge_tx_list_map,
1360 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1361 BUS_DMASYNC_POSTREAD);
1362
1363 while (idx != sc->vge_ldata.vge_tx_prodidx) {
1364
1365 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1366 if (txstat & VGE_TDSTS_OWN)
1367 break;
1368
1369 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1370 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1371 bus_dmamap_unload(sc->vge_dmat,
1372 sc->vge_ldata.vge_tx_dmamap[idx]);
1373 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1374 ifp->if_collisions++;
1375 if (txstat & VGE_TDSTS_TXERR)
1376 ifp->if_oerrors++;
1377 else
1378 ifp->if_opackets++;
1379
1380 sc->vge_ldata.vge_tx_free++;
1381 VGE_TX_DESC_INC(idx);
1382 }
1383
1384 /* No changes made to the TX ring, so no flush needed */
1385
1386 if (idx != sc->vge_ldata.vge_tx_considx) {
1387 sc->vge_ldata.vge_tx_considx = idx;
1388 ifp->if_flags &= ~IFF_OACTIVE;
1389 ifp->if_timer = 0;
1390 }
1391
1392 /*
1393 * If not all descriptors have been released reaped yet,
1394 * reload the timer so that we will eventually get another
1395 * interrupt that will cause us to re-enter this routine.
1396 * This is done in case the transmitter has gone idle.
1397 */
1398 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1399 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1400 }
1401
1402 return;
1403 }
1404
1405 static void
1406 vge_tick(xsc)
1407 void *xsc;
1408 {
1409 struct vge_softc *sc = xsc;
1410 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1411 struct mii_data *mii = &sc->sc_mii;
1412 int s;
1413
1414 s = splnet();
1415
1416 VGE_LOCK(sc);
1417
1418 callout_schedule(&sc->vge_timeout, hz);
1419
1420 mii_tick(mii);
1421 if (sc->vge_link) {
1422 if (!(mii->mii_media_status & IFM_ACTIVE))
1423 sc->vge_link = 0;
1424 } else {
1425 if (mii->mii_media_status & IFM_ACTIVE &&
1426 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1427 sc->vge_link = 1;
1428 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1429 vge_start(ifp);
1430 }
1431 }
1432
1433 VGE_UNLOCK(sc);
1434
1435 splx(s);
1436 }
1437
1438 #ifdef DEVICE_POLLING
1439 static void
1440 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1441 {
1442 struct vge_softc *sc = ifp->if_softc;
1443
1444 VGE_LOCK(sc);
1445 #ifdef IFCAP_POLLING
1446 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1447 ether_poll_deregister(ifp);
1448 cmd = POLL_DEREGISTER;
1449 }
1450 #endif
1451 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1452 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1453 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1454 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1455 goto done;
1456 }
1457
1458 sc->rxcycles = count;
1459 vge_rxeof(sc);
1460 vge_txeof(sc);
1461
1462 #if __FreeBSD_version < 502114
1463 if (ifp->if_snd.ifq_head != NULL)
1464 #else
1465 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1466 #endif
1467 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1468
1469 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1470 u_int32_t status;
1471 status = CSR_READ_4(sc, VGE_ISR);
1472 if (status == 0xFFFFFFFF)
1473 goto done;
1474 if (status)
1475 CSR_WRITE_4(sc, VGE_ISR, status);
1476
1477 /*
1478 * XXX check behaviour on receiver stalls.
1479 */
1480
1481 if (status & VGE_ISR_TXDMA_STALL ||
1482 status & VGE_ISR_RXDMA_STALL)
1483 vge_init(sc);
1484
1485 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1486 vge_rxeof(sc);
1487 ifp->if_ierrors++;
1488 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1489 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1490 }
1491 }
1492 done:
1493 VGE_UNLOCK(sc);
1494 }
1495 #endif /* DEVICE_POLLING */
1496
1497 static int
1498 vge_intr(arg)
1499 void *arg;
1500 {
1501 struct vge_softc *sc = arg;
1502 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1503 u_int32_t status;
1504 int claim = 0;
1505
1506 if (sc->suspended) {
1507 return claim;
1508 }
1509
1510 VGE_LOCK(sc);
1511
1512 if (!(ifp->if_flags & IFF_UP)) {
1513 VGE_UNLOCK(sc);
1514 return claim;
1515 }
1516
1517 #ifdef DEVICE_POLLING
1518 if (ifp->if_flags & IFF_POLLING)
1519 goto done;
1520 if (
1521 #ifdef IFCAP_POLLING
1522 (ifp->if_capenable & IFCAP_POLLING) &&
1523 #endif
1524 ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1525 CSR_WRITE_4(sc, VGE_IMR, 0);
1526 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1527 vge_poll(ifp, 0, 1);
1528 goto done;
1529 }
1530
1531 #endif /* DEVICE_POLLING */
1532
1533 /* Disable interrupts */
1534 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1535
1536 for (;;) {
1537
1538 status = CSR_READ_4(sc, VGE_ISR);
1539 /* If the card has gone away the read returns 0xffff. */
1540 if (status == 0xFFFFFFFF)
1541 break;
1542
1543 if (status) {
1544 claim = 1;
1545 CSR_WRITE_4(sc, VGE_ISR, status);
1546 }
1547
1548 if ((status & VGE_INTRS) == 0)
1549 break;
1550
1551 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1552 vge_rxeof(sc);
1553
1554 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1555 vge_rxeof(sc);
1556 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1557 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1558 }
1559
1560 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1561 vge_txeof(sc);
1562
1563 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1564 vge_init(ifp);
1565
1566 if (status & VGE_ISR_LINKSTS)
1567 vge_tick(sc);
1568 }
1569
1570 /* Re-enable interrupts */
1571 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1572
1573 #ifdef DEVICE_POLLING
1574 done:
1575 #endif
1576 VGE_UNLOCK(sc);
1577
1578 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1579 vge_start(ifp);
1580
1581 return claim;
1582 }
1583
1584 static int
1585 vge_encap(sc, m_head, idx)
1586 struct vge_softc *sc;
1587 struct mbuf *m_head;
1588 int idx;
1589 {
1590 struct mbuf *m_new = NULL;
1591 bus_dmamap_t map;
1592 int error, flags;
1593 struct m_tag *mtag;
1594
1595 /* If this descriptor is still owned by the chip, bail. */
1596 if (sc->vge_ldata.vge_tx_free <= 2
1597 || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
1598 return (ENOBUFS);
1599
1600 flags = 0;
1601
1602 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1603 flags |= VGE_TDCTL_IPCSUM;
1604 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1605 flags |= VGE_TDCTL_TCPCSUM;
1606 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1607 flags |= VGE_TDCTL_UDPCSUM;
1608
1609 map = sc->vge_ldata.vge_tx_dmamap[idx];
1610 error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1611 m_head, BUS_DMA_NOWAIT);
1612
1613 /* If too many segments to map, coalesce */
1614 if (error == EFBIG) {
1615 m_new = m_defrag(m_head, M_DONTWAIT);
1616 if (m_new == NULL)
1617 return (error);
1618
1619 error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1620 m_new, BUS_DMA_NOWAIT);
1621 if (error) {
1622 m_freem(m_new);
1623 return (error);
1624 }
1625
1626 m_head = m_new;
1627 } else if (error)
1628 return (error);
1629
1630 vge_dma_map_tx_desc(sc, m_head, idx, flags);
1631
1632 sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1633 sc->vge_ldata.vge_tx_free--;
1634
1635 /*
1636 * Set up hardware VLAN tagging.
1637 */
1638
1639 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1640 if (mtag != NULL)
1641 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1642 htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1643
1644 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1645
1646 return (0);
1647 }
1648
1649 /*
1650 * Main transmit routine.
1651 */
1652
1653 static void
1654 vge_start(ifp)
1655 struct ifnet *ifp;
1656 {
1657 struct vge_softc *sc;
1658 struct mbuf *m_head = NULL;
1659 int idx, pidx = 0, error;
1660
1661 sc = ifp->if_softc;
1662 VGE_LOCK(sc);
1663
1664 if (!sc->vge_link
1665 || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1666 VGE_UNLOCK(sc);
1667 return;
1668 }
1669
1670 idx = sc->vge_ldata.vge_tx_prodidx;
1671
1672 pidx = idx - 1;
1673 if (pidx < 0)
1674 pidx = VGE_TX_DESC_CNT - 1;
1675
1676 /*
1677 * Loop through the send queue, setting up transmit descriptors
1678 * until we drain the queue, or use up all available transmit
1679 * descriptors.
1680 */
1681 for(;;) {
1682 /* Grab a packet off the queue. */
1683 IFQ_POLL(&ifp->if_snd, m_head);
1684 if (m_head == NULL)
1685 break;
1686
1687 if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1688 /*
1689 * Slot already used, stop for now.
1690 */
1691 ifp->if_flags |= IFF_OACTIVE;
1692 break;
1693 }
1694
1695 if ((error = vge_encap(sc, m_head, idx))) {
1696 if (error == EFBIG) {
1697 printf("%s: Tx packet consumes too many "
1698 "DMA segments, dropping...\n",
1699 sc->sc_dev.dv_xname);
1700 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1701 m_freem(m_head);
1702 continue;
1703 }
1704
1705 /*
1706 * Short on resources, just stop for now.
1707 */
1708 if (error == ENOBUFS)
1709 ifp->if_flags |= IFF_OACTIVE;
1710 break;
1711 }
1712
1713 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1714
1715 /*
1716 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1717 */
1718
1719 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1720 htole16(VGE_TXDESC_Q);
1721
1722 if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
1723 m_freem(m_head);
1724 m_head = sc->vge_ldata.vge_tx_mbuf[idx];
1725 }
1726
1727 pidx = idx;
1728 VGE_TX_DESC_INC(idx);
1729
1730 /*
1731 * If there's a BPF listener, bounce a copy of this frame
1732 * to him.
1733 */
1734 #if NBPFILTER > 0
1735 if (ifp->if_bpf)
1736 bpf_mtap(ifp->if_bpf, m_head);
1737 #endif
1738 }
1739
1740 if (idx == sc->vge_ldata.vge_tx_prodidx) {
1741 VGE_UNLOCK(sc);
1742 return;
1743 }
1744
1745 /* Flush the TX descriptors */
1746
1747 bus_dmamap_sync(sc->vge_dmat,
1748 sc->vge_ldata.vge_tx_list_map,
1749 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1750 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1751
1752 /* Issue a transmit command. */
1753 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1754
1755 sc->vge_ldata.vge_tx_prodidx = idx;
1756
1757 /*
1758 * Use the countdown timer for interrupt moderation.
1759 * 'TX done' interrupts are disabled. Instead, we reset the
1760 * countdown timer, which will begin counting until it hits
1761 * the value in the SSTIMER register, and then trigger an
1762 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1763 * the timer count is reloaded. Only when the transmitter
1764 * is idle will the timer hit 0 and an interrupt fire.
1765 */
1766 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1767
1768 VGE_UNLOCK(sc);
1769
1770 /*
1771 * Set a timeout in case the chip goes out to lunch.
1772 */
1773 ifp->if_timer = 5;
1774
1775 return;
1776 }
1777
1778 static int
1779 vge_init(ifp)
1780 struct ifnet *ifp;
1781 {
1782 struct vge_softc *sc = ifp->if_softc;
1783 struct mii_data *mii = &sc->sc_mii;
1784 int i;
1785
1786 VGE_LOCK(sc);
1787
1788 /*
1789 * Cancel pending I/O and free all RX/TX buffers.
1790 */
1791 vge_stop(sc);
1792 vge_reset(sc);
1793
1794 /*
1795 * Initialize the RX and TX descriptors and mbufs.
1796 */
1797
1798 vge_rx_list_init(sc);
1799 vge_tx_list_init(sc);
1800
1801 /* Set our station address */
1802 for (i = 0; i < ETHER_ADDR_LEN; i++)
1803 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1804
1805 /*
1806 * Set receive FIFO threshold. Also allow transmission and
1807 * reception of VLAN tagged frames.
1808 */
1809 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1810 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1811
1812 /* Set DMA burst length */
1813 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1814 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1815
1816 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1817
1818 /* Set collision backoff algorithm */
1819 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1820 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1821 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1822
1823 /* Disable LPSEL field in priority resolution */
1824 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1825
1826 /*
1827 * Load the addresses of the DMA queues into the chip.
1828 * Note that we only use one transmit queue.
1829 */
1830
1831 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1832 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr));
1833 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1834
1835 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1836 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr));
1837 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1838 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1839
1840 /* Enable and wake up the RX descriptor queue */
1841 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1842 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1843
1844 /* Enable the TX descriptor queue */
1845 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1846
1847 /* Set up the receive filter -- allow large frames for VLANs. */
1848 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1849
1850 /* If we want promiscuous mode, set the allframes bit. */
1851 if (ifp->if_flags & IFF_PROMISC) {
1852 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1853 }
1854
1855 /* Set capture broadcast bit to capture broadcast frames. */
1856 if (ifp->if_flags & IFF_BROADCAST) {
1857 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1858 }
1859
1860 /* Set multicast bit to capture multicast frames. */
1861 if (ifp->if_flags & IFF_MULTICAST) {
1862 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1863 }
1864
1865 /* Init the cam filter. */
1866 vge_cam_clear(sc);
1867
1868 /* Init the multicast filter. */
1869 vge_setmulti(sc);
1870
1871 /* Enable flow control */
1872
1873 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1874
1875 /* Enable jumbo frame reception (if desired) */
1876
1877 /* Start the MAC. */
1878 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1879 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1880 CSR_WRITE_1(sc, VGE_CRS0,
1881 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1882
1883 /*
1884 * Configure one-shot timer for microsecond
1885 * resulution and load it for 500 usecs.
1886 */
1887 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1888 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1889
1890 /*
1891 * Configure interrupt moderation for receive. Enable
1892 * the holdoff counter and load it, and set the RX
1893 * suppression count to the number of descriptors we
1894 * want to allow before triggering an interrupt.
1895 * The holdoff timer is in units of 20 usecs.
1896 */
1897
1898 #ifdef notyet
1899 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1900 /* Select the interrupt holdoff timer page. */
1901 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1902 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1903 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1904
1905 /* Enable use of the holdoff timer. */
1906 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1907 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1908
1909 /* Select the RX suppression threshold page. */
1910 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1911 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1912 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1913
1914 /* Restore the page select bits. */
1915 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1916 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1917 #endif
1918
1919 #ifdef DEVICE_POLLING
1920 /*
1921 * Disable interrupts if we are polling.
1922 */
1923 if (ifp->if_flags & IFF_POLLING) {
1924 CSR_WRITE_4(sc, VGE_IMR, 0);
1925 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1926 } else /* otherwise ... */
1927 #endif /* DEVICE_POLLING */
1928 {
1929 /*
1930 * Enable interrupts.
1931 */
1932 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1933 CSR_WRITE_4(sc, VGE_ISR, 0);
1934 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1935 }
1936
1937 mii_mediachg(mii);
1938
1939 ifp->if_flags |= IFF_RUNNING;
1940 ifp->if_flags &= ~IFF_OACTIVE;
1941
1942 sc->vge_if_flags = 0;
1943 sc->vge_link = 0;
1944
1945 VGE_UNLOCK(sc);
1946
1947 callout_schedule(&sc->vge_timeout, hz);
1948
1949 return (0);
1950 }
1951
1952 /*
1953 * Set media options.
1954 */
1955 static int
1956 vge_ifmedia_upd(ifp)
1957 struct ifnet *ifp;
1958 {
1959 struct vge_softc *sc = ifp->if_softc;
1960 struct mii_data *mii = &sc->sc_mii;
1961
1962 mii_mediachg(mii);
1963
1964 return (0);
1965 }
1966
1967 /*
1968 * Report current media status.
1969 */
1970 static void
1971 vge_ifmedia_sts(ifp, ifmr)
1972 struct ifnet *ifp;
1973 struct ifmediareq *ifmr;
1974 {
1975 struct vge_softc *sc = ifp->if_softc;
1976 struct mii_data *mii = &sc->sc_mii;
1977
1978 mii_pollstat(mii);
1979 ifmr->ifm_active = mii->mii_media_active;
1980 ifmr->ifm_status = mii->mii_media_status;
1981
1982 return;
1983 }
1984
1985 static void
1986 vge_miibus_statchg(self)
1987 struct device *self;
1988 {
1989 struct vge_softc *sc = (struct vge_softc *) self;
1990 struct mii_data *mii = &sc->sc_mii;
1991 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1992
1993 /*
1994 * If the user manually selects a media mode, we need to turn
1995 * on the forced MAC mode bit in the DIAGCTL register. If the
1996 * user happens to choose a full duplex mode, we also need to
1997 * set the 'force full duplex' bit. This applies only to
1998 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1999 * mode is disabled, and in 1000baseT mode, full duplex is
2000 * always implied, so we turn on the forced mode bit but leave
2001 * the FDX bit cleared.
2002 */
2003
2004 switch (IFM_SUBTYPE(ife->ifm_media)) {
2005 case IFM_AUTO:
2006 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2007 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2008 break;
2009 case IFM_1000_T:
2010 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2011 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2012 break;
2013 case IFM_100_TX:
2014 case IFM_10_T:
2015 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2016 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2017 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2018 } else {
2019 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2020 }
2021 break;
2022 default:
2023 printf("%s: unknown media type: %x\n",
2024 sc->sc_dev.dv_xname,
2025 IFM_SUBTYPE(ife->ifm_media));
2026 break;
2027 }
2028
2029 return;
2030 }
2031
2032 static int
2033 vge_ioctl(ifp, command, data)
2034 struct ifnet *ifp;
2035 u_long command;
2036 caddr_t data;
2037 {
2038 struct vge_softc *sc = ifp->if_softc;
2039 struct ifreq *ifr = (struct ifreq *) data;
2040 struct mii_data *mii;
2041 int s, error = 0;
2042
2043 s = splnet();
2044
2045 switch (command) {
2046 case SIOCSIFMTU:
2047 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2048 error = EINVAL;
2049 ifp->if_mtu = ifr->ifr_mtu;
2050 break;
2051 case SIOCSIFFLAGS:
2052 if (ifp->if_flags & IFF_UP) {
2053 if (ifp->if_flags & IFF_RUNNING &&
2054 ifp->if_flags & IFF_PROMISC &&
2055 !(sc->vge_if_flags & IFF_PROMISC)) {
2056 CSR_SETBIT_1(sc, VGE_RXCTL,
2057 VGE_RXCTL_RX_PROMISC);
2058 vge_setmulti(sc);
2059 } else if (ifp->if_flags & IFF_RUNNING &&
2060 !(ifp->if_flags & IFF_PROMISC) &&
2061 sc->vge_if_flags & IFF_PROMISC) {
2062 CSR_CLRBIT_1(sc, VGE_RXCTL,
2063 VGE_RXCTL_RX_PROMISC);
2064 vge_setmulti(sc);
2065 } else
2066 vge_init(ifp);
2067 } else {
2068 if (ifp->if_flags & IFF_RUNNING)
2069 vge_stop(sc);
2070 }
2071 sc->vge_if_flags = ifp->if_flags;
2072 break;
2073 case SIOCADDMULTI:
2074 case SIOCDELMULTI:
2075 error = (command == SIOCADDMULTI) ?
2076 ether_addmulti(ifr, &sc->sc_ethercom) :
2077 ether_delmulti(ifr, &sc->sc_ethercom);
2078
2079 if (error == ENETRESET) {
2080 /*
2081 * Multicast list has changed; set the hardware filter
2082 * accordingly.
2083 */
2084 if (ifp->if_flags & IFF_RUNNING)
2085 vge_setmulti(sc);
2086 error = 0;
2087 }
2088 break;
2089 case SIOCGIFMEDIA:
2090 case SIOCSIFMEDIA:
2091 mii = &sc->sc_mii;
2092 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2093 break;
2094 default:
2095 error = ether_ioctl(ifp, command, data);
2096 break;
2097 }
2098
2099 splx(s);
2100 return (error);
2101 }
2102
2103 static void
2104 vge_watchdog(ifp)
2105 struct ifnet *ifp;
2106 {
2107 struct vge_softc *sc;
2108
2109 sc = ifp->if_softc;
2110 VGE_LOCK(sc);
2111 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2112 ifp->if_oerrors++;
2113
2114 vge_txeof(sc);
2115 vge_rxeof(sc);
2116
2117 vge_init(ifp);
2118
2119 VGE_UNLOCK(sc);
2120
2121 return;
2122 }
2123
2124 /*
2125 * Stop the adapter and free any mbufs allocated to the
2126 * RX and TX lists.
2127 */
2128 static void
2129 vge_stop(sc)
2130 struct vge_softc *sc;
2131 {
2132 register int i;
2133 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2134
2135 VGE_LOCK(sc);
2136 ifp->if_timer = 0;
2137
2138 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2139 #ifdef DEVICE_POLLING
2140 ether_poll_deregister(ifp);
2141 #endif /* DEVICE_POLLING */
2142
2143 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2144 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2145 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2146 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2147 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2148 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2149
2150 if (sc->vge_head != NULL) {
2151 m_freem(sc->vge_head);
2152 sc->vge_head = sc->vge_tail = NULL;
2153 }
2154
2155 /* Free the TX list buffers. */
2156
2157 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2158 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2159 bus_dmamap_unload(sc->vge_dmat,
2160 sc->vge_ldata.vge_tx_dmamap[i]);
2161 m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2162 sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2163 }
2164 }
2165
2166 /* Free the RX list buffers. */
2167
2168 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2169 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2170 bus_dmamap_unload(sc->vge_dmat,
2171 sc->vge_ldata.vge_rx_dmamap[i]);
2172 m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2173 sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2174 }
2175 }
2176
2177 VGE_UNLOCK(sc);
2178
2179 return;
2180 }
2181
2182 #if VGE_POWER_MANAGEMENT
2183 /*
2184 * Device suspend routine. Stop the interface and save some PCI
2185 * settings in case the BIOS doesn't restore them properly on
2186 * resume.
2187 */
2188 static int
2189 vge_suspend(dev)
2190 struct device * dev;
2191 {
2192 struct vge_softc *sc;
2193 int i;
2194
2195 sc = device_get_softc(dev);
2196
2197 vge_stop(sc);
2198
2199 for (i = 0; i < 5; i++)
2200 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2201 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2202 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2203 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2204 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2205
2206 sc->suspended = 1;
2207
2208 return (0);
2209 }
2210
2211 /*
2212 * Device resume routine. Restore some PCI settings in case the BIOS
2213 * doesn't, re-enable busmastering, and restart the interface if
2214 * appropriate.
2215 */
2216 static int
2217 vge_resume(dev)
2218 struct device * dev;
2219 {
2220 struct vge_softc *sc = (struct vge_softc *)dev;
2221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2222 int i;
2223
2224 /* better way to do this? */
2225 for (i = 0; i < 5; i++)
2226 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2227 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2228 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2229 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2230 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2231
2232 /* reenable busmastering */
2233 pci_enable_busmaster(dev);
2234 pci_enable_io(dev, SYS_RES_MEMORY);
2235
2236 /* reinitialize interface if necessary */
2237 if (ifp->if_flags & IFF_UP)
2238 vge_init(sc);
2239
2240 sc->suspended = 0;
2241
2242 return (0);
2243 }
2244 #endif
2245
2246 /*
2247 * Stop all chip I/O so that the kernel's probe routines don't
2248 * get confused by errant DMAs when rebooting.
2249 */
2250 static void
2251 vge_shutdown(arg)
2252 void *arg;
2253 {
2254 struct vge_softc *sc = (struct vge_softc *)arg;
2255
2256 vge_stop(sc);
2257 }
2258