Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.14
      1 /* $NetBSD: if_vge.c,v 1.14 2006/10/14 19:10:35 tsutsui Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.14 2006/10/14 19:10:35 tsutsui Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 #include <dev/pci/if_vgevar.h>
    117 
    118 static int vge_probe	(struct device *, struct cfdata *, void *);
    119 static void vge_attach	(struct device *, struct device *, void *);
    120 
    121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
    122 
    123 static int vge_allocmem		(struct vge_softc *);
    124 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
    125 static int vge_rx_list_init	(struct vge_softc *);
    126 static int vge_tx_list_init	(struct vge_softc *);
    127 #ifndef __NO_STRICT_ALIGNMENT
    128 static inline void vge_fixup_rx
    129 				(struct mbuf *);
    130 #endif
    131 static void vge_rxeof		(struct vge_softc *);
    132 static void vge_txeof		(struct vge_softc *);
    133 static int vge_intr		(void *);
    134 static void vge_tick		(void *);
    135 static void vge_start		(struct ifnet *);
    136 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
    137 static int vge_init		(struct ifnet *);
    138 static void vge_stop		(struct vge_softc *);
    139 static void vge_watchdog	(struct ifnet *);
    140 #if VGE_POWER_MANAGEMENT
    141 static int vge_suspend		(struct device *);
    142 static int vge_resume		(struct device *);
    143 #endif
    144 static void vge_shutdown	(void *);
    145 static int vge_ifmedia_upd	(struct ifnet *);
    146 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
    147 
    148 static uint16_t vge_read_eeprom	(struct vge_softc *, int);
    149 
    150 static void vge_miipoll_start	(struct vge_softc *);
    151 static void vge_miipoll_stop	(struct vge_softc *);
    152 static int vge_miibus_readreg	(struct device *, int, int);
    153 static void vge_miibus_writereg	(struct device *, int, int, int);
    154 static void vge_miibus_statchg	(struct device *);
    155 
    156 static void vge_cam_clear	(struct vge_softc *);
    157 static int vge_cam_set		(struct vge_softc *, uint8_t *);
    158 static void vge_setmulti	(struct vge_softc *);
    159 static void vge_reset		(struct vge_softc *);
    160 
    161 #define VGE_PCI_LOIO             0x10
    162 #define VGE_PCI_LOMEM            0x14
    163 
    164 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    165     vge_probe, vge_attach, NULL, NULL);
    166 
    167 /*
    168  * Defragment mbuf chain contents to be as linear as possible.
    169  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    170  * chain is always freed.
    171  * XXX temporary until there would be generic function doing this.
    172  */
    173 #define m_defrag	vge_m_defrag
    174 struct mbuf * vge_m_defrag(struct mbuf *, int);
    175 
    176 struct mbuf *
    177 vge_m_defrag(struct mbuf *mold, int flags)
    178 {
    179 	struct mbuf *m0, *mn, *n;
    180 	size_t sz = mold->m_pkthdr.len;
    181 
    182 #ifdef DIAGNOSTIC
    183 	if ((mold->m_flags & M_PKTHDR) == 0)
    184 		panic("m_defrag: not a mbuf chain header");
    185 #endif
    186 
    187 	MGETHDR(m0, flags, MT_DATA);
    188 	if (m0 == NULL)
    189 		return NULL;
    190 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    191 	mn = m0;
    192 
    193 	do {
    194 		if (sz > MHLEN) {
    195 			MCLGET(mn, M_DONTWAIT);
    196 			if ((mn->m_flags & M_EXT) == 0) {
    197 				m_freem(m0);
    198 				return NULL;
    199 			}
    200 		}
    201 
    202 		mn->m_len = MIN(sz, MCLBYTES);
    203 
    204 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    205 		     mtod(mn, caddr_t));
    206 
    207 		sz -= mn->m_len;
    208 
    209 		if (sz > 0) {
    210 			/* need more mbufs */
    211 			MGET(n, M_NOWAIT, MT_DATA);
    212 			if (n == NULL) {
    213 				m_freem(m0);
    214 				return NULL;
    215 			}
    216 
    217 			mn->m_next = n;
    218 			mn = n;
    219 		}
    220 	} while (sz > 0);
    221 
    222 	return m0;
    223 }
    224 
    225 /*
    226  * Read a word of data stored in the EEPROM at address 'addr.'
    227  */
    228 static uint16_t
    229 vge_read_eeprom(struct vge_softc *sc, int addr)
    230 {
    231 	int i;
    232 	uint16_t word = 0;
    233 
    234 	/*
    235 	 * Enter EEPROM embedded programming mode. In order to
    236 	 * access the EEPROM at all, we first have to set the
    237 	 * EELOAD bit in the CHIPCFG2 register.
    238 	 */
    239 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    240 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    241 
    242 	/* Select the address of the word we want to read */
    243 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    244 
    245 	/* Issue read command */
    246 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    247 
    248 	/* Wait for the done bit to be set. */
    249 	for (i = 0; i < VGE_TIMEOUT; i++) {
    250 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    251 			break;
    252 	}
    253 
    254 	if (i == VGE_TIMEOUT) {
    255 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
    256 		return 0;
    257 	}
    258 
    259 	/* Read the result */
    260 	word = CSR_READ_2(sc, VGE_EERDDAT);
    261 
    262 	/* Turn off EEPROM access mode. */
    263 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    264 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    265 
    266 	return word;
    267 }
    268 
    269 static void
    270 vge_miipoll_stop(sc)
    271 	struct vge_softc	*sc;
    272 {
    273 	int			i;
    274 
    275 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    276 
    277 	for (i = 0; i < VGE_TIMEOUT; i++) {
    278 		DELAY(1);
    279 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    280 			break;
    281 	}
    282 
    283 	if (i == VGE_TIMEOUT) {
    284 		printf("%s: failed to idle MII autopoll\n",
    285 		    sc->sc_dev.dv_xname);
    286 	}
    287 
    288 	return;
    289 }
    290 
    291 static void
    292 vge_miipoll_start(sc)
    293 	struct vge_softc	*sc;
    294 {
    295 	int			i;
    296 
    297 	/* First, make sure we're idle. */
    298 
    299 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    300 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    301 
    302 	for (i = 0; i < VGE_TIMEOUT; i++) {
    303 		DELAY(1);
    304 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    305 			break;
    306 	}
    307 
    308 	if (i == VGE_TIMEOUT) {
    309 		printf("%s: failed to idle MII autopoll\n",
    310 		    sc->sc_dev.dv_xname);
    311 		return;
    312 	}
    313 
    314 	/* Now enable auto poll mode. */
    315 
    316 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    317 
    318 	/* And make sure it started. */
    319 
    320 	for (i = 0; i < VGE_TIMEOUT; i++) {
    321 		DELAY(1);
    322 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    323 			break;
    324 	}
    325 
    326 	if (i == VGE_TIMEOUT) {
    327 		printf("%s: failed to start MII autopoll\n",
    328 		    sc->sc_dev.dv_xname);
    329 	}
    330 }
    331 
    332 static int
    333 vge_miibus_readreg(dev, phy, reg)
    334 	struct device *dev;
    335 	int phy, reg;
    336 {
    337 	struct vge_softc	*sc = (struct vge_softc *)dev;
    338 	int			i;
    339 	u_int16_t		rval = 0;
    340 
    341 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    342 		return(0);
    343 
    344 	VGE_LOCK(sc);
    345 	vge_miipoll_stop(sc);
    346 
    347 	/* Specify the register we want to read. */
    348 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    349 
    350 	/* Issue read command. */
    351 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    352 
    353 	/* Wait for the read command bit to self-clear. */
    354 	for (i = 0; i < VGE_TIMEOUT; i++) {
    355 		DELAY(1);
    356 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    357 			break;
    358 	}
    359 
    360 	if (i == VGE_TIMEOUT)
    361 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    362 	else
    363 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    364 
    365 	vge_miipoll_start(sc);
    366 	VGE_UNLOCK(sc);
    367 
    368 	return (rval);
    369 }
    370 
    371 static void
    372 vge_miibus_writereg(dev, phy, reg, data)
    373 	struct device	*dev;
    374 	int		phy, reg, data;
    375 {
    376 	struct vge_softc	*sc = (struct vge_softc *)dev;
    377 	int			i;
    378 
    379 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    380 		return;
    381 
    382 	VGE_LOCK(sc);
    383 	vge_miipoll_stop(sc);
    384 
    385 	/* Specify the register we want to write. */
    386 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    387 
    388 	/* Specify the data we want to write. */
    389 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    390 
    391 	/* Issue write command. */
    392 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    393 
    394 	/* Wait for the write command bit to self-clear. */
    395 	for (i = 0; i < VGE_TIMEOUT; i++) {
    396 		DELAY(1);
    397 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    398 			break;
    399 	}
    400 
    401 	if (i == VGE_TIMEOUT) {
    402 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    403 	}
    404 
    405 	vge_miipoll_start(sc);
    406 	VGE_UNLOCK(sc);
    407 }
    408 
    409 static void
    410 vge_cam_clear(sc)
    411 	struct vge_softc	*sc;
    412 {
    413 	int			i;
    414 
    415 	/*
    416 	 * Turn off all the mask bits. This tells the chip
    417 	 * that none of the entries in the CAM filter are valid.
    418 	 * desired entries will be enabled as we fill the filter in.
    419 	 */
    420 
    421 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    422 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    423 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    424 	for (i = 0; i < 8; i++)
    425 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    426 
    427 	/* Clear the VLAN filter too. */
    428 
    429 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    430 	for (i = 0; i < 8; i++)
    431 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    432 
    433 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    434 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    435 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    436 
    437 	sc->vge_camidx = 0;
    438 
    439 	return;
    440 }
    441 
    442 static int
    443 vge_cam_set(sc, addr)
    444 	struct vge_softc	*sc;
    445 	uint8_t			*addr;
    446 {
    447 	int			i, error = 0;
    448 
    449 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
    450 		return(ENOSPC);
    451 
    452 	/* Select the CAM data page. */
    453 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    454 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    455 
    456 	/* Set the filter entry we want to update and enable writing. */
    457 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
    458 
    459 	/* Write the address to the CAM registers */
    460 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    461 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    462 
    463 	/* Issue a write command. */
    464 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    465 
    466 	/* Wake for it to clear. */
    467 	for (i = 0; i < VGE_TIMEOUT; i++) {
    468 		DELAY(1);
    469 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    470 			break;
    471 	}
    472 
    473 	if (i == VGE_TIMEOUT) {
    474 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
    475 		error = EIO;
    476 		goto fail;
    477 	}
    478 
    479 	/* Select the CAM mask page. */
    480 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    481 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    482 
    483 	/* Set the mask bit that enables this filter. */
    484 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
    485 	    1<<(sc->vge_camidx & 7));
    486 
    487 	sc->vge_camidx++;
    488 
    489 fail:
    490 	/* Turn off access to CAM. */
    491 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    492 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    493 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    494 
    495 	return (error);
    496 }
    497 
    498 /*
    499  * Program the multicast filter. We use the 64-entry CAM filter
    500  * for perfect filtering. If there's more than 64 multicast addresses,
    501  * we use the hash filter insted.
    502  */
    503 static void
    504 vge_setmulti(sc)
    505 	struct vge_softc	*sc;
    506 {
    507 	struct ifnet		*ifp;
    508 	int			error = 0;
    509 	u_int32_t		h, hashes[2] = { 0, 0 };
    510 	struct ether_multi *enm;
    511 	struct ether_multistep step;
    512 
    513 	ifp = &sc->sc_ethercom.ec_if;
    514 
    515 	/* First, zot all the multicast entries. */
    516 	vge_cam_clear(sc);
    517 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    518 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    519 	ifp->if_flags &= ~IFF_ALLMULTI;
    520 
    521 	/*
    522 	 * If the user wants allmulti or promisc mode, enable reception
    523 	 * of all multicast frames.
    524 	 */
    525 	if (ifp->if_flags & IFF_PROMISC) {
    526     allmulti:
    527 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    528 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    529 		ifp->if_flags |= IFF_ALLMULTI;
    530 		return;
    531 	}
    532 
    533 	/* Now program new ones */
    534 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    535 	while(enm != NULL) {
    536 		/*
    537 		 * If multicast range, fall back to ALLMULTI.
    538 		 */
    539 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    540 				ETHER_ADDR_LEN) != 0)
    541 			goto allmulti;
    542 
    543 		error = vge_cam_set(sc, enm->enm_addrlo);
    544 		if (error)
    545 			break;
    546 
    547 		ETHER_NEXT_MULTI(step, enm);
    548 	}
    549 
    550 	/* If there were too many addresses, use the hash filter. */
    551 	if (error) {
    552 		vge_cam_clear(sc);
    553 
    554 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    555 		while(enm != NULL) {
    556 			/*
    557 			 * If multicast range, fall back to ALLMULTI.
    558 			 */
    559 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    560 					ETHER_ADDR_LEN) != 0)
    561 				goto allmulti;
    562 
    563 			h = ether_crc32_be(enm->enm_addrlo,
    564 			    ETHER_ADDR_LEN) >> 26;
    565 			hashes[h >> 5] |= 1 << (h & 0x1f);
    566 
    567 			ETHER_NEXT_MULTI(step, enm);
    568 		}
    569 
    570 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    571 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    572 	}
    573 
    574 	return;
    575 }
    576 
    577 static void
    578 vge_reset(sc)
    579 	struct vge_softc		*sc;
    580 {
    581 	register int		i;
    582 
    583 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    584 
    585 	for (i = 0; i < VGE_TIMEOUT; i++) {
    586 		DELAY(5);
    587 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    588 			break;
    589 	}
    590 
    591 	if (i == VGE_TIMEOUT) {
    592 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
    593 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    594 		DELAY(2000);
    595 	}
    596 
    597 	DELAY(5000);
    598 
    599 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    600 
    601 	for (i = 0; i < VGE_TIMEOUT; i++) {
    602 		DELAY(5);
    603 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    604 			break;
    605 	}
    606 
    607 	if (i == VGE_TIMEOUT) {
    608 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
    609 		return;
    610 	}
    611 
    612 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    613 
    614 	return;
    615 }
    616 
    617 /*
    618  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    619  * IDs against our list and return a device name if we find a match.
    620  */
    621 static int
    622 vge_probe(struct device *parent __unused, struct cfdata *match __unused,
    623     void *aux)
    624 {
    625 	struct pci_attach_args *pa = aux;
    626 
    627 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    628 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    629 		return 1;
    630 
    631 	return (0);
    632 }
    633 
    634 static int
    635 vge_allocmem(sc)
    636 	struct vge_softc *sc;
    637 {
    638 	int			error;
    639 	int			nseg;
    640 	int			i;
    641 	bus_dma_segment_t	seg;
    642 
    643 	/*
    644 	 * Allocate map for TX descriptor list.
    645 	 */
    646 	error = bus_dmamap_create(sc->vge_dmat,
    647 	    VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT,
    648 	    &sc->vge_ldata.vge_tx_list_map);
    649 	if (error) {
    650 		printf("%s: could not allocate TX dma list map\n",
    651 		    sc->sc_dev.dv_xname);
    652 		return (ENOMEM);
    653 	}
    654 
    655 	/*
    656 	 * Allocate memory for TX descriptor list.
    657 	 */
    658 
    659 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
    660 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    661 	if (error) {
    662 		printf("%s: could not allocate TX ring dma memory\n",
    663 		    sc->sc_dev.dv_xname);
    664 		return (ENOMEM);
    665 	}
    666 
    667 	/* Map the memory to kernel VA space */
    668 
    669 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_TX_LIST_SZ,
    670 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
    671 	if (error) {
    672 		printf("%s: could not map TX ring dma memory\n",
    673 		    sc->sc_dev.dv_xname);
    674 		return (ENOMEM);
    675 	}
    676 
    677 	/* Load the map for the TX ring. */
    678 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
    679 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    680 	if (error) {
    681 		printf("%s: could not load TX ring dma memory\n",
    682 		    sc->sc_dev.dv_xname);
    683 		return (ENOMEM);
    684 	}
    685 
    686 	/* Create DMA maps for TX buffers */
    687 
    688 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
    689 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
    690 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
    691 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    692 		    &sc->vge_ldata.vge_tx_dmamap[i]);
    693 		if (error) {
    694 			printf("%s: can't create DMA map for TX\n",
    695 			    sc->sc_dev.dv_xname);
    696 			return (ENOMEM);
    697 		}
    698 	}
    699 
    700 	/*
    701 	 * Allocate map for RX descriptor list.
    702 	 */
    703 	error = bus_dmamap_create(sc->vge_dmat,
    704 	    VGE_RX_LIST_SZ, 1, VGE_RX_LIST_SZ, 0, BUS_DMA_NOWAIT,
    705 	    &sc->vge_ldata.vge_rx_list_map);
    706 	if (error) {
    707 		printf("%s: could not allocate RX dma list map\n",
    708 		    sc->sc_dev.dv_xname);
    709 		return (ENOMEM);
    710 	}
    711 
    712 	/* Allocate DMA'able memory for the RX ring */
    713 
    714 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
    715 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    716 	if (error)
    717 		return (ENOMEM);
    718 
    719 	/* Map the memory to kernel VA space */
    720 
    721 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_RX_LIST_SZ,
    722 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
    723 	if (error)
    724 		return (ENOMEM);
    725 
    726 	/* Load the map for the RX ring. */
    727 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
    728 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    729 	if (error) {
    730 		printf("%s: could not load RX ring dma memory\n",
    731 		    sc->sc_dev.dv_xname);
    732 		return (ENOMEM);
    733 	}
    734 
    735 	/* Create DMA maps for RX buffers */
    736 
    737 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
    738 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
    739 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    740 		    &sc->vge_ldata.vge_rx_dmamap[i]);
    741 		if (error) {
    742 			printf("%s: can't create DMA map for RX\n",
    743 			     sc->sc_dev.dv_xname);
    744 			return (ENOMEM);
    745 		}
    746 	}
    747 
    748 	return (0);
    749 }
    750 
    751 /*
    752  * Attach the interface. Allocate softc structures, do ifmedia
    753  * setup and ethernet/BPF attach.
    754  */
    755 static void
    756 vge_attach(struct device *parent __unused, struct device *self, void *aux)
    757 {
    758 	uint8_t			*eaddr;
    759 	struct vge_softc	*sc = (struct vge_softc *)self;
    760 	struct ifnet		*ifp;
    761 	struct pci_attach_args *pa = aux;
    762 	pci_chipset_tag_t pc = pa->pa_pc;
    763 	const char *intrstr;
    764 	pci_intr_handle_t ih;
    765 	uint16_t val;
    766 
    767 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    768 		PCI_REVISION(pa->pa_class));
    769 
    770 	/* Make sure bus-mastering is enabled */
    771         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    772 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    773 		PCI_COMMAND_MASTER_ENABLE);
    774 
    775 	/*
    776 	 * Map control/status registers.
    777 	 */
    778 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
    779 	    PCI_MAPREG_TYPE_MEM, 0,
    780 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
    781 		aprint_error("%s: couldn't map memory\n",
    782 			sc->sc_dev.dv_xname);
    783 		return;
    784 	}
    785 
    786         /*
    787          * Map and establish our interrupt.
    788          */
    789 	if (pci_intr_map(pa, &ih)) {
    790 		aprint_error("%s: unable to map interrupt\n",
    791 		    sc->sc_dev.dv_xname);
    792 		return;
    793 	}
    794 	intrstr = pci_intr_string(pc, ih);
    795 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    796 	if (sc->vge_intrhand == NULL) {
    797 		printf("%s: unable to establish interrupt",
    798 		    sc->sc_dev.dv_xname);
    799 		if (intrstr != NULL)
    800 			printf(" at %s", intrstr);
    801 		printf("\n");
    802 		return;
    803 	}
    804 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    805 
    806 	/* Reset the adapter. */
    807 	vge_reset(sc);
    808 
    809 	/*
    810 	 * Get station address from the EEPROM.
    811 	 */
    812 	eaddr = sc->vge_eaddr;
    813 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    814 	eaddr[0] = val & 0xff;
    815 	eaddr[1] = val >> 8;
    816 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    817 	eaddr[2] = val & 0xff;
    818 	eaddr[3] = val >> 8;
    819 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    820 	eaddr[4] = val & 0xff;
    821 	eaddr[5] = val >> 8;
    822 
    823 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    824 	    ether_sprintf(eaddr));
    825 
    826 	/*
    827 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    828 	 * but we don't use that for now.
    829 	 */
    830 	sc->vge_dmat = pa->pa_dmat;
    831 
    832 	if (vge_allocmem(sc))
    833 		return;
    834 
    835 	ifp = &sc->sc_ethercom.ec_if;
    836 	ifp->if_softc = sc;
    837 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    838 	ifp->if_mtu = ETHERMTU;
    839 	ifp->if_baudrate = IF_Gbps(1);
    840 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    841 	ifp->if_ioctl = vge_ioctl;
    842 	ifp->if_start = vge_start;
    843 
    844 	/*
    845 	 * We can support 802.1Q VLAN-sized frames and jumbo
    846 	 * Ethernet frames.
    847 	 */
    848 	sc->sc_ethercom.ec_capabilities |=
    849 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    850 	    ETHERCAP_VLAN_HWTAGGING;
    851 
    852 	/*
    853 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    854 	 */
    855 	ifp->if_capabilities |=
    856 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    857 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    858 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    859 
    860 #ifdef DEVICE_POLLING
    861 #ifdef IFCAP_POLLING
    862 	ifp->if_capabilities |= IFCAP_POLLING;
    863 #endif
    864 #endif
    865 	ifp->if_watchdog = vge_watchdog;
    866 	ifp->if_init = vge_init;
    867 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    868 
    869 	/*
    870 	 * Initialize our media structures and probe the MII.
    871 	 */
    872 	sc->sc_mii.mii_ifp = ifp;
    873 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    874 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    875 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
    876 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
    877 	    vge_ifmedia_sts);
    878 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    879 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    880 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    881 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    882 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    883 	} else
    884 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    885 
    886 	/*
    887 	 * Attach the interface.
    888 	 */
    889 	if_attach(ifp);
    890 	ether_ifattach(ifp, eaddr);
    891 
    892 	callout_init(&sc->vge_timeout);
    893 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
    894 
    895 	/*
    896 	 * Make sure the interface is shutdown during reboot.
    897 	 */
    898 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
    899 		printf("%s: WARNING: unable to establish shutdown hook\n",
    900 		    sc->sc_dev.dv_xname);
    901 	}
    902 }
    903 
    904 static int
    905 vge_newbuf(sc, idx, m)
    906 	struct vge_softc	*sc;
    907 	int			idx;
    908 	struct mbuf		*m;
    909 {
    910 	struct vge_rx_desc	*d;
    911 	struct mbuf		*n = NULL;
    912 	bus_dmamap_t		map;
    913 	int			i;
    914 
    915 	if (m == NULL) {
    916 		n = m_gethdr(M_DONTWAIT, MT_DATA);
    917 		if (n == NULL)
    918 			return (ENOBUFS);
    919 
    920 		m_clget(n, M_DONTWAIT);
    921 		if ((n->m_flags & M_EXT) == 0) {
    922 			m_freem(n);
    923 			return (ENOBUFS);
    924 		}
    925 
    926 		m = n;
    927 	} else
    928 		m->m_data = m->m_ext.ext_buf;
    929 
    930 
    931 #ifndef __NO_STRICT_ALIGNMENT
    932 	/*
    933 	 * This is part of an evil trick to deal with non-x86 platforms.
    934 	 * The VIA chip requires RX buffers to be aligned on 32-bit
    935 	 * boundaries, but that will hose non-x86 machines. To get around
    936 	 * this, we leave some empty space at the start of each buffer
    937 	 * and for non-x86 hosts, we copy the buffer back two bytes
    938 	 * to achieve word alignment. This is slightly more efficient
    939 	 * than allocating a new buffer, copying the contents, and
    940 	 * discarding the old buffer.
    941 	 */
    942 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
    943 	m_adj(m, VGE_ETHER_ALIGN);
    944 #else
    945 	m->m_len = m->m_pkthdr.len = MCLBYTES;
    946 #endif
    947 	map = sc->vge_ldata.vge_rx_dmamap[idx];
    948 
    949 	if (bus_dmamap_load_mbuf(sc->vge_dmat, map, m, BUS_DMA_NOWAIT) != 0)
    950 		goto out;
    951 
    952 	d = &sc->vge_ldata.vge_rx_list[idx];
    953 
    954 	/* If this descriptor is still owned by the chip, bail. */
    955 
    956 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    957 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
    958 		printf("%s: tried to map busy descriptor\n",
    959 		    sc->sc_dev.dv_xname);
    960 		VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
    961 		goto out;
    962 	}
    963 
    964 	d->vge_buflen =
    965 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
    966 	d->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
    967 	d->vge_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
    968 	d->vge_sts = 0;
    969 	d->vge_ctl = 0;
    970 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    971 
    972 	bus_dmamap_sync(sc->vge_dmat,
    973 	    sc->vge_ldata.vge_rx_dmamap[idx],
    974 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
    975 	    BUS_DMASYNC_PREREAD);
    976 
    977 	/*
    978 	 * Note: the manual fails to document the fact that for
    979 	 * proper opration, the driver needs to replentish the RX
    980 	 * DMA ring 4 descriptors at a time (rather than one at a
    981 	 * time, like most chips). We can allocate the new buffers
    982 	 * but we should not set the OWN bits until we're ready
    983 	 * to hand back 4 of them in one shot.
    984 	 */
    985 
    986 #define VGE_RXCHUNK 4
    987 	sc->vge_rx_consumed++;
    988 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
    989 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
    990 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
    991 			    htole32(VGE_RDSTS_OWN);
    992 			VGE_RXDESCSYNC(sc, i,
    993 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    994 		}
    995 		sc->vge_rx_consumed = 0;
    996 	}
    997 
    998 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
    999 
   1000 	return (0);
   1001  out:
   1002 	if (n != NULL)
   1003 		m_freem(n);
   1004 	return (ENOMEM);
   1005 }
   1006 
   1007 static int
   1008 vge_tx_list_init(sc)
   1009 	struct vge_softc		*sc;
   1010 {
   1011 
   1012 	memset((char *)sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
   1013 	bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
   1014 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1015 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1016 
   1017 	memset((char *)&sc->vge_ldata.vge_tx_mbuf, 0,
   1018 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
   1019 
   1020 	sc->vge_ldata.vge_tx_prodidx = 0;
   1021 	sc->vge_ldata.vge_tx_considx = 0;
   1022 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
   1023 
   1024 	return (0);
   1025 }
   1026 
   1027 static int
   1028 vge_rx_list_init(sc)
   1029 	struct vge_softc		*sc;
   1030 {
   1031 	int			i;
   1032 
   1033 	memset((char *)sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
   1034 	memset((char *)&sc->vge_ldata.vge_rx_mbuf, 0,
   1035 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
   1036 
   1037 	sc->vge_rx_consumed = 0;
   1038 
   1039 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   1040 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
   1041 			return (ENOBUFS);
   1042 	}
   1043 
   1044 	sc->vge_ldata.vge_rx_prodidx = 0;
   1045 	sc->vge_rx_consumed = 0;
   1046 	sc->vge_head = sc->vge_tail = NULL;
   1047 
   1048 	return (0);
   1049 }
   1050 
   1051 #ifndef __NO_STRICT_ALIGNMENT
   1052 static inline void
   1053 vge_fixup_rx(m)
   1054 	struct mbuf		*m;
   1055 {
   1056 	int			i;
   1057 	uint16_t		*src, *dst;
   1058 
   1059 	src = mtod(m, uint16_t *);
   1060 	dst = src - 1;
   1061 
   1062 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1063 		*dst++ = *src++;
   1064 
   1065 	m->m_data -= ETHER_ALIGN;
   1066 
   1067 	return;
   1068 }
   1069 #endif
   1070 
   1071 /*
   1072  * RX handler. We support the reception of jumbo frames that have
   1073  * been fragmented across multiple 2K mbuf cluster buffers.
   1074  */
   1075 static void
   1076 vge_rxeof(sc)
   1077 	struct vge_softc	*sc;
   1078 {
   1079 	struct mbuf		*m;
   1080 	struct ifnet		*ifp;
   1081 	int			idx, total_len;
   1082 	int			lim = 0;
   1083 	struct vge_rx_desc	*cur_rx;
   1084 	u_int32_t		rxstat, rxctl;
   1085 
   1086 	VGE_LOCK_ASSERT(sc);
   1087 	ifp = &sc->sc_ethercom.ec_if;
   1088 	idx = sc->vge_ldata.vge_rx_prodidx;
   1089 
   1090 	/* Invalidate the descriptor memory */
   1091 
   1092 	for (;;) {
   1093 		cur_rx = &sc->vge_ldata.vge_rx_list[idx];
   1094 
   1095 		VGE_RXDESCSYNC(sc, idx,
   1096 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1097 		rxstat = le32toh(cur_rx->vge_sts);
   1098 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1099 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1100 			break;
   1101 		}
   1102 
   1103 #ifdef DEVICE_POLLING
   1104 		if (ifp->if_flags & IFF_POLLING) {
   1105 			if (sc->rxcycles <= 0)
   1106 				break;
   1107 			sc->rxcycles--;
   1108 		}
   1109 #endif /* DEVICE_POLLING */
   1110 
   1111 		m = sc->vge_ldata.vge_rx_mbuf[idx];
   1112 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1113 		rxctl = le32toh(cur_rx->vge_ctl);
   1114 
   1115 		/* Invalidate the RX mbuf and unload its map */
   1116 
   1117 		bus_dmamap_sync(sc->vge_dmat,
   1118 		    sc->vge_ldata.vge_rx_dmamap[idx],
   1119 		    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
   1120 		    BUS_DMASYNC_POSTREAD);
   1121 		bus_dmamap_unload(sc->vge_dmat,
   1122 		    sc->vge_ldata.vge_rx_dmamap[idx]);
   1123 
   1124 		/*
   1125 		 * If the 'start of frame' bit is set, this indicates
   1126 		 * either the first fragment in a multi-fragment receive,
   1127 		 * or an intermediate fragment. Either way, we want to
   1128 		 * accumulate the buffers.
   1129 		 */
   1130 		if (rxstat & VGE_RXPKT_SOF) {
   1131 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
   1132 			if (sc->vge_head == NULL)
   1133 				sc->vge_head = sc->vge_tail = m;
   1134 			else {
   1135 				m->m_flags &= ~M_PKTHDR;
   1136 				sc->vge_tail->m_next = m;
   1137 				sc->vge_tail = m;
   1138 			}
   1139 			vge_newbuf(sc, idx, NULL);
   1140 			VGE_RX_DESC_INC(idx);
   1141 			continue;
   1142 		}
   1143 
   1144 		/*
   1145 		 * Bad/error frames will have the RXOK bit cleared.
   1146 		 * However, there's one error case we want to allow:
   1147 		 * if a VLAN tagged frame arrives and the chip can't
   1148 		 * match it against the CAM filter, it considers this
   1149 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1150 		 * We don't want to drop the frame though: our VLAN
   1151 		 * filtering is done in software.
   1152 		 */
   1153 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1154 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1155 			ifp->if_ierrors++;
   1156 			/*
   1157 			 * If this is part of a multi-fragment packet,
   1158 			 * discard all the pieces.
   1159 			 */
   1160 			if (sc->vge_head != NULL) {
   1161 				m_freem(sc->vge_head);
   1162 				sc->vge_head = sc->vge_tail = NULL;
   1163 			}
   1164 			vge_newbuf(sc, idx, m);
   1165 			VGE_RX_DESC_INC(idx);
   1166 			continue;
   1167 		}
   1168 
   1169 		/*
   1170 		 * If allocating a replacement mbuf fails,
   1171 		 * reload the current one.
   1172 		 */
   1173 
   1174 		if (vge_newbuf(sc, idx, NULL)) {
   1175 			ifp->if_ierrors++;
   1176 			if (sc->vge_head != NULL) {
   1177 				m_freem(sc->vge_head);
   1178 				sc->vge_head = sc->vge_tail = NULL;
   1179 			}
   1180 			vge_newbuf(sc, idx, m);
   1181 			VGE_RX_DESC_INC(idx);
   1182 			continue;
   1183 		}
   1184 
   1185 		VGE_RX_DESC_INC(idx);
   1186 
   1187 		if (sc->vge_head != NULL) {
   1188 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
   1189 			/*
   1190 			 * Special case: if there's 4 bytes or less
   1191 			 * in this buffer, the mbuf can be discarded:
   1192 			 * the last 4 bytes is the CRC, which we don't
   1193 			 * care about anyway.
   1194 			 */
   1195 			if (m->m_len <= ETHER_CRC_LEN) {
   1196 				sc->vge_tail->m_len -=
   1197 				    (ETHER_CRC_LEN - m->m_len);
   1198 				m_freem(m);
   1199 			} else {
   1200 				m->m_len -= ETHER_CRC_LEN;
   1201 				m->m_flags &= ~M_PKTHDR;
   1202 				sc->vge_tail->m_next = m;
   1203 			}
   1204 			m = sc->vge_head;
   1205 			sc->vge_head = sc->vge_tail = NULL;
   1206 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1207 		} else
   1208 			m->m_pkthdr.len = m->m_len =
   1209 			    (total_len - ETHER_CRC_LEN);
   1210 
   1211 #ifndef __NO_STRICT_ALIGNMENT
   1212 		vge_fixup_rx(m);
   1213 #endif
   1214 		ifp->if_ipackets++;
   1215 		m->m_pkthdr.rcvif = ifp;
   1216 
   1217 		/* Do RX checksumming if enabled */
   1218 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1219 
   1220 			/* Check IP header checksum */
   1221 			if (rxctl & VGE_RDCTL_IPPKT)
   1222 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1223 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1224 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1225 		}
   1226 
   1227 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1228 			/* Check UDP checksum */
   1229 			if (rxctl & VGE_RDCTL_TCPPKT)
   1230 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1231 
   1232 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1233 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1234 		}
   1235 
   1236 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1237 			/* Check UDP checksum */
   1238 			if (rxctl & VGE_RDCTL_UDPPKT)
   1239 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1240 
   1241 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1242 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1243 		}
   1244 
   1245 		if (rxstat & VGE_RDSTS_VTAG)
   1246 			VLAN_INPUT_TAG(ifp, m,
   1247 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
   1248 
   1249 #if NBPFILTER > 0
   1250 		/*
   1251 		 * Handle BPF listeners.
   1252 		 */
   1253 		if (ifp->if_bpf)
   1254 			bpf_mtap(ifp->if_bpf, m);
   1255 #endif
   1256 
   1257 		VGE_UNLOCK(sc);
   1258 		(*ifp->if_input)(ifp, m);
   1259 		VGE_LOCK(sc);
   1260 
   1261 		lim++;
   1262 		if (lim == VGE_RX_DESC_CNT)
   1263 			break;
   1264 
   1265 	}
   1266 
   1267 	sc->vge_ldata.vge_rx_prodidx = idx;
   1268 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1269 }
   1270 
   1271 static void
   1272 vge_txeof(sc)
   1273 	struct vge_softc		*sc;
   1274 {
   1275 	struct ifnet		*ifp;
   1276 	u_int32_t		txstat;
   1277 	int			idx;
   1278 
   1279 	ifp = &sc->sc_ethercom.ec_if;
   1280 	idx = sc->vge_ldata.vge_tx_considx;
   1281 
   1282 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
   1283 		VGE_TXDESCSYNC(sc, idx,
   1284 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1285 
   1286 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
   1287 		if (txstat & VGE_TDSTS_OWN) {
   1288 			VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1289 			break;
   1290 		}
   1291 
   1292 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
   1293 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
   1294 		bus_dmamap_unload(sc->vge_dmat,
   1295 		    sc->vge_ldata.vge_tx_dmamap[idx]);
   1296 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1297 			ifp->if_collisions++;
   1298 		if (txstat & VGE_TDSTS_TXERR)
   1299 			ifp->if_oerrors++;
   1300 		else
   1301 			ifp->if_opackets++;
   1302 
   1303 		sc->vge_ldata.vge_tx_free++;
   1304 		VGE_TX_DESC_INC(idx);
   1305 	}
   1306 
   1307 	/* No changes made to the TX ring, so no flush needed */
   1308 
   1309 	if (idx != sc->vge_ldata.vge_tx_considx) {
   1310 		sc->vge_ldata.vge_tx_considx = idx;
   1311 		ifp->if_flags &= ~IFF_OACTIVE;
   1312 		ifp->if_timer = 0;
   1313 	}
   1314 
   1315 	/*
   1316 	 * If not all descriptors have been released reaped yet,
   1317 	 * reload the timer so that we will eventually get another
   1318 	 * interrupt that will cause us to re-enter this routine.
   1319 	 * This is done in case the transmitter has gone idle.
   1320 	 */
   1321 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
   1322 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1323 	}
   1324 }
   1325 
   1326 static void
   1327 vge_tick(xsc)
   1328 	void			*xsc;
   1329 {
   1330 	struct vge_softc	*sc = xsc;
   1331 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1332 	struct mii_data		*mii = &sc->sc_mii;
   1333 	int s;
   1334 
   1335 	s = splnet();
   1336 
   1337 	VGE_LOCK(sc);
   1338 
   1339 	callout_schedule(&sc->vge_timeout, hz);
   1340 
   1341 	mii_tick(mii);
   1342 	if (sc->vge_link) {
   1343 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1344 			sc->vge_link = 0;
   1345 	} else {
   1346 		if (mii->mii_media_status & IFM_ACTIVE &&
   1347 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1348 			sc->vge_link = 1;
   1349 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1350 				vge_start(ifp);
   1351 		}
   1352 	}
   1353 
   1354 	VGE_UNLOCK(sc);
   1355 
   1356 	splx(s);
   1357 }
   1358 
   1359 #ifdef DEVICE_POLLING
   1360 static void
   1361 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
   1362 {
   1363 	struct vge_softc *sc = ifp->if_softc;
   1364 
   1365 	VGE_LOCK(sc);
   1366 #ifdef IFCAP_POLLING
   1367 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1368 		ether_poll_deregister(ifp);
   1369 		cmd = POLL_DEREGISTER;
   1370 	}
   1371 #endif
   1372 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1373 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1374 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   1375 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1376 		goto done;
   1377 	}
   1378 
   1379 	sc->rxcycles = count;
   1380 	vge_rxeof(sc);
   1381 	vge_txeof(sc);
   1382 
   1383 #if __FreeBSD_version < 502114
   1384 	if (ifp->if_snd.ifq_head != NULL)
   1385 #else
   1386 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
   1387 #endif
   1388 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
   1389 
   1390 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1391 		u_int32_t       status;
   1392 		status = CSR_READ_4(sc, VGE_ISR);
   1393 		if (status == 0xFFFFFFFF)
   1394 			goto done;
   1395 		if (status)
   1396 			CSR_WRITE_4(sc, VGE_ISR, status);
   1397 
   1398 		/*
   1399 		 * XXX check behaviour on receiver stalls.
   1400 		 */
   1401 
   1402 		if (status & VGE_ISR_TXDMA_STALL ||
   1403 		    status & VGE_ISR_RXDMA_STALL)
   1404 			vge_init(sc);
   1405 
   1406 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1407 			vge_rxeof(sc);
   1408 			ifp->if_ierrors++;
   1409 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1410 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1411 		}
   1412 	}
   1413 done:
   1414 	VGE_UNLOCK(sc);
   1415 }
   1416 #endif /* DEVICE_POLLING */
   1417 
   1418 static int
   1419 vge_intr(arg)
   1420 	void			*arg;
   1421 {
   1422 	struct vge_softc	*sc = arg;
   1423 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1424 	u_int32_t		status;
   1425 	int claim = 0;
   1426 
   1427 	if (sc->suspended) {
   1428 		return claim;
   1429 	}
   1430 
   1431 	VGE_LOCK(sc);
   1432 
   1433 	if (!(ifp->if_flags & IFF_UP)) {
   1434 		VGE_UNLOCK(sc);
   1435 		return claim;
   1436 	}
   1437 
   1438 #ifdef DEVICE_POLLING
   1439 	if  (ifp->if_flags & IFF_POLLING)
   1440 		goto done;
   1441 	if (
   1442 #ifdef IFCAP_POLLING
   1443 	    (ifp->if_capenable & IFCAP_POLLING) &&
   1444 #endif
   1445 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
   1446 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1447 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1448 		vge_poll(ifp, 0, 1);
   1449 		goto done;
   1450 	}
   1451 
   1452 #endif /* DEVICE_POLLING */
   1453 
   1454 	/* Disable interrupts */
   1455 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1456 
   1457 	for (;;) {
   1458 
   1459 		status = CSR_READ_4(sc, VGE_ISR);
   1460 		/* If the card has gone away the read returns 0xffff. */
   1461 		if (status == 0xFFFFFFFF)
   1462 			break;
   1463 
   1464 		if (status) {
   1465 			claim = 1;
   1466 			CSR_WRITE_4(sc, VGE_ISR, status);
   1467 		}
   1468 
   1469 		if ((status & VGE_INTRS) == 0)
   1470 			break;
   1471 
   1472 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1473 			vge_rxeof(sc);
   1474 
   1475 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1476 			vge_rxeof(sc);
   1477 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1478 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1479 		}
   1480 
   1481 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1482 			vge_txeof(sc);
   1483 
   1484 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1485 			vge_init(ifp);
   1486 
   1487 		if (status & VGE_ISR_LINKSTS)
   1488 			vge_tick(sc);
   1489 	}
   1490 
   1491 	/* Re-enable interrupts */
   1492 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1493 
   1494 #ifdef DEVICE_POLLING
   1495 done:
   1496 #endif
   1497 	VGE_UNLOCK(sc);
   1498 
   1499 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1500 		vge_start(ifp);
   1501 
   1502 	return claim;
   1503 }
   1504 
   1505 static int
   1506 vge_encap(sc, m_head, idx)
   1507 	struct vge_softc	*sc;
   1508 	struct mbuf		*m_head;
   1509 	int			idx;
   1510 {
   1511 	struct vge_tx_desc	*d;
   1512 	struct vge_tx_frag	*f;
   1513 	struct mbuf		*m_new = NULL;
   1514 	bus_dmamap_t		map;
   1515 	int			seg, error, flags;
   1516 	struct m_tag		*mtag;
   1517 	size_t			sz;
   1518 
   1519 	d = &sc->vge_ldata.vge_tx_list[idx];
   1520 
   1521 	/* If this descriptor is still owned by the chip, bail. */
   1522 	if (sc->vge_ldata.vge_tx_free <= 2) {
   1523 		VGE_TXDESCSYNC(sc, idx,
   1524 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1525 		if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
   1526 			VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1527 			return (ENOBUFS);
   1528 		}
   1529 	}
   1530 
   1531 	map = sc->vge_ldata.vge_tx_dmamap[idx];
   1532 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1533 	    m_head, BUS_DMA_NOWAIT);
   1534 
   1535 	/* If too many segments to map, coalesce */
   1536 	if (error == EFBIG) {
   1537 		m_new = m_defrag(m_head, M_DONTWAIT);
   1538 		if (m_new == NULL)
   1539 			return (error);
   1540 
   1541 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1542 		    m_new, BUS_DMA_NOWAIT);
   1543 		if (error) {
   1544 			m_freem(m_new);
   1545 			return (error);
   1546 		}
   1547 
   1548 		m_head = m_new;
   1549 	} else if (error)
   1550 		return (error);
   1551 
   1552 	for (seg = 0, f = &d->vge_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1553 		f->vge_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1554 		f->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[seg].ds_addr));
   1555 		f->vge_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[seg].ds_addr));
   1556 	}
   1557 
   1558 	/* Argh. This chip does not autopad short frames */
   1559 
   1560 	sz = m_head->m_pkthdr.len;
   1561 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
   1562 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
   1563 		f->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
   1564 		f->vge_addrhi =
   1565 		    htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
   1566 		sz = VGE_MIN_FRAMELEN;
   1567 		seg++;
   1568 	}
   1569 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1570 
   1571 	/*
   1572 	 * When telling the chip how many segments there are, we
   1573 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1574 	 * know why.
   1575 	 */
   1576 	seg++;
   1577 
   1578 	flags = 0;
   1579 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1580 		flags |= VGE_TDCTL_IPCSUM;
   1581 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1582 		flags |= VGE_TDCTL_TCPCSUM;
   1583 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1584 		flags |= VGE_TDCTL_UDPCSUM;
   1585 	d->vge_sts = htole32(sz << 16);
   1586 	d->vge_ctl = htole32(flags | (seg << 28) | VGE_TD_LS_NORM);
   1587 
   1588 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1589 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
   1590 
   1591 	bus_dmamap_sync(sc->vge_dmat, map, 0, map->dm_mapsize,
   1592 	    BUS_DMASYNC_PREWRITE);
   1593 
   1594 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
   1595 	sc->vge_ldata.vge_tx_free--;
   1596 
   1597 	/*
   1598 	 * Set up hardware VLAN tagging.
   1599 	 */
   1600 
   1601 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1602 	if (mtag != NULL)
   1603 		d->vge_ctl |=
   1604 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
   1605 
   1606 	d->vge_sts |= htole32(VGE_TDSTS_OWN);
   1607 
   1608 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1609 
   1610 	return (0);
   1611 }
   1612 
   1613 /*
   1614  * Main transmit routine.
   1615  */
   1616 
   1617 static void
   1618 vge_start(ifp)
   1619 	struct ifnet		*ifp;
   1620 {
   1621 	struct vge_softc	*sc;
   1622 	struct mbuf		*m_head = NULL;
   1623 	int			idx, pidx = 0, error;
   1624 
   1625 	sc = ifp->if_softc;
   1626 	VGE_LOCK(sc);
   1627 
   1628 	if (!sc->vge_link
   1629 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1630 		VGE_UNLOCK(sc);
   1631 		return;
   1632 	}
   1633 
   1634 	idx = sc->vge_ldata.vge_tx_prodidx;
   1635 
   1636 	pidx = idx - 1;
   1637 	if (pidx < 0)
   1638 		pidx = VGE_TX_DESC_CNT - 1;
   1639 
   1640 	/*
   1641 	 * Loop through the send queue, setting up transmit descriptors
   1642 	 * until we drain the queue, or use up all available transmit
   1643 	 * descriptors.
   1644 	 */
   1645 	for(;;) {
   1646 		/* Grab a packet off the queue. */
   1647 		IFQ_POLL(&ifp->if_snd, m_head);
   1648 		if (m_head == NULL)
   1649 			break;
   1650 
   1651 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
   1652 			/*
   1653 			 * Slot already used, stop for now.
   1654 			 */
   1655 			ifp->if_flags |= IFF_OACTIVE;
   1656 			break;
   1657 		}
   1658 
   1659 		if ((error = vge_encap(sc, m_head, idx))) {
   1660 			if (error == EFBIG) {
   1661 				printf("%s: Tx packet consumes too many "
   1662 				    "DMA segments, dropping...\n",
   1663 				    sc->sc_dev.dv_xname);
   1664 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1665 				m_freem(m_head);
   1666 				continue;
   1667 			}
   1668 
   1669 			/*
   1670 			 * Short on resources, just stop for now.
   1671 			 */
   1672 			if (error == ENOBUFS)
   1673 				ifp->if_flags |= IFF_OACTIVE;
   1674 			break;
   1675 		}
   1676 
   1677 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1678 
   1679 		/*
   1680 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1681 		 */
   1682 
   1683 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
   1684 		    htole16(VGE_TXDESC_Q);
   1685 		VGE_TXDESCSYNC(sc, pidx,
   1686 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1687 
   1688 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
   1689 			m_freem(m_head);
   1690 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
   1691 		}
   1692 
   1693 		pidx = idx;
   1694 		VGE_TX_DESC_INC(idx);
   1695 
   1696 		/*
   1697 		 * If there's a BPF listener, bounce a copy of this frame
   1698 		 * to him.
   1699 		 */
   1700 #if NBPFILTER > 0
   1701 		if (ifp->if_bpf)
   1702 			bpf_mtap(ifp->if_bpf, m_head);
   1703 #endif
   1704 	}
   1705 
   1706 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
   1707 		VGE_UNLOCK(sc);
   1708 		return;
   1709 	}
   1710 
   1711 	/* Issue a transmit command. */
   1712 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1713 
   1714 	sc->vge_ldata.vge_tx_prodidx = idx;
   1715 
   1716 	/*
   1717 	 * Use the countdown timer for interrupt moderation.
   1718 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1719 	 * countdown timer, which will begin counting until it hits
   1720 	 * the value in the SSTIMER register, and then trigger an
   1721 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1722 	 * the timer count is reloaded. Only when the transmitter
   1723 	 * is idle will the timer hit 0 and an interrupt fire.
   1724 	 */
   1725 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1726 
   1727 	VGE_UNLOCK(sc);
   1728 
   1729 	/*
   1730 	 * Set a timeout in case the chip goes out to lunch.
   1731 	 */
   1732 	ifp->if_timer = 5;
   1733 
   1734 	return;
   1735 }
   1736 
   1737 static int
   1738 vge_init(ifp)
   1739 	struct ifnet *ifp;
   1740 {
   1741 	struct vge_softc	*sc = ifp->if_softc;
   1742 	struct mii_data		*mii = &sc->sc_mii;
   1743 	int			i;
   1744 
   1745 	VGE_LOCK(sc);
   1746 
   1747 	/*
   1748 	 * Cancel pending I/O and free all RX/TX buffers.
   1749 	 */
   1750 	vge_stop(sc);
   1751 	vge_reset(sc);
   1752 
   1753 	/*
   1754 	 * Initialize the RX and TX descriptors and mbufs.
   1755 	 */
   1756 
   1757 	vge_rx_list_init(sc);
   1758 	vge_tx_list_init(sc);
   1759 
   1760 	/* Set our station address */
   1761 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1762 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
   1763 
   1764 	/*
   1765 	 * Set receive FIFO threshold. Also allow transmission and
   1766 	 * reception of VLAN tagged frames.
   1767 	 */
   1768 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1769 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1770 
   1771 	/* Set DMA burst length */
   1772 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1773 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1774 
   1775 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1776 
   1777 	/* Set collision backoff algorithm */
   1778 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1779 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1780 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1781 
   1782 	/* Disable LPSEL field in priority resolution */
   1783 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1784 
   1785 	/*
   1786 	 * Load the addresses of the DMA queues into the chip.
   1787 	 * Note that we only use one transmit queue.
   1788 	 */
   1789 
   1790 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
   1791 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr));
   1792 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
   1793 
   1794 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
   1795 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr));
   1796 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
   1797 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
   1798 
   1799 	/* Enable and wake up the RX descriptor queue */
   1800 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1801 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1802 
   1803 	/* Enable the TX descriptor queue */
   1804 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1805 
   1806 	/* Set up the receive filter -- allow large frames for VLANs. */
   1807 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1808 
   1809 	/* If we want promiscuous mode, set the allframes bit. */
   1810 	if (ifp->if_flags & IFF_PROMISC) {
   1811 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1812 	}
   1813 
   1814 	/* Set capture broadcast bit to capture broadcast frames. */
   1815 	if (ifp->if_flags & IFF_BROADCAST) {
   1816 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1817 	}
   1818 
   1819 	/* Set multicast bit to capture multicast frames. */
   1820 	if (ifp->if_flags & IFF_MULTICAST) {
   1821 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1822 	}
   1823 
   1824 	/* Init the cam filter. */
   1825 	vge_cam_clear(sc);
   1826 
   1827 	/* Init the multicast filter. */
   1828 	vge_setmulti(sc);
   1829 
   1830 	/* Enable flow control */
   1831 
   1832 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1833 
   1834 	/* Enable jumbo frame reception (if desired) */
   1835 
   1836 	/* Start the MAC. */
   1837 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1838 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1839 	CSR_WRITE_1(sc, VGE_CRS0,
   1840 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1841 
   1842 	/*
   1843 	 * Configure one-shot timer for microsecond
   1844 	 * resulution and load it for 500 usecs.
   1845 	 */
   1846 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1847 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1848 
   1849 	/*
   1850 	 * Configure interrupt moderation for receive. Enable
   1851 	 * the holdoff counter and load it, and set the RX
   1852 	 * suppression count to the number of descriptors we
   1853 	 * want to allow before triggering an interrupt.
   1854 	 * The holdoff timer is in units of 20 usecs.
   1855 	 */
   1856 
   1857 #ifdef notyet
   1858 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1859 	/* Select the interrupt holdoff timer page. */
   1860 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1861 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1862 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1863 
   1864 	/* Enable use of the holdoff timer. */
   1865 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1866 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1867 
   1868 	/* Select the RX suppression threshold page. */
   1869 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1870 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1871 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1872 
   1873 	/* Restore the page select bits. */
   1874 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1875 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1876 #endif
   1877 
   1878 #ifdef DEVICE_POLLING
   1879 	/*
   1880 	 * Disable interrupts if we are polling.
   1881 	 */
   1882 	if (ifp->if_flags & IFF_POLLING) {
   1883 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1884 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1885 	} else	/* otherwise ... */
   1886 #endif /* DEVICE_POLLING */
   1887 	{
   1888 	/*
   1889 	 * Enable interrupts.
   1890 	 */
   1891 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1892 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1893 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1894 	}
   1895 
   1896 	mii_mediachg(mii);
   1897 
   1898 	ifp->if_flags |= IFF_RUNNING;
   1899 	ifp->if_flags &= ~IFF_OACTIVE;
   1900 
   1901 	sc->vge_if_flags = 0;
   1902 	sc->vge_link = 0;
   1903 
   1904 	VGE_UNLOCK(sc);
   1905 
   1906 	callout_schedule(&sc->vge_timeout, hz);
   1907 
   1908 	return (0);
   1909 }
   1910 
   1911 /*
   1912  * Set media options.
   1913  */
   1914 static int
   1915 vge_ifmedia_upd(ifp)
   1916 	struct ifnet		*ifp;
   1917 {
   1918 	struct vge_softc	*sc = ifp->if_softc;
   1919 	struct mii_data		*mii = &sc->sc_mii;
   1920 
   1921 	mii_mediachg(mii);
   1922 
   1923 	return (0);
   1924 }
   1925 
   1926 /*
   1927  * Report current media status.
   1928  */
   1929 static void
   1930 vge_ifmedia_sts(ifp, ifmr)
   1931 	struct ifnet		*ifp;
   1932 	struct ifmediareq	*ifmr;
   1933 {
   1934 	struct vge_softc	*sc = ifp->if_softc;
   1935 	struct mii_data		*mii = &sc->sc_mii;
   1936 
   1937 	mii_pollstat(mii);
   1938 	ifmr->ifm_active = mii->mii_media_active;
   1939 	ifmr->ifm_status = mii->mii_media_status;
   1940 
   1941 	return;
   1942 }
   1943 
   1944 static void
   1945 vge_miibus_statchg(self)
   1946 	struct device	*self;
   1947 {
   1948 	struct vge_softc	*sc = (struct vge_softc *) self;
   1949 	struct mii_data		*mii = &sc->sc_mii;
   1950 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
   1951 
   1952 	/*
   1953 	 * If the user manually selects a media mode, we need to turn
   1954 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1955 	 * user happens to choose a full duplex mode, we also need to
   1956 	 * set the 'force full duplex' bit. This applies only to
   1957 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1958 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1959 	 * always implied, so we turn on the forced mode bit but leave
   1960 	 * the FDX bit cleared.
   1961 	 */
   1962 
   1963 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1964 	case IFM_AUTO:
   1965 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1966 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1967 		break;
   1968 	case IFM_1000_T:
   1969 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1970 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1971 		break;
   1972 	case IFM_100_TX:
   1973 	case IFM_10_T:
   1974 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1975 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   1976 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1977 		} else {
   1978 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1979 		}
   1980 		break;
   1981 	default:
   1982 		printf("%s: unknown media type: %x\n",
   1983 		    sc->sc_dev.dv_xname,
   1984 		    IFM_SUBTYPE(ife->ifm_media));
   1985 		break;
   1986 	}
   1987 
   1988 	return;
   1989 }
   1990 
   1991 static int
   1992 vge_ioctl(ifp, command, data)
   1993 	struct ifnet		*ifp;
   1994 	u_long			command;
   1995 	caddr_t			data;
   1996 {
   1997 	struct vge_softc	*sc = ifp->if_softc;
   1998 	struct ifreq		*ifr = (struct ifreq *) data;
   1999 	struct mii_data		*mii;
   2000 	int			s, error = 0;
   2001 
   2002 	s = splnet();
   2003 
   2004 	switch (command) {
   2005 	case SIOCSIFMTU:
   2006 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   2007 			error = EINVAL;
   2008 		ifp->if_mtu = ifr->ifr_mtu;
   2009 		break;
   2010 	case SIOCSIFFLAGS:
   2011 		if (ifp->if_flags & IFF_UP) {
   2012 			if (ifp->if_flags & IFF_RUNNING &&
   2013 			    ifp->if_flags & IFF_PROMISC &&
   2014 			    !(sc->vge_if_flags & IFF_PROMISC)) {
   2015 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2016 				    VGE_RXCTL_RX_PROMISC);
   2017 				vge_setmulti(sc);
   2018 			} else if (ifp->if_flags & IFF_RUNNING &&
   2019 			    !(ifp->if_flags & IFF_PROMISC) &&
   2020 			    sc->vge_if_flags & IFF_PROMISC) {
   2021 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2022 				    VGE_RXCTL_RX_PROMISC);
   2023 				vge_setmulti(sc);
   2024                         } else
   2025 				vge_init(ifp);
   2026 		} else {
   2027 			if (ifp->if_flags & IFF_RUNNING)
   2028 				vge_stop(sc);
   2029 		}
   2030 		sc->vge_if_flags = ifp->if_flags;
   2031 		break;
   2032 	case SIOCADDMULTI:
   2033 	case SIOCDELMULTI:
   2034 		error = (command == SIOCADDMULTI) ?
   2035 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   2036 		    ether_delmulti(ifr, &sc->sc_ethercom);
   2037 
   2038 		if (error == ENETRESET) {
   2039 			/*
   2040 			 * Multicast list has changed; set the hardware filter
   2041 			 * accordingly.
   2042 			 */
   2043 			if (ifp->if_flags & IFF_RUNNING)
   2044 				vge_setmulti(sc);
   2045 			error = 0;
   2046 		}
   2047 		break;
   2048 	case SIOCGIFMEDIA:
   2049 	case SIOCSIFMEDIA:
   2050 		mii = &sc->sc_mii;
   2051 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2052 		break;
   2053 	default:
   2054 		error = ether_ioctl(ifp, command, data);
   2055 		break;
   2056 	}
   2057 
   2058 	splx(s);
   2059 	return (error);
   2060 }
   2061 
   2062 static void
   2063 vge_watchdog(ifp)
   2064 	struct ifnet		*ifp;
   2065 {
   2066 	struct vge_softc		*sc;
   2067 
   2068 	sc = ifp->if_softc;
   2069 	VGE_LOCK(sc);
   2070 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2071 	ifp->if_oerrors++;
   2072 
   2073 	vge_txeof(sc);
   2074 	vge_rxeof(sc);
   2075 
   2076 	vge_init(ifp);
   2077 
   2078 	VGE_UNLOCK(sc);
   2079 
   2080 	return;
   2081 }
   2082 
   2083 /*
   2084  * Stop the adapter and free any mbufs allocated to the
   2085  * RX and TX lists.
   2086  */
   2087 static void
   2088 vge_stop(sc)
   2089 	struct vge_softc		*sc;
   2090 {
   2091 	register int		i;
   2092 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2093 
   2094 	VGE_LOCK(sc);
   2095 	ifp->if_timer = 0;
   2096 
   2097 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2098 #ifdef DEVICE_POLLING
   2099 	ether_poll_deregister(ifp);
   2100 #endif /* DEVICE_POLLING */
   2101 
   2102 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2103 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2104 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2105 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2106 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2107 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2108 
   2109 	if (sc->vge_head != NULL) {
   2110 		m_freem(sc->vge_head);
   2111 		sc->vge_head = sc->vge_tail = NULL;
   2112 	}
   2113 
   2114 	/* Free the TX list buffers. */
   2115 
   2116 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
   2117 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
   2118 			bus_dmamap_unload(sc->vge_dmat,
   2119 			    sc->vge_ldata.vge_tx_dmamap[i]);
   2120 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
   2121 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
   2122 		}
   2123 	}
   2124 
   2125 	/* Free the RX list buffers. */
   2126 
   2127 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   2128 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
   2129 			bus_dmamap_unload(sc->vge_dmat,
   2130 			    sc->vge_ldata.vge_rx_dmamap[i]);
   2131 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
   2132 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
   2133 		}
   2134 	}
   2135 
   2136 	VGE_UNLOCK(sc);
   2137 
   2138 	return;
   2139 }
   2140 
   2141 #if VGE_POWER_MANAGEMENT
   2142 /*
   2143  * Device suspend routine.  Stop the interface and save some PCI
   2144  * settings in case the BIOS doesn't restore them properly on
   2145  * resume.
   2146  */
   2147 static int
   2148 vge_suspend(dev)
   2149 	struct device *		dev;
   2150 {
   2151 	struct vge_softc	*sc;
   2152 	int			i;
   2153 
   2154 	sc = device_get_softc(dev);
   2155 
   2156 	vge_stop(sc);
   2157 
   2158         for (i = 0; i < 5; i++)
   2159 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2160 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2161 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2162 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2163 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2164 
   2165 	sc->suspended = 1;
   2166 
   2167 	return (0);
   2168 }
   2169 
   2170 /*
   2171  * Device resume routine.  Restore some PCI settings in case the BIOS
   2172  * doesn't, re-enable busmastering, and restart the interface if
   2173  * appropriate.
   2174  */
   2175 static int
   2176 vge_resume(dev)
   2177 	struct device *		dev;
   2178 {
   2179 	struct vge_softc	*sc = (struct vge_softc *)dev;
   2180 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2181 	int			i;
   2182 
   2183         /* better way to do this? */
   2184 	for (i = 0; i < 5; i++)
   2185 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
   2186 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
   2187 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
   2188 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
   2189 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
   2190 
   2191 	/* reenable busmastering */
   2192 	pci_enable_busmaster(dev);
   2193 	pci_enable_io(dev, SYS_RES_MEMORY);
   2194 
   2195 	/* reinitialize interface if necessary */
   2196 	if (ifp->if_flags & IFF_UP)
   2197 		vge_init(sc);
   2198 
   2199 	sc->suspended = 0;
   2200 
   2201 	return (0);
   2202 }
   2203 #endif
   2204 
   2205 /*
   2206  * Stop all chip I/O so that the kernel's probe routines don't
   2207  * get confused by errant DMAs when rebooting.
   2208  */
   2209 static void
   2210 vge_shutdown(arg)
   2211 	void *arg;
   2212 {
   2213 	struct vge_softc *sc = (struct vge_softc *)arg;
   2214 
   2215 	vge_stop(sc);
   2216 }
   2217