Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.16
      1 /* $NetBSD: if_vge.c,v 1.16 2006/10/15 10:33:25 tsutsui Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.16 2006/10/15 10:33:25 tsutsui Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 #include <dev/pci/if_vgevar.h>
    117 
    118 static int vge_probe(struct device *, struct cfdata *, void *);
    119 static void vge_attach(struct device *, struct device *, void *);
    120 
    121 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    122 
    123 static int vge_allocmem(struct vge_softc *);
    124 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    125 static int vge_rx_list_init(struct vge_softc *);
    126 static int vge_tx_list_init(struct vge_softc *);
    127 #ifndef __NO_STRICT_ALIGNMENT
    128 static inline void vge_fixup_rx(struct mbuf *);
    129 #endif
    130 static void vge_rxeof(struct vge_softc *);
    131 static void vge_txeof(struct vge_softc *);
    132 static int vge_intr(void *);
    133 static void vge_tick(void *);
    134 static void vge_start(struct ifnet *);
    135 static int vge_ioctl(struct ifnet *, u_long, caddr_t);
    136 static int vge_init(struct ifnet *);
    137 static void vge_stop(struct vge_softc *);
    138 static void vge_watchdog(struct ifnet *);
    139 #if VGE_POWER_MANAGEMENT
    140 static int vge_suspend(struct device *);
    141 static int vge_resume(struct device *);
    142 #endif
    143 static void vge_shutdown(void *);
    144 static int vge_ifmedia_upd(struct ifnet *);
    145 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    146 
    147 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    148 
    149 static void vge_miipoll_start(struct vge_softc *);
    150 static void vge_miipoll_stop(struct vge_softc *);
    151 static int vge_miibus_readreg(struct device *, int, int);
    152 static void vge_miibus_writereg(struct device *, int, int, int);
    153 static void vge_miibus_statchg(struct device *);
    154 
    155 static void vge_cam_clear(struct vge_softc *);
    156 static int vge_cam_set(struct vge_softc *, uint8_t *);
    157 static void vge_setmulti(struct vge_softc *);
    158 static void vge_reset(struct vge_softc *);
    159 
    160 #define VGE_PCI_LOIO             0x10
    161 #define VGE_PCI_LOMEM            0x14
    162 
    163 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    164     vge_probe, vge_attach, NULL, NULL);
    165 
    166 /*
    167  * Defragment mbuf chain contents to be as linear as possible.
    168  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    169  * chain is always freed.
    170  * XXX temporary until there would be generic function doing this.
    171  */
    172 #define m_defrag	vge_m_defrag
    173 struct mbuf * vge_m_defrag(struct mbuf *, int);
    174 
    175 struct mbuf *
    176 vge_m_defrag(struct mbuf *mold, int flags)
    177 {
    178 	struct mbuf *m0, *mn, *n;
    179 	size_t sz = mold->m_pkthdr.len;
    180 
    181 #ifdef DIAGNOSTIC
    182 	if ((mold->m_flags & M_PKTHDR) == 0)
    183 		panic("m_defrag: not a mbuf chain header");
    184 #endif
    185 
    186 	MGETHDR(m0, flags, MT_DATA);
    187 	if (m0 == NULL)
    188 		return NULL;
    189 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    190 	mn = m0;
    191 
    192 	do {
    193 		if (sz > MHLEN) {
    194 			MCLGET(mn, M_DONTWAIT);
    195 			if ((mn->m_flags & M_EXT) == 0) {
    196 				m_freem(m0);
    197 				return NULL;
    198 			}
    199 		}
    200 
    201 		mn->m_len = MIN(sz, MCLBYTES);
    202 
    203 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    204 		     mtod(mn, caddr_t));
    205 
    206 		sz -= mn->m_len;
    207 
    208 		if (sz > 0) {
    209 			/* need more mbufs */
    210 			MGET(n, M_NOWAIT, MT_DATA);
    211 			if (n == NULL) {
    212 				m_freem(m0);
    213 				return NULL;
    214 			}
    215 
    216 			mn->m_next = n;
    217 			mn = n;
    218 		}
    219 	} while (sz > 0);
    220 
    221 	return m0;
    222 }
    223 
    224 /*
    225  * Read a word of data stored in the EEPROM at address 'addr.'
    226  */
    227 static uint16_t
    228 vge_read_eeprom(struct vge_softc *sc, int addr)
    229 {
    230 	int i;
    231 	uint16_t word = 0;
    232 
    233 	/*
    234 	 * Enter EEPROM embedded programming mode. In order to
    235 	 * access the EEPROM at all, we first have to set the
    236 	 * EELOAD bit in the CHIPCFG2 register.
    237 	 */
    238 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    239 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    240 
    241 	/* Select the address of the word we want to read */
    242 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    243 
    244 	/* Issue read command */
    245 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    246 
    247 	/* Wait for the done bit to be set. */
    248 	for (i = 0; i < VGE_TIMEOUT; i++) {
    249 		DELAY(5);
    250 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    251 			break;
    252 	}
    253 
    254 	if (i == VGE_TIMEOUT) {
    255 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
    256 		return 0;
    257 	}
    258 
    259 	/* Read the result */
    260 	word = CSR_READ_2(sc, VGE_EERDDAT);
    261 
    262 	/* Turn off EEPROM access mode. */
    263 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    264 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    265 
    266 	return word;
    267 }
    268 
    269 static void
    270 vge_miipoll_stop(struct vge_softc *sc)
    271 {
    272 	int i;
    273 
    274 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    275 
    276 	for (i = 0; i < VGE_TIMEOUT; i++) {
    277 		DELAY(1);
    278 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    279 			break;
    280 	}
    281 
    282 	if (i == VGE_TIMEOUT) {
    283 		printf("%s: failed to idle MII autopoll\n",
    284 		    sc->sc_dev.dv_xname);
    285 	}
    286 }
    287 
    288 static void
    289 vge_miipoll_start(struct vge_softc *sc)
    290 {
    291 	int i;
    292 
    293 	/* First, make sure we're idle. */
    294 
    295 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    296 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    297 
    298 	for (i = 0; i < VGE_TIMEOUT; i++) {
    299 		DELAY(1);
    300 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    301 			break;
    302 	}
    303 
    304 	if (i == VGE_TIMEOUT) {
    305 		printf("%s: failed to idle MII autopoll\n",
    306 		    sc->sc_dev.dv_xname);
    307 		return;
    308 	}
    309 
    310 	/* Now enable auto poll mode. */
    311 
    312 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    313 
    314 	/* And make sure it started. */
    315 
    316 	for (i = 0; i < VGE_TIMEOUT; i++) {
    317 		DELAY(1);
    318 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    319 			break;
    320 	}
    321 
    322 	if (i == VGE_TIMEOUT) {
    323 		printf("%s: failed to start MII autopoll\n",
    324 		    sc->sc_dev.dv_xname);
    325 	}
    326 }
    327 
    328 static int
    329 vge_miibus_readreg(struct device *dev, int phy, int reg)
    330 {
    331 	struct vge_softc *sc;
    332 	int i;
    333 	uint16_t rval;
    334 
    335 	sc = (void *)dev;
    336 	rval = 0;
    337 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    338 		return 0;
    339 
    340 	VGE_LOCK(sc);
    341 	vge_miipoll_stop(sc);
    342 
    343 	/* Specify the register we want to read. */
    344 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    345 
    346 	/* Issue read command. */
    347 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    348 
    349 	/* Wait for the read command bit to self-clear. */
    350 	for (i = 0; i < VGE_TIMEOUT; i++) {
    351 		DELAY(1);
    352 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    353 			break;
    354 	}
    355 
    356 	if (i == VGE_TIMEOUT)
    357 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    358 	else
    359 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    360 
    361 	vge_miipoll_start(sc);
    362 	VGE_UNLOCK(sc);
    363 
    364 	return rval;
    365 }
    366 
    367 static void
    368 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
    369 {
    370 	struct vge_softc *sc;
    371 	int i;
    372 
    373 	sc = (void *)dev;
    374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    375 		return;
    376 
    377 	VGE_LOCK(sc);
    378 	vge_miipoll_stop(sc);
    379 
    380 	/* Specify the register we want to write. */
    381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    382 
    383 	/* Specify the data we want to write. */
    384 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    385 
    386 	/* Issue write command. */
    387 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    388 
    389 	/* Wait for the write command bit to self-clear. */
    390 	for (i = 0; i < VGE_TIMEOUT; i++) {
    391 		DELAY(1);
    392 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    393 			break;
    394 	}
    395 
    396 	if (i == VGE_TIMEOUT) {
    397 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    398 	}
    399 
    400 	vge_miipoll_start(sc);
    401 	VGE_UNLOCK(sc);
    402 }
    403 
    404 static void
    405 vge_cam_clear(struct vge_softc *sc)
    406 {
    407 	int i;
    408 
    409 	/*
    410 	 * Turn off all the mask bits. This tells the chip
    411 	 * that none of the entries in the CAM filter are valid.
    412 	 * desired entries will be enabled as we fill the filter in.
    413 	 */
    414 
    415 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    416 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    417 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    418 	for (i = 0; i < 8; i++)
    419 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    420 
    421 	/* Clear the VLAN filter too. */
    422 
    423 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    424 	for (i = 0; i < 8; i++)
    425 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    426 
    427 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    428 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    429 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    430 
    431 	sc->vge_camidx = 0;
    432 }
    433 
    434 static int
    435 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    436 {
    437 	int i, error;
    438 
    439 	error = 0;
    440 
    441 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
    442 		return ENOSPC;
    443 
    444 	/* Select the CAM data page. */
    445 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    446 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    447 
    448 	/* Set the filter entry we want to update and enable writing. */
    449 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
    450 
    451 	/* Write the address to the CAM registers */
    452 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    453 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    454 
    455 	/* Issue a write command. */
    456 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    457 
    458 	/* Wake for it to clear. */
    459 	for (i = 0; i < VGE_TIMEOUT; i++) {
    460 		DELAY(1);
    461 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    462 			break;
    463 	}
    464 
    465 	if (i == VGE_TIMEOUT) {
    466 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
    467 		error = EIO;
    468 		goto fail;
    469 	}
    470 
    471 	/* Select the CAM mask page. */
    472 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    473 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    474 
    475 	/* Set the mask bit that enables this filter. */
    476 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx / 8),
    477 	    1 << (sc->vge_camidx & 7));
    478 
    479 	sc->vge_camidx++;
    480 
    481  fail:
    482 	/* Turn off access to CAM. */
    483 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    484 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    485 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    486 
    487 	return error;
    488 }
    489 
    490 /*
    491  * Program the multicast filter. We use the 64-entry CAM filter
    492  * for perfect filtering. If there's more than 64 multicast addresses,
    493  * we use the hash filter insted.
    494  */
    495 static void
    496 vge_setmulti(struct vge_softc *sc)
    497 {
    498 	struct ifnet *ifp;
    499 	int error;
    500 	uint32_t h, hashes[2] = { 0, 0 };
    501 	struct ether_multi *enm;
    502 	struct ether_multistep step;
    503 
    504 	error = 0;
    505 	ifp = &sc->sc_ethercom.ec_if;
    506 
    507 	/* First, zot all the multicast entries. */
    508 	vge_cam_clear(sc);
    509 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    510 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    511 	ifp->if_flags &= ~IFF_ALLMULTI;
    512 
    513 	/*
    514 	 * If the user wants allmulti or promisc mode, enable reception
    515 	 * of all multicast frames.
    516 	 */
    517 	if (ifp->if_flags & IFF_PROMISC) {
    518  allmulti:
    519 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    520 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    521 		ifp->if_flags |= IFF_ALLMULTI;
    522 		return;
    523 	}
    524 
    525 	/* Now program new ones */
    526 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    527 	while (enm != NULL) {
    528 		/*
    529 		 * If multicast range, fall back to ALLMULTI.
    530 		 */
    531 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    532 				ETHER_ADDR_LEN) != 0)
    533 			goto allmulti;
    534 
    535 		error = vge_cam_set(sc, enm->enm_addrlo);
    536 		if (error)
    537 			break;
    538 
    539 		ETHER_NEXT_MULTI(step, enm);
    540 	}
    541 
    542 	/* If there were too many addresses, use the hash filter. */
    543 	if (error) {
    544 		vge_cam_clear(sc);
    545 
    546 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    547 		while (enm != NULL) {
    548 			/*
    549 			 * If multicast range, fall back to ALLMULTI.
    550 			 */
    551 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    552 					ETHER_ADDR_LEN) != 0)
    553 				goto allmulti;
    554 
    555 			h = ether_crc32_be(enm->enm_addrlo,
    556 			    ETHER_ADDR_LEN) >> 26;
    557 			hashes[h >> 5] |= 1 << (h & 0x1f);
    558 
    559 			ETHER_NEXT_MULTI(step, enm);
    560 		}
    561 
    562 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    563 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    564 	}
    565 }
    566 
    567 static void
    568 vge_reset(struct vge_softc *sc)
    569 {
    570 	int i;
    571 
    572 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    573 
    574 	for (i = 0; i < VGE_TIMEOUT; i++) {
    575 		DELAY(5);
    576 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    577 			break;
    578 	}
    579 
    580 	if (i == VGE_TIMEOUT) {
    581 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
    582 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    583 		DELAY(2000);
    584 	}
    585 
    586 	DELAY(5000);
    587 
    588 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    589 
    590 	for (i = 0; i < VGE_TIMEOUT; i++) {
    591 		DELAY(5);
    592 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    593 			break;
    594 	}
    595 
    596 	if (i == VGE_TIMEOUT) {
    597 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
    598 		return;
    599 	}
    600 
    601 	/*
    602 	 * On some machine, the first read data from EEPROM could be
    603 	 * messed up, so read one dummy data here to avoid the mess.
    604 	 */
    605 	(void)vge_read_eeprom(sc, 0);
    606 
    607 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    608 }
    609 
    610 /*
    611  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    612  * IDs against our list and return a device name if we find a match.
    613  */
    614 static int
    615 vge_probe(struct device *parent __unused, struct cfdata *match __unused,
    616     void *aux)
    617 {
    618 	struct pci_attach_args *pa = aux;
    619 
    620 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    621 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    622 		return 1;
    623 
    624 	return 0;
    625 }
    626 
    627 static int
    628 vge_allocmem(struct vge_softc *sc)
    629 {
    630 	int error;
    631 	int nseg;
    632 	int i;
    633 	bus_dma_segment_t seg;
    634 
    635 	/*
    636 	 * Allocate map for TX descriptor list.
    637 	 */
    638 	error = bus_dmamap_create(sc->vge_dmat,
    639 	    VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT,
    640 	    &sc->vge_ldata.vge_tx_list_map);
    641 	if (error) {
    642 		printf("%s: could not allocate TX dma list map\n",
    643 		    sc->sc_dev.dv_xname);
    644 		return ENOMEM;
    645 	}
    646 
    647 	/*
    648 	 * Allocate memory for TX descriptor list.
    649 	 */
    650 
    651 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
    652 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    653 	if (error) {
    654 		printf("%s: could not allocate TX ring dma memory\n",
    655 		    sc->sc_dev.dv_xname);
    656 		return ENOMEM;
    657 	}
    658 
    659 	/* Map the memory to kernel VA space */
    660 
    661 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_TX_LIST_SZ,
    662 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
    663 	if (error) {
    664 		printf("%s: could not map TX ring dma memory\n",
    665 		    sc->sc_dev.dv_xname);
    666 		return ENOMEM;
    667 	}
    668 
    669 	/* Load the map for the TX ring. */
    670 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
    671 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    672 	if (error) {
    673 		printf("%s: could not load TX ring dma memory\n",
    674 		    sc->sc_dev.dv_xname);
    675 		return ENOMEM;
    676 	}
    677 
    678 	/* Create DMA maps for TX buffers */
    679 
    680 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
    681 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
    682 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
    683 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    684 		    &sc->vge_ldata.vge_tx_dmamap[i]);
    685 		if (error) {
    686 			printf("%s: can't create DMA map for TX\n",
    687 			    sc->sc_dev.dv_xname);
    688 			return ENOMEM;
    689 		}
    690 	}
    691 
    692 	/*
    693 	 * Allocate map for RX descriptor list.
    694 	 */
    695 	error = bus_dmamap_create(sc->vge_dmat,
    696 	    VGE_RX_LIST_SZ, 1, VGE_RX_LIST_SZ, 0, BUS_DMA_NOWAIT,
    697 	    &sc->vge_ldata.vge_rx_list_map);
    698 	if (error) {
    699 		printf("%s: could not allocate RX dma list map\n",
    700 		    sc->sc_dev.dv_xname);
    701 		return ENOMEM;
    702 	}
    703 
    704 	/* Allocate DMA'able memory for the RX ring */
    705 
    706 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
    707 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    708 	if (error)
    709 		return ENOMEM;
    710 
    711 	/* Map the memory to kernel VA space */
    712 
    713 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_RX_LIST_SZ,
    714 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
    715 	if (error)
    716 		return ENOMEM;
    717 
    718 	/* Load the map for the RX ring. */
    719 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
    720 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    721 	if (error) {
    722 		printf("%s: could not load RX ring dma memory\n",
    723 		    sc->sc_dev.dv_xname);
    724 		return ENOMEM;
    725 	}
    726 
    727 	/* Create DMA maps for RX buffers */
    728 
    729 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
    730 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
    731 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    732 		    &sc->vge_ldata.vge_rx_dmamap[i]);
    733 		if (error) {
    734 			printf("%s: can't create DMA map for RX\n",
    735 			     sc->sc_dev.dv_xname);
    736 			return ENOMEM;
    737 		}
    738 	}
    739 
    740 	return 0;
    741 }
    742 
    743 /*
    744  * Attach the interface. Allocate softc structures, do ifmedia
    745  * setup and ethernet/BPF attach.
    746  */
    747 static void
    748 vge_attach(struct device *parent __unused, struct device *self, void *aux)
    749 {
    750 	uint8_t	*eaddr;
    751 	struct vge_softc *sc = (struct vge_softc *)self;
    752 	struct ifnet *ifp;
    753 	struct pci_attach_args *pa = aux;
    754 	pci_chipset_tag_t pc = pa->pa_pc;
    755 	const char *intrstr;
    756 	pci_intr_handle_t ih;
    757 	uint16_t val;
    758 
    759 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    760 		PCI_REVISION(pa->pa_class));
    761 
    762 	/* Make sure bus-mastering is enabled */
    763         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    764 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    765 	    PCI_COMMAND_MASTER_ENABLE);
    766 
    767 	/*
    768 	 * Map control/status registers.
    769 	 */
    770 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    771 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL) != 0) {
    772 		aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname);
    773 		return;
    774 	}
    775 
    776         /*
    777          * Map and establish our interrupt.
    778          */
    779 	if (pci_intr_map(pa, &ih)) {
    780 		aprint_error("%s: unable to map interrupt\n",
    781 		    sc->sc_dev.dv_xname);
    782 		return;
    783 	}
    784 	intrstr = pci_intr_string(pc, ih);
    785 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    786 	if (sc->vge_intrhand == NULL) {
    787 		printf("%s: unable to establish interrupt",
    788 		    sc->sc_dev.dv_xname);
    789 		if (intrstr != NULL)
    790 			printf(" at %s", intrstr);
    791 		printf("\n");
    792 		return;
    793 	}
    794 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    795 
    796 	/* Reset the adapter. */
    797 	vge_reset(sc);
    798 
    799 	/*
    800 	 * Get station address from the EEPROM.
    801 	 */
    802 	eaddr = sc->vge_eaddr;
    803 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    804 	eaddr[0] = val & 0xff;
    805 	eaddr[1] = val >> 8;
    806 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    807 	eaddr[2] = val & 0xff;
    808 	eaddr[3] = val >> 8;
    809 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    810 	eaddr[4] = val & 0xff;
    811 	eaddr[5] = val >> 8;
    812 
    813 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    814 	    ether_sprintf(eaddr));
    815 
    816 	/*
    817 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    818 	 * but we don't use that for now.
    819 	 */
    820 	sc->vge_dmat = pa->pa_dmat;
    821 
    822 	if (vge_allocmem(sc))
    823 		return;
    824 
    825 	ifp = &sc->sc_ethercom.ec_if;
    826 	ifp->if_softc = sc;
    827 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    828 	ifp->if_mtu = ETHERMTU;
    829 	ifp->if_baudrate = IF_Gbps(1);
    830 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    831 	ifp->if_ioctl = vge_ioctl;
    832 	ifp->if_start = vge_start;
    833 
    834 	/*
    835 	 * We can support 802.1Q VLAN-sized frames and jumbo
    836 	 * Ethernet frames.
    837 	 */
    838 	sc->sc_ethercom.ec_capabilities |=
    839 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    840 	    ETHERCAP_VLAN_HWTAGGING;
    841 
    842 	/*
    843 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    844 	 */
    845 	ifp->if_capabilities |=
    846 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    847 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    848 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    849 
    850 #ifdef DEVICE_POLLING
    851 #ifdef IFCAP_POLLING
    852 	ifp->if_capabilities |= IFCAP_POLLING;
    853 #endif
    854 #endif
    855 	ifp->if_watchdog = vge_watchdog;
    856 	ifp->if_init = vge_init;
    857 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    858 
    859 	/*
    860 	 * Initialize our media structures and probe the MII.
    861 	 */
    862 	sc->sc_mii.mii_ifp = ifp;
    863 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    864 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    865 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
    866 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
    867 	    vge_ifmedia_sts);
    868 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    869 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    870 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    871 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    872 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    873 	} else
    874 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    875 
    876 	/*
    877 	 * Attach the interface.
    878 	 */
    879 	if_attach(ifp);
    880 	ether_ifattach(ifp, eaddr);
    881 
    882 	callout_init(&sc->vge_timeout);
    883 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
    884 
    885 	/*
    886 	 * Make sure the interface is shutdown during reboot.
    887 	 */
    888 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
    889 		printf("%s: WARNING: unable to establish shutdown hook\n",
    890 		    sc->sc_dev.dv_xname);
    891 	}
    892 }
    893 
    894 static int
    895 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
    896 {
    897 	struct vge_rx_desc *d;
    898 	struct mbuf *m_new;
    899 	bus_dmamap_t map;
    900 	int i;
    901 
    902 	m_new = NULL;
    903 	if (m == NULL) {
    904 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    905 		if (m_new == NULL)
    906 			return ENOBUFS;
    907 
    908 		MCLGET(m_new, M_DONTWAIT);
    909 		if ((m_new->m_flags & M_EXT) == 0) {
    910 			m_freem(m_new);
    911 			return ENOBUFS;
    912 		}
    913 
    914 		m = m_new;
    915 	} else
    916 		m->m_data = m->m_ext.ext_buf;
    917 
    918 
    919 #ifndef __NO_STRICT_ALIGNMENT
    920 	/*
    921 	 * This is part of an evil trick to deal with non-x86 platforms.
    922 	 * The VIA chip requires RX buffers to be aligned on 32-bit
    923 	 * boundaries, but that will hose non-x86 machines. To get around
    924 	 * this, we leave some empty space at the start of each buffer
    925 	 * and for non-x86 hosts, we copy the buffer back two bytes
    926 	 * to achieve word alignment. This is slightly more efficient
    927 	 * than allocating a new buffer, copying the contents, and
    928 	 * discarding the old buffer.
    929 	 */
    930 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
    931 	m_adj(m, VGE_ETHER_ALIGN);
    932 #else
    933 	m->m_len = m->m_pkthdr.len = MCLBYTES;
    934 #endif
    935 	map = sc->vge_ldata.vge_rx_dmamap[idx];
    936 
    937 	if (bus_dmamap_load_mbuf(sc->vge_dmat, map, m, BUS_DMA_NOWAIT) != 0)
    938 		goto out;
    939 
    940 	d = &sc->vge_ldata.vge_rx_list[idx];
    941 
    942 	/* If this descriptor is still owned by the chip, bail. */
    943 
    944 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    945 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
    946 		printf("%s: tried to map busy descriptor\n",
    947 		    sc->sc_dev.dv_xname);
    948 		VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
    949 		goto out;
    950 	}
    951 
    952 	d->vge_buflen =
    953 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
    954 	d->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
    955 	d->vge_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
    956 	d->vge_sts = 0;
    957 	d->vge_ctl = 0;
    958 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    959 
    960 	bus_dmamap_sync(sc->vge_dmat,
    961 	    sc->vge_ldata.vge_rx_dmamap[idx],
    962 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
    963 	    BUS_DMASYNC_PREREAD);
    964 
    965 	/*
    966 	 * Note: the manual fails to document the fact that for
    967 	 * proper opration, the driver needs to replentish the RX
    968 	 * DMA ring 4 descriptors at a time (rather than one at a
    969 	 * time, like most chips). We can allocate the new buffers
    970 	 * but we should not set the OWN bits until we're ready
    971 	 * to hand back 4 of them in one shot.
    972 	 */
    973 
    974 #define VGE_RXCHUNK 4
    975 	sc->vge_rx_consumed++;
    976 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
    977 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
    978 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
    979 			    htole32(VGE_RDSTS_OWN);
    980 			VGE_RXDESCSYNC(sc, i,
    981 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    982 		}
    983 		sc->vge_rx_consumed = 0;
    984 	}
    985 
    986 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
    987 
    988 	return 0;
    989  out:
    990 	if (m_new != NULL)
    991 		m_freem(m_new);
    992 	return ENOMEM;
    993 }
    994 
    995 static int
    996 vge_tx_list_init(struct vge_softc *sc)
    997 {
    998 
    999 	memset((char *)sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
   1000 	bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
   1001 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1002 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1003 
   1004 	memset((char *)&sc->vge_ldata.vge_tx_mbuf, 0,
   1005 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
   1006 
   1007 	sc->vge_ldata.vge_tx_prodidx = 0;
   1008 	sc->vge_ldata.vge_tx_considx = 0;
   1009 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
   1010 
   1011 	return 0;
   1012 }
   1013 
   1014 static int
   1015 vge_rx_list_init(struct vge_softc *sc)
   1016 {
   1017 	int i;
   1018 
   1019 	memset((char *)sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
   1020 	memset((char *)&sc->vge_ldata.vge_rx_mbuf, 0,
   1021 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
   1022 
   1023 	sc->vge_rx_consumed = 0;
   1024 
   1025 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   1026 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
   1027 			return (ENOBUFS);
   1028 	}
   1029 
   1030 	sc->vge_ldata.vge_rx_prodidx = 0;
   1031 	sc->vge_rx_consumed = 0;
   1032 	sc->vge_head = sc->vge_tail = NULL;
   1033 
   1034 	return 0;
   1035 }
   1036 
   1037 #ifndef __NO_STRICT_ALIGNMENT
   1038 static inline void
   1039 vge_fixup_rx(struct mbuf *m)
   1040 {
   1041 	int i;
   1042 	uint16_t *src, *dst;
   1043 
   1044 	src = mtod(m, uint16_t *);
   1045 	dst = src - 1;
   1046 
   1047 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1048 		*dst++ = *src++;
   1049 
   1050 	m->m_data -= ETHER_ALIGN;
   1051 }
   1052 #endif
   1053 
   1054 /*
   1055  * RX handler. We support the reception of jumbo frames that have
   1056  * been fragmented across multiple 2K mbuf cluster buffers.
   1057  */
   1058 static void
   1059 vge_rxeof(struct vge_softc *sc)
   1060 {
   1061 	struct mbuf *m;
   1062 	struct ifnet *ifp;
   1063 	int idx, total_len, lim;
   1064 	struct vge_rx_desc *cur_rx;
   1065 	uint32_t rxstat, rxctl;
   1066 
   1067 	VGE_LOCK_ASSERT(sc);
   1068 	ifp = &sc->sc_ethercom.ec_if;
   1069 	idx = sc->vge_ldata.vge_rx_prodidx;
   1070 	lim = 0;
   1071 
   1072 	/* Invalidate the descriptor memory */
   1073 
   1074 	for (;;) {
   1075 		cur_rx = &sc->vge_ldata.vge_rx_list[idx];
   1076 
   1077 		VGE_RXDESCSYNC(sc, idx,
   1078 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1079 		rxstat = le32toh(cur_rx->vge_sts);
   1080 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1081 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1082 			break;
   1083 		}
   1084 
   1085 #ifdef DEVICE_POLLING
   1086 		if (ifp->if_flags & IFF_POLLING) {
   1087 			if (sc->rxcycles <= 0)
   1088 				break;
   1089 			sc->rxcycles--;
   1090 		}
   1091 #endif /* DEVICE_POLLING */
   1092 
   1093 		m = sc->vge_ldata.vge_rx_mbuf[idx];
   1094 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1095 		rxctl = le32toh(cur_rx->vge_ctl);
   1096 
   1097 		/* Invalidate the RX mbuf and unload its map */
   1098 
   1099 		bus_dmamap_sync(sc->vge_dmat,
   1100 		    sc->vge_ldata.vge_rx_dmamap[idx],
   1101 		    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
   1102 		    BUS_DMASYNC_POSTREAD);
   1103 		bus_dmamap_unload(sc->vge_dmat,
   1104 		    sc->vge_ldata.vge_rx_dmamap[idx]);
   1105 
   1106 		/*
   1107 		 * If the 'start of frame' bit is set, this indicates
   1108 		 * either the first fragment in a multi-fragment receive,
   1109 		 * or an intermediate fragment. Either way, we want to
   1110 		 * accumulate the buffers.
   1111 		 */
   1112 		if (rxstat & VGE_RXPKT_SOF) {
   1113 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
   1114 			if (sc->vge_head == NULL)
   1115 				sc->vge_head = sc->vge_tail = m;
   1116 			else {
   1117 				m->m_flags &= ~M_PKTHDR;
   1118 				sc->vge_tail->m_next = m;
   1119 				sc->vge_tail = m;
   1120 			}
   1121 			vge_newbuf(sc, idx, NULL);
   1122 			VGE_RX_DESC_INC(idx);
   1123 			continue;
   1124 		}
   1125 
   1126 		/*
   1127 		 * Bad/error frames will have the RXOK bit cleared.
   1128 		 * However, there's one error case we want to allow:
   1129 		 * if a VLAN tagged frame arrives and the chip can't
   1130 		 * match it against the CAM filter, it considers this
   1131 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1132 		 * We don't want to drop the frame though: our VLAN
   1133 		 * filtering is done in software.
   1134 		 */
   1135 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1136 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1137 			ifp->if_ierrors++;
   1138 			/*
   1139 			 * If this is part of a multi-fragment packet,
   1140 			 * discard all the pieces.
   1141 			 */
   1142 			if (sc->vge_head != NULL) {
   1143 				m_freem(sc->vge_head);
   1144 				sc->vge_head = sc->vge_tail = NULL;
   1145 			}
   1146 			vge_newbuf(sc, idx, m);
   1147 			VGE_RX_DESC_INC(idx);
   1148 			continue;
   1149 		}
   1150 
   1151 		/*
   1152 		 * If allocating a replacement mbuf fails,
   1153 		 * reload the current one.
   1154 		 */
   1155 
   1156 		if (vge_newbuf(sc, idx, NULL)) {
   1157 			ifp->if_ierrors++;
   1158 			if (sc->vge_head != NULL) {
   1159 				m_freem(sc->vge_head);
   1160 				sc->vge_head = sc->vge_tail = NULL;
   1161 			}
   1162 			vge_newbuf(sc, idx, m);
   1163 			VGE_RX_DESC_INC(idx);
   1164 			continue;
   1165 		}
   1166 
   1167 		VGE_RX_DESC_INC(idx);
   1168 
   1169 		if (sc->vge_head != NULL) {
   1170 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
   1171 			/*
   1172 			 * Special case: if there's 4 bytes or less
   1173 			 * in this buffer, the mbuf can be discarded:
   1174 			 * the last 4 bytes is the CRC, which we don't
   1175 			 * care about anyway.
   1176 			 */
   1177 			if (m->m_len <= ETHER_CRC_LEN) {
   1178 				sc->vge_tail->m_len -=
   1179 				    (ETHER_CRC_LEN - m->m_len);
   1180 				m_freem(m);
   1181 			} else {
   1182 				m->m_len -= ETHER_CRC_LEN;
   1183 				m->m_flags &= ~M_PKTHDR;
   1184 				sc->vge_tail->m_next = m;
   1185 			}
   1186 			m = sc->vge_head;
   1187 			sc->vge_head = sc->vge_tail = NULL;
   1188 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1189 		} else
   1190 			m->m_pkthdr.len = m->m_len =
   1191 			    (total_len - ETHER_CRC_LEN);
   1192 
   1193 #ifndef __NO_STRICT_ALIGNMENT
   1194 		vge_fixup_rx(m);
   1195 #endif
   1196 		ifp->if_ipackets++;
   1197 		m->m_pkthdr.rcvif = ifp;
   1198 
   1199 		/* Do RX checksumming if enabled */
   1200 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1201 
   1202 			/* Check IP header checksum */
   1203 			if (rxctl & VGE_RDCTL_IPPKT)
   1204 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1205 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1206 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1207 		}
   1208 
   1209 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1210 			/* Check UDP checksum */
   1211 			if (rxctl & VGE_RDCTL_TCPPKT)
   1212 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1213 
   1214 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1215 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1216 		}
   1217 
   1218 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1219 			/* Check UDP checksum */
   1220 			if (rxctl & VGE_RDCTL_UDPPKT)
   1221 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1222 
   1223 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1224 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1225 		}
   1226 
   1227 		if (rxstat & VGE_RDSTS_VTAG)
   1228 			VLAN_INPUT_TAG(ifp, m,
   1229 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
   1230 
   1231 #if NBPFILTER > 0
   1232 		/*
   1233 		 * Handle BPF listeners.
   1234 		 */
   1235 		if (ifp->if_bpf)
   1236 			bpf_mtap(ifp->if_bpf, m);
   1237 #endif
   1238 
   1239 		VGE_UNLOCK(sc);
   1240 		(*ifp->if_input)(ifp, m);
   1241 		VGE_LOCK(sc);
   1242 
   1243 		lim++;
   1244 		if (lim == VGE_RX_DESC_CNT)
   1245 			break;
   1246 
   1247 	}
   1248 
   1249 	sc->vge_ldata.vge_rx_prodidx = idx;
   1250 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1251 }
   1252 
   1253 static void
   1254 vge_txeof(struct vge_softc *sc)
   1255 {
   1256 	struct ifnet *ifp;
   1257 	uint32_t txstat;
   1258 	int idx;
   1259 
   1260 	ifp = &sc->sc_ethercom.ec_if;
   1261 	idx = sc->vge_ldata.vge_tx_considx;
   1262 
   1263 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
   1264 		VGE_TXDESCSYNC(sc, idx,
   1265 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1266 
   1267 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
   1268 		if (txstat & VGE_TDSTS_OWN) {
   1269 			VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1270 			break;
   1271 		}
   1272 
   1273 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
   1274 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
   1275 		bus_dmamap_unload(sc->vge_dmat,
   1276 		    sc->vge_ldata.vge_tx_dmamap[idx]);
   1277 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1278 			ifp->if_collisions++;
   1279 		if (txstat & VGE_TDSTS_TXERR)
   1280 			ifp->if_oerrors++;
   1281 		else
   1282 			ifp->if_opackets++;
   1283 
   1284 		sc->vge_ldata.vge_tx_free++;
   1285 		VGE_TX_DESC_INC(idx);
   1286 	}
   1287 
   1288 	/* No changes made to the TX ring, so no flush needed */
   1289 
   1290 	if (idx != sc->vge_ldata.vge_tx_considx) {
   1291 		sc->vge_ldata.vge_tx_considx = idx;
   1292 		ifp->if_flags &= ~IFF_OACTIVE;
   1293 		ifp->if_timer = 0;
   1294 	}
   1295 
   1296 	/*
   1297 	 * If not all descriptors have been released reaped yet,
   1298 	 * reload the timer so that we will eventually get another
   1299 	 * interrupt that will cause us to re-enter this routine.
   1300 	 * This is done in case the transmitter has gone idle.
   1301 	 */
   1302 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
   1303 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1304 	}
   1305 }
   1306 
   1307 static void
   1308 vge_tick(void *xsc)
   1309 {
   1310 	struct vge_softc *sc;
   1311 	struct ifnet *ifp;
   1312 	struct mii_data *mii;
   1313 	int s;
   1314 
   1315 	sc = xsc;
   1316 	ifp = &sc->sc_ethercom.ec_if;
   1317 	mii = &sc->sc_mii;
   1318 
   1319 	s = splnet();
   1320 
   1321 	VGE_LOCK(sc);
   1322 
   1323 	callout_schedule(&sc->vge_timeout, hz);
   1324 
   1325 	mii_tick(mii);
   1326 	if (sc->vge_link) {
   1327 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1328 			sc->vge_link = 0;
   1329 	} else {
   1330 		if (mii->mii_media_status & IFM_ACTIVE &&
   1331 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1332 			sc->vge_link = 1;
   1333 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1334 				vge_start(ifp);
   1335 		}
   1336 	}
   1337 
   1338 	VGE_UNLOCK(sc);
   1339 
   1340 	splx(s);
   1341 }
   1342 
   1343 #ifdef DEVICE_POLLING
   1344 static void
   1345 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1346 {
   1347 	struct vge_softc *sc = ifp->if_softc;
   1348 
   1349 	VGE_LOCK(sc);
   1350 #ifdef IFCAP_POLLING
   1351 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1352 		ether_poll_deregister(ifp);
   1353 		cmd = POLL_DEREGISTER;
   1354 	}
   1355 #endif
   1356 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1357 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1358 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   1359 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1360 		goto done;
   1361 	}
   1362 
   1363 	sc->rxcycles = count;
   1364 	vge_rxeof(sc);
   1365 	vge_txeof(sc);
   1366 
   1367 #if __FreeBSD_version < 502114
   1368 	if (ifp->if_snd.ifq_head != NULL)
   1369 #else
   1370 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
   1371 #endif
   1372 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
   1373 
   1374 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1375 		uint32_t status;
   1376 		status = CSR_READ_4(sc, VGE_ISR);
   1377 		if (status == 0xFFFFFFFF)
   1378 			goto done;
   1379 		if (status)
   1380 			CSR_WRITE_4(sc, VGE_ISR, status);
   1381 
   1382 		/*
   1383 		 * XXX check behaviour on receiver stalls.
   1384 		 */
   1385 
   1386 		if (status & VGE_ISR_TXDMA_STALL ||
   1387 		    status & VGE_ISR_RXDMA_STALL)
   1388 			vge_init(sc);
   1389 
   1390 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1391 			vge_rxeof(sc);
   1392 			ifp->if_ierrors++;
   1393 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1394 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1395 		}
   1396 	}
   1397  done:
   1398 	VGE_UNLOCK(sc);
   1399 }
   1400 #endif /* DEVICE_POLLING */
   1401 
   1402 static int
   1403 vge_intr(void *arg)
   1404 {
   1405 	struct vge_softc *sc;
   1406 	struct ifnet *ifp;
   1407 	uint32_t status;
   1408 	int claim;
   1409 
   1410 	sc = arg;
   1411 	claim = 0;
   1412 	if (sc->suspended) {
   1413 		return claim;
   1414 	}
   1415 
   1416 	ifp = &sc->sc_ethercom.ec_if;
   1417 
   1418 	VGE_LOCK(sc);
   1419 
   1420 	if (!(ifp->if_flags & IFF_UP)) {
   1421 		VGE_UNLOCK(sc);
   1422 		return claim;
   1423 	}
   1424 
   1425 #ifdef DEVICE_POLLING
   1426 	if  (ifp->if_flags & IFF_POLLING)
   1427 		goto done;
   1428 	if (
   1429 #ifdef IFCAP_POLLING
   1430 	    (ifp->if_capenable & IFCAP_POLLING) &&
   1431 #endif
   1432 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
   1433 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1434 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1435 		vge_poll(ifp, 0, 1);
   1436 		goto done;
   1437 	}
   1438 
   1439 #endif /* DEVICE_POLLING */
   1440 
   1441 	/* Disable interrupts */
   1442 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1443 
   1444 	for (;;) {
   1445 
   1446 		status = CSR_READ_4(sc, VGE_ISR);
   1447 		/* If the card has gone away the read returns 0xffff. */
   1448 		if (status == 0xFFFFFFFF)
   1449 			break;
   1450 
   1451 		if (status) {
   1452 			claim = 1;
   1453 			CSR_WRITE_4(sc, VGE_ISR, status);
   1454 		}
   1455 
   1456 		if ((status & VGE_INTRS) == 0)
   1457 			break;
   1458 
   1459 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1460 			vge_rxeof(sc);
   1461 
   1462 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1463 			vge_rxeof(sc);
   1464 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1465 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1466 		}
   1467 
   1468 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1469 			vge_txeof(sc);
   1470 
   1471 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1472 			vge_init(ifp);
   1473 
   1474 		if (status & VGE_ISR_LINKSTS)
   1475 			vge_tick(sc);
   1476 	}
   1477 
   1478 	/* Re-enable interrupts */
   1479 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1480 
   1481 #ifdef DEVICE_POLLING
   1482  done:
   1483 #endif
   1484 	VGE_UNLOCK(sc);
   1485 
   1486 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1487 		vge_start(ifp);
   1488 
   1489 	return claim;
   1490 }
   1491 
   1492 static int
   1493 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1494 {
   1495 	struct vge_tx_desc *d;
   1496 	struct vge_tx_frag *f;
   1497 	struct mbuf *m_new;
   1498 	bus_dmamap_t map;
   1499 	int seg, error, flags;
   1500 	struct m_tag *mtag;
   1501 	size_t sz;
   1502 
   1503 	d = &sc->vge_ldata.vge_tx_list[idx];
   1504 
   1505 	/* If this descriptor is still owned by the chip, bail. */
   1506 	if (sc->vge_ldata.vge_tx_free <= 2) {
   1507 		VGE_TXDESCSYNC(sc, idx,
   1508 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1509 		if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
   1510 			VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1511 			return ENOBUFS;
   1512 		}
   1513 	}
   1514 
   1515 	map = sc->vge_ldata.vge_tx_dmamap[idx];
   1516 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map, m_head, BUS_DMA_NOWAIT);
   1517 
   1518 	/* If too many segments to map, coalesce */
   1519 	if (error == EFBIG) {
   1520 		m_new = m_defrag(m_head, M_DONTWAIT);
   1521 		if (m_new == NULL)
   1522 			return (error);
   1523 
   1524 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1525 		    m_new, BUS_DMA_NOWAIT);
   1526 		if (error) {
   1527 			m_freem(m_new);
   1528 			return error;
   1529 		}
   1530 
   1531 		m_head = m_new;
   1532 	} else if (error)
   1533 		return error;
   1534 
   1535 	for (seg = 0, f = &d->vge_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1536 		f->vge_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1537 		f->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[seg].ds_addr));
   1538 		f->vge_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[seg].ds_addr));
   1539 	}
   1540 
   1541 	/* Argh. This chip does not autopad short frames */
   1542 
   1543 	sz = m_head->m_pkthdr.len;
   1544 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
   1545 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
   1546 		f->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
   1547 		f->vge_addrhi =
   1548 		    htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
   1549 		sz = VGE_MIN_FRAMELEN;
   1550 		seg++;
   1551 	}
   1552 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1553 
   1554 	/*
   1555 	 * When telling the chip how many segments there are, we
   1556 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1557 	 * know why.
   1558 	 */
   1559 	seg++;
   1560 
   1561 	flags = 0;
   1562 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1563 		flags |= VGE_TDCTL_IPCSUM;
   1564 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1565 		flags |= VGE_TDCTL_TCPCSUM;
   1566 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1567 		flags |= VGE_TDCTL_UDPCSUM;
   1568 	d->vge_sts = htole32(sz << 16);
   1569 	d->vge_ctl = htole32(flags | (seg << 28) | VGE_TD_LS_NORM);
   1570 
   1571 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1572 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
   1573 
   1574 	bus_dmamap_sync(sc->vge_dmat, map, 0, map->dm_mapsize,
   1575 	    BUS_DMASYNC_PREWRITE);
   1576 
   1577 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
   1578 	sc->vge_ldata.vge_tx_free--;
   1579 
   1580 	/*
   1581 	 * Set up hardware VLAN tagging.
   1582 	 */
   1583 
   1584 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1585 	if (mtag != NULL)
   1586 		d->vge_ctl |=
   1587 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
   1588 
   1589 	d->vge_sts |= htole32(VGE_TDSTS_OWN);
   1590 
   1591 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1592 
   1593 	return 0;
   1594 }
   1595 
   1596 /*
   1597  * Main transmit routine.
   1598  */
   1599 
   1600 static void
   1601 vge_start(struct ifnet *ifp)
   1602 {
   1603 	struct vge_softc *sc;
   1604 	struct mbuf *m_head;
   1605 	int idx, pidx, error;
   1606 
   1607 	sc = ifp->if_softc;
   1608 	VGE_LOCK(sc);
   1609 
   1610 	if (!sc->vge_link ||
   1611 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1612 		VGE_UNLOCK(sc);
   1613 		return;
   1614 	}
   1615 
   1616 	m_head = NULL;
   1617 	idx = sc->vge_ldata.vge_tx_prodidx;
   1618 
   1619 	pidx = idx - 1;
   1620 	if (pidx < 0)
   1621 		pidx = VGE_TX_DESC_CNT - 1;
   1622 
   1623 	/*
   1624 	 * Loop through the send queue, setting up transmit descriptors
   1625 	 * until we drain the queue, or use up all available transmit
   1626 	 * descriptors.
   1627 	 */
   1628 	for (;;) {
   1629 		/* Grab a packet off the queue. */
   1630 		IFQ_POLL(&ifp->if_snd, m_head);
   1631 		if (m_head == NULL)
   1632 			break;
   1633 
   1634 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
   1635 			/*
   1636 			 * Slot already used, stop for now.
   1637 			 */
   1638 			ifp->if_flags |= IFF_OACTIVE;
   1639 			break;
   1640 		}
   1641 
   1642 		if ((error = vge_encap(sc, m_head, idx))) {
   1643 			if (error == EFBIG) {
   1644 				printf("%s: Tx packet consumes too many "
   1645 				    "DMA segments, dropping...\n",
   1646 				    sc->sc_dev.dv_xname);
   1647 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1648 				m_freem(m_head);
   1649 				continue;
   1650 			}
   1651 
   1652 			/*
   1653 			 * Short on resources, just stop for now.
   1654 			 */
   1655 			if (error == ENOBUFS)
   1656 				ifp->if_flags |= IFF_OACTIVE;
   1657 			break;
   1658 		}
   1659 
   1660 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1661 
   1662 		/*
   1663 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1664 		 */
   1665 
   1666 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
   1667 		    htole16(VGE_TXDESC_Q);
   1668 		VGE_TXDESCSYNC(sc, pidx,
   1669 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1670 
   1671 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
   1672 			m_freem(m_head);
   1673 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
   1674 		}
   1675 
   1676 		pidx = idx;
   1677 		VGE_TX_DESC_INC(idx);
   1678 
   1679 		/*
   1680 		 * If there's a BPF listener, bounce a copy of this frame
   1681 		 * to him.
   1682 		 */
   1683 #if NBPFILTER > 0
   1684 		if (ifp->if_bpf)
   1685 			bpf_mtap(ifp->if_bpf, m_head);
   1686 #endif
   1687 	}
   1688 
   1689 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
   1690 		VGE_UNLOCK(sc);
   1691 		return;
   1692 	}
   1693 
   1694 	/* Issue a transmit command. */
   1695 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1696 
   1697 	sc->vge_ldata.vge_tx_prodidx = idx;
   1698 
   1699 	/*
   1700 	 * Use the countdown timer for interrupt moderation.
   1701 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1702 	 * countdown timer, which will begin counting until it hits
   1703 	 * the value in the SSTIMER register, and then trigger an
   1704 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1705 	 * the timer count is reloaded. Only when the transmitter
   1706 	 * is idle will the timer hit 0 and an interrupt fire.
   1707 	 */
   1708 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1709 
   1710 	VGE_UNLOCK(sc);
   1711 
   1712 	/*
   1713 	 * Set a timeout in case the chip goes out to lunch.
   1714 	 */
   1715 	ifp->if_timer = 5;
   1716 }
   1717 
   1718 static int
   1719 vge_init(struct ifnet *ifp)
   1720 {
   1721 	struct vge_softc *sc;
   1722 	int i;
   1723 
   1724 	sc = ifp->if_softc;
   1725 
   1726 	VGE_LOCK(sc);
   1727 
   1728 	/*
   1729 	 * Cancel pending I/O and free all RX/TX buffers.
   1730 	 */
   1731 	vge_stop(sc);
   1732 	vge_reset(sc);
   1733 
   1734 	/*
   1735 	 * Initialize the RX and TX descriptors and mbufs.
   1736 	 */
   1737 
   1738 	vge_rx_list_init(sc);
   1739 	vge_tx_list_init(sc);
   1740 
   1741 	/* Set our station address */
   1742 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1743 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
   1744 
   1745 	/*
   1746 	 * Set receive FIFO threshold. Also allow transmission and
   1747 	 * reception of VLAN tagged frames.
   1748 	 */
   1749 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1750 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1751 
   1752 	/* Set DMA burst length */
   1753 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1754 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1755 
   1756 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1757 
   1758 	/* Set collision backoff algorithm */
   1759 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1760 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1761 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1762 
   1763 	/* Disable LPSEL field in priority resolution */
   1764 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1765 
   1766 	/*
   1767 	 * Load the addresses of the DMA queues into the chip.
   1768 	 * Note that we only use one transmit queue.
   1769 	 */
   1770 
   1771 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
   1772 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr));
   1773 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
   1774 
   1775 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
   1776 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr));
   1777 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
   1778 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
   1779 
   1780 	/* Enable and wake up the RX descriptor queue */
   1781 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1782 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1783 
   1784 	/* Enable the TX descriptor queue */
   1785 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1786 
   1787 	/* Set up the receive filter -- allow large frames for VLANs. */
   1788 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1789 
   1790 	/* If we want promiscuous mode, set the allframes bit. */
   1791 	if (ifp->if_flags & IFF_PROMISC) {
   1792 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1793 	}
   1794 
   1795 	/* Set capture broadcast bit to capture broadcast frames. */
   1796 	if (ifp->if_flags & IFF_BROADCAST) {
   1797 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1798 	}
   1799 
   1800 	/* Set multicast bit to capture multicast frames. */
   1801 	if (ifp->if_flags & IFF_MULTICAST) {
   1802 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1803 	}
   1804 
   1805 	/* Init the cam filter. */
   1806 	vge_cam_clear(sc);
   1807 
   1808 	/* Init the multicast filter. */
   1809 	vge_setmulti(sc);
   1810 
   1811 	/* Enable flow control */
   1812 
   1813 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1814 
   1815 	/* Enable jumbo frame reception (if desired) */
   1816 
   1817 	/* Start the MAC. */
   1818 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1819 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1820 	CSR_WRITE_1(sc, VGE_CRS0,
   1821 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1822 
   1823 	/*
   1824 	 * Configure one-shot timer for microsecond
   1825 	 * resulution and load it for 500 usecs.
   1826 	 */
   1827 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1828 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1829 
   1830 	/*
   1831 	 * Configure interrupt moderation for receive. Enable
   1832 	 * the holdoff counter and load it, and set the RX
   1833 	 * suppression count to the number of descriptors we
   1834 	 * want to allow before triggering an interrupt.
   1835 	 * The holdoff timer is in units of 20 usecs.
   1836 	 */
   1837 
   1838 #ifdef notyet
   1839 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1840 	/* Select the interrupt holdoff timer page. */
   1841 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1842 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1843 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1844 
   1845 	/* Enable use of the holdoff timer. */
   1846 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1847 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1848 
   1849 	/* Select the RX suppression threshold page. */
   1850 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1851 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1852 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1853 
   1854 	/* Restore the page select bits. */
   1855 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1856 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1857 #endif
   1858 
   1859 #ifdef DEVICE_POLLING
   1860 	/*
   1861 	 * Disable interrupts if we are polling.
   1862 	 */
   1863 	if (ifp->if_flags & IFF_POLLING) {
   1864 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1865 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1866 	} else	/* otherwise ... */
   1867 #endif /* DEVICE_POLLING */
   1868 	{
   1869 	/*
   1870 	 * Enable interrupts.
   1871 	 */
   1872 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1873 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1874 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1875 	}
   1876 
   1877 	mii_mediachg(&sc->sc_mii);
   1878 
   1879 	ifp->if_flags |= IFF_RUNNING;
   1880 	ifp->if_flags &= ~IFF_OACTIVE;
   1881 
   1882 	sc->vge_if_flags = 0;
   1883 	sc->vge_link = 0;
   1884 
   1885 	VGE_UNLOCK(sc);
   1886 
   1887 	callout_schedule(&sc->vge_timeout, hz);
   1888 
   1889 	return 0;
   1890 }
   1891 
   1892 /*
   1893  * Set media options.
   1894  */
   1895 static int
   1896 vge_ifmedia_upd(struct ifnet *ifp)
   1897 {
   1898 	struct vge_softc *sc;
   1899 
   1900 	sc = ifp->if_softc;
   1901 	mii_mediachg(&sc->sc_mii);
   1902 
   1903 	return 0;
   1904 }
   1905 
   1906 /*
   1907  * Report current media status.
   1908  */
   1909 static void
   1910 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1911 {
   1912 	struct vge_softc *sc;
   1913 	struct mii_data *mii;
   1914 
   1915 	sc = ifp->if_softc;
   1916 	mii = &sc->sc_mii;
   1917 
   1918 	mii_pollstat(mii);
   1919 	ifmr->ifm_active = mii->mii_media_active;
   1920 	ifmr->ifm_status = mii->mii_media_status;
   1921 }
   1922 
   1923 static void
   1924 vge_miibus_statchg(struct device *self)
   1925 {
   1926 	struct vge_softc *sc;
   1927 	struct mii_data *mii;
   1928 	struct ifmedia_entry *ife;
   1929 
   1930 	sc = (void *)self;
   1931 	mii = &sc->sc_mii;
   1932 	ife = mii->mii_media.ifm_cur;
   1933 	/*
   1934 	 * If the user manually selects a media mode, we need to turn
   1935 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1936 	 * user happens to choose a full duplex mode, we also need to
   1937 	 * set the 'force full duplex' bit. This applies only to
   1938 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1939 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1940 	 * always implied, so we turn on the forced mode bit but leave
   1941 	 * the FDX bit cleared.
   1942 	 */
   1943 
   1944 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1945 	case IFM_AUTO:
   1946 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1947 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1948 		break;
   1949 	case IFM_1000_T:
   1950 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1951 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1952 		break;
   1953 	case IFM_100_TX:
   1954 	case IFM_10_T:
   1955 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1956 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   1957 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1958 		} else {
   1959 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1960 		}
   1961 		break;
   1962 	default:
   1963 		printf("%s: unknown media type: %x\n",
   1964 		    sc->sc_dev.dv_xname,
   1965 		    IFM_SUBTYPE(ife->ifm_media));
   1966 		break;
   1967 	}
   1968 }
   1969 
   1970 static int
   1971 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1972 {
   1973 	struct vge_softc *sc;
   1974 	struct ifreq *ifr;
   1975 	struct mii_data *mii;
   1976 	int s, error;
   1977 
   1978 	sc = ifp->if_softc;
   1979 	ifr = (struct ifreq *)data;
   1980 	error = 0;
   1981 
   1982 	s = splnet();
   1983 
   1984 	switch (command) {
   1985 	case SIOCSIFMTU:
   1986 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   1987 			error = EINVAL;
   1988 		ifp->if_mtu = ifr->ifr_mtu;
   1989 		break;
   1990 	case SIOCSIFFLAGS:
   1991 		if (ifp->if_flags & IFF_UP) {
   1992 			if (ifp->if_flags & IFF_RUNNING &&
   1993 			    ifp->if_flags & IFF_PROMISC &&
   1994 			    !(sc->vge_if_flags & IFF_PROMISC)) {
   1995 				CSR_SETBIT_1(sc, VGE_RXCTL,
   1996 				    VGE_RXCTL_RX_PROMISC);
   1997 				vge_setmulti(sc);
   1998 			} else if (ifp->if_flags & IFF_RUNNING &&
   1999 			    !(ifp->if_flags & IFF_PROMISC) &&
   2000 			    sc->vge_if_flags & IFF_PROMISC) {
   2001 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2002 				    VGE_RXCTL_RX_PROMISC);
   2003 				vge_setmulti(sc);
   2004                         } else
   2005 				vge_init(ifp);
   2006 		} else {
   2007 			if (ifp->if_flags & IFF_RUNNING)
   2008 				vge_stop(sc);
   2009 		}
   2010 		sc->vge_if_flags = ifp->if_flags;
   2011 		break;
   2012 	case SIOCADDMULTI:
   2013 	case SIOCDELMULTI:
   2014 		error = (command == SIOCADDMULTI) ?
   2015 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   2016 		    ether_delmulti(ifr, &sc->sc_ethercom);
   2017 
   2018 		if (error == ENETRESET) {
   2019 			/*
   2020 			 * Multicast list has changed; set the hardware filter
   2021 			 * accordingly.
   2022 			 */
   2023 			if (ifp->if_flags & IFF_RUNNING)
   2024 				vge_setmulti(sc);
   2025 			error = 0;
   2026 		}
   2027 		break;
   2028 	case SIOCGIFMEDIA:
   2029 	case SIOCSIFMEDIA:
   2030 		mii = &sc->sc_mii;
   2031 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2032 		break;
   2033 	default:
   2034 		error = ether_ioctl(ifp, command, data);
   2035 		break;
   2036 	}
   2037 
   2038 	splx(s);
   2039 	return error;
   2040 }
   2041 
   2042 static void
   2043 vge_watchdog(struct ifnet *ifp)
   2044 {
   2045 	struct vge_softc *sc;
   2046 
   2047 	sc = ifp->if_softc;
   2048 	VGE_LOCK(sc);
   2049 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2050 	ifp->if_oerrors++;
   2051 
   2052 	vge_txeof(sc);
   2053 	vge_rxeof(sc);
   2054 
   2055 	vge_init(ifp);
   2056 
   2057 	VGE_UNLOCK(sc);
   2058 }
   2059 
   2060 /*
   2061  * Stop the adapter and free any mbufs allocated to the
   2062  * RX and TX lists.
   2063  */
   2064 static void
   2065 vge_stop(struct vge_softc *sc)
   2066 {
   2067 	int i;
   2068 	struct ifnet *ifp;
   2069 
   2070 	ifp = &sc->sc_ethercom.ec_if;
   2071 
   2072 	VGE_LOCK(sc);
   2073 	ifp->if_timer = 0;
   2074 
   2075 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2076 #ifdef DEVICE_POLLING
   2077 	ether_poll_deregister(ifp);
   2078 #endif /* DEVICE_POLLING */
   2079 
   2080 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2081 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2082 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2083 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2084 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2085 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2086 
   2087 	if (sc->vge_head != NULL) {
   2088 		m_freem(sc->vge_head);
   2089 		sc->vge_head = sc->vge_tail = NULL;
   2090 	}
   2091 
   2092 	/* Free the TX list buffers. */
   2093 
   2094 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
   2095 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
   2096 			bus_dmamap_unload(sc->vge_dmat,
   2097 			    sc->vge_ldata.vge_tx_dmamap[i]);
   2098 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
   2099 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
   2100 		}
   2101 	}
   2102 
   2103 	/* Free the RX list buffers. */
   2104 
   2105 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   2106 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
   2107 			bus_dmamap_unload(sc->vge_dmat,
   2108 			    sc->vge_ldata.vge_rx_dmamap[i]);
   2109 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
   2110 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
   2111 		}
   2112 	}
   2113 
   2114 	VGE_UNLOCK(sc);
   2115 }
   2116 
   2117 #if VGE_POWER_MANAGEMENT
   2118 /*
   2119  * Device suspend routine.  Stop the interface and save some PCI
   2120  * settings in case the BIOS doesn't restore them properly on
   2121  * resume.
   2122  */
   2123 static int
   2124 vge_suspend(struct device *dev)
   2125 {
   2126 	struct vge_softc *sc;
   2127 	int i;
   2128 
   2129 	sc = device_get_softc(dev);
   2130 
   2131 	vge_stop(sc);
   2132 
   2133         for (i = 0; i < 5; i++)
   2134 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2135 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2136 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2137 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2138 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2139 
   2140 	sc->suspended = 1;
   2141 
   2142 	return 0;
   2143 }
   2144 
   2145 /*
   2146  * Device resume routine.  Restore some PCI settings in case the BIOS
   2147  * doesn't, re-enable busmastering, and restart the interface if
   2148  * appropriate.
   2149  */
   2150 static int
   2151 vge_resume(struct device *dev)
   2152 {
   2153 	struct vge_softc *sc;
   2154 	struct ifnet *ifp;
   2155 	int i;
   2156 
   2157 	sc = (void *)dev;
   2158 	ifp = &sc->sc_ethercom.ec_if;
   2159 
   2160         /* better way to do this? */
   2161 	for (i = 0; i < 5; i++)
   2162 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
   2163 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
   2164 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
   2165 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
   2166 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
   2167 
   2168 	/* reenable busmastering */
   2169 	pci_enable_busmaster(dev);
   2170 	pci_enable_io(dev, SYS_RES_MEMORY);
   2171 
   2172 	/* reinitialize interface if necessary */
   2173 	if (ifp->if_flags & IFF_UP)
   2174 		vge_init(sc);
   2175 
   2176 	sc->suspended = 0;
   2177 
   2178 	return 0;
   2179 }
   2180 #endif
   2181 
   2182 /*
   2183  * Stop all chip I/O so that the kernel's probe routines don't
   2184  * get confused by errant DMAs when rebooting.
   2185  */
   2186 static void
   2187 vge_shutdown(void *arg)
   2188 {
   2189 	struct vge_softc *sc;
   2190 
   2191 	sc = arg;
   2192 	vge_stop(sc);
   2193 }
   2194