if_vge.c revision 1.2 1 /* $NetBSD: if_vge.c,v 1.2 2005/02/27 00:27:33 perry Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.2 2005/02/27 00:27:33 perry Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <machine/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117
118 static int vge_probe (struct device *, struct cfdata *, void *);
119 static void vge_attach (struct device *, struct device *, void *);
120
121 static int vge_encap (struct vge_softc *, struct mbuf *, int);
122
123 static int vge_dma_map_rx_desc (struct vge_softc *, int);
124 static int vge_dma_map_tx_desc (struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem (struct vge_softc *);
126 static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init (struct vge_softc *);
128 static int vge_tx_list_init (struct vge_softc *);
129 #ifdef VGE_FIXUP_RX
130 static __inline void vge_fixup_rx
131 (struct mbuf *);
132 #endif
133 static void vge_rxeof (struct vge_softc *);
134 static void vge_txeof (struct vge_softc *);
135 static int vge_intr (void *);
136 static void vge_tick (void *);
137 static void vge_start (struct ifnet *);
138 static int vge_ioctl (struct ifnet *, u_long, caddr_t);
139 static int vge_init (struct ifnet *);
140 static void vge_stop (struct vge_softc *);
141 static void vge_watchdog (struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend (struct device *);
144 static int vge_resume (struct device *);
145 #endif
146 static void vge_shutdown (void *);
147 static int vge_ifmedia_upd (struct ifnet *);
148 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
149
150 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
151 static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int);
152
153 static void vge_miipoll_start (struct vge_softc *);
154 static void vge_miipoll_stop (struct vge_softc *);
155 static int vge_miibus_readreg (struct device *, int, int);
156 static void vge_miibus_writereg (struct device *, int, int, int);
157 static void vge_miibus_statchg (struct device *);
158
159 static void vge_cam_clear (struct vge_softc *);
160 static int vge_cam_set (struct vge_softc *, uint8_t *);
161 static void vge_setmulti (struct vge_softc *);
162 static void vge_reset (struct vge_softc *);
163
164 #define VGE_PCI_LOIO 0x10
165 #define VGE_PCI_LOMEM 0x14
166
167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
168 vge_probe, vge_attach, NULL, NULL);
169
170 /*
171 * Defragment mbuf chain contents to be as linear as possible.
172 * Returns new mbuf chain on success, NULL on failure. Old mbuf
173 * chain is always freed.
174 * XXX temporary until there would be generic function doing this.
175 */
176 #define m_defrag vge_m_defrag
177 struct mbuf * vge_m_defrag(struct mbuf *, int);
178
179 struct mbuf *
180 vge_m_defrag(struct mbuf *m0, int flags)
181 {
182 struct mbuf *m;
183
184 #ifdef DIAGNOSTIC
185 if ((m0->m_flags & M_PKTHDR) == 0)
186 panic("m_defrag: not a mbuf chain header");
187 #endif
188
189 if (m0->m_pkthdr.len > MCLBYTES) {
190 /* XXX TODO no defragmentation for JUMBO packets, yet */
191 m = NULL;
192 goto out;
193 }
194
195 MGETHDR(m, flags, MT_DATA);
196 if (m == NULL)
197 goto out;
198
199 if (m0->m_pkthdr.len > MHLEN) {
200 MCLGET(m, M_DONTWAIT);
201 if ((m->m_flags & M_EXT) == 0) {
202 m_freem(m);
203 m = NULL;
204 goto out;
205 }
206 }
207
208 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
209 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
210
211 out:
212 m_freem(m0);
213 return m;
214 }
215
216 /*
217 * Read a word of data stored in the EEPROM at address 'addr.'
218 */
219 static void
220 vge_eeprom_getword(sc, addr, dest)
221 struct vge_softc *sc;
222 int addr;
223 u_int16_t *dest;
224 {
225 register int i;
226 u_int16_t word = 0;
227
228 /*
229 * Enter EEPROM embedded programming mode. In order to
230 * access the EEPROM at all, we first have to set the
231 * EELOAD bit in the CHIPCFG2 register.
232 */
233 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
234 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
235
236 /* Select the address of the word we want to read */
237 CSR_WRITE_1(sc, VGE_EEADDR, addr);
238
239 /* Issue read command */
240 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
241
242 /* Wait for the done bit to be set. */
243 for (i = 0; i < VGE_TIMEOUT; i++) {
244 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
245 break;
246 }
247
248 if (i == VGE_TIMEOUT) {
249 printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
250 *dest = 0;
251 return;
252 }
253
254 /* Read the result */
255 word = CSR_READ_2(sc, VGE_EERDDAT);
256
257 /* Turn off EEPROM access mode. */
258 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
259 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
260
261 *dest = word;
262
263 return;
264 }
265
266 /*
267 * Read a sequence of words from the EEPROM.
268 */
269 static void
270 vge_read_eeprom(sc, dest, off, cnt, swap)
271 struct vge_softc *sc;
272 caddr_t dest;
273 int off;
274 int cnt;
275 int swap;
276 {
277 int i;
278 u_int16_t word = 0, *ptr;
279
280 for (i = 0; i < cnt; i++) {
281 vge_eeprom_getword(sc, off + i, &word);
282 ptr = (u_int16_t *)(dest + (i * 2));
283 if (swap)
284 *ptr = ntohs(word);
285 else
286 *ptr = word;
287 }
288 }
289
290 static void
291 vge_miipoll_stop(sc)
292 struct vge_softc *sc;
293 {
294 int i;
295
296 CSR_WRITE_1(sc, VGE_MIICMD, 0);
297
298 for (i = 0; i < VGE_TIMEOUT; i++) {
299 DELAY(1);
300 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
301 break;
302 }
303
304 if (i == VGE_TIMEOUT) {
305 printf("%s: failed to idle MII autopoll\n",
306 sc->sc_dev.dv_xname);
307 }
308
309 return;
310 }
311
312 static void
313 vge_miipoll_start(sc)
314 struct vge_softc *sc;
315 {
316 int i;
317
318 /* First, make sure we're idle. */
319
320 CSR_WRITE_1(sc, VGE_MIICMD, 0);
321 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
322
323 for (i = 0; i < VGE_TIMEOUT; i++) {
324 DELAY(1);
325 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
326 break;
327 }
328
329 if (i == VGE_TIMEOUT) {
330 printf("%s: failed to idle MII autopoll\n",
331 sc->sc_dev.dv_xname);
332 return;
333 }
334
335 /* Now enable auto poll mode. */
336
337 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
338
339 /* And make sure it started. */
340
341 for (i = 0; i < VGE_TIMEOUT; i++) {
342 DELAY(1);
343 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
344 break;
345 }
346
347 if (i == VGE_TIMEOUT) {
348 printf("%s: failed to start MII autopoll\n",
349 sc->sc_dev.dv_xname);
350 }
351 }
352
353 static int
354 vge_miibus_readreg(dev, phy, reg)
355 struct device *dev;
356 int phy, reg;
357 {
358 struct vge_softc *sc = (struct vge_softc *)dev;
359 int i;
360 u_int16_t rval = 0;
361
362 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
363 return(0);
364
365 VGE_LOCK(sc);
366 vge_miipoll_stop(sc);
367
368 /* Specify the register we want to read. */
369 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
370
371 /* Issue read command. */
372 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
373
374 /* Wait for the read command bit to self-clear. */
375 for (i = 0; i < VGE_TIMEOUT; i++) {
376 DELAY(1);
377 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
378 break;
379 }
380
381 if (i == VGE_TIMEOUT)
382 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
383 else
384 rval = CSR_READ_2(sc, VGE_MIIDATA);
385
386 vge_miipoll_start(sc);
387 VGE_UNLOCK(sc);
388
389 return (rval);
390 }
391
392 static void
393 vge_miibus_writereg(dev, phy, reg, data)
394 struct device *dev;
395 int phy, reg, data;
396 {
397 struct vge_softc *sc = (struct vge_softc *)dev;
398 int i;
399
400 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
401 return;
402
403 VGE_LOCK(sc);
404 vge_miipoll_stop(sc);
405
406 /* Specify the register we want to write. */
407 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408
409 /* Specify the data we want to write. */
410 CSR_WRITE_2(sc, VGE_MIIDATA, data);
411
412 /* Issue write command. */
413 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414
415 /* Wait for the write command bit to self-clear. */
416 for (i = 0; i < VGE_TIMEOUT; i++) {
417 DELAY(1);
418 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419 break;
420 }
421
422 if (i == VGE_TIMEOUT) {
423 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
424 }
425
426 vge_miipoll_start(sc);
427 VGE_UNLOCK(sc);
428 }
429
430 static void
431 vge_cam_clear(sc)
432 struct vge_softc *sc;
433 {
434 int i;
435
436 /*
437 * Turn off all the mask bits. This tells the chip
438 * that none of the entries in the CAM filter are valid.
439 * desired entries will be enabled as we fill the filter in.
440 */
441
442 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
443 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
444 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
445 for (i = 0; i < 8; i++)
446 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
447
448 /* Clear the VLAN filter too. */
449
450 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
451 for (i = 0; i < 8; i++)
452 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
453
454 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
455 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
456 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
457
458 sc->vge_camidx = 0;
459
460 return;
461 }
462
463 static int
464 vge_cam_set(sc, addr)
465 struct vge_softc *sc;
466 uint8_t *addr;
467 {
468 int i, error = 0;
469
470 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
471 return(ENOSPC);
472
473 /* Select the CAM data page. */
474 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
475 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
476
477 /* Set the filter entry we want to update and enable writing. */
478 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
479
480 /* Write the address to the CAM registers */
481 for (i = 0; i < ETHER_ADDR_LEN; i++)
482 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
483
484 /* Issue a write command. */
485 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
486
487 /* Wake for it to clear. */
488 for (i = 0; i < VGE_TIMEOUT; i++) {
489 DELAY(1);
490 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
491 break;
492 }
493
494 if (i == VGE_TIMEOUT) {
495 printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
496 error = EIO;
497 goto fail;
498 }
499
500 /* Select the CAM mask page. */
501 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
502 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
503
504 /* Set the mask bit that enables this filter. */
505 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
506 1<<(sc->vge_camidx & 7));
507
508 sc->vge_camidx++;
509
510 fail:
511 /* Turn off access to CAM. */
512 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
513 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
515
516 return (error);
517 }
518
519 /*
520 * Program the multicast filter. We use the 64-entry CAM filter
521 * for perfect filtering. If there's more than 64 multicast addresses,
522 * we use the hash filter insted.
523 */
524 static void
525 vge_setmulti(sc)
526 struct vge_softc *sc;
527 {
528 struct ifnet *ifp;
529 int error = 0;
530 u_int32_t h, hashes[2] = { 0, 0 };
531 struct ether_multi *enm;
532 struct ether_multistep step;
533
534 ifp = &sc->sc_ethercom.ec_if;
535
536 /* First, zot all the multicast entries. */
537 vge_cam_clear(sc);
538 CSR_WRITE_4(sc, VGE_MAR0, 0);
539 CSR_WRITE_4(sc, VGE_MAR1, 0);
540
541 /*
542 * If the user wants allmulti or promisc mode, enable reception
543 * of all multicast frames.
544 */
545 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
546 allmulti:
547 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
548 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
549 return;
550 }
551
552 /* Now program new ones */
553 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
554 while(enm != NULL) {
555 /*
556 * If multicast range, fall back to ALLMULTI.
557 */
558 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
559 ETHER_ADDR_LEN) != 0)
560 goto allmulti;
561
562 error = vge_cam_set(sc,
563 LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
564 if (error)
565 break;
566
567 ETHER_NEXT_MULTI(step, enm);
568 }
569
570 /* If there were too many addresses, use the hash filter. */
571 if (error) {
572 vge_cam_clear(sc);
573
574 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
575 while(enm != NULL) {
576 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
577 enm->enm_addrlo), ETHER_ADDR_LEN) >> 26;
578 if (h < 32)
579 hashes[0] |= (1 << h);
580 else
581 hashes[1] |= (1 << (h - 32));
582 }
583
584 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
585 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
586 }
587
588 return;
589 }
590
591 static void
592 vge_reset(sc)
593 struct vge_softc *sc;
594 {
595 register int i;
596
597 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
598
599 for (i = 0; i < VGE_TIMEOUT; i++) {
600 DELAY(5);
601 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
602 break;
603 }
604
605 if (i == VGE_TIMEOUT) {
606 printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
607 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
608 DELAY(2000);
609 }
610
611 DELAY(5000);
612
613 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
614
615 for (i = 0; i < VGE_TIMEOUT; i++) {
616 DELAY(5);
617 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
618 break;
619 }
620
621 if (i == VGE_TIMEOUT) {
622 printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
623 return;
624 }
625
626 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
627
628 return;
629 }
630
631 /*
632 * Probe for a VIA gigabit chip. Check the PCI vendor and device
633 * IDs against our list and return a device name if we find a match.
634 */
635 static int
636 vge_probe(struct device *parent, struct cfdata *match, void *aux)
637 {
638 struct pci_attach_args *pa = aux;
639
640 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
641 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
642 return 1;
643
644 return (0);
645 }
646
647 static int
648 vge_dma_map_rx_desc(sc, idx)
649 struct vge_softc *sc;
650 int idx;
651 {
652 struct vge_rx_desc *d = NULL;
653 bus_dma_segment_t *segs;
654
655 /*
656 * Map the segment array into descriptors.
657 */
658
659 d = &sc->vge_ldata.vge_rx_list[idx];
660
661 /* If this descriptor is still owned by the chip, bail. */
662
663 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
664 printf("%s: tried to map busy descriptor\n",
665 sc->sc_dev.dv_xname);
666 return (EBUSY);
667 }
668
669 segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
670
671 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
672 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
673 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
674 d->vge_sts = 0;
675 d->vge_ctl = 0;
676
677 return (0);
678 }
679
680 static int
681 vge_dma_map_tx_desc(sc, m0, idx, flags)
682 struct vge_softc *sc;
683 struct mbuf *m0;
684 int idx, flags;
685 {
686 struct vge_tx_desc *d = NULL;
687 struct vge_tx_frag *f;
688 int i = 0;
689 bus_dma_segment_t *segs;
690 size_t sz;
691 bus_dmamap_t map = sc->vge_ldata.vge_tx_dmamap[idx];
692
693 /* Map the segment array into descriptors. */
694
695 d = &sc->vge_ldata.vge_tx_list[idx];
696
697 /* If this descriptor is still owned by the chip, bail. */
698
699 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN)
700 return (EBUSY);
701
702 segs = map->dm_segs;
703 for (i = 0; i < map->dm_nsegs; i++) {
704 f = &d->vge_frag[i];
705 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
706 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
707 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
708 }
709
710 /* Argh. This chip does not autopad short frames */
711
712 sz = m0->m_pkthdr.len;
713 if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
714 f = &d->vge_frag[i];
715 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
716 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
717 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
718 sz = VGE_MIN_FRAMELEN;
719 i++;
720 }
721
722 /*
723 * When telling the chip how many segments there are, we
724 * must use nsegs + 1 instead of just nsegs. Darned if I
725 * know why.
726 */
727 i++;
728
729 d->vge_sts = sz << 16;
730 d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
731
732 if (sz > ETHERMTU + ETHER_HDR_LEN)
733 d->vge_ctl |= VGE_TDCTL_JUMBO;
734
735 return (0);
736 }
737
738 static int
739 vge_allocmem(sc)
740 struct vge_softc *sc;
741 {
742 int error;
743 int nseg;
744 int i;
745 bus_dma_segment_t seg;
746
747 /*
748 * Allocate map for TX descriptor list.
749 */
750 error = bus_dmamap_create(sc->vge_dmat,
751 round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
752 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
753 &sc->vge_ldata.vge_tx_list_map);
754 if (error) {
755 printf("%s: could not allocate TX dma list map\n",
756 sc->sc_dev.dv_xname);
757 return (ENOMEM);
758 }
759
760 /*
761 * Allocate memory for TX descriptor list.
762 */
763
764 error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
765 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
766 if (error) {
767 printf("%s: could not allocate TX ring dma memory\n",
768 sc->sc_dev.dv_xname);
769 return (ENOMEM);
770 }
771
772 /* Map the memory to kernel VA space */
773
774 error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
775 (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
776 if (error) {
777 printf("%s: could not map TX ring dma memory\n",
778 sc->sc_dev.dv_xname);
779 return (ENOMEM);
780 }
781
782 /* Load the map for the TX ring. */
783 error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
784 sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
785 if (error) {
786 printf("%s: could not load TX ring dma memory\n",
787 sc->sc_dev.dv_xname);
788 return (ENOMEM);
789 }
790
791 sc->vge_ldata.vge_tx_list_addr =
792 sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
793
794 /* Create DMA maps for TX buffers */
795
796 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
797 error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
798 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
799 BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
800 &sc->vge_ldata.vge_tx_dmamap[i]);
801 if (error) {
802 printf("%s: can't create DMA map for TX\n",
803 sc->sc_dev.dv_xname);
804 return (ENOMEM);
805 }
806 }
807
808 /*
809 * Allocate map for RX descriptor list.
810 */
811 error = bus_dmamap_create(sc->vge_dmat,
812 round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
813 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
814 &sc->vge_ldata.vge_rx_list_map);
815 if (error) {
816 printf("%s: could not allocate RX dma list map\n",
817 sc->sc_dev.dv_xname);
818 return (ENOMEM);
819 }
820
821 /* Allocate DMA'able memory for the RX ring */
822
823 error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
824 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
825 if (error)
826 return (ENOMEM);
827
828 /* Map the memory to kernel VA space */
829
830 error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
831 (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
832 if (error)
833 return (ENOMEM);
834
835 /* Load the map for the RX ring. */
836 error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
837 sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
838 if (error) {
839 printf("%s: could not load RX ring dma memory\n",
840 sc->sc_dev.dv_xname);
841 return (ENOMEM);
842 }
843
844 sc->vge_ldata.vge_rx_list_addr =
845 sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
846
847 /* Create DMA maps for RX buffers */
848
849 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
850 error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
851 1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
852 &sc->vge_ldata.vge_rx_dmamap[i]);
853 if (error) {
854 printf("%s: can't create DMA map for RX\n",
855 sc->sc_dev.dv_xname);
856 return (ENOMEM);
857 }
858 }
859
860 return (0);
861 }
862
863 /*
864 * Attach the interface. Allocate softc structures, do ifmedia
865 * setup and ethernet/BPF attach.
866 */
867 static void
868 vge_attach(struct device *parent, struct device *self, void *aux)
869 {
870 u_char eaddr[ETHER_ADDR_LEN];
871 struct vge_softc *sc = (struct vge_softc *)self;
872 struct ifnet *ifp;
873 int error = 0;
874 struct pci_attach_args *pa = aux;
875 pci_chipset_tag_t pc = pa->pa_pc;
876 const char *intrstr;
877 pci_intr_handle_t ih;
878
879 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
880 PCI_REVISION(pa->pa_class));
881
882 /* Make sure bus-mastering is enabled */
883 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
884 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
885 PCI_COMMAND_MASTER_ENABLE);
886
887 /*
888 * Map control/status registers.
889 */
890 if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
891 PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
892 &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
893 aprint_error("%s: couldn't map memory\n",
894 sc->sc_dev.dv_xname);
895 return;
896 }
897
898 /*
899 * Map and establish our interrupt.
900 */
901 if (pci_intr_map(pa, &ih)) {
902 aprint_error("%s: unable to map interrupt\n",
903 sc->sc_dev.dv_xname);
904 return;
905 }
906 intrstr = pci_intr_string(pc, ih);
907 sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
908 if (sc->vge_intrhand == NULL) {
909 printf("%s: unable to establish interrupt",
910 sc->sc_dev.dv_xname);
911 if (intrstr != NULL)
912 printf(" at %s", intrstr);
913 printf("\n");
914 return;
915 }
916 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
917
918 /* Reset the adapter. */
919 vge_reset(sc);
920
921 /*
922 * Get station address from the EEPROM.
923 */
924 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
925 bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
926
927 printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
928 ether_sprintf(eaddr));
929
930 /*
931 * Use the 32bit tag. Hardware supports 48bit physical addresses,
932 * but we don't use that for now.
933 */
934 sc->vge_dmat = pa->pa_dmat;
935
936 error = vge_allocmem(sc);
937
938 if (error) {
939 printf("allocmem err %d\n", error);
940 return;
941 }
942
943 ifp = &sc->sc_ethercom.ec_if;
944 ifp->if_softc = sc;
945 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
946 ifp->if_mtu = ETHERMTU;
947 ifp->if_baudrate = IF_Gbps(1);
948 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
949 ifp->if_ioctl = vge_ioctl;
950 ifp->if_start = vge_start;
951
952 /*
953 * We can support 802.1Q VLAN-sized frames and jumbo
954 * Ethernet frames.
955 */
956 sc->sc_ethercom.ec_capabilities |=
957 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
958 ETHERCAP_VLAN_HWTAGGING;
959
960 /*
961 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
962 */
963 ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
964 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
965
966 #ifdef DEVICE_POLLING
967 #ifdef IFCAP_POLLING
968 ifp->if_capabilities |= IFCAP_POLLING;
969 #endif
970 #endif
971 ifp->if_watchdog = vge_watchdog;
972 ifp->if_init = vge_init;
973 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
974
975 /*
976 * Initialize our media structures and probe the MII.
977 */
978 sc->sc_mii.mii_ifp = ifp;
979 sc->sc_mii.mii_readreg = vge_miibus_readreg;
980 sc->sc_mii.mii_writereg = vge_miibus_writereg;
981 sc->sc_mii.mii_statchg = vge_miibus_statchg;
982 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
983 vge_ifmedia_sts);
984 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
985 MII_OFFSET_ANY, MIIF_DOPAUSE);
986 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
987 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
988 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
989 } else
990 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
991
992 /*
993 * Attach the interface.
994 */
995 if_attach(ifp);
996 ether_ifattach(ifp, eaddr);
997
998 callout_init(&sc->vge_timeout);
999 callout_setfunc(&sc->vge_timeout, vge_tick, sc);
1000
1001 /*
1002 * Make sure the interface is shutdown during reboot.
1003 */
1004 if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1005 printf("%s: WARNING: unable to establish shutdown hook\n",
1006 sc->sc_dev.dv_xname);
1007 }
1008 }
1009
1010 static int
1011 vge_newbuf(sc, idx, m)
1012 struct vge_softc *sc;
1013 int idx;
1014 struct mbuf *m;
1015 {
1016 struct mbuf *n = NULL;
1017 int i, error;
1018
1019 if (m == NULL) {
1020 n = m_gethdr(M_DONTWAIT, MT_DATA);
1021 if (n == NULL)
1022 return (ENOBUFS);
1023
1024 m_clget(n, M_DONTWAIT);
1025 if ((n->m_flags & M_EXT) == 0) {
1026 m_freem(n);
1027 return (ENOBUFS);
1028 }
1029
1030 m = n;
1031 } else
1032 m->m_data = m->m_ext.ext_buf;
1033
1034
1035 #ifdef VGE_FIXUP_RX
1036 /*
1037 * This is part of an evil trick to deal with non-x86 platforms.
1038 * The VIA chip requires RX buffers to be aligned on 32-bit
1039 * boundaries, but that will hose non-x86 machines. To get around
1040 * this, we leave some empty space at the start of each buffer
1041 * and for non-x86 hosts, we copy the buffer back two bytes
1042 * to achieve word alignment. This is slightly more efficient
1043 * than allocating a new buffer, copying the contents, and
1044 * discarding the old buffer.
1045 */
1046 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1047 m_adj(m, VGE_ETHER_ALIGN);
1048 #else
1049 m->m_len = m->m_pkthdr.len = MCLBYTES;
1050 #endif
1051
1052 error = bus_dmamap_load_mbuf(sc->vge_dmat,
1053 sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1054 if (error || vge_dma_map_rx_desc(sc, idx)) {
1055 if (n != NULL)
1056 m_freem(n);
1057 return (ENOMEM);
1058 }
1059
1060 /*
1061 * Note: the manual fails to document the fact that for
1062 * proper opration, the driver needs to replentish the RX
1063 * DMA ring 4 descriptors at a time (rather than one at a
1064 * time, like most chips). We can allocate the new buffers
1065 * but we should not set the OWN bits until we're ready
1066 * to hand back 4 of them in one shot.
1067 */
1068
1069 #define VGE_RXCHUNK 4
1070 sc->vge_rx_consumed++;
1071 if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1072 for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1073 sc->vge_ldata.vge_rx_list[i].vge_sts |=
1074 htole32(VGE_RDSTS_OWN);
1075 sc->vge_rx_consumed = 0;
1076 }
1077
1078 sc->vge_ldata.vge_rx_mbuf[idx] = m;
1079
1080 bus_dmamap_sync(sc->vge_dmat,
1081 sc->vge_ldata.vge_rx_dmamap[idx],
1082 0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1083 BUS_DMASYNC_PREREAD);
1084
1085 return (0);
1086 }
1087
1088 static int
1089 vge_tx_list_init(sc)
1090 struct vge_softc *sc;
1091 {
1092 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1093 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1094 (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1095
1096 bus_dmamap_sync(sc->vge_dmat,
1097 sc->vge_ldata.vge_tx_list_map,
1098 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1099 BUS_DMASYNC_PREWRITE);
1100
1101 sc->vge_ldata.vge_tx_prodidx = 0;
1102 sc->vge_ldata.vge_tx_considx = 0;
1103 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1104
1105 return (0);
1106 }
1107
1108 static int
1109 vge_rx_list_init(sc)
1110 struct vge_softc *sc;
1111 {
1112 int i;
1113
1114 bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1115 bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1116 (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1117
1118 sc->vge_rx_consumed = 0;
1119
1120 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1121 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1122 return (ENOBUFS);
1123 }
1124
1125 /* Flush the RX descriptors */
1126
1127 bus_dmamap_sync(sc->vge_dmat,
1128 sc->vge_ldata.vge_rx_list_map,
1129 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1130 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1131
1132 sc->vge_ldata.vge_rx_prodidx = 0;
1133 sc->vge_rx_consumed = 0;
1134 sc->vge_head = sc->vge_tail = NULL;
1135
1136 return (0);
1137 }
1138
1139 #ifdef VGE_FIXUP_RX
1140 static __inline void
1141 vge_fixup_rx(m)
1142 struct mbuf *m;
1143 {
1144 int i;
1145 uint16_t *src, *dst;
1146
1147 src = mtod(m, uint16_t *);
1148 dst = src - 1;
1149
1150 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1151 *dst++ = *src++;
1152
1153 m->m_data -= ETHER_ALIGN;
1154
1155 return;
1156 }
1157 #endif
1158
1159 /*
1160 * RX handler. We support the reception of jumbo frames that have
1161 * been fragmented across multiple 2K mbuf cluster buffers.
1162 */
1163 static void
1164 vge_rxeof(sc)
1165 struct vge_softc *sc;
1166 {
1167 struct mbuf *m;
1168 struct ifnet *ifp;
1169 int i, total_len;
1170 int lim = 0;
1171 struct vge_rx_desc *cur_rx;
1172 u_int32_t rxstat, rxctl;
1173
1174 VGE_LOCK_ASSERT(sc);
1175 ifp = &sc->sc_ethercom.ec_if;
1176 i = sc->vge_ldata.vge_rx_prodidx;
1177
1178 /* Invalidate the descriptor memory */
1179
1180 bus_dmamap_sync(sc->vge_dmat,
1181 sc->vge_ldata.vge_rx_list_map,
1182 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1183 BUS_DMASYNC_POSTREAD);
1184
1185 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1186
1187 #ifdef DEVICE_POLLING
1188 if (ifp->if_flags & IFF_POLLING) {
1189 if (sc->rxcycles <= 0)
1190 break;
1191 sc->rxcycles--;
1192 }
1193 #endif /* DEVICE_POLLING */
1194
1195 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1196 m = sc->vge_ldata.vge_rx_mbuf[i];
1197 total_len = VGE_RXBYTES(cur_rx);
1198 rxstat = le32toh(cur_rx->vge_sts);
1199 rxctl = le32toh(cur_rx->vge_ctl);
1200
1201 /* Invalidate the RX mbuf and unload its map */
1202
1203 bus_dmamap_sync(sc->vge_dmat,
1204 sc->vge_ldata.vge_rx_dmamap[i],
1205 0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1206 BUS_DMASYNC_POSTWRITE);
1207 bus_dmamap_unload(sc->vge_dmat,
1208 sc->vge_ldata.vge_rx_dmamap[i]);
1209
1210 /*
1211 * If the 'start of frame' bit is set, this indicates
1212 * either the first fragment in a multi-fragment receive,
1213 * or an intermediate fragment. Either way, we want to
1214 * accumulate the buffers.
1215 */
1216 if (rxstat & VGE_RXPKT_SOF) {
1217 m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1218 if (sc->vge_head == NULL)
1219 sc->vge_head = sc->vge_tail = m;
1220 else {
1221 m->m_flags &= ~M_PKTHDR;
1222 sc->vge_tail->m_next = m;
1223 sc->vge_tail = m;
1224 }
1225 vge_newbuf(sc, i, NULL);
1226 VGE_RX_DESC_INC(i);
1227 continue;
1228 }
1229
1230 /*
1231 * Bad/error frames will have the RXOK bit cleared.
1232 * However, there's one error case we want to allow:
1233 * if a VLAN tagged frame arrives and the chip can't
1234 * match it against the CAM filter, it considers this
1235 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1236 * We don't want to drop the frame though: our VLAN
1237 * filtering is done in software.
1238 */
1239 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1240 && !(rxstat & VGE_RDSTS_CSUMERR)) {
1241 ifp->if_ierrors++;
1242 /*
1243 * If this is part of a multi-fragment packet,
1244 * discard all the pieces.
1245 */
1246 if (sc->vge_head != NULL) {
1247 m_freem(sc->vge_head);
1248 sc->vge_head = sc->vge_tail = NULL;
1249 }
1250 vge_newbuf(sc, i, m);
1251 VGE_RX_DESC_INC(i);
1252 continue;
1253 }
1254
1255 /*
1256 * If allocating a replacement mbuf fails,
1257 * reload the current one.
1258 */
1259
1260 if (vge_newbuf(sc, i, NULL)) {
1261 ifp->if_ierrors++;
1262 if (sc->vge_head != NULL) {
1263 m_freem(sc->vge_head);
1264 sc->vge_head = sc->vge_tail = NULL;
1265 }
1266 vge_newbuf(sc, i, m);
1267 VGE_RX_DESC_INC(i);
1268 continue;
1269 }
1270
1271 VGE_RX_DESC_INC(i);
1272
1273 if (sc->vge_head != NULL) {
1274 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1275 /*
1276 * Special case: if there's 4 bytes or less
1277 * in this buffer, the mbuf can be discarded:
1278 * the last 4 bytes is the CRC, which we don't
1279 * care about anyway.
1280 */
1281 if (m->m_len <= ETHER_CRC_LEN) {
1282 sc->vge_tail->m_len -=
1283 (ETHER_CRC_LEN - m->m_len);
1284 m_freem(m);
1285 } else {
1286 m->m_len -= ETHER_CRC_LEN;
1287 m->m_flags &= ~M_PKTHDR;
1288 sc->vge_tail->m_next = m;
1289 }
1290 m = sc->vge_head;
1291 sc->vge_head = sc->vge_tail = NULL;
1292 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1293 } else
1294 m->m_pkthdr.len = m->m_len =
1295 (total_len - ETHER_CRC_LEN);
1296
1297 #ifdef VGE_FIXUP_RX
1298 vge_fixup_rx(m);
1299 #endif
1300 ifp->if_ipackets++;
1301 m->m_pkthdr.rcvif = ifp;
1302
1303 /* Do RX checksumming if enabled */
1304 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1305
1306 /* Check IP header checksum */
1307 if (rxctl & VGE_RDCTL_IPPKT)
1308 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1309 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1310 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1311 }
1312
1313 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1314 /* Check UDP checksum */
1315 if (rxctl & VGE_RDCTL_TCPPKT)
1316 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1317
1318 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1319 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1320 }
1321
1322 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1323 /* Check UDP checksum */
1324 if (rxctl & VGE_RDCTL_UDPPKT)
1325 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1326
1327 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1328 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1329 }
1330
1331 if (rxstat & VGE_RDSTS_VTAG)
1332 VLAN_INPUT_TAG(ifp, m,
1333 ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1334
1335 #if NBPFILTER > 0
1336 /*
1337 * Handle BPF listeners.
1338 */
1339 if (ifp->if_bpf)
1340 bpf_mtap(ifp->if_bpf, m);
1341 #endif
1342
1343 VGE_UNLOCK(sc);
1344 (*ifp->if_input)(ifp, m);
1345 VGE_LOCK(sc);
1346
1347 lim++;
1348 if (lim == VGE_RX_DESC_CNT)
1349 break;
1350
1351 }
1352
1353 /* Flush the RX DMA ring */
1354
1355 bus_dmamap_sync(sc->vge_dmat,
1356 sc->vge_ldata.vge_rx_list_map,
1357 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1358 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1359
1360 sc->vge_ldata.vge_rx_prodidx = i;
1361 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1362
1363
1364 return;
1365 }
1366
1367 static void
1368 vge_txeof(sc)
1369 struct vge_softc *sc;
1370 {
1371 struct ifnet *ifp;
1372 u_int32_t txstat;
1373 int idx;
1374
1375 ifp = &sc->sc_ethercom.ec_if;
1376 idx = sc->vge_ldata.vge_tx_considx;
1377
1378 /* Invalidate the TX descriptor list */
1379
1380 bus_dmamap_sync(sc->vge_dmat,
1381 sc->vge_ldata.vge_tx_list_map,
1382 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1383 BUS_DMASYNC_POSTREAD);
1384
1385 while (idx != sc->vge_ldata.vge_tx_prodidx) {
1386
1387 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1388 if (txstat & VGE_TDSTS_OWN)
1389 break;
1390
1391 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1392 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1393 bus_dmamap_unload(sc->vge_dmat,
1394 sc->vge_ldata.vge_tx_dmamap[idx]);
1395 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1396 ifp->if_collisions++;
1397 if (txstat & VGE_TDSTS_TXERR)
1398 ifp->if_oerrors++;
1399 else
1400 ifp->if_opackets++;
1401
1402 sc->vge_ldata.vge_tx_free++;
1403 VGE_TX_DESC_INC(idx);
1404 }
1405
1406 /* No changes made to the TX ring, so no flush needed */
1407
1408 if (idx != sc->vge_ldata.vge_tx_considx) {
1409 sc->vge_ldata.vge_tx_considx = idx;
1410 ifp->if_flags &= ~IFF_OACTIVE;
1411 ifp->if_timer = 0;
1412 }
1413
1414 /*
1415 * If not all descriptors have been released reaped yet,
1416 * reload the timer so that we will eventually get another
1417 * interrupt that will cause us to re-enter this routine.
1418 * This is done in case the transmitter has gone idle.
1419 */
1420 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1421 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1422 }
1423
1424 return;
1425 }
1426
1427 static void
1428 vge_tick(xsc)
1429 void *xsc;
1430 {
1431 struct vge_softc *sc = xsc;
1432 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433 struct mii_data *mii = &sc->sc_mii;
1434 int s;
1435
1436 s = splnet();
1437
1438 VGE_LOCK(sc);
1439
1440 callout_schedule(&sc->vge_timeout, hz);
1441
1442 mii_tick(mii);
1443 if (sc->vge_link) {
1444 if (!(mii->mii_media_status & IFM_ACTIVE))
1445 sc->vge_link = 0;
1446 } else {
1447 if (mii->mii_media_status & IFM_ACTIVE &&
1448 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1449 sc->vge_link = 1;
1450 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1451 vge_start(ifp);
1452 }
1453 }
1454
1455 VGE_UNLOCK(sc);
1456
1457 splx(s);
1458 }
1459
1460 #ifdef DEVICE_POLLING
1461 static void
1462 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1463 {
1464 struct vge_softc *sc = ifp->if_softc;
1465
1466 VGE_LOCK(sc);
1467 #ifdef IFCAP_POLLING
1468 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1469 ether_poll_deregister(ifp);
1470 cmd = POLL_DEREGISTER;
1471 }
1472 #endif
1473 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1474 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1475 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1476 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1477 goto done;
1478 }
1479
1480 sc->rxcycles = count;
1481 vge_rxeof(sc);
1482 vge_txeof(sc);
1483
1484 #if __FreeBSD_version < 502114
1485 if (ifp->if_snd.ifq_head != NULL)
1486 #else
1487 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1488 #endif
1489 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1490
1491 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1492 u_int32_t status;
1493 status = CSR_READ_4(sc, VGE_ISR);
1494 if (status == 0xFFFFFFFF)
1495 goto done;
1496 if (status)
1497 CSR_WRITE_4(sc, VGE_ISR, status);
1498
1499 /*
1500 * XXX check behaviour on receiver stalls.
1501 */
1502
1503 if (status & VGE_ISR_TXDMA_STALL ||
1504 status & VGE_ISR_RXDMA_STALL)
1505 vge_init(sc);
1506
1507 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1508 vge_rxeof(sc);
1509 ifp->if_ierrors++;
1510 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1511 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1512 }
1513 }
1514 done:
1515 VGE_UNLOCK(sc);
1516 }
1517 #endif /* DEVICE_POLLING */
1518
1519 static int
1520 vge_intr(arg)
1521 void *arg;
1522 {
1523 struct vge_softc *sc = arg;
1524 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1525 u_int32_t status;
1526 int claim = 0;
1527
1528 if (sc->suspended) {
1529 return claim;
1530 }
1531
1532 VGE_LOCK(sc);
1533
1534 if (!(ifp->if_flags & IFF_UP)) {
1535 VGE_UNLOCK(sc);
1536 return claim;
1537 }
1538
1539 #ifdef DEVICE_POLLING
1540 if (ifp->if_flags & IFF_POLLING)
1541 goto done;
1542 if (
1543 #ifdef IFCAP_POLLING
1544 (ifp->if_capenable & IFCAP_POLLING) &&
1545 #endif
1546 ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1547 CSR_WRITE_4(sc, VGE_IMR, 0);
1548 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1549 vge_poll(ifp, 0, 1);
1550 goto done;
1551 }
1552
1553 #endif /* DEVICE_POLLING */
1554
1555 /* Disable interrupts */
1556 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1557
1558 for (;;) {
1559
1560 status = CSR_READ_4(sc, VGE_ISR);
1561 /* If the card has gone away the read returns 0xffff. */
1562 if (status == 0xFFFFFFFF)
1563 break;
1564
1565 if (status) {
1566 claim = 1;
1567 CSR_WRITE_4(sc, VGE_ISR, status);
1568 }
1569
1570 if ((status & VGE_INTRS) == 0)
1571 break;
1572
1573 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1574 vge_rxeof(sc);
1575
1576 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1577 vge_rxeof(sc);
1578 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1579 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1580 }
1581
1582 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1583 vge_txeof(sc);
1584
1585 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1586 vge_init(ifp);
1587
1588 if (status & VGE_ISR_LINKSTS)
1589 vge_tick(sc);
1590 }
1591
1592 /* Re-enable interrupts */
1593 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1594
1595 #ifdef DEVICE_POLLING
1596 done:
1597 #endif
1598 VGE_UNLOCK(sc);
1599
1600 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1601 vge_start(ifp);
1602
1603 return claim;
1604 }
1605
1606 static int
1607 vge_encap(sc, m_head, idx)
1608 struct vge_softc *sc;
1609 struct mbuf *m_head;
1610 int idx;
1611 {
1612 struct mbuf *m_new = NULL;
1613 bus_dmamap_t map;
1614 int error, flags;
1615 struct m_tag *mtag;
1616
1617 if (sc->vge_ldata.vge_tx_free <= 2)
1618 return (EFBIG);
1619
1620 flags = 0;
1621
1622 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1623 flags |= VGE_TDCTL_IPCSUM;
1624 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1625 flags |= VGE_TDCTL_TCPCSUM;
1626 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1627 flags |= VGE_TDCTL_UDPCSUM;
1628
1629 map = sc->vge_ldata.vge_tx_dmamap[idx];
1630 error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1631 m_head, BUS_DMA_NOWAIT);
1632
1633 if ((error && error != EFBIG)
1634 || vge_dma_map_tx_desc(sc, m_head, idx, flags)) {
1635 if (error) {
1636 printf("%s: can't map mbuf (error %d)\n",
1637 sc->sc_dev.dv_xname, error);
1638 }
1639 return (ENOBUFS);
1640 }
1641
1642 /* Too many segments to map, coalesce into a single mbuf */
1643
1644 if (error) {
1645 m_new = m_defrag(m_head, M_DONTWAIT);
1646 if (m_new == NULL)
1647 return (1);
1648 else
1649 m_head = m_new;
1650
1651 error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1652 m_head, BUS_DMA_NOWAIT);
1653 if (error || vge_dma_map_tx_desc(sc, m_head, idx, flags)) {
1654 if (error) {
1655 printf("%s: can't map defrag mbuf (error %d)\n",
1656 sc->sc_dev.dv_xname, error);
1657 }
1658 m_freem(m_head);
1659 return (EFBIG);
1660 }
1661 }
1662
1663 sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1664 sc->vge_ldata.vge_tx_free--;
1665
1666 /*
1667 * Set up hardware VLAN tagging.
1668 */
1669
1670 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1671 if (mtag != NULL)
1672 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1673 htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1674
1675 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1676
1677 return (0);
1678 }
1679
1680 /*
1681 * Main transmit routine.
1682 */
1683
1684 static void
1685 vge_start(ifp)
1686 struct ifnet *ifp;
1687 {
1688 struct vge_softc *sc;
1689 struct mbuf *m_head = NULL;
1690 int idx, pidx = 0;
1691
1692 sc = ifp->if_softc;
1693 VGE_LOCK(sc);
1694
1695 if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1696 VGE_UNLOCK(sc);
1697 return;
1698 }
1699
1700 #if __FreeBSD_version < 502114
1701 if (ifp->if_snd.ifq_head == NULL) {
1702 #else
1703 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1704 #endif
1705 VGE_UNLOCK(sc);
1706 return;
1707 }
1708
1709 idx = sc->vge_ldata.vge_tx_prodidx;
1710
1711 pidx = idx - 1;
1712 if (pidx < 0)
1713 pidx = VGE_TX_DESC_CNT - 1;
1714
1715
1716 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1717 #if __FreeBSD_version < 502114
1718 IF_DEQUEUE(&ifp->if_snd, m_head);
1719 #else
1720 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1721 #endif
1722 if (m_head == NULL)
1723 break;
1724
1725 if (vge_encap(sc, m_head, idx)) {
1726 #if __FreeBSD_version >= 502114
1727 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1728 #else
1729 IF_PREPEND(&ifp->if_snd, m_head);
1730 #endif
1731 ifp->if_flags |= IFF_OACTIVE;
1732 break;
1733 }
1734
1735 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1736 htole16(VGE_TXDESC_Q);
1737
1738 pidx = idx;
1739 VGE_TX_DESC_INC(idx);
1740
1741 /*
1742 * If there's a BPF listener, bounce a copy of this frame
1743 * to him.
1744 */
1745 #if NBPFILTER > 0
1746 if (ifp->if_bpf)
1747 bpf_mtap(ifp->if_bpf, m_head);
1748 #endif
1749 }
1750
1751 if (idx == sc->vge_ldata.vge_tx_prodidx) {
1752 VGE_UNLOCK(sc);
1753 return;
1754 }
1755
1756 /* Flush the TX descriptors */
1757
1758 bus_dmamap_sync(sc->vge_dmat,
1759 sc->vge_ldata.vge_tx_list_map,
1760 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1761 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1762
1763 /* Issue a transmit command. */
1764 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1765
1766 sc->vge_ldata.vge_tx_prodidx = idx;
1767
1768 /*
1769 * Use the countdown timer for interrupt moderation.
1770 * 'TX done' interrupts are disabled. Instead, we reset the
1771 * countdown timer, which will begin counting until it hits
1772 * the value in the SSTIMER register, and then trigger an
1773 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1774 * the timer count is reloaded. Only when the transmitter
1775 * is idle will the timer hit 0 and an interrupt fire.
1776 */
1777 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1778
1779 VGE_UNLOCK(sc);
1780
1781 /*
1782 * Set a timeout in case the chip goes out to lunch.
1783 */
1784 ifp->if_timer = 5;
1785
1786 return;
1787 }
1788
1789 static int
1790 vge_init(ifp)
1791 struct ifnet *ifp;
1792 {
1793 struct vge_softc *sc = ifp->if_softc;
1794 struct mii_data *mii = &sc->sc_mii;
1795 int i;
1796
1797 VGE_LOCK(sc);
1798
1799 /*
1800 * Cancel pending I/O and free all RX/TX buffers.
1801 */
1802 vge_stop(sc);
1803 vge_reset(sc);
1804
1805 /*
1806 * Initialize the RX and TX descriptors and mbufs.
1807 */
1808
1809 vge_rx_list_init(sc);
1810 vge_tx_list_init(sc);
1811
1812 /* Set our station address */
1813 for (i = 0; i < ETHER_ADDR_LEN; i++)
1814 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1815
1816 /*
1817 * Set receive FIFO threshold. Also allow transmission and
1818 * reception of VLAN tagged frames.
1819 */
1820 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1821 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1822
1823 /* Set DMA burst length */
1824 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1825 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1826
1827 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1828
1829 /* Set collision backoff algorithm */
1830 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1831 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1832 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1833
1834 /* Disable LPSEL field in priority resolution */
1835 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1836
1837 /*
1838 * Load the addresses of the DMA queues into the chip.
1839 * Note that we only use one transmit queue.
1840 */
1841
1842 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1843 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1844 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1845
1846 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1847 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1848 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1849 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1850
1851 /* Enable and wake up the RX descriptor queue */
1852 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1853 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1854
1855 /* Enable the TX descriptor queue */
1856 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1857
1858 /* Set up the receive filter -- allow large frames for VLANs. */
1859 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1860
1861 /* If we want promiscuous mode, set the allframes bit. */
1862 if (ifp->if_flags & IFF_PROMISC) {
1863 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1864 }
1865
1866 /* Set capture broadcast bit to capture broadcast frames. */
1867 if (ifp->if_flags & IFF_BROADCAST) {
1868 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1869 }
1870
1871 /* Set multicast bit to capture multicast frames. */
1872 if (ifp->if_flags & IFF_MULTICAST) {
1873 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1874 }
1875
1876 /* Init the cam filter. */
1877 vge_cam_clear(sc);
1878
1879 /* Init the multicast filter. */
1880 vge_setmulti(sc);
1881
1882 /* Enable flow control */
1883
1884 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1885
1886 /* Enable jumbo frame reception (if desired) */
1887
1888 /* Start the MAC. */
1889 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1890 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1891 CSR_WRITE_1(sc, VGE_CRS0,
1892 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1893
1894 /*
1895 * Configure one-shot timer for microsecond
1896 * resulution and load it for 500 usecs.
1897 */
1898 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1899 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1900
1901 /*
1902 * Configure interrupt moderation for receive. Enable
1903 * the holdoff counter and load it, and set the RX
1904 * suppression count to the number of descriptors we
1905 * want to allow before triggering an interrupt.
1906 * The holdoff timer is in units of 20 usecs.
1907 */
1908
1909 #ifdef notyet
1910 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1911 /* Select the interrupt holdoff timer page. */
1912 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1913 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1914 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1915
1916 /* Enable use of the holdoff timer. */
1917 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1918 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1919
1920 /* Select the RX suppression threshold page. */
1921 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1922 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1923 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1924
1925 /* Restore the page select bits. */
1926 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1927 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1928 #endif
1929
1930 #ifdef DEVICE_POLLING
1931 /*
1932 * Disable interrupts if we are polling.
1933 */
1934 if (ifp->if_flags & IFF_POLLING) {
1935 CSR_WRITE_4(sc, VGE_IMR, 0);
1936 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1937 } else /* otherwise ... */
1938 #endif /* DEVICE_POLLING */
1939 {
1940 /*
1941 * Enable interrupts.
1942 */
1943 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1944 CSR_WRITE_4(sc, VGE_ISR, 0);
1945 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1946 }
1947
1948 mii_mediachg(mii);
1949
1950 ifp->if_flags |= IFF_RUNNING;
1951 ifp->if_flags &= ~IFF_OACTIVE;
1952
1953 sc->vge_if_flags = 0;
1954 sc->vge_link = 0;
1955
1956 VGE_UNLOCK(sc);
1957
1958 callout_schedule(&sc->vge_timeout, hz);
1959
1960 return (0);
1961 }
1962
1963 /*
1964 * Set media options.
1965 */
1966 static int
1967 vge_ifmedia_upd(ifp)
1968 struct ifnet *ifp;
1969 {
1970 struct vge_softc *sc = ifp->if_softc;
1971 struct mii_data *mii = &sc->sc_mii;
1972
1973 mii_mediachg(mii);
1974
1975 return (0);
1976 }
1977
1978 /*
1979 * Report current media status.
1980 */
1981 static void
1982 vge_ifmedia_sts(ifp, ifmr)
1983 struct ifnet *ifp;
1984 struct ifmediareq *ifmr;
1985 {
1986 struct vge_softc *sc = ifp->if_softc;
1987 struct mii_data *mii = &sc->sc_mii;
1988
1989 mii_pollstat(mii);
1990 ifmr->ifm_active = mii->mii_media_active;
1991 ifmr->ifm_status = mii->mii_media_status;
1992
1993 return;
1994 }
1995
1996 static void
1997 vge_miibus_statchg(self)
1998 struct device *self;
1999 {
2000 struct vge_softc *sc = (struct vge_softc *) self;
2001 struct mii_data *mii = &sc->sc_mii;
2002 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
2003
2004 /*
2005 * If the user manually selects a media mode, we need to turn
2006 * on the forced MAC mode bit in the DIAGCTL register. If the
2007 * user happens to choose a full duplex mode, we also need to
2008 * set the 'force full duplex' bit. This applies only to
2009 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2010 * mode is disabled, and in 1000baseT mode, full duplex is
2011 * always implied, so we turn on the forced mode bit but leave
2012 * the FDX bit cleared.
2013 */
2014
2015 switch (IFM_SUBTYPE(ife->ifm_media)) {
2016 case IFM_AUTO:
2017 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2018 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2019 break;
2020 case IFM_1000_T:
2021 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2022 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2023 break;
2024 case IFM_100_TX:
2025 case IFM_10_T:
2026 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2027 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2028 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2029 } else {
2030 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2031 }
2032 break;
2033 default:
2034 printf("%s: unknown media type: %x\n",
2035 sc->sc_dev.dv_xname,
2036 IFM_SUBTYPE(ife->ifm_media));
2037 break;
2038 }
2039
2040 return;
2041 }
2042
2043 static int
2044 vge_ioctl(ifp, command, data)
2045 struct ifnet *ifp;
2046 u_long command;
2047 caddr_t data;
2048 {
2049 struct vge_softc *sc = ifp->if_softc;
2050 struct ifreq *ifr = (struct ifreq *) data;
2051 struct mii_data *mii;
2052 int error = 0;
2053
2054 switch (command) {
2055 case SIOCSIFMTU:
2056 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2057 error = EINVAL;
2058 ifp->if_mtu = ifr->ifr_mtu;
2059 break;
2060 case SIOCSIFFLAGS:
2061 if (ifp->if_flags & IFF_UP) {
2062 if (ifp->if_flags & IFF_RUNNING &&
2063 ifp->if_flags & IFF_PROMISC &&
2064 !(sc->vge_if_flags & IFF_PROMISC)) {
2065 CSR_SETBIT_1(sc, VGE_RXCTL,
2066 VGE_RXCTL_RX_PROMISC);
2067 vge_setmulti(sc);
2068 } else if (ifp->if_flags & IFF_RUNNING &&
2069 !(ifp->if_flags & IFF_PROMISC) &&
2070 sc->vge_if_flags & IFF_PROMISC) {
2071 CSR_CLRBIT_1(sc, VGE_RXCTL,
2072 VGE_RXCTL_RX_PROMISC);
2073 vge_setmulti(sc);
2074 } else
2075 vge_init(ifp);
2076 } else {
2077 if (ifp->if_flags & IFF_RUNNING)
2078 vge_stop(sc);
2079 }
2080 sc->vge_if_flags = ifp->if_flags;
2081 break;
2082 case SIOCADDMULTI:
2083 case SIOCDELMULTI:
2084 vge_setmulti(sc);
2085 break;
2086 case SIOCGIFMEDIA:
2087 case SIOCSIFMEDIA:
2088 mii = &sc->sc_mii;
2089 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2090 break;
2091 default:
2092 error = ether_ioctl(ifp, command, data);
2093 break;
2094 }
2095
2096 return (error);
2097 }
2098
2099 static void
2100 vge_watchdog(ifp)
2101 struct ifnet *ifp;
2102 {
2103 struct vge_softc *sc;
2104
2105 sc = ifp->if_softc;
2106 VGE_LOCK(sc);
2107 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2108 ifp->if_oerrors++;
2109
2110 vge_txeof(sc);
2111 vge_rxeof(sc);
2112
2113 vge_init(ifp);
2114
2115 VGE_UNLOCK(sc);
2116
2117 return;
2118 }
2119
2120 /*
2121 * Stop the adapter and free any mbufs allocated to the
2122 * RX and TX lists.
2123 */
2124 static void
2125 vge_stop(sc)
2126 struct vge_softc *sc;
2127 {
2128 register int i;
2129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2130
2131 VGE_LOCK(sc);
2132 ifp->if_timer = 0;
2133
2134 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2135 #ifdef DEVICE_POLLING
2136 ether_poll_deregister(ifp);
2137 #endif /* DEVICE_POLLING */
2138
2139 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2140 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2141 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2142 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2143 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2144 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2145
2146 if (sc->vge_head != NULL) {
2147 m_freem(sc->vge_head);
2148 sc->vge_head = sc->vge_tail = NULL;
2149 }
2150
2151 /* Free the TX list buffers. */
2152
2153 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2154 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2155 bus_dmamap_unload(sc->vge_dmat,
2156 sc->vge_ldata.vge_tx_dmamap[i]);
2157 m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2158 sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2159 }
2160 }
2161
2162 /* Free the RX list buffers. */
2163
2164 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2165 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2166 bus_dmamap_unload(sc->vge_dmat,
2167 sc->vge_ldata.vge_rx_dmamap[i]);
2168 m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2169 sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2170 }
2171 }
2172
2173 VGE_UNLOCK(sc);
2174
2175 return;
2176 }
2177
2178 #if VGE_POWER_MANAGEMENT
2179 /*
2180 * Device suspend routine. Stop the interface and save some PCI
2181 * settings in case the BIOS doesn't restore them properly on
2182 * resume.
2183 */
2184 static int
2185 vge_suspend(dev)
2186 struct device * dev;
2187 {
2188 struct vge_softc *sc;
2189 int i;
2190
2191 sc = device_get_softc(dev);
2192
2193 vge_stop(sc);
2194
2195 for (i = 0; i < 5; i++)
2196 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2197 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2198 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2199 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2200 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2201
2202 sc->suspended = 1;
2203
2204 return (0);
2205 }
2206
2207 /*
2208 * Device resume routine. Restore some PCI settings in case the BIOS
2209 * doesn't, re-enable busmastering, and restart the interface if
2210 * appropriate.
2211 */
2212 static int
2213 vge_resume(dev)
2214 struct device * dev;
2215 {
2216 struct vge_softc *sc = (struct vge_softc *)dev;
2217 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2218 int i;
2219
2220 /* better way to do this? */
2221 for (i = 0; i < 5; i++)
2222 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2223 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2224 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2225 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2226 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2227
2228 /* reenable busmastering */
2229 pci_enable_busmaster(dev);
2230 pci_enable_io(dev, SYS_RES_MEMORY);
2231
2232 /* reinitialize interface if necessary */
2233 if (ifp->if_flags & IFF_UP)
2234 vge_init(sc);
2235
2236 sc->suspended = 0;
2237
2238 return (0);
2239 }
2240 #endif
2241
2242 /*
2243 * Stop all chip I/O so that the kernel's probe routines don't
2244 * get confused by errant DMAs when rebooting.
2245 */
2246 static void
2247 vge_shutdown(arg)
2248 void *arg;
2249 {
2250 struct vge_softc *sc = (struct vge_softc *)arg;
2251
2252 vge_stop(sc);
2253 }
2254