Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.20
      1 /* $NetBSD: if_vge.c,v 1.20 2006/10/21 16:26:35 tsutsui Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.20 2006/10/21 16:26:35 tsutsui Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 #include <dev/pci/if_vgevar.h>
    117 
    118 static int vge_probe(struct device *, struct cfdata *, void *);
    119 static void vge_attach(struct device *, struct device *, void *);
    120 
    121 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    122 
    123 static int vge_allocmem(struct vge_softc *);
    124 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    125 static int vge_rx_list_init(struct vge_softc *);
    126 static int vge_tx_list_init(struct vge_softc *);
    127 #ifndef __NO_STRICT_ALIGNMENT
    128 static inline void vge_fixup_rx(struct mbuf *);
    129 #endif
    130 static void vge_rxeof(struct vge_softc *);
    131 static void vge_txeof(struct vge_softc *);
    132 static int vge_intr(void *);
    133 static void vge_tick(void *);
    134 static void vge_start(struct ifnet *);
    135 static int vge_ioctl(struct ifnet *, u_long, caddr_t);
    136 static int vge_init(struct ifnet *);
    137 static void vge_stop(struct vge_softc *);
    138 static void vge_watchdog(struct ifnet *);
    139 #if VGE_POWER_MANAGEMENT
    140 static int vge_suspend(struct device *);
    141 static int vge_resume(struct device *);
    142 #endif
    143 static void vge_shutdown(void *);
    144 static int vge_ifmedia_upd(struct ifnet *);
    145 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    146 
    147 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    148 
    149 static void vge_miipoll_start(struct vge_softc *);
    150 static void vge_miipoll_stop(struct vge_softc *);
    151 static int vge_miibus_readreg(struct device *, int, int);
    152 static void vge_miibus_writereg(struct device *, int, int, int);
    153 static void vge_miibus_statchg(struct device *);
    154 
    155 static void vge_cam_clear(struct vge_softc *);
    156 static int vge_cam_set(struct vge_softc *, uint8_t *);
    157 static void vge_setmulti(struct vge_softc *);
    158 static void vge_reset(struct vge_softc *);
    159 
    160 #define VGE_PCI_LOIO             0x10
    161 #define VGE_PCI_LOMEM            0x14
    162 
    163 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    164     vge_probe, vge_attach, NULL, NULL);
    165 
    166 /*
    167  * Defragment mbuf chain contents to be as linear as possible.
    168  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    169  * chain is always freed.
    170  * XXX temporary until there would be generic function doing this.
    171  */
    172 #define m_defrag	vge_m_defrag
    173 struct mbuf * vge_m_defrag(struct mbuf *, int);
    174 
    175 struct mbuf *
    176 vge_m_defrag(struct mbuf *mold, int flags)
    177 {
    178 	struct mbuf *m0, *mn, *n;
    179 	size_t sz = mold->m_pkthdr.len;
    180 
    181 #ifdef DIAGNOSTIC
    182 	if ((mold->m_flags & M_PKTHDR) == 0)
    183 		panic("m_defrag: not a mbuf chain header");
    184 #endif
    185 
    186 	MGETHDR(m0, flags, MT_DATA);
    187 	if (m0 == NULL)
    188 		return NULL;
    189 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    190 	mn = m0;
    191 
    192 	do {
    193 		if (sz > MHLEN) {
    194 			MCLGET(mn, M_DONTWAIT);
    195 			if ((mn->m_flags & M_EXT) == 0) {
    196 				m_freem(m0);
    197 				return NULL;
    198 			}
    199 		}
    200 
    201 		mn->m_len = MIN(sz, MCLBYTES);
    202 
    203 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    204 		     mtod(mn, caddr_t));
    205 
    206 		sz -= mn->m_len;
    207 
    208 		if (sz > 0) {
    209 			/* need more mbufs */
    210 			MGET(n, M_NOWAIT, MT_DATA);
    211 			if (n == NULL) {
    212 				m_freem(m0);
    213 				return NULL;
    214 			}
    215 
    216 			mn->m_next = n;
    217 			mn = n;
    218 		}
    219 	} while (sz > 0);
    220 
    221 	return m0;
    222 }
    223 
    224 /*
    225  * Read a word of data stored in the EEPROM at address 'addr.'
    226  */
    227 static uint16_t
    228 vge_read_eeprom(struct vge_softc *sc, int addr)
    229 {
    230 	int i;
    231 	uint16_t word = 0;
    232 
    233 	/*
    234 	 * Enter EEPROM embedded programming mode. In order to
    235 	 * access the EEPROM at all, we first have to set the
    236 	 * EELOAD bit in the CHIPCFG2 register.
    237 	 */
    238 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    239 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    240 
    241 	/* Select the address of the word we want to read */
    242 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    243 
    244 	/* Issue read command */
    245 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    246 
    247 	/* Wait for the done bit to be set. */
    248 	for (i = 0; i < VGE_TIMEOUT; i++) {
    249 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    250 			break;
    251 	}
    252 
    253 	if (i == VGE_TIMEOUT) {
    254 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
    255 		return 0;
    256 	}
    257 
    258 	/* Read the result */
    259 	word = CSR_READ_2(sc, VGE_EERDDAT);
    260 
    261 	/* Turn off EEPROM access mode. */
    262 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    263 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    264 
    265 	return word;
    266 }
    267 
    268 static void
    269 vge_miipoll_stop(struct vge_softc *sc)
    270 {
    271 	int i;
    272 
    273 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    274 
    275 	for (i = 0; i < VGE_TIMEOUT; i++) {
    276 		DELAY(1);
    277 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    278 			break;
    279 	}
    280 
    281 	if (i == VGE_TIMEOUT) {
    282 		printf("%s: failed to idle MII autopoll\n",
    283 		    sc->sc_dev.dv_xname);
    284 	}
    285 }
    286 
    287 static void
    288 vge_miipoll_start(struct vge_softc *sc)
    289 {
    290 	int i;
    291 
    292 	/* First, make sure we're idle. */
    293 
    294 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    295 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    296 
    297 	for (i = 0; i < VGE_TIMEOUT; i++) {
    298 		DELAY(1);
    299 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    300 			break;
    301 	}
    302 
    303 	if (i == VGE_TIMEOUT) {
    304 		printf("%s: failed to idle MII autopoll\n",
    305 		    sc->sc_dev.dv_xname);
    306 		return;
    307 	}
    308 
    309 	/* Now enable auto poll mode. */
    310 
    311 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    312 
    313 	/* And make sure it started. */
    314 
    315 	for (i = 0; i < VGE_TIMEOUT; i++) {
    316 		DELAY(1);
    317 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    318 			break;
    319 	}
    320 
    321 	if (i == VGE_TIMEOUT) {
    322 		printf("%s: failed to start MII autopoll\n",
    323 		    sc->sc_dev.dv_xname);
    324 	}
    325 }
    326 
    327 static int
    328 vge_miibus_readreg(struct device *dev, int phy, int reg)
    329 {
    330 	struct vge_softc *sc;
    331 	int i;
    332 	uint16_t rval;
    333 
    334 	sc = (void *)dev;
    335 	rval = 0;
    336 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    337 		return 0;
    338 
    339 	VGE_LOCK(sc);
    340 	vge_miipoll_stop(sc);
    341 
    342 	/* Specify the register we want to read. */
    343 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    344 
    345 	/* Issue read command. */
    346 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    347 
    348 	/* Wait for the read command bit to self-clear. */
    349 	for (i = 0; i < VGE_TIMEOUT; i++) {
    350 		DELAY(1);
    351 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    352 			break;
    353 	}
    354 
    355 	if (i == VGE_TIMEOUT)
    356 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    357 	else
    358 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    359 
    360 	vge_miipoll_start(sc);
    361 	VGE_UNLOCK(sc);
    362 
    363 	return rval;
    364 }
    365 
    366 static void
    367 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
    368 {
    369 	struct vge_softc *sc;
    370 	int i;
    371 
    372 	sc = (void *)dev;
    373 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    374 		return;
    375 
    376 	VGE_LOCK(sc);
    377 	vge_miipoll_stop(sc);
    378 
    379 	/* Specify the register we want to write. */
    380 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    381 
    382 	/* Specify the data we want to write. */
    383 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    384 
    385 	/* Issue write command. */
    386 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    387 
    388 	/* Wait for the write command bit to self-clear. */
    389 	for (i = 0; i < VGE_TIMEOUT; i++) {
    390 		DELAY(1);
    391 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    392 			break;
    393 	}
    394 
    395 	if (i == VGE_TIMEOUT) {
    396 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    397 	}
    398 
    399 	vge_miipoll_start(sc);
    400 	VGE_UNLOCK(sc);
    401 }
    402 
    403 static void
    404 vge_cam_clear(struct vge_softc *sc)
    405 {
    406 	int i;
    407 
    408 	/*
    409 	 * Turn off all the mask bits. This tells the chip
    410 	 * that none of the entries in the CAM filter are valid.
    411 	 * desired entries will be enabled as we fill the filter in.
    412 	 */
    413 
    414 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    415 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    416 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    417 	for (i = 0; i < 8; i++)
    418 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    419 
    420 	/* Clear the VLAN filter too. */
    421 
    422 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    423 	for (i = 0; i < 8; i++)
    424 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    425 
    426 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    427 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    428 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    429 
    430 	sc->vge_camidx = 0;
    431 }
    432 
    433 static int
    434 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    435 {
    436 	int i, error;
    437 
    438 	error = 0;
    439 
    440 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
    441 		return ENOSPC;
    442 
    443 	/* Select the CAM data page. */
    444 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    445 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    446 
    447 	/* Set the filter entry we want to update and enable writing. */
    448 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
    449 
    450 	/* Write the address to the CAM registers */
    451 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    452 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    453 
    454 	/* Issue a write command. */
    455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    456 
    457 	/* Wake for it to clear. */
    458 	for (i = 0; i < VGE_TIMEOUT; i++) {
    459 		DELAY(1);
    460 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    461 			break;
    462 	}
    463 
    464 	if (i == VGE_TIMEOUT) {
    465 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
    466 		error = EIO;
    467 		goto fail;
    468 	}
    469 
    470 	/* Select the CAM mask page. */
    471 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    472 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    473 
    474 	/* Set the mask bit that enables this filter. */
    475 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx / 8),
    476 	    1 << (sc->vge_camidx & 7));
    477 
    478 	sc->vge_camidx++;
    479 
    480  fail:
    481 	/* Turn off access to CAM. */
    482 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    483 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    484 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    485 
    486 	return error;
    487 }
    488 
    489 /*
    490  * Program the multicast filter. We use the 64-entry CAM filter
    491  * for perfect filtering. If there's more than 64 multicast addresses,
    492  * we use the hash filter instead.
    493  */
    494 static void
    495 vge_setmulti(struct vge_softc *sc)
    496 {
    497 	struct ifnet *ifp;
    498 	int error;
    499 	uint32_t h, hashes[2] = { 0, 0 };
    500 	struct ether_multi *enm;
    501 	struct ether_multistep step;
    502 
    503 	error = 0;
    504 	ifp = &sc->sc_ethercom.ec_if;
    505 
    506 	/* First, zot all the multicast entries. */
    507 	vge_cam_clear(sc);
    508 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    509 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    510 	ifp->if_flags &= ~IFF_ALLMULTI;
    511 
    512 	/*
    513 	 * If the user wants allmulti or promisc mode, enable reception
    514 	 * of all multicast frames.
    515 	 */
    516 	if (ifp->if_flags & IFF_PROMISC) {
    517  allmulti:
    518 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    519 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    520 		ifp->if_flags |= IFF_ALLMULTI;
    521 		return;
    522 	}
    523 
    524 	/* Now program new ones */
    525 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    526 	while (enm != NULL) {
    527 		/*
    528 		 * If multicast range, fall back to ALLMULTI.
    529 		 */
    530 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    531 				ETHER_ADDR_LEN) != 0)
    532 			goto allmulti;
    533 
    534 		error = vge_cam_set(sc, enm->enm_addrlo);
    535 		if (error)
    536 			break;
    537 
    538 		ETHER_NEXT_MULTI(step, enm);
    539 	}
    540 
    541 	/* If there were too many addresses, use the hash filter. */
    542 	if (error) {
    543 		vge_cam_clear(sc);
    544 
    545 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    546 		while (enm != NULL) {
    547 			/*
    548 			 * If multicast range, fall back to ALLMULTI.
    549 			 */
    550 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    551 					ETHER_ADDR_LEN) != 0)
    552 				goto allmulti;
    553 
    554 			h = ether_crc32_be(enm->enm_addrlo,
    555 			    ETHER_ADDR_LEN) >> 26;
    556 			hashes[h >> 5] |= 1 << (h & 0x1f);
    557 
    558 			ETHER_NEXT_MULTI(step, enm);
    559 		}
    560 
    561 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    562 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    563 	}
    564 }
    565 
    566 static void
    567 vge_reset(struct vge_softc *sc)
    568 {
    569 	int i;
    570 
    571 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    572 
    573 	for (i = 0; i < VGE_TIMEOUT; i++) {
    574 		DELAY(5);
    575 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    576 			break;
    577 	}
    578 
    579 	if (i == VGE_TIMEOUT) {
    580 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
    581 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    582 		DELAY(2000);
    583 	}
    584 
    585 	DELAY(5000);
    586 
    587 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    588 
    589 	for (i = 0; i < VGE_TIMEOUT; i++) {
    590 		DELAY(5);
    591 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    592 			break;
    593 	}
    594 
    595 	if (i == VGE_TIMEOUT) {
    596 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
    597 		return;
    598 	}
    599 
    600 	/*
    601 	 * On some machine, the first read data from EEPROM could be
    602 	 * messed up, so read one dummy data here to avoid the mess.
    603 	 */
    604 	(void)vge_read_eeprom(sc, 0);
    605 
    606 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    607 }
    608 
    609 /*
    610  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    611  * IDs against our list and return a device name if we find a match.
    612  */
    613 static int
    614 vge_probe(struct device *parent __unused, struct cfdata *match __unused,
    615     void *aux)
    616 {
    617 	struct pci_attach_args *pa = aux;
    618 
    619 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    620 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    621 		return 1;
    622 
    623 	return 0;
    624 }
    625 
    626 static int
    627 vge_allocmem(struct vge_softc *sc)
    628 {
    629 	int error;
    630 	int nseg;
    631 	int i;
    632 	bus_dma_segment_t seg;
    633 
    634 	/*
    635 	 * Allocate map for TX descriptor list.
    636 	 */
    637 	error = bus_dmamap_create(sc->vge_dmat,
    638 	    VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 0, BUS_DMA_NOWAIT,
    639 	    &sc->vge_ldata.vge_tx_list_map);
    640 	if (error) {
    641 		printf("%s: could not allocate TX dma list map\n",
    642 		    sc->sc_dev.dv_xname);
    643 		return ENOMEM;
    644 	}
    645 
    646 	/*
    647 	 * Allocate memory for TX descriptor list.
    648 	 */
    649 
    650 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
    651 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    652 	if (error) {
    653 		printf("%s: could not allocate TX ring dma memory\n",
    654 		    sc->sc_dev.dv_xname);
    655 		return ENOMEM;
    656 	}
    657 
    658 	/* Map the memory to kernel VA space */
    659 
    660 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_TX_LIST_SZ,
    661 	     (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
    662 	if (error) {
    663 		printf("%s: could not map TX ring dma memory\n",
    664 		    sc->sc_dev.dv_xname);
    665 		return ENOMEM;
    666 	}
    667 
    668 	/* Load the map for the TX ring. */
    669 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
    670 	    sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    671 	if (error) {
    672 		printf("%s: could not load TX ring dma memory\n",
    673 		    sc->sc_dev.dv_xname);
    674 		return ENOMEM;
    675 	}
    676 
    677 	/* Create DMA maps for TX buffers */
    678 
    679 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
    680 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
    681 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
    682 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    683 		    &sc->vge_ldata.vge_tx_dmamap[i]);
    684 		if (error) {
    685 			printf("%s: can't create DMA map for TX\n",
    686 			    sc->sc_dev.dv_xname);
    687 			return ENOMEM;
    688 		}
    689 	}
    690 
    691 	/*
    692 	 * Allocate map for RX descriptor list.
    693 	 */
    694 	error = bus_dmamap_create(sc->vge_dmat,
    695 	    VGE_RX_LIST_SZ, 1, VGE_RX_LIST_SZ, 0, BUS_DMA_NOWAIT,
    696 	    &sc->vge_ldata.vge_rx_list_map);
    697 	if (error) {
    698 		printf("%s: could not allocate RX dma list map\n",
    699 		    sc->sc_dev.dv_xname);
    700 		return ENOMEM;
    701 	}
    702 
    703 	/* Allocate DMA'able memory for the RX ring */
    704 
    705 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
    706 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    707 	if (error)
    708 		return ENOMEM;
    709 
    710 	/* Map the memory to kernel VA space */
    711 
    712 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, VGE_RX_LIST_SZ,
    713 	     (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
    714 	if (error)
    715 		return ENOMEM;
    716 
    717 	/* Load the map for the RX ring. */
    718 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
    719 	    sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    720 	if (error) {
    721 		printf("%s: could not load RX ring dma memory\n",
    722 		    sc->sc_dev.dv_xname);
    723 		return ENOMEM;
    724 	}
    725 
    726 	/* Create DMA maps for RX buffers */
    727 
    728 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
    729 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
    730 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    731 		    &sc->vge_ldata.vge_rx_dmamap[i]);
    732 		if (error) {
    733 			printf("%s: can't create DMA map for RX\n",
    734 			     sc->sc_dev.dv_xname);
    735 			return ENOMEM;
    736 		}
    737 	}
    738 
    739 	return 0;
    740 }
    741 
    742 /*
    743  * Attach the interface. Allocate softc structures, do ifmedia
    744  * setup and ethernet/BPF attach.
    745  */
    746 static void
    747 vge_attach(struct device *parent __unused, struct device *self, void *aux)
    748 {
    749 	uint8_t	*eaddr;
    750 	struct vge_softc *sc = (struct vge_softc *)self;
    751 	struct ifnet *ifp;
    752 	struct pci_attach_args *pa = aux;
    753 	pci_chipset_tag_t pc = pa->pa_pc;
    754 	const char *intrstr;
    755 	pci_intr_handle_t ih;
    756 	uint16_t val;
    757 
    758 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    759 		PCI_REVISION(pa->pa_class));
    760 
    761 	/* Make sure bus-mastering is enabled */
    762         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    763 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    764 	    PCI_COMMAND_MASTER_ENABLE);
    765 
    766 	/*
    767 	 * Map control/status registers.
    768 	 */
    769 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    770 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL) != 0) {
    771 		aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname);
    772 		return;
    773 	}
    774 
    775         /*
    776          * Map and establish our interrupt.
    777          */
    778 	if (pci_intr_map(pa, &ih)) {
    779 		aprint_error("%s: unable to map interrupt\n",
    780 		    sc->sc_dev.dv_xname);
    781 		return;
    782 	}
    783 	intrstr = pci_intr_string(pc, ih);
    784 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    785 	if (sc->vge_intrhand == NULL) {
    786 		printf("%s: unable to establish interrupt",
    787 		    sc->sc_dev.dv_xname);
    788 		if (intrstr != NULL)
    789 			printf(" at %s", intrstr);
    790 		printf("\n");
    791 		return;
    792 	}
    793 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    794 
    795 	/* Reset the adapter. */
    796 	vge_reset(sc);
    797 
    798 	/*
    799 	 * Get station address from the EEPROM.
    800 	 */
    801 	eaddr = sc->vge_eaddr;
    802 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    803 	eaddr[0] = val & 0xff;
    804 	eaddr[1] = val >> 8;
    805 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    806 	eaddr[2] = val & 0xff;
    807 	eaddr[3] = val >> 8;
    808 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    809 	eaddr[4] = val & 0xff;
    810 	eaddr[5] = val >> 8;
    811 
    812 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    813 	    ether_sprintf(eaddr));
    814 
    815 	/*
    816 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    817 	 * but we don't use that for now.
    818 	 */
    819 	sc->vge_dmat = pa->pa_dmat;
    820 
    821 	if (vge_allocmem(sc))
    822 		return;
    823 
    824 	ifp = &sc->sc_ethercom.ec_if;
    825 	ifp->if_softc = sc;
    826 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    827 	ifp->if_mtu = ETHERMTU;
    828 	ifp->if_baudrate = IF_Gbps(1);
    829 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    830 	ifp->if_ioctl = vge_ioctl;
    831 	ifp->if_start = vge_start;
    832 
    833 	/*
    834 	 * We can support 802.1Q VLAN-sized frames and jumbo
    835 	 * Ethernet frames.
    836 	 */
    837 	sc->sc_ethercom.ec_capabilities |=
    838 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    839 	    ETHERCAP_VLAN_HWTAGGING;
    840 
    841 	/*
    842 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    843 	 */
    844 	ifp->if_capabilities |=
    845 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    846 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    847 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    848 
    849 #ifdef DEVICE_POLLING
    850 #ifdef IFCAP_POLLING
    851 	ifp->if_capabilities |= IFCAP_POLLING;
    852 #endif
    853 #endif
    854 	ifp->if_watchdog = vge_watchdog;
    855 	ifp->if_init = vge_init;
    856 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    857 
    858 	/*
    859 	 * Initialize our media structures and probe the MII.
    860 	 */
    861 	sc->sc_mii.mii_ifp = ifp;
    862 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    863 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    864 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
    865 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
    866 	    vge_ifmedia_sts);
    867 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    868 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    869 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    870 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    871 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    872 	} else
    873 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    874 
    875 	/*
    876 	 * Attach the interface.
    877 	 */
    878 	if_attach(ifp);
    879 	ether_ifattach(ifp, eaddr);
    880 
    881 	callout_init(&sc->vge_timeout);
    882 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
    883 
    884 	/*
    885 	 * Make sure the interface is shutdown during reboot.
    886 	 */
    887 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
    888 		printf("%s: WARNING: unable to establish shutdown hook\n",
    889 		    sc->sc_dev.dv_xname);
    890 	}
    891 }
    892 
    893 static int
    894 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
    895 {
    896 	struct vge_rx_desc *d;
    897 	struct mbuf *m_new;
    898 	bus_dmamap_t map;
    899 	int i;
    900 
    901 	m_new = NULL;
    902 	if (m == NULL) {
    903 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    904 		if (m_new == NULL)
    905 			return ENOBUFS;
    906 
    907 		MCLGET(m_new, M_DONTWAIT);
    908 		if ((m_new->m_flags & M_EXT) == 0) {
    909 			m_freem(m_new);
    910 			return ENOBUFS;
    911 		}
    912 
    913 		m = m_new;
    914 	} else
    915 		m->m_data = m->m_ext.ext_buf;
    916 
    917 
    918 #ifndef __NO_STRICT_ALIGNMENT
    919 	/*
    920 	 * This is part of an evil trick to deal with non-x86 platforms.
    921 	 * The VIA chip requires RX buffers to be aligned on 32-bit
    922 	 * boundaries, but that will hose non-x86 machines. To get around
    923 	 * this, we leave some empty space at the start of each buffer
    924 	 * and for non-x86 hosts, we copy the buffer back two bytes
    925 	 * to achieve word alignment. This is slightly more efficient
    926 	 * than allocating a new buffer, copying the contents, and
    927 	 * discarding the old buffer.
    928 	 */
    929 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
    930 	m->m_data += VGE_ETHER_ALIGN;
    931 #else
    932 	m->m_len = m->m_pkthdr.len = MCLBYTES;
    933 #endif
    934 	map = sc->vge_ldata.vge_rx_dmamap[idx];
    935 
    936 	if (bus_dmamap_load_mbuf(sc->vge_dmat, map, m, BUS_DMA_NOWAIT) != 0)
    937 		goto out;
    938 
    939 	d = &sc->vge_ldata.vge_rx_list[idx];
    940 
    941 	/* If this descriptor is still owned by the chip, bail. */
    942 
    943 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    944 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
    945 		printf("%s: tried to map busy descriptor\n",
    946 		    sc->sc_dev.dv_xname);
    947 		VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
    948 		goto out;
    949 	}
    950 
    951 	d->vge_buflen =
    952 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
    953 	d->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
    954 	d->vge_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
    955 	d->vge_sts = 0;
    956 	d->vge_ctl = 0;
    957 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    958 
    959 	bus_dmamap_sync(sc->vge_dmat,
    960 	    sc->vge_ldata.vge_rx_dmamap[idx],
    961 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
    962 	    BUS_DMASYNC_PREREAD);
    963 
    964 	/*
    965 	 * Note: the manual fails to document the fact that for
    966 	 * proper opration, the driver needs to replentish the RX
    967 	 * DMA ring 4 descriptors at a time (rather than one at a
    968 	 * time, like most chips). We can allocate the new buffers
    969 	 * but we should not set the OWN bits until we're ready
    970 	 * to hand back 4 of them in one shot.
    971 	 */
    972 
    973 #define VGE_RXCHUNK 4
    974 	sc->vge_rx_consumed++;
    975 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
    976 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
    977 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
    978 			    htole32(VGE_RDSTS_OWN);
    979 			VGE_RXDESCSYNC(sc, i,
    980 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    981 		}
    982 		sc->vge_rx_consumed = 0;
    983 	}
    984 
    985 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
    986 
    987 	return 0;
    988  out:
    989 	if (m_new != NULL)
    990 		m_freem(m_new);
    991 	return ENOMEM;
    992 }
    993 
    994 static int
    995 vge_tx_list_init(struct vge_softc *sc)
    996 {
    997 
    998 	memset((char *)sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ);
    999 	bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
   1000 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1001 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1002 
   1003 	memset((char *)&sc->vge_ldata.vge_tx_mbuf, 0,
   1004 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
   1005 
   1006 	sc->vge_ldata.vge_tx_prodidx = 0;
   1007 	sc->vge_ldata.vge_tx_considx = 0;
   1008 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
   1009 
   1010 	return 0;
   1011 }
   1012 
   1013 static int
   1014 vge_rx_list_init(struct vge_softc *sc)
   1015 {
   1016 	int i;
   1017 
   1018 	memset((char *)sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ);
   1019 	memset((char *)&sc->vge_ldata.vge_rx_mbuf, 0,
   1020 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
   1021 
   1022 	sc->vge_rx_consumed = 0;
   1023 
   1024 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   1025 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
   1026 			return (ENOBUFS);
   1027 	}
   1028 
   1029 	sc->vge_ldata.vge_rx_prodidx = 0;
   1030 	sc->vge_rx_consumed = 0;
   1031 	sc->vge_head = sc->vge_tail = NULL;
   1032 
   1033 	return 0;
   1034 }
   1035 
   1036 #ifndef __NO_STRICT_ALIGNMENT
   1037 static inline void
   1038 vge_fixup_rx(struct mbuf *m)
   1039 {
   1040 	int i;
   1041 	uint16_t *src, *dst;
   1042 
   1043 	src = mtod(m, uint16_t *);
   1044 	dst = src - 1;
   1045 
   1046 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1047 		*dst++ = *src++;
   1048 
   1049 	m->m_data -= ETHER_ALIGN;
   1050 }
   1051 #endif
   1052 
   1053 /*
   1054  * RX handler. We support the reception of jumbo frames that have
   1055  * been fragmented across multiple 2K mbuf cluster buffers.
   1056  */
   1057 static void
   1058 vge_rxeof(struct vge_softc *sc)
   1059 {
   1060 	struct mbuf *m;
   1061 	struct ifnet *ifp;
   1062 	int idx, total_len, lim;
   1063 	struct vge_rx_desc *cur_rx;
   1064 	uint32_t rxstat, rxctl;
   1065 
   1066 	VGE_LOCK_ASSERT(sc);
   1067 	ifp = &sc->sc_ethercom.ec_if;
   1068 	idx = sc->vge_ldata.vge_rx_prodidx;
   1069 	lim = 0;
   1070 
   1071 	/* Invalidate the descriptor memory */
   1072 
   1073 	for (;;) {
   1074 		cur_rx = &sc->vge_ldata.vge_rx_list[idx];
   1075 
   1076 		VGE_RXDESCSYNC(sc, idx,
   1077 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1078 		rxstat = le32toh(cur_rx->vge_sts);
   1079 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1080 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1081 			break;
   1082 		}
   1083 
   1084 #ifdef DEVICE_POLLING
   1085 		if (ifp->if_flags & IFF_POLLING) {
   1086 			if (sc->rxcycles <= 0)
   1087 				break;
   1088 			sc->rxcycles--;
   1089 		}
   1090 #endif /* DEVICE_POLLING */
   1091 
   1092 		m = sc->vge_ldata.vge_rx_mbuf[idx];
   1093 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1094 		rxctl = le32toh(cur_rx->vge_ctl);
   1095 
   1096 		/* Invalidate the RX mbuf and unload its map */
   1097 
   1098 		bus_dmamap_sync(sc->vge_dmat,
   1099 		    sc->vge_ldata.vge_rx_dmamap[idx],
   1100 		    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
   1101 		    BUS_DMASYNC_POSTREAD);
   1102 		bus_dmamap_unload(sc->vge_dmat,
   1103 		    sc->vge_ldata.vge_rx_dmamap[idx]);
   1104 
   1105 		/*
   1106 		 * If the 'start of frame' bit is set, this indicates
   1107 		 * either the first fragment in a multi-fragment receive,
   1108 		 * or an intermediate fragment. Either way, we want to
   1109 		 * accumulate the buffers.
   1110 		 */
   1111 		if (rxstat & VGE_RXPKT_SOF) {
   1112 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
   1113 			if (sc->vge_head == NULL)
   1114 				sc->vge_head = sc->vge_tail = m;
   1115 			else {
   1116 				m->m_flags &= ~M_PKTHDR;
   1117 				sc->vge_tail->m_next = m;
   1118 				sc->vge_tail = m;
   1119 			}
   1120 			vge_newbuf(sc, idx, NULL);
   1121 			VGE_RX_DESC_INC(idx);
   1122 			continue;
   1123 		}
   1124 
   1125 		/*
   1126 		 * Bad/error frames will have the RXOK bit cleared.
   1127 		 * However, there's one error case we want to allow:
   1128 		 * if a VLAN tagged frame arrives and the chip can't
   1129 		 * match it against the CAM filter, it considers this
   1130 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1131 		 * We don't want to drop the frame though: our VLAN
   1132 		 * filtering is done in software.
   1133 		 */
   1134 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1135 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1136 			ifp->if_ierrors++;
   1137 			/*
   1138 			 * If this is part of a multi-fragment packet,
   1139 			 * discard all the pieces.
   1140 			 */
   1141 			if (sc->vge_head != NULL) {
   1142 				m_freem(sc->vge_head);
   1143 				sc->vge_head = sc->vge_tail = NULL;
   1144 			}
   1145 			vge_newbuf(sc, idx, m);
   1146 			VGE_RX_DESC_INC(idx);
   1147 			continue;
   1148 		}
   1149 
   1150 		/*
   1151 		 * If allocating a replacement mbuf fails,
   1152 		 * reload the current one.
   1153 		 */
   1154 
   1155 		if (vge_newbuf(sc, idx, NULL)) {
   1156 			ifp->if_ierrors++;
   1157 			if (sc->vge_head != NULL) {
   1158 				m_freem(sc->vge_head);
   1159 				sc->vge_head = sc->vge_tail = NULL;
   1160 			}
   1161 			vge_newbuf(sc, idx, m);
   1162 			VGE_RX_DESC_INC(idx);
   1163 			continue;
   1164 		}
   1165 
   1166 		VGE_RX_DESC_INC(idx);
   1167 
   1168 		if (sc->vge_head != NULL) {
   1169 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
   1170 			/*
   1171 			 * Special case: if there's 4 bytes or less
   1172 			 * in this buffer, the mbuf can be discarded:
   1173 			 * the last 4 bytes is the CRC, which we don't
   1174 			 * care about anyway.
   1175 			 */
   1176 			if (m->m_len <= ETHER_CRC_LEN) {
   1177 				sc->vge_tail->m_len -=
   1178 				    (ETHER_CRC_LEN - m->m_len);
   1179 				m_freem(m);
   1180 			} else {
   1181 				m->m_len -= ETHER_CRC_LEN;
   1182 				m->m_flags &= ~M_PKTHDR;
   1183 				sc->vge_tail->m_next = m;
   1184 			}
   1185 			m = sc->vge_head;
   1186 			sc->vge_head = sc->vge_tail = NULL;
   1187 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1188 		} else
   1189 			m->m_pkthdr.len = m->m_len =
   1190 			    (total_len - ETHER_CRC_LEN);
   1191 
   1192 #ifndef __NO_STRICT_ALIGNMENT
   1193 		vge_fixup_rx(m);
   1194 #endif
   1195 		ifp->if_ipackets++;
   1196 		m->m_pkthdr.rcvif = ifp;
   1197 
   1198 		/* Do RX checksumming if enabled */
   1199 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1200 
   1201 			/* Check IP header checksum */
   1202 			if (rxctl & VGE_RDCTL_IPPKT)
   1203 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1204 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1205 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1206 		}
   1207 
   1208 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1209 			/* Check UDP checksum */
   1210 			if (rxctl & VGE_RDCTL_TCPPKT)
   1211 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1212 
   1213 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1214 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1215 		}
   1216 
   1217 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1218 			/* Check UDP checksum */
   1219 			if (rxctl & VGE_RDCTL_UDPPKT)
   1220 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1221 
   1222 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1223 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1224 		}
   1225 
   1226 		if (rxstat & VGE_RDSTS_VTAG) {
   1227 			/*
   1228 			 * We use bswap16() here because:
   1229 			 * On LE machines, tag is stored in BE as stream data.
   1230 			 * On BE machines, tag is stored in BE as stream data
   1231 			 *  but it was already swapped by le32toh() above.
   1232 			 */
   1233 			VLAN_INPUT_TAG(ifp, m,
   1234 			    bswap16(rxctl & VGE_RDCTL_VLANID), continue);
   1235 		}
   1236 
   1237 #if NBPFILTER > 0
   1238 		/*
   1239 		 * Handle BPF listeners.
   1240 		 */
   1241 		if (ifp->if_bpf)
   1242 			bpf_mtap(ifp->if_bpf, m);
   1243 #endif
   1244 
   1245 		VGE_UNLOCK(sc);
   1246 		(*ifp->if_input)(ifp, m);
   1247 		VGE_LOCK(sc);
   1248 
   1249 		lim++;
   1250 		if (lim == VGE_RX_DESC_CNT)
   1251 			break;
   1252 
   1253 	}
   1254 
   1255 	sc->vge_ldata.vge_rx_prodidx = idx;
   1256 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1257 }
   1258 
   1259 static void
   1260 vge_txeof(struct vge_softc *sc)
   1261 {
   1262 	struct ifnet *ifp;
   1263 	uint32_t txstat;
   1264 	int idx;
   1265 
   1266 	ifp = &sc->sc_ethercom.ec_if;
   1267 	idx = sc->vge_ldata.vge_tx_considx;
   1268 
   1269 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
   1270 		VGE_TXDESCSYNC(sc, idx,
   1271 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1272 
   1273 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
   1274 		if (txstat & VGE_TDSTS_OWN) {
   1275 			VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1276 			break;
   1277 		}
   1278 
   1279 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
   1280 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
   1281 		bus_dmamap_unload(sc->vge_dmat,
   1282 		    sc->vge_ldata.vge_tx_dmamap[idx]);
   1283 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1284 			ifp->if_collisions++;
   1285 		if (txstat & VGE_TDSTS_TXERR)
   1286 			ifp->if_oerrors++;
   1287 		else
   1288 			ifp->if_opackets++;
   1289 
   1290 		sc->vge_ldata.vge_tx_free++;
   1291 		VGE_TX_DESC_INC(idx);
   1292 	}
   1293 
   1294 	/* No changes made to the TX ring, so no flush needed */
   1295 
   1296 	if (idx != sc->vge_ldata.vge_tx_considx) {
   1297 		sc->vge_ldata.vge_tx_considx = idx;
   1298 		ifp->if_flags &= ~IFF_OACTIVE;
   1299 		ifp->if_timer = 0;
   1300 	}
   1301 
   1302 	/*
   1303 	 * If not all descriptors have been released reaped yet,
   1304 	 * reload the timer so that we will eventually get another
   1305 	 * interrupt that will cause us to re-enter this routine.
   1306 	 * This is done in case the transmitter has gone idle.
   1307 	 */
   1308 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
   1309 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1310 	}
   1311 }
   1312 
   1313 static void
   1314 vge_tick(void *xsc)
   1315 {
   1316 	struct vge_softc *sc;
   1317 	struct ifnet *ifp;
   1318 	struct mii_data *mii;
   1319 	int s;
   1320 
   1321 	sc = xsc;
   1322 	ifp = &sc->sc_ethercom.ec_if;
   1323 	mii = &sc->sc_mii;
   1324 
   1325 	s = splnet();
   1326 
   1327 	VGE_LOCK(sc);
   1328 
   1329 	callout_schedule(&sc->vge_timeout, hz);
   1330 
   1331 	mii_tick(mii);
   1332 	if (sc->vge_link) {
   1333 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1334 			sc->vge_link = 0;
   1335 	} else {
   1336 		if (mii->mii_media_status & IFM_ACTIVE &&
   1337 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1338 			sc->vge_link = 1;
   1339 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1340 				vge_start(ifp);
   1341 		}
   1342 	}
   1343 
   1344 	VGE_UNLOCK(sc);
   1345 
   1346 	splx(s);
   1347 }
   1348 
   1349 #ifdef DEVICE_POLLING
   1350 static void
   1351 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1352 {
   1353 	struct vge_softc *sc = ifp->if_softc;
   1354 
   1355 	VGE_LOCK(sc);
   1356 #ifdef IFCAP_POLLING
   1357 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1358 		ether_poll_deregister(ifp);
   1359 		cmd = POLL_DEREGISTER;
   1360 	}
   1361 #endif
   1362 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1363 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1364 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   1365 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1366 		goto done;
   1367 	}
   1368 
   1369 	sc->rxcycles = count;
   1370 	vge_rxeof(sc);
   1371 	vge_txeof(sc);
   1372 
   1373 #if __FreeBSD_version < 502114
   1374 	if (ifp->if_snd.ifq_head != NULL)
   1375 #else
   1376 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
   1377 #endif
   1378 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
   1379 
   1380 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1381 		uint32_t status;
   1382 		status = CSR_READ_4(sc, VGE_ISR);
   1383 		if (status == 0xFFFFFFFF)
   1384 			goto done;
   1385 		if (status)
   1386 			CSR_WRITE_4(sc, VGE_ISR, status);
   1387 
   1388 		/*
   1389 		 * XXX check behaviour on receiver stalls.
   1390 		 */
   1391 
   1392 		if (status & VGE_ISR_TXDMA_STALL ||
   1393 		    status & VGE_ISR_RXDMA_STALL)
   1394 			vge_init(sc);
   1395 
   1396 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1397 			vge_rxeof(sc);
   1398 			ifp->if_ierrors++;
   1399 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1400 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1401 		}
   1402 	}
   1403  done:
   1404 	VGE_UNLOCK(sc);
   1405 }
   1406 #endif /* DEVICE_POLLING */
   1407 
   1408 static int
   1409 vge_intr(void *arg)
   1410 {
   1411 	struct vge_softc *sc;
   1412 	struct ifnet *ifp;
   1413 	uint32_t status;
   1414 	int claim;
   1415 
   1416 	sc = arg;
   1417 	claim = 0;
   1418 	if (sc->suspended) {
   1419 		return claim;
   1420 	}
   1421 
   1422 	ifp = &sc->sc_ethercom.ec_if;
   1423 
   1424 	VGE_LOCK(sc);
   1425 
   1426 	if (!(ifp->if_flags & IFF_UP)) {
   1427 		VGE_UNLOCK(sc);
   1428 		return claim;
   1429 	}
   1430 
   1431 #ifdef DEVICE_POLLING
   1432 	if  (ifp->if_flags & IFF_POLLING)
   1433 		goto done;
   1434 	if (
   1435 #ifdef IFCAP_POLLING
   1436 	    (ifp->if_capenable & IFCAP_POLLING) &&
   1437 #endif
   1438 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
   1439 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1440 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1441 		vge_poll(ifp, 0, 1);
   1442 		goto done;
   1443 	}
   1444 
   1445 #endif /* DEVICE_POLLING */
   1446 
   1447 	/* Disable interrupts */
   1448 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1449 
   1450 	for (;;) {
   1451 
   1452 		status = CSR_READ_4(sc, VGE_ISR);
   1453 		/* If the card has gone away the read returns 0xffff. */
   1454 		if (status == 0xFFFFFFFF)
   1455 			break;
   1456 
   1457 		if (status) {
   1458 			claim = 1;
   1459 			CSR_WRITE_4(sc, VGE_ISR, status);
   1460 		}
   1461 
   1462 		if ((status & VGE_INTRS) == 0)
   1463 			break;
   1464 
   1465 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1466 			vge_rxeof(sc);
   1467 
   1468 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1469 			vge_rxeof(sc);
   1470 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1471 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1472 		}
   1473 
   1474 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1475 			vge_txeof(sc);
   1476 
   1477 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1478 			vge_init(ifp);
   1479 
   1480 		if (status & VGE_ISR_LINKSTS)
   1481 			vge_tick(sc);
   1482 	}
   1483 
   1484 	/* Re-enable interrupts */
   1485 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1486 
   1487 #ifdef DEVICE_POLLING
   1488  done:
   1489 #endif
   1490 	VGE_UNLOCK(sc);
   1491 
   1492 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1493 		vge_start(ifp);
   1494 
   1495 	return claim;
   1496 }
   1497 
   1498 static int
   1499 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1500 {
   1501 	struct vge_tx_desc *d;
   1502 	struct vge_tx_frag *f;
   1503 	struct mbuf *m_new;
   1504 	bus_dmamap_t map;
   1505 	int seg, error, flags;
   1506 	struct m_tag *mtag;
   1507 	size_t sz;
   1508 
   1509 	d = &sc->vge_ldata.vge_tx_list[idx];
   1510 
   1511 	/* If this descriptor is still owned by the chip, bail. */
   1512 	if (sc->vge_ldata.vge_tx_free <= 2) {
   1513 		VGE_TXDESCSYNC(sc, idx,
   1514 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1515 		if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
   1516 			VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1517 			return ENOBUFS;
   1518 		}
   1519 	}
   1520 
   1521 	map = sc->vge_ldata.vge_tx_dmamap[idx];
   1522 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map, m_head, BUS_DMA_NOWAIT);
   1523 
   1524 	/* If too many segments to map, coalesce */
   1525 	if (error == EFBIG) {
   1526 		m_new = m_defrag(m_head, M_DONTWAIT);
   1527 		if (m_new == NULL)
   1528 			return (error);
   1529 
   1530 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1531 		    m_new, BUS_DMA_NOWAIT);
   1532 		if (error) {
   1533 			m_freem(m_new);
   1534 			return error;
   1535 		}
   1536 
   1537 		m_head = m_new;
   1538 	} else if (error)
   1539 		return error;
   1540 
   1541 	for (seg = 0, f = &d->vge_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1542 		f->vge_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1543 		f->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[seg].ds_addr));
   1544 		f->vge_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[seg].ds_addr));
   1545 	}
   1546 
   1547 	/* Argh. This chip does not autopad short frames */
   1548 
   1549 	sz = m_head->m_pkthdr.len;
   1550 	if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) {
   1551 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
   1552 		f->vge_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
   1553 		f->vge_addrhi =
   1554 		    htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
   1555 		sz = VGE_MIN_FRAMELEN;
   1556 		seg++;
   1557 	}
   1558 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1559 
   1560 	/*
   1561 	 * When telling the chip how many segments there are, we
   1562 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1563 	 * know why.
   1564 	 */
   1565 	seg++;
   1566 
   1567 	flags = 0;
   1568 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1569 		flags |= VGE_TDCTL_IPCSUM;
   1570 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1571 		flags |= VGE_TDCTL_TCPCSUM;
   1572 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1573 		flags |= VGE_TDCTL_UDPCSUM;
   1574 	d->vge_sts = htole32(sz << 16);
   1575 	d->vge_ctl = htole32(flags | (seg << 28) | VGE_TD_LS_NORM);
   1576 
   1577 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1578 		d->vge_ctl |= htole32(VGE_TDCTL_JUMBO);
   1579 
   1580 	bus_dmamap_sync(sc->vge_dmat, map, 0, map->dm_mapsize,
   1581 	    BUS_DMASYNC_PREWRITE);
   1582 
   1583 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
   1584 	sc->vge_ldata.vge_tx_free--;
   1585 
   1586 	/*
   1587 	 * Set up hardware VLAN tagging.
   1588 	 */
   1589 
   1590 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1591 	if (mtag != NULL) {
   1592 		/*
   1593 		 * No need htons() here since vge(4) chip assumes
   1594 		 * that tags are written in little endian and
   1595 		 * we already use htole32() here.
   1596 		 */
   1597 		d->vge_ctl |= htole32(VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG);
   1598 	}
   1599 
   1600 	d->vge_sts |= htole32(VGE_TDSTS_OWN);
   1601 
   1602 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1603 
   1604 	return 0;
   1605 }
   1606 
   1607 /*
   1608  * Main transmit routine.
   1609  */
   1610 
   1611 static void
   1612 vge_start(struct ifnet *ifp)
   1613 {
   1614 	struct vge_softc *sc;
   1615 	struct mbuf *m_head;
   1616 	int idx, pidx, error;
   1617 
   1618 	sc = ifp->if_softc;
   1619 	VGE_LOCK(sc);
   1620 
   1621 	if (!sc->vge_link ||
   1622 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1623 		VGE_UNLOCK(sc);
   1624 		return;
   1625 	}
   1626 
   1627 	m_head = NULL;
   1628 	idx = sc->vge_ldata.vge_tx_prodidx;
   1629 
   1630 	pidx = idx - 1;
   1631 	if (pidx < 0)
   1632 		pidx = VGE_TX_DESC_CNT - 1;
   1633 
   1634 	/*
   1635 	 * Loop through the send queue, setting up transmit descriptors
   1636 	 * until we drain the queue, or use up all available transmit
   1637 	 * descriptors.
   1638 	 */
   1639 	for (;;) {
   1640 		/* Grab a packet off the queue. */
   1641 		IFQ_POLL(&ifp->if_snd, m_head);
   1642 		if (m_head == NULL)
   1643 			break;
   1644 
   1645 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
   1646 			/*
   1647 			 * Slot already used, stop for now.
   1648 			 */
   1649 			ifp->if_flags |= IFF_OACTIVE;
   1650 			break;
   1651 		}
   1652 
   1653 		if ((error = vge_encap(sc, m_head, idx))) {
   1654 			if (error == EFBIG) {
   1655 				printf("%s: Tx packet consumes too many "
   1656 				    "DMA segments, dropping...\n",
   1657 				    sc->sc_dev.dv_xname);
   1658 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1659 				m_freem(m_head);
   1660 				continue;
   1661 			}
   1662 
   1663 			/*
   1664 			 * Short on resources, just stop for now.
   1665 			 */
   1666 			if (error == ENOBUFS)
   1667 				ifp->if_flags |= IFF_OACTIVE;
   1668 			break;
   1669 		}
   1670 
   1671 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1672 
   1673 		/*
   1674 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1675 		 */
   1676 
   1677 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
   1678 		    htole16(VGE_TXDESC_Q);
   1679 		VGE_TXDESCSYNC(sc, pidx,
   1680 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1681 
   1682 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
   1683 			m_freem(m_head);
   1684 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
   1685 		}
   1686 
   1687 		pidx = idx;
   1688 		VGE_TX_DESC_INC(idx);
   1689 
   1690 		/*
   1691 		 * If there's a BPF listener, bounce a copy of this frame
   1692 		 * to him.
   1693 		 */
   1694 #if NBPFILTER > 0
   1695 		if (ifp->if_bpf)
   1696 			bpf_mtap(ifp->if_bpf, m_head);
   1697 #endif
   1698 	}
   1699 
   1700 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
   1701 		VGE_UNLOCK(sc);
   1702 		return;
   1703 	}
   1704 
   1705 	/* Issue a transmit command. */
   1706 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1707 
   1708 	sc->vge_ldata.vge_tx_prodidx = idx;
   1709 
   1710 	/*
   1711 	 * Use the countdown timer for interrupt moderation.
   1712 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1713 	 * countdown timer, which will begin counting until it hits
   1714 	 * the value in the SSTIMER register, and then trigger an
   1715 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1716 	 * the timer count is reloaded. Only when the transmitter
   1717 	 * is idle will the timer hit 0 and an interrupt fire.
   1718 	 */
   1719 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1720 
   1721 	VGE_UNLOCK(sc);
   1722 
   1723 	/*
   1724 	 * Set a timeout in case the chip goes out to lunch.
   1725 	 */
   1726 	ifp->if_timer = 5;
   1727 }
   1728 
   1729 static int
   1730 vge_init(struct ifnet *ifp)
   1731 {
   1732 	struct vge_softc *sc;
   1733 	int i;
   1734 
   1735 	sc = ifp->if_softc;
   1736 
   1737 	VGE_LOCK(sc);
   1738 
   1739 	/*
   1740 	 * Cancel pending I/O and free all RX/TX buffers.
   1741 	 */
   1742 	vge_stop(sc);
   1743 	vge_reset(sc);
   1744 
   1745 	/*
   1746 	 * Initialize the RX and TX descriptors and mbufs.
   1747 	 */
   1748 
   1749 	vge_rx_list_init(sc);
   1750 	vge_tx_list_init(sc);
   1751 
   1752 	/* Set our station address */
   1753 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1754 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
   1755 
   1756 	/*
   1757 	 * Set receive FIFO threshold. Also allow transmission and
   1758 	 * reception of VLAN tagged frames.
   1759 	 */
   1760 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1761 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1762 
   1763 	/* Set DMA burst length */
   1764 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1765 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1766 
   1767 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1768 
   1769 	/* Set collision backoff algorithm */
   1770 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1771 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1772 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1773 
   1774 	/* Disable LPSEL field in priority resolution */
   1775 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1776 
   1777 	/*
   1778 	 * Load the addresses of the DMA queues into the chip.
   1779 	 * Note that we only use one transmit queue.
   1780 	 */
   1781 
   1782 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
   1783 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr));
   1784 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
   1785 
   1786 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
   1787 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr));
   1788 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
   1789 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
   1790 
   1791 	/* Enable and wake up the RX descriptor queue */
   1792 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1793 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1794 
   1795 	/* Enable the TX descriptor queue */
   1796 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1797 
   1798 	/* Set up the receive filter -- allow large frames for VLANs. */
   1799 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1800 
   1801 	/* If we want promiscuous mode, set the allframes bit. */
   1802 	if (ifp->if_flags & IFF_PROMISC) {
   1803 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1804 	}
   1805 
   1806 	/* Set capture broadcast bit to capture broadcast frames. */
   1807 	if (ifp->if_flags & IFF_BROADCAST) {
   1808 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1809 	}
   1810 
   1811 	/* Set multicast bit to capture multicast frames. */
   1812 	if (ifp->if_flags & IFF_MULTICAST) {
   1813 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1814 	}
   1815 
   1816 	/* Init the cam filter. */
   1817 	vge_cam_clear(sc);
   1818 
   1819 	/* Init the multicast filter. */
   1820 	vge_setmulti(sc);
   1821 
   1822 	/* Enable flow control */
   1823 
   1824 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1825 
   1826 	/* Enable jumbo frame reception (if desired) */
   1827 
   1828 	/* Start the MAC. */
   1829 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1830 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1831 	CSR_WRITE_1(sc, VGE_CRS0,
   1832 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1833 
   1834 	/*
   1835 	 * Configure one-shot timer for microsecond
   1836 	 * resulution and load it for 500 usecs.
   1837 	 */
   1838 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1839 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1840 
   1841 	/*
   1842 	 * Configure interrupt moderation for receive. Enable
   1843 	 * the holdoff counter and load it, and set the RX
   1844 	 * suppression count to the number of descriptors we
   1845 	 * want to allow before triggering an interrupt.
   1846 	 * The holdoff timer is in units of 20 usecs.
   1847 	 */
   1848 
   1849 #ifdef notyet
   1850 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1851 	/* Select the interrupt holdoff timer page. */
   1852 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1853 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1854 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1855 
   1856 	/* Enable use of the holdoff timer. */
   1857 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1858 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1859 
   1860 	/* Select the RX suppression threshold page. */
   1861 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1862 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1863 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1864 
   1865 	/* Restore the page select bits. */
   1866 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1867 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1868 #endif
   1869 
   1870 #ifdef DEVICE_POLLING
   1871 	/*
   1872 	 * Disable interrupts if we are polling.
   1873 	 */
   1874 	if (ifp->if_flags & IFF_POLLING) {
   1875 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1876 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1877 	} else	/* otherwise ... */
   1878 #endif /* DEVICE_POLLING */
   1879 	{
   1880 	/*
   1881 	 * Enable interrupts.
   1882 	 */
   1883 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1884 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1885 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1886 	}
   1887 
   1888 	mii_mediachg(&sc->sc_mii);
   1889 
   1890 	ifp->if_flags |= IFF_RUNNING;
   1891 	ifp->if_flags &= ~IFF_OACTIVE;
   1892 
   1893 	sc->vge_if_flags = 0;
   1894 	sc->vge_link = 0;
   1895 
   1896 	VGE_UNLOCK(sc);
   1897 
   1898 	callout_schedule(&sc->vge_timeout, hz);
   1899 
   1900 	return 0;
   1901 }
   1902 
   1903 /*
   1904  * Set media options.
   1905  */
   1906 static int
   1907 vge_ifmedia_upd(struct ifnet *ifp)
   1908 {
   1909 	struct vge_softc *sc;
   1910 
   1911 	sc = ifp->if_softc;
   1912 	mii_mediachg(&sc->sc_mii);
   1913 
   1914 	return 0;
   1915 }
   1916 
   1917 /*
   1918  * Report current media status.
   1919  */
   1920 static void
   1921 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1922 {
   1923 	struct vge_softc *sc;
   1924 	struct mii_data *mii;
   1925 
   1926 	sc = ifp->if_softc;
   1927 	mii = &sc->sc_mii;
   1928 
   1929 	mii_pollstat(mii);
   1930 	ifmr->ifm_active = mii->mii_media_active;
   1931 	ifmr->ifm_status = mii->mii_media_status;
   1932 }
   1933 
   1934 static void
   1935 vge_miibus_statchg(struct device *self)
   1936 {
   1937 	struct vge_softc *sc;
   1938 	struct mii_data *mii;
   1939 	struct ifmedia_entry *ife;
   1940 
   1941 	sc = (void *)self;
   1942 	mii = &sc->sc_mii;
   1943 	ife = mii->mii_media.ifm_cur;
   1944 	/*
   1945 	 * If the user manually selects a media mode, we need to turn
   1946 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1947 	 * user happens to choose a full duplex mode, we also need to
   1948 	 * set the 'force full duplex' bit. This applies only to
   1949 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1950 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1951 	 * always implied, so we turn on the forced mode bit but leave
   1952 	 * the FDX bit cleared.
   1953 	 */
   1954 
   1955 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1956 	case IFM_AUTO:
   1957 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1958 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1959 		break;
   1960 	case IFM_1000_T:
   1961 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1962 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1963 		break;
   1964 	case IFM_100_TX:
   1965 	case IFM_10_T:
   1966 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1967 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   1968 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1969 		} else {
   1970 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1971 		}
   1972 		break;
   1973 	default:
   1974 		printf("%s: unknown media type: %x\n",
   1975 		    sc->sc_dev.dv_xname,
   1976 		    IFM_SUBTYPE(ife->ifm_media));
   1977 		break;
   1978 	}
   1979 }
   1980 
   1981 static int
   1982 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1983 {
   1984 	struct vge_softc *sc;
   1985 	struct ifreq *ifr;
   1986 	struct mii_data *mii;
   1987 	int s, error;
   1988 
   1989 	sc = ifp->if_softc;
   1990 	ifr = (struct ifreq *)data;
   1991 	error = 0;
   1992 
   1993 	s = splnet();
   1994 
   1995 	switch (command) {
   1996 	case SIOCSIFMTU:
   1997 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   1998 			error = EINVAL;
   1999 		ifp->if_mtu = ifr->ifr_mtu;
   2000 		break;
   2001 	case SIOCSIFFLAGS:
   2002 		if (ifp->if_flags & IFF_UP) {
   2003 			if (ifp->if_flags & IFF_RUNNING &&
   2004 			    ifp->if_flags & IFF_PROMISC &&
   2005 			    !(sc->vge_if_flags & IFF_PROMISC)) {
   2006 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2007 				    VGE_RXCTL_RX_PROMISC);
   2008 				vge_setmulti(sc);
   2009 			} else if (ifp->if_flags & IFF_RUNNING &&
   2010 			    !(ifp->if_flags & IFF_PROMISC) &&
   2011 			    sc->vge_if_flags & IFF_PROMISC) {
   2012 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2013 				    VGE_RXCTL_RX_PROMISC);
   2014 				vge_setmulti(sc);
   2015                         } else
   2016 				vge_init(ifp);
   2017 		} else {
   2018 			if (ifp->if_flags & IFF_RUNNING)
   2019 				vge_stop(sc);
   2020 		}
   2021 		sc->vge_if_flags = ifp->if_flags;
   2022 		break;
   2023 	case SIOCADDMULTI:
   2024 	case SIOCDELMULTI:
   2025 		error = (command == SIOCADDMULTI) ?
   2026 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   2027 		    ether_delmulti(ifr, &sc->sc_ethercom);
   2028 
   2029 		if (error == ENETRESET) {
   2030 			/*
   2031 			 * Multicast list has changed; set the hardware filter
   2032 			 * accordingly.
   2033 			 */
   2034 			if (ifp->if_flags & IFF_RUNNING)
   2035 				vge_setmulti(sc);
   2036 			error = 0;
   2037 		}
   2038 		break;
   2039 	case SIOCGIFMEDIA:
   2040 	case SIOCSIFMEDIA:
   2041 		mii = &sc->sc_mii;
   2042 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2043 		break;
   2044 	default:
   2045 		error = ether_ioctl(ifp, command, data);
   2046 		break;
   2047 	}
   2048 
   2049 	splx(s);
   2050 	return error;
   2051 }
   2052 
   2053 static void
   2054 vge_watchdog(struct ifnet *ifp)
   2055 {
   2056 	struct vge_softc *sc;
   2057 
   2058 	sc = ifp->if_softc;
   2059 	VGE_LOCK(sc);
   2060 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2061 	ifp->if_oerrors++;
   2062 
   2063 	vge_txeof(sc);
   2064 	vge_rxeof(sc);
   2065 
   2066 	vge_init(ifp);
   2067 
   2068 	VGE_UNLOCK(sc);
   2069 }
   2070 
   2071 /*
   2072  * Stop the adapter and free any mbufs allocated to the
   2073  * RX and TX lists.
   2074  */
   2075 static void
   2076 vge_stop(struct vge_softc *sc)
   2077 {
   2078 	int i;
   2079 	struct ifnet *ifp;
   2080 
   2081 	ifp = &sc->sc_ethercom.ec_if;
   2082 
   2083 	VGE_LOCK(sc);
   2084 	ifp->if_timer = 0;
   2085 
   2086 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2087 #ifdef DEVICE_POLLING
   2088 	ether_poll_deregister(ifp);
   2089 #endif /* DEVICE_POLLING */
   2090 
   2091 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2092 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2093 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2094 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2095 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2096 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2097 
   2098 	if (sc->vge_head != NULL) {
   2099 		m_freem(sc->vge_head);
   2100 		sc->vge_head = sc->vge_tail = NULL;
   2101 	}
   2102 
   2103 	/* Free the TX list buffers. */
   2104 
   2105 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
   2106 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
   2107 			bus_dmamap_unload(sc->vge_dmat,
   2108 			    sc->vge_ldata.vge_tx_dmamap[i]);
   2109 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
   2110 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
   2111 		}
   2112 	}
   2113 
   2114 	/* Free the RX list buffers. */
   2115 
   2116 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   2117 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
   2118 			bus_dmamap_unload(sc->vge_dmat,
   2119 			    sc->vge_ldata.vge_rx_dmamap[i]);
   2120 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
   2121 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
   2122 		}
   2123 	}
   2124 
   2125 	VGE_UNLOCK(sc);
   2126 }
   2127 
   2128 #if VGE_POWER_MANAGEMENT
   2129 /*
   2130  * Device suspend routine.  Stop the interface and save some PCI
   2131  * settings in case the BIOS doesn't restore them properly on
   2132  * resume.
   2133  */
   2134 static int
   2135 vge_suspend(struct device *dev)
   2136 {
   2137 	struct vge_softc *sc;
   2138 	int i;
   2139 
   2140 	sc = device_get_softc(dev);
   2141 
   2142 	vge_stop(sc);
   2143 
   2144         for (i = 0; i < 5; i++)
   2145 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2146 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2147 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2148 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2149 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2150 
   2151 	sc->suspended = 1;
   2152 
   2153 	return 0;
   2154 }
   2155 
   2156 /*
   2157  * Device resume routine.  Restore some PCI settings in case the BIOS
   2158  * doesn't, re-enable busmastering, and restart the interface if
   2159  * appropriate.
   2160  */
   2161 static int
   2162 vge_resume(struct device *dev)
   2163 {
   2164 	struct vge_softc *sc;
   2165 	struct ifnet *ifp;
   2166 	int i;
   2167 
   2168 	sc = (void *)dev;
   2169 	ifp = &sc->sc_ethercom.ec_if;
   2170 
   2171         /* better way to do this? */
   2172 	for (i = 0; i < 5; i++)
   2173 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
   2174 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
   2175 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
   2176 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
   2177 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
   2178 
   2179 	/* reenable busmastering */
   2180 	pci_enable_busmaster(dev);
   2181 	pci_enable_io(dev, SYS_RES_MEMORY);
   2182 
   2183 	/* reinitialize interface if necessary */
   2184 	if (ifp->if_flags & IFF_UP)
   2185 		vge_init(sc);
   2186 
   2187 	sc->suspended = 0;
   2188 
   2189 	return 0;
   2190 }
   2191 #endif
   2192 
   2193 /*
   2194  * Stop all chip I/O so that the kernel's probe routines don't
   2195  * get confused by errant DMAs when rebooting.
   2196  */
   2197 static void
   2198 vge_shutdown(void *arg)
   2199 {
   2200 	struct vge_softc *sc;
   2201 
   2202 	sc = arg;
   2203 	vge_stop(sc);
   2204 }
   2205