if_vge.c revision 1.21 1 /* $NetBSD: if_vge.c,v 1.21 2006/10/31 14:13:30 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.21 2006/10/31 14:13:30 tsutsui Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <machine/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116
117 #define VGE_JUMBO_MTU 9000
118
119 #define VGE_IFQ_MAXLEN 64
120
121 #define VGE_RING_ALIGN 256
122
123 #define VGE_NTXDESC 256
124 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
125 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
126
127 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
128 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
129 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
130 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
131
132 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
133 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
134 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
135 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
136
137 #ifdef __NO_STRICT_ALIGNMENT
138 #define VGE_RX_PAD sizeof(uint32_t)
139 #else
140 #define VGE_RX_PAD 0
141 #endif
142
143 /*
144 * Control structures are DMA'd to the vge chip. We allocate them in
145 * a single clump that maps to a single DMA segment to make several things
146 * easier.
147 */
148 struct vge_control_data {
149 /* TX descriptors */
150 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
151 /* RX descriptors */
152 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
153 /* dummy data for TX padding */
154 uint8_t vcd_pad[ETHER_PAD_LEN];
155 };
156
157 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
158 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
159 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
160 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
161
162 /*
163 * Software state for TX jobs.
164 */
165 struct vge_txsoft {
166 struct mbuf *txs_mbuf; /* head of our mbuf chain */
167 bus_dmamap_t txs_dmamap; /* our DMA map */
168 };
169
170 /*
171 * Software state for RX jobs.
172 */
173 struct vge_rxsoft {
174 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
175 bus_dmamap_t rxs_dmamap; /* our DMA map */
176 };
177
178
179 struct vge_softc {
180 struct device sc_dev;
181
182 bus_space_tag_t sc_bst; /* bus space tag */
183 bus_space_handle_t sc_bsh; /* bus space handle */
184 bus_dma_tag_t sc_dmat;
185
186 struct ethercom sc_ethercom; /* interface info */
187 uint8_t sc_eaddr[ETHER_ADDR_LEN];
188
189 void *sc_intrhand;
190 struct mii_data sc_mii;
191 uint8_t sc_type;
192 int sc_if_flags;
193 int sc_link;
194 int sc_camidx;
195 struct callout sc_timeout;
196
197 bus_dmamap_t sc_cddmamap;
198 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
199
200 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
201 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
202 struct vge_control_data *sc_control_data;
203 #define sc_txdescs sc_control_data->vcd_txdescs
204 #define sc_rxdescs sc_control_data->vcd_rxdescs
205
206 int sc_tx_prodidx;
207 int sc_tx_considx;
208 int sc_tx_free;
209
210 struct mbuf *sc_rx_mhead;
211 struct mbuf *sc_rx_mtail;
212 int sc_rx_prodidx;
213 int sc_rx_consumed;
214
215 int sc_suspended; /* 0 = normal 1 = suspended */
216 uint32_t sc_saved_maps[5]; /* pci data */
217 uint32_t sc_saved_biosaddr;
218 uint8_t sc_saved_intline;
219 uint8_t sc_saved_cachelnsz;
220 uint8_t sc_saved_lattimer;
221 };
222
223 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
224 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
225 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
226
227 #define VGE_TXDESCSYNC(sc, idx, ops) \
228 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
229 VGE_CDTXOFF(idx), \
230 offsetof(struct vge_txdesc, td_frag[0]), \
231 (ops))
232 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
233 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
234 VGE_CDTXOFF(idx) + \
235 offsetof(struct vge_txdesc, td_frag[0]), \
236 sizeof(struct vge_txfrag) * (nsegs), \
237 (ops))
238 #define VGE_RXDESCSYNC(sc, idx, ops) \
239 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
240 VGE_CDRXOFF(idx), \
241 sizeof(struct vge_rxdesc), \
242 (ops))
243
244 /*
245 * Mbuf adjust factor to force 32-bit alignment of IP header.
246 * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a
247 * receive so the upper layers get the IP header properly aligned
248 * past the 14-byte Ethernet header.
249 */
250 #define ETHER_ALIGN 2
251
252 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
253
254 /*
255 * register space access macros
256 */
257 #define CSR_WRITE_4(sc, reg, val) \
258 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
259 #define CSR_WRITE_2(sc, reg, val) \
260 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
261 #define CSR_WRITE_1(sc, reg, val) \
262 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
263
264 #define CSR_READ_4(sc, reg) \
265 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
266 #define CSR_READ_2(sc, reg) \
267 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
268 #define CSR_READ_1(sc, reg) \
269 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
270
271 #define CSR_SETBIT_1(sc, reg, x) \
272 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
273 #define CSR_SETBIT_2(sc, reg, x) \
274 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
275 #define CSR_SETBIT_4(sc, reg, x) \
276 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
277
278 #define CSR_CLRBIT_1(sc, reg, x) \
279 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
280 #define CSR_CLRBIT_2(sc, reg, x) \
281 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
282 #define CSR_CLRBIT_4(sc, reg, x) \
283 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
284
285 #define VGE_TIMEOUT 10000
286
287 #define VGE_PCI_LOIO 0x10
288 #define VGE_PCI_LOMEM 0x14
289
290 static int vge_probe(struct device *, struct cfdata *, void *);
291 static void vge_attach(struct device *, struct device *, void *);
292
293 static int vge_encap(struct vge_softc *, struct mbuf *, int);
294
295 static int vge_allocmem(struct vge_softc *);
296 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
297 #ifndef __NO_STRICT_ALIGNMENT
298 static inline void vge_fixup_rx(struct mbuf *);
299 #endif
300 static void vge_rxeof(struct vge_softc *);
301 static void vge_txeof(struct vge_softc *);
302 static int vge_intr(void *);
303 static void vge_tick(void *);
304 static void vge_start(struct ifnet *);
305 static int vge_ioctl(struct ifnet *, u_long, caddr_t);
306 static int vge_init(struct ifnet *);
307 static void vge_stop(struct vge_softc *);
308 static void vge_watchdog(struct ifnet *);
309 #if VGE_POWER_MANAGEMENT
310 static int vge_suspend(struct device *);
311 static int vge_resume(struct device *);
312 #endif
313 static void vge_shutdown(void *);
314 static int vge_ifmedia_upd(struct ifnet *);
315 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
316
317 static uint16_t vge_read_eeprom(struct vge_softc *, int);
318
319 static void vge_miipoll_start(struct vge_softc *);
320 static void vge_miipoll_stop(struct vge_softc *);
321 static int vge_miibus_readreg(struct device *, int, int);
322 static void vge_miibus_writereg(struct device *, int, int, int);
323 static void vge_miibus_statchg(struct device *);
324
325 static void vge_cam_clear(struct vge_softc *);
326 static int vge_cam_set(struct vge_softc *, uint8_t *);
327 static void vge_setmulti(struct vge_softc *);
328 static void vge_reset(struct vge_softc *);
329
330 CFATTACH_DECL(vge, sizeof(struct vge_softc),
331 vge_probe, vge_attach, NULL, NULL);
332
333 /*
334 * Defragment mbuf chain contents to be as linear as possible.
335 * Returns new mbuf chain on success, NULL on failure. Old mbuf
336 * chain is always freed.
337 * XXX temporary until there would be generic function doing this.
338 */
339 #define m_defrag vge_m_defrag
340 struct mbuf * vge_m_defrag(struct mbuf *, int);
341
342 struct mbuf *
343 vge_m_defrag(struct mbuf *mold, int flags)
344 {
345 struct mbuf *m0, *mn, *n;
346 size_t sz = mold->m_pkthdr.len;
347
348 #ifdef DIAGNOSTIC
349 if ((mold->m_flags & M_PKTHDR) == 0)
350 panic("m_defrag: not a mbuf chain header");
351 #endif
352
353 MGETHDR(m0, flags, MT_DATA);
354 if (m0 == NULL)
355 return NULL;
356 m0->m_pkthdr.len = mold->m_pkthdr.len;
357 mn = m0;
358
359 do {
360 if (sz > MHLEN) {
361 MCLGET(mn, M_DONTWAIT);
362 if ((mn->m_flags & M_EXT) == 0) {
363 m_freem(m0);
364 return NULL;
365 }
366 }
367
368 mn->m_len = MIN(sz, MCLBYTES);
369
370 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
371 mtod(mn, caddr_t));
372
373 sz -= mn->m_len;
374
375 if (sz > 0) {
376 /* need more mbufs */
377 MGET(n, M_NOWAIT, MT_DATA);
378 if (n == NULL) {
379 m_freem(m0);
380 return NULL;
381 }
382
383 mn->m_next = n;
384 mn = n;
385 }
386 } while (sz > 0);
387
388 return m0;
389 }
390
391 /*
392 * Read a word of data stored in the EEPROM at address 'addr.'
393 */
394 static uint16_t
395 vge_read_eeprom(struct vge_softc *sc, int addr)
396 {
397 int i;
398 uint16_t word = 0;
399
400 /*
401 * Enter EEPROM embedded programming mode. In order to
402 * access the EEPROM at all, we first have to set the
403 * EELOAD bit in the CHIPCFG2 register.
404 */
405 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
406 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
407
408 /* Select the address of the word we want to read */
409 CSR_WRITE_1(sc, VGE_EEADDR, addr);
410
411 /* Issue read command */
412 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
413
414 /* Wait for the done bit to be set. */
415 for (i = 0; i < VGE_TIMEOUT; i++) {
416 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
417 break;
418 }
419
420 if (i == VGE_TIMEOUT) {
421 aprint_error("%s: EEPROM read timed out\n",
422 sc->sc_dev.dv_xname);
423 return 0;
424 }
425
426 /* Read the result */
427 word = CSR_READ_2(sc, VGE_EERDDAT);
428
429 /* Turn off EEPROM access mode. */
430 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
431 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
432
433 return word;
434 }
435
436 static void
437 vge_miipoll_stop(struct vge_softc *sc)
438 {
439 int i;
440
441 CSR_WRITE_1(sc, VGE_MIICMD, 0);
442
443 for (i = 0; i < VGE_TIMEOUT; i++) {
444 DELAY(1);
445 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
446 break;
447 }
448
449 if (i == VGE_TIMEOUT) {
450 aprint_error("%s: failed to idle MII autopoll\n",
451 sc->sc_dev.dv_xname);
452 }
453 }
454
455 static void
456 vge_miipoll_start(struct vge_softc *sc)
457 {
458 int i;
459
460 /* First, make sure we're idle. */
461
462 CSR_WRITE_1(sc, VGE_MIICMD, 0);
463 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
464
465 for (i = 0; i < VGE_TIMEOUT; i++) {
466 DELAY(1);
467 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
468 break;
469 }
470
471 if (i == VGE_TIMEOUT) {
472 aprint_error("%s: failed to idle MII autopoll\n",
473 sc->sc_dev.dv_xname);
474 return;
475 }
476
477 /* Now enable auto poll mode. */
478
479 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
480
481 /* And make sure it started. */
482
483 for (i = 0; i < VGE_TIMEOUT; i++) {
484 DELAY(1);
485 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
486 break;
487 }
488
489 if (i == VGE_TIMEOUT) {
490 aprint_error("%s: failed to start MII autopoll\n",
491 sc->sc_dev.dv_xname);
492 }
493 }
494
495 static int
496 vge_miibus_readreg(struct device *dev, int phy, int reg)
497 {
498 struct vge_softc *sc;
499 int i, s;
500 uint16_t rval;
501
502 sc = (void *)dev;
503 rval = 0;
504 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
505 return 0;
506
507 s = splnet();
508 vge_miipoll_stop(sc);
509
510 /* Specify the register we want to read. */
511 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
512
513 /* Issue read command. */
514 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
515
516 /* Wait for the read command bit to self-clear. */
517 for (i = 0; i < VGE_TIMEOUT; i++) {
518 DELAY(1);
519 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
520 break;
521 }
522
523 if (i == VGE_TIMEOUT)
524 aprint_error("%s: MII read timed out\n", sc->sc_dev.dv_xname);
525 else
526 rval = CSR_READ_2(sc, VGE_MIIDATA);
527
528 vge_miipoll_start(sc);
529 splx(s);
530
531 return rval;
532 }
533
534 static void
535 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
536 {
537 struct vge_softc *sc;
538 int i, s;
539
540 sc = (void *)dev;
541 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
542 return;
543
544 s = splnet();
545 vge_miipoll_stop(sc);
546
547 /* Specify the register we want to write. */
548 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
549
550 /* Specify the data we want to write. */
551 CSR_WRITE_2(sc, VGE_MIIDATA, data);
552
553 /* Issue write command. */
554 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
555
556 /* Wait for the write command bit to self-clear. */
557 for (i = 0; i < VGE_TIMEOUT; i++) {
558 DELAY(1);
559 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
560 break;
561 }
562
563 if (i == VGE_TIMEOUT) {
564 aprint_error("%s: MII write timed out\n", sc->sc_dev.dv_xname);
565 }
566
567 vge_miipoll_start(sc);
568 splx(s);
569 }
570
571 static void
572 vge_cam_clear(struct vge_softc *sc)
573 {
574 int i;
575
576 /*
577 * Turn off all the mask bits. This tells the chip
578 * that none of the entries in the CAM filter are valid.
579 * desired entries will be enabled as we fill the filter in.
580 */
581
582 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
583 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
584 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
585 for (i = 0; i < 8; i++)
586 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
587
588 /* Clear the VLAN filter too. */
589
590 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
591 for (i = 0; i < 8; i++)
592 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
593
594 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
595 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
596 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
597
598 sc->sc_camidx = 0;
599 }
600
601 static int
602 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
603 {
604 int i, error;
605
606 error = 0;
607
608 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
609 return ENOSPC;
610
611 /* Select the CAM data page. */
612 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
613 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
614
615 /* Set the filter entry we want to update and enable writing. */
616 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
617
618 /* Write the address to the CAM registers */
619 for (i = 0; i < ETHER_ADDR_LEN; i++)
620 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
621
622 /* Issue a write command. */
623 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
624
625 /* Wake for it to clear. */
626 for (i = 0; i < VGE_TIMEOUT; i++) {
627 DELAY(1);
628 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
629 break;
630 }
631
632 if (i == VGE_TIMEOUT) {
633 aprint_error("%s: setting CAM filter failed\n",
634 sc->sc_dev.dv_xname);
635 error = EIO;
636 goto fail;
637 }
638
639 /* Select the CAM mask page. */
640 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
641 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
642
643 /* Set the mask bit that enables this filter. */
644 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
645 1 << (sc->sc_camidx & 7));
646
647 sc->sc_camidx++;
648
649 fail:
650 /* Turn off access to CAM. */
651 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
652 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
653 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
654
655 return error;
656 }
657
658 /*
659 * Program the multicast filter. We use the 64-entry CAM filter
660 * for perfect filtering. If there's more than 64 multicast addresses,
661 * we use the hash filter instead.
662 */
663 static void
664 vge_setmulti(struct vge_softc *sc)
665 {
666 struct ifnet *ifp;
667 int error;
668 uint32_t h, hashes[2] = { 0, 0 };
669 struct ether_multi *enm;
670 struct ether_multistep step;
671
672 error = 0;
673 ifp = &sc->sc_ethercom.ec_if;
674
675 /* First, zot all the multicast entries. */
676 vge_cam_clear(sc);
677 CSR_WRITE_4(sc, VGE_MAR0, 0);
678 CSR_WRITE_4(sc, VGE_MAR1, 0);
679 ifp->if_flags &= ~IFF_ALLMULTI;
680
681 /*
682 * If the user wants allmulti or promisc mode, enable reception
683 * of all multicast frames.
684 */
685 if (ifp->if_flags & IFF_PROMISC) {
686 allmulti:
687 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
688 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
689 ifp->if_flags |= IFF_ALLMULTI;
690 return;
691 }
692
693 /* Now program new ones */
694 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
695 while (enm != NULL) {
696 /*
697 * If multicast range, fall back to ALLMULTI.
698 */
699 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
700 ETHER_ADDR_LEN) != 0)
701 goto allmulti;
702
703 error = vge_cam_set(sc, enm->enm_addrlo);
704 if (error)
705 break;
706
707 ETHER_NEXT_MULTI(step, enm);
708 }
709
710 /* If there were too many addresses, use the hash filter. */
711 if (error) {
712 vge_cam_clear(sc);
713
714 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
715 while (enm != NULL) {
716 /*
717 * If multicast range, fall back to ALLMULTI.
718 */
719 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
720 ETHER_ADDR_LEN) != 0)
721 goto allmulti;
722
723 h = ether_crc32_be(enm->enm_addrlo,
724 ETHER_ADDR_LEN) >> 26;
725 hashes[h >> 5] |= 1 << (h & 0x1f);
726
727 ETHER_NEXT_MULTI(step, enm);
728 }
729
730 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
731 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
732 }
733 }
734
735 static void
736 vge_reset(struct vge_softc *sc)
737 {
738 int i;
739
740 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
741
742 for (i = 0; i < VGE_TIMEOUT; i++) {
743 DELAY(5);
744 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
745 break;
746 }
747
748 if (i == VGE_TIMEOUT) {
749 aprint_error("%s: soft reset timed out", sc->sc_dev.dv_xname);
750 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
751 DELAY(2000);
752 }
753
754 DELAY(5000);
755
756 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
757
758 for (i = 0; i < VGE_TIMEOUT; i++) {
759 DELAY(5);
760 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
761 break;
762 }
763
764 if (i == VGE_TIMEOUT) {
765 aprint_error("%s: EEPROM reload timed out\n",
766 sc->sc_dev.dv_xname);
767 return;
768 }
769
770 /*
771 * On some machine, the first read data from EEPROM could be
772 * messed up, so read one dummy data here to avoid the mess.
773 */
774 (void)vge_read_eeprom(sc, 0);
775
776 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
777 }
778
779 /*
780 * Probe for a VIA gigabit chip. Check the PCI vendor and device
781 * IDs against our list and return a device name if we find a match.
782 */
783 static int
784 vge_probe(struct device *parent __unused, struct cfdata *match __unused,
785 void *aux)
786 {
787 struct pci_attach_args *pa = aux;
788
789 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
790 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
791 return 1;
792
793 return 0;
794 }
795
796 static int
797 vge_allocmem(struct vge_softc *sc)
798 {
799 int error;
800 int nseg;
801 int i;
802 bus_dma_segment_t seg;
803
804 /*
805 * Allocate memory for control data.
806 */
807
808 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
809 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
810 if (error) {
811 aprint_error("%s: could not allocate control data dma memory\n",
812 sc->sc_dev.dv_xname);
813 return ENOMEM;
814 }
815
816 /* Map the memory to kernel VA space */
817
818 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
819 sizeof(struct vge_control_data), (caddr_t *)&sc->sc_control_data,
820 BUS_DMA_NOWAIT);
821 if (error) {
822 aprint_error("%s: could not map control data dma memory\n",
823 sc->sc_dev.dv_xname);
824 return ENOMEM;
825 }
826 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
827
828 /*
829 * Create map for control data.
830 */
831 error = bus_dmamap_create(sc->sc_dmat,
832 sizeof(struct vge_control_data), 1,
833 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
834 &sc->sc_cddmamap);
835 if (error) {
836 aprint_error("%s: could not create control data dmamap\n",
837 sc->sc_dev.dv_xname);
838 return ENOMEM;
839 }
840
841 /* Load the map for the control data. */
842 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
843 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
844 BUS_DMA_NOWAIT);
845 if (error) {
846 aprint_error("%s: could not load control data dma memory\n",
847 sc->sc_dev.dv_xname);
848 return ENOMEM;
849 }
850
851 /* Create DMA maps for TX buffers */
852
853 for (i = 0; i < VGE_NTXDESC; i++) {
854 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
855 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
856 &sc->sc_txsoft[i].txs_dmamap);
857 if (error) {
858 aprint_error("%s: can't create DMA map for TX descs\n",
859 sc->sc_dev.dv_xname);
860 return ENOMEM;
861 }
862 }
863
864 /* Create DMA maps for RX buffers */
865
866 for (i = 0; i < VGE_NRXDESC; i++) {
867 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
868 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
869 &sc->sc_rxsoft[i].rxs_dmamap);
870 if (error) {
871 aprint_error("%s: can't create DMA map for RX descs\n",
872 sc->sc_dev.dv_xname);
873 return ENOMEM;
874 }
875 sc->sc_rxsoft[i].rxs_mbuf = NULL;
876 }
877
878 return 0;
879 }
880
881 /*
882 * Attach the interface. Allocate softc structures, do ifmedia
883 * setup and ethernet/BPF attach.
884 */
885 static void
886 vge_attach(struct device *parent __unused, struct device *self, void *aux)
887 {
888 uint8_t *eaddr;
889 struct vge_softc *sc = (void *)self;
890 struct ifnet *ifp;
891 struct pci_attach_args *pa = aux;
892 pci_chipset_tag_t pc = pa->pa_pc;
893 const char *intrstr;
894 pci_intr_handle_t ih;
895 uint16_t val;
896
897 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
898 PCI_REVISION(pa->pa_class));
899
900 /* Make sure bus-mastering is enabled */
901 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
902 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
903 PCI_COMMAND_MASTER_ENABLE);
904
905 /*
906 * Map control/status registers.
907 */
908 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
909 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
910 aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname);
911 return;
912 }
913
914 /*
915 * Map and establish our interrupt.
916 */
917 if (pci_intr_map(pa, &ih)) {
918 aprint_error("%s: unable to map interrupt\n",
919 sc->sc_dev.dv_xname);
920 return;
921 }
922 intrstr = pci_intr_string(pc, ih);
923 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
924 if (sc->sc_intrhand == NULL) {
925 aprint_error("%s: unable to establish interrupt",
926 sc->sc_dev.dv_xname);
927 if (intrstr != NULL)
928 aprint_error(" at %s", intrstr);
929 aprint_error("\n");
930 return;
931 }
932 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
933
934 /* Reset the adapter. */
935 vge_reset(sc);
936
937 /*
938 * Get station address from the EEPROM.
939 */
940 eaddr = sc->sc_eaddr;
941 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
942 eaddr[0] = val & 0xff;
943 eaddr[1] = val >> 8;
944 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
945 eaddr[2] = val & 0xff;
946 eaddr[3] = val >> 8;
947 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
948 eaddr[4] = val & 0xff;
949 eaddr[5] = val >> 8;
950
951 aprint_normal("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
952 ether_sprintf(eaddr));
953
954 /*
955 * Use the 32bit tag. Hardware supports 48bit physical addresses,
956 * but we don't use that for now.
957 */
958 sc->sc_dmat = pa->pa_dmat;
959
960 if (vge_allocmem(sc))
961 return;
962
963 ifp = &sc->sc_ethercom.ec_if;
964 ifp->if_softc = sc;
965 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
966 ifp->if_mtu = ETHERMTU;
967 ifp->if_baudrate = IF_Gbps(1);
968 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
969 ifp->if_ioctl = vge_ioctl;
970 ifp->if_start = vge_start;
971
972 /*
973 * We can support 802.1Q VLAN-sized frames and jumbo
974 * Ethernet frames.
975 */
976 sc->sc_ethercom.ec_capabilities |=
977 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
978 ETHERCAP_VLAN_HWTAGGING;
979
980 /*
981 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
982 */
983 ifp->if_capabilities |=
984 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
985 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
986 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
987
988 #ifdef DEVICE_POLLING
989 #ifdef IFCAP_POLLING
990 ifp->if_capabilities |= IFCAP_POLLING;
991 #endif
992 #endif
993 ifp->if_watchdog = vge_watchdog;
994 ifp->if_init = vge_init;
995 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
996
997 /*
998 * Initialize our media structures and probe the MII.
999 */
1000 sc->sc_mii.mii_ifp = ifp;
1001 sc->sc_mii.mii_readreg = vge_miibus_readreg;
1002 sc->sc_mii.mii_writereg = vge_miibus_writereg;
1003 sc->sc_mii.mii_statchg = vge_miibus_statchg;
1004 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
1005 vge_ifmedia_sts);
1006 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1007 MII_OFFSET_ANY, MIIF_DOPAUSE);
1008 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1009 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1010 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1011 } else
1012 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1013
1014 /*
1015 * Attach the interface.
1016 */
1017 if_attach(ifp);
1018 ether_ifattach(ifp, eaddr);
1019
1020 callout_init(&sc->sc_timeout);
1021 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1022
1023 /*
1024 * Make sure the interface is shutdown during reboot.
1025 */
1026 if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1027 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1028 sc->sc_dev.dv_xname);
1029 }
1030 }
1031
1032 static int
1033 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1034 {
1035 struct mbuf *m_new;
1036 struct vge_rxdesc *rxd;
1037 struct vge_rxsoft *rxs;
1038 bus_dmamap_t map;
1039 int i;
1040
1041 m_new = NULL;
1042 if (m == NULL) {
1043 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1044 if (m_new == NULL)
1045 return ENOBUFS;
1046
1047 MCLGET(m_new, M_DONTWAIT);
1048 if ((m_new->m_flags & M_EXT) == 0) {
1049 m_freem(m_new);
1050 return ENOBUFS;
1051 }
1052
1053 m = m_new;
1054 } else
1055 m->m_data = m->m_ext.ext_buf;
1056
1057
1058 #ifndef __NO_STRICT_ALIGNMENT
1059 /*
1060 * This is part of an evil trick to deal with non-x86 platforms.
1061 * The VIA chip requires RX buffers to be aligned on 32-bit
1062 * boundaries, but that will hose non-x86 machines. To get around
1063 * this, we leave some empty space at the start of each buffer
1064 * and for non-x86 hosts, we copy the buffer back two bytes
1065 * to achieve word alignment. This is slightly more efficient
1066 * than allocating a new buffer, copying the contents, and
1067 * discarding the old buffer.
1068 */
1069 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_RX_PAD;
1070 m->m_data += VGE_RX_PAD;
1071 #else
1072 m->m_len = m->m_pkthdr.len = MCLBYTES;
1073 #endif
1074 rxs = &sc->sc_rxsoft[idx];
1075 map = rxs->rxs_dmamap;
1076
1077 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1078 goto out;
1079
1080 rxd = &sc->sc_rxdescs[idx];
1081
1082 /* If this descriptor is still owned by the chip, bail. */
1083
1084 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1085 if (le32toh(rxd->rd_sts) & VGE_RDSTS_OWN) {
1086 aprint_error("%s: tried to map busy RX descriptor\n",
1087 sc->sc_dev.dv_xname);
1088 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1089 panic("vge_newbuf");
1090 goto out;
1091 }
1092
1093 rxs->rxs_mbuf = m;
1094 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1095 BUS_DMASYNC_PREREAD);
1096
1097 rxd->rd_buflen =
1098 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1099 rxd->rd_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[0].ds_addr));
1100 rxd->rd_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[0].ds_addr) & 0xFFFF);
1101 rxd->rd_sts = 0;
1102 rxd->rd_ctl = 0;
1103 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1104
1105 /*
1106 * Note: the manual fails to document the fact that for
1107 * proper opration, the driver needs to replentish the RX
1108 * DMA ring 4 descriptors at a time (rather than one at a
1109 * time, like most chips). We can allocate the new buffers
1110 * but we should not set the OWN bits until we're ready
1111 * to hand back 4 of them in one shot.
1112 */
1113
1114 #define VGE_RXCHUNK 4
1115 sc->sc_rx_consumed++;
1116 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1117 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1118 KASSERT(i >= 0);
1119 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1120 VGE_RXDESCSYNC(sc, i,
1121 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122 }
1123 sc->sc_rx_consumed = 0;
1124 }
1125
1126 return 0;
1127 out:
1128 if (m_new != NULL)
1129 m_freem(m_new);
1130 return ENOMEM;
1131 }
1132
1133 #ifndef __NO_STRICT_ALIGNMENT
1134 static inline void
1135 vge_fixup_rx(struct mbuf *m)
1136 {
1137 int i;
1138 uint16_t *src, *dst;
1139
1140 src = mtod(m, uint16_t *);
1141 dst = src - 1;
1142
1143 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1144 *dst++ = *src++;
1145
1146 m->m_data -= ETHER_ALIGN;
1147 }
1148 #endif
1149
1150 /*
1151 * RX handler. We support the reception of jumbo frames that have
1152 * been fragmented across multiple 2K mbuf cluster buffers.
1153 */
1154 static void
1155 vge_rxeof(struct vge_softc *sc)
1156 {
1157 struct mbuf *m;
1158 struct ifnet *ifp;
1159 int idx, total_len, lim;
1160 struct vge_rxdesc *cur_rxd;
1161 struct vge_rxsoft *rxs;
1162 uint32_t rxstat, rxctl;
1163
1164 ifp = &sc->sc_ethercom.ec_if;
1165 lim = 0;
1166
1167 /* Invalidate the descriptor memory */
1168
1169 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1170 cur_rxd = &sc->sc_rxdescs[idx];
1171
1172 VGE_RXDESCSYNC(sc, idx,
1173 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174 rxstat = le32toh(cur_rxd->rd_sts);
1175 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1176 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1177 break;
1178 }
1179
1180 rxctl = le32toh(cur_rxd->rd_ctl);
1181 rxs = &sc->sc_rxsoft[idx];
1182 m = rxs->rxs_mbuf;
1183 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1184
1185 /* Invalidate the RX mbuf and unload its map */
1186
1187 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1188 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1189 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1190
1191 /*
1192 * If the 'start of frame' bit is set, this indicates
1193 * either the first fragment in a multi-fragment receive,
1194 * or an intermediate fragment. Either way, we want to
1195 * accumulate the buffers.
1196 */
1197 if (rxstat & VGE_RXPKT_SOF) {
1198 m->m_len = MCLBYTES - VGE_RX_PAD;
1199 if (sc->sc_rx_mhead == NULL)
1200 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1201 else {
1202 m->m_flags &= ~M_PKTHDR;
1203 sc->sc_rx_mtail->m_next = m;
1204 sc->sc_rx_mtail = m;
1205 }
1206 vge_newbuf(sc, idx, NULL);
1207 continue;
1208 }
1209
1210 /*
1211 * Bad/error frames will have the RXOK bit cleared.
1212 * However, there's one error case we want to allow:
1213 * if a VLAN tagged frame arrives and the chip can't
1214 * match it against the CAM filter, it considers this
1215 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1216 * We don't want to drop the frame though: our VLAN
1217 * filtering is done in software.
1218 */
1219 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1220 && !(rxstat & VGE_RDSTS_CSUMERR)) {
1221 ifp->if_ierrors++;
1222 /*
1223 * If this is part of a multi-fragment packet,
1224 * discard all the pieces.
1225 */
1226 if (sc->sc_rx_mhead != NULL) {
1227 m_freem(sc->sc_rx_mhead);
1228 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1229 }
1230 vge_newbuf(sc, idx, m);
1231 continue;
1232 }
1233
1234 /*
1235 * If allocating a replacement mbuf fails,
1236 * reload the current one.
1237 */
1238
1239 if (vge_newbuf(sc, idx, NULL)) {
1240 ifp->if_ierrors++;
1241 if (sc->sc_rx_mhead != NULL) {
1242 m_freem(sc->sc_rx_mhead);
1243 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1244 }
1245 vge_newbuf(sc, idx, m);
1246 continue;
1247 }
1248
1249 if (sc->sc_rx_mhead != NULL) {
1250 m->m_len = total_len % (MCLBYTES - VGE_RX_PAD);
1251 /*
1252 * Special case: if there's 4 bytes or less
1253 * in this buffer, the mbuf can be discarded:
1254 * the last 4 bytes is the CRC, which we don't
1255 * care about anyway.
1256 */
1257 if (m->m_len <= ETHER_CRC_LEN) {
1258 sc->sc_rx_mtail->m_len -=
1259 (ETHER_CRC_LEN - m->m_len);
1260 m_freem(m);
1261 } else {
1262 m->m_len -= ETHER_CRC_LEN;
1263 m->m_flags &= ~M_PKTHDR;
1264 sc->sc_rx_mtail->m_next = m;
1265 }
1266 m = sc->sc_rx_mhead;
1267 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1268 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1269 } else
1270 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1271
1272 #ifndef __NO_STRICT_ALIGNMENT
1273 vge_fixup_rx(m);
1274 #endif
1275 ifp->if_ipackets++;
1276 m->m_pkthdr.rcvif = ifp;
1277
1278 /* Do RX checksumming if enabled */
1279 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1280
1281 /* Check IP header checksum */
1282 if (rxctl & VGE_RDCTL_IPPKT)
1283 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1284 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1285 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1286 }
1287
1288 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1289 /* Check UDP checksum */
1290 if (rxctl & VGE_RDCTL_TCPPKT)
1291 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1292
1293 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1294 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1295 }
1296
1297 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1298 /* Check UDP checksum */
1299 if (rxctl & VGE_RDCTL_UDPPKT)
1300 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1301
1302 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1303 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1304 }
1305
1306 if (rxstat & VGE_RDSTS_VTAG) {
1307 /*
1308 * We use bswap16() here because:
1309 * On LE machines, tag is stored in BE as stream data.
1310 * On BE machines, tag is stored in BE as stream data
1311 * but it was already swapped by le32toh() above.
1312 */
1313 VLAN_INPUT_TAG(ifp, m,
1314 bswap16(rxctl & VGE_RDCTL_VLANID), continue);
1315 }
1316
1317 #if NBPFILTER > 0
1318 /*
1319 * Handle BPF listeners.
1320 */
1321 if (ifp->if_bpf)
1322 bpf_mtap(ifp->if_bpf, m);
1323 #endif
1324
1325 (*ifp->if_input)(ifp, m);
1326
1327 lim++;
1328 if (lim == VGE_NRXDESC)
1329 break;
1330
1331 }
1332
1333 sc->sc_rx_prodidx = idx;
1334 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1335 }
1336
1337 static void
1338 vge_txeof(struct vge_softc *sc)
1339 {
1340 struct ifnet *ifp;
1341 struct vge_txsoft *txs;
1342 uint32_t txstat;
1343 int idx;
1344
1345 ifp = &sc->sc_ethercom.ec_if;
1346 idx = sc->sc_tx_considx;
1347
1348 for (idx = sc->sc_tx_considx;
1349 idx != sc->sc_tx_prodidx;
1350 idx = VGE_NEXT_TXDESC(idx)) {
1351 VGE_TXDESCSYNC(sc, idx,
1352 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1353 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1354 if (txstat & VGE_TDSTS_OWN) {
1355 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1356 break;
1357 }
1358
1359 txs = &sc->sc_txsoft[idx];
1360 m_freem(txs->txs_mbuf);
1361 txs->txs_mbuf = NULL;
1362 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1363 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1364 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1365 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1366 ifp->if_collisions++;
1367 if (txstat & VGE_TDSTS_TXERR)
1368 ifp->if_oerrors++;
1369 else
1370 ifp->if_opackets++;
1371
1372 sc->sc_tx_free++;
1373 }
1374
1375 /* No changes made to the TX ring, so no flush needed */
1376
1377 if (idx != sc->sc_tx_considx) {
1378 sc->sc_tx_considx = idx;
1379 ifp->if_flags &= ~IFF_OACTIVE;
1380 }
1381
1382 /*
1383 * If not all descriptors have been released reaped yet,
1384 * reload the timer so that we will eventually get another
1385 * interrupt that will cause us to re-enter this routine.
1386 * This is done in case the transmitter has gone idle.
1387 */
1388 if (sc->sc_tx_free != VGE_NTXDESC)
1389 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1390 else
1391 ifp->if_timer = 0;
1392 }
1393
1394 static void
1395 vge_tick(void *xsc)
1396 {
1397 struct vge_softc *sc;
1398 struct ifnet *ifp;
1399 struct mii_data *mii;
1400 int s;
1401
1402 sc = xsc;
1403 ifp = &sc->sc_ethercom.ec_if;
1404 mii = &sc->sc_mii;
1405
1406 s = splnet();
1407
1408 callout_schedule(&sc->sc_timeout, hz);
1409
1410 mii_tick(mii);
1411 if (sc->sc_link) {
1412 if (!(mii->mii_media_status & IFM_ACTIVE))
1413 sc->sc_link = 0;
1414 } else {
1415 if (mii->mii_media_status & IFM_ACTIVE &&
1416 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1417 sc->sc_link = 1;
1418 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1419 vge_start(ifp);
1420 }
1421 }
1422
1423 splx(s);
1424 }
1425
1426 static int
1427 vge_intr(void *arg)
1428 {
1429 struct vge_softc *sc;
1430 struct ifnet *ifp;
1431 uint32_t status;
1432 int claim;
1433
1434 sc = arg;
1435 claim = 0;
1436 if (sc->sc_suspended) {
1437 return claim;
1438 }
1439
1440 ifp = &sc->sc_ethercom.ec_if;
1441
1442 if (!(ifp->if_flags & IFF_UP)) {
1443 return claim;
1444 }
1445
1446 /* Disable interrupts */
1447 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1448
1449 for (;;) {
1450
1451 status = CSR_READ_4(sc, VGE_ISR);
1452 /* If the card has gone away the read returns 0xffff. */
1453 if (status == 0xFFFFFFFF)
1454 break;
1455
1456 if (status) {
1457 claim = 1;
1458 CSR_WRITE_4(sc, VGE_ISR, status);
1459 }
1460
1461 if ((status & VGE_INTRS) == 0)
1462 break;
1463
1464 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1465 vge_rxeof(sc);
1466
1467 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1468 vge_rxeof(sc);
1469 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1470 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1471 }
1472
1473 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1474 vge_txeof(sc);
1475
1476 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1477 vge_init(ifp);
1478
1479 if (status & VGE_ISR_LINKSTS)
1480 vge_tick(sc);
1481 }
1482
1483 /* Re-enable interrupts */
1484 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1485
1486 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1487 vge_start(ifp);
1488
1489 return claim;
1490 }
1491
1492 static int
1493 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1494 {
1495 struct vge_txsoft *txs;
1496 struct vge_txdesc *txd;
1497 struct vge_txfrag *f;
1498 struct mbuf *m_new;
1499 bus_dmamap_t map;
1500 int seg, error, flags;
1501 struct m_tag *mtag;
1502 size_t sz;
1503
1504 txd = &sc->sc_txdescs[idx];
1505
1506 /* If this descriptor is still owned by the chip, bail. */
1507 if (sc->sc_tx_free <= 2) {
1508 VGE_TXDESCSYNC(sc, idx,
1509 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1510 if (le32toh(txd->td_sts) & VGE_TDSTS_OWN) {
1511 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1512 return ENOBUFS;
1513 }
1514 }
1515
1516 txs = &sc->sc_txsoft[idx];
1517 map = txs->txs_dmamap;
1518 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1519
1520 /* If too many segments to map, coalesce */
1521 if (error == EFBIG ||
1522 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1523 map->dm_nsegs == VGE_TX_FRAGS)) {
1524 m_new = m_defrag(m_head, M_DONTWAIT);
1525 if (m_new == NULL)
1526 return (error);
1527
1528 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1529 m_new, BUS_DMA_NOWAIT);
1530 if (error) {
1531 m_freem(m_new);
1532 return error;
1533 }
1534
1535 m_head = m_new;
1536 } else if (error)
1537 return error;
1538
1539 txs->txs_mbuf = m_head;
1540
1541 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1542 BUS_DMASYNC_PREWRITE);
1543
1544 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1545 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1546 f->tf_addrlo = htole32(VGE_ADDR_LO(map->dm_segs[seg].ds_addr));
1547 f->tf_addrhi = htole16(VGE_ADDR_HI(map->dm_segs[seg].ds_addr));
1548 }
1549
1550 /* Argh. This chip does not autopad short frames */
1551 sz = m_head->m_pkthdr.len;
1552 if (sz < ETHER_PAD_LEN) {
1553 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1554 f->tf_addrlo = htole32(VGE_ADDR_LO(VGE_CDPADADDR(sc)));
1555 f->tf_addrhi = htole16(VGE_ADDR_HI(VGE_CDPADADDR(sc)) & 0xFFFF);
1556 sz = ETHER_PAD_LEN;
1557 seg++;
1558 }
1559 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1560
1561 /*
1562 * When telling the chip how many segments there are, we
1563 * must use nsegs + 1 instead of just nsegs. Darned if I
1564 * know why.
1565 */
1566 seg++;
1567
1568 flags = 0;
1569 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1570 flags |= VGE_TDCTL_IPCSUM;
1571 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1572 flags |= VGE_TDCTL_TCPCSUM;
1573 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1574 flags |= VGE_TDCTL_UDPCSUM;
1575 txd->td_sts = htole32(sz << 16);
1576 txd->td_ctl = htole32(flags | (seg << 28) | VGE_TD_LS_NORM);
1577
1578 if (sz > ETHERMTU + ETHER_HDR_LEN)
1579 txd->td_ctl |= htole32(VGE_TDCTL_JUMBO);
1580
1581 /*
1582 * Set up hardware VLAN tagging.
1583 */
1584
1585 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1586 if (mtag != NULL) {
1587 /*
1588 * No need htons() here since vge(4) chip assumes
1589 * that tags are written in little endian and
1590 * we already use htole32() here.
1591 */
1592 txd->td_ctl |= htole32(VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG);
1593 }
1594
1595 txd->td_sts |= htole32(VGE_TDSTS_OWN);
1596 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1597
1598 sc->sc_tx_free--;
1599
1600 return 0;
1601 }
1602
1603 /*
1604 * Main transmit routine.
1605 */
1606
1607 static void
1608 vge_start(struct ifnet *ifp)
1609 {
1610 struct vge_softc *sc;
1611 struct vge_txsoft *txs;
1612 struct mbuf *m_head;
1613 int idx, pidx, error;
1614
1615 sc = ifp->if_softc;
1616
1617 if (!sc->sc_link ||
1618 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1619 return;
1620 }
1621
1622 m_head = NULL;
1623 idx = sc->sc_tx_prodidx;
1624
1625 pidx = (idx - 1) & VGE_NTXDESC_MASK;
1626
1627 /*
1628 * Loop through the send queue, setting up transmit descriptors
1629 * until we drain the queue, or use up all available transmit
1630 * descriptors.
1631 */
1632 for (;;) {
1633 /* Grab a packet off the queue. */
1634 IFQ_POLL(&ifp->if_snd, m_head);
1635 if (m_head == NULL)
1636 break;
1637
1638 txs = &sc->sc_txsoft[idx];
1639
1640 if (txs->txs_mbuf != NULL) {
1641 /*
1642 * Slot already used, stop for now.
1643 */
1644 ifp->if_flags |= IFF_OACTIVE;
1645 break;
1646 }
1647
1648 if ((error = vge_encap(sc, m_head, idx))) {
1649 if (error == EFBIG) {
1650 aprint_error("%s: Tx packet consumes too many "
1651 "DMA segments, dropping...\n",
1652 sc->sc_dev.dv_xname);
1653 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1654 m_freem(m_head);
1655 continue;
1656 }
1657
1658 /*
1659 * Short on resources, just stop for now.
1660 */
1661 if (error == ENOBUFS)
1662 ifp->if_flags |= IFF_OACTIVE;
1663 break;
1664 }
1665
1666 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1667
1668 /*
1669 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1670 */
1671
1672 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1673 htole16(VGE_TXDESC_Q);
1674 VGE_TXFRAGSYNC(sc, pidx, 1,
1675 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1676
1677 if (txs->txs_mbuf != m_head) {
1678 m_freem(m_head);
1679 m_head = txs->txs_mbuf;
1680 }
1681
1682 pidx = idx;
1683 idx = VGE_NEXT_TXDESC(idx);
1684
1685 /*
1686 * If there's a BPF listener, bounce a copy of this frame
1687 * to him.
1688 */
1689 #if NBPFILTER > 0
1690 if (ifp->if_bpf)
1691 bpf_mtap(ifp->if_bpf, m_head);
1692 #endif
1693 }
1694
1695 if (idx == sc->sc_tx_prodidx) {
1696 return;
1697 }
1698
1699 /* Issue a transmit command. */
1700 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1701
1702 sc->sc_tx_prodidx = idx;
1703
1704 /*
1705 * Use the countdown timer for interrupt moderation.
1706 * 'TX done' interrupts are disabled. Instead, we reset the
1707 * countdown timer, which will begin counting until it hits
1708 * the value in the SSTIMER register, and then trigger an
1709 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1710 * the timer count is reloaded. Only when the transmitter
1711 * is idle will the timer hit 0 and an interrupt fire.
1712 */
1713 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1714
1715 /*
1716 * Set a timeout in case the chip goes out to lunch.
1717 */
1718 ifp->if_timer = 5;
1719 }
1720
1721 static int
1722 vge_init(struct ifnet *ifp)
1723 {
1724 struct vge_softc *sc;
1725 struct vge_rxsoft *rxs;
1726 int i;
1727
1728 sc = ifp->if_softc;
1729
1730 /*
1731 * Cancel pending I/O and free all RX/TX buffers.
1732 */
1733 vge_stop(sc);
1734 vge_reset(sc);
1735
1736 /* Initialize the RX descriptors and mbufs. */
1737 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1738 for (i = 0; i < VGE_NRXDESC; i++) {
1739 rxs = &sc->sc_rxsoft[i];
1740 if (rxs->rxs_mbuf) {
1741 m_freem(rxs->rxs_mbuf);
1742 rxs->rxs_mbuf = NULL;
1743 }
1744 if (rxs->rxs_dmamap)
1745 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1746 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1747 aprint_error("%s: unable to allocate or map "
1748 "rx buffer\n", sc->sc_dev.dv_xname);
1749 return 1; /* XXX */
1750 }
1751 }
1752 sc->sc_rx_prodidx = 0;
1753 sc->sc_rx_consumed = 0;
1754 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1755
1756 /* Initialize the TX descriptors and mbufs. */
1757 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1758 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1759 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1760 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1761 for (i = 0; i < VGE_NTXDESC; i++)
1762 sc->sc_txsoft[i].txs_mbuf = NULL;
1763
1764 sc->sc_tx_prodidx = 0;
1765 sc->sc_tx_considx = 0;
1766 sc->sc_tx_free = VGE_NTXDESC;
1767
1768 /* Set our station address */
1769 for (i = 0; i < ETHER_ADDR_LEN; i++)
1770 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1771
1772 /*
1773 * Set receive FIFO threshold. Also allow transmission and
1774 * reception of VLAN tagged frames.
1775 */
1776 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1777 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1778
1779 /* Set DMA burst length */
1780 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1781 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1782
1783 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1784
1785 /* Set collision backoff algorithm */
1786 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1787 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1788 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1789
1790 /* Disable LPSEL field in priority resolution */
1791 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1792
1793 /*
1794 * Load the addresses of the DMA queues into the chip.
1795 * Note that we only use one transmit queue.
1796 */
1797
1798 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1799 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1800
1801 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1802 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1803 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1804
1805 /* Enable and wake up the RX descriptor queue */
1806 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1807 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1808
1809 /* Enable the TX descriptor queue */
1810 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1811
1812 /* Set up the receive filter -- allow large frames for VLANs. */
1813 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1814
1815 /* If we want promiscuous mode, set the allframes bit. */
1816 if (ifp->if_flags & IFF_PROMISC) {
1817 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1818 }
1819
1820 /* Set capture broadcast bit to capture broadcast frames. */
1821 if (ifp->if_flags & IFF_BROADCAST) {
1822 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1823 }
1824
1825 /* Set multicast bit to capture multicast frames. */
1826 if (ifp->if_flags & IFF_MULTICAST) {
1827 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1828 }
1829
1830 /* Init the cam filter. */
1831 vge_cam_clear(sc);
1832
1833 /* Init the multicast filter. */
1834 vge_setmulti(sc);
1835
1836 /* Enable flow control */
1837
1838 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1839
1840 /* Enable jumbo frame reception (if desired) */
1841
1842 /* Start the MAC. */
1843 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1844 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1845 CSR_WRITE_1(sc, VGE_CRS0,
1846 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1847
1848 /*
1849 * Configure one-shot timer for microsecond
1850 * resulution and load it for 500 usecs.
1851 */
1852 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1853 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1854
1855 /*
1856 * Configure interrupt moderation for receive. Enable
1857 * the holdoff counter and load it, and set the RX
1858 * suppression count to the number of descriptors we
1859 * want to allow before triggering an interrupt.
1860 * The holdoff timer is in units of 20 usecs.
1861 */
1862
1863 #ifdef notyet
1864 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1865 /* Select the interrupt holdoff timer page. */
1866 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1867 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1868 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1869
1870 /* Enable use of the holdoff timer. */
1871 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1872 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1873
1874 /* Select the RX suppression threshold page. */
1875 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1876 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1877 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1878
1879 /* Restore the page select bits. */
1880 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1881 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1882 #endif
1883
1884 #ifdef DEVICE_POLLING
1885 /*
1886 * Disable interrupts if we are polling.
1887 */
1888 if (ifp->if_flags & IFF_POLLING) {
1889 CSR_WRITE_4(sc, VGE_IMR, 0);
1890 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1891 } else /* otherwise ... */
1892 #endif /* DEVICE_POLLING */
1893 {
1894 /*
1895 * Enable interrupts.
1896 */
1897 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1898 CSR_WRITE_4(sc, VGE_ISR, 0);
1899 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1900 }
1901
1902 mii_mediachg(&sc->sc_mii);
1903
1904 ifp->if_flags |= IFF_RUNNING;
1905 ifp->if_flags &= ~IFF_OACTIVE;
1906
1907 sc->sc_if_flags = 0;
1908 sc->sc_link = 0;
1909
1910 callout_schedule(&sc->sc_timeout, hz);
1911
1912 return 0;
1913 }
1914
1915 /*
1916 * Set media options.
1917 */
1918 static int
1919 vge_ifmedia_upd(struct ifnet *ifp)
1920 {
1921 struct vge_softc *sc;
1922
1923 sc = ifp->if_softc;
1924 mii_mediachg(&sc->sc_mii);
1925
1926 return 0;
1927 }
1928
1929 /*
1930 * Report current media status.
1931 */
1932 static void
1933 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1934 {
1935 struct vge_softc *sc;
1936 struct mii_data *mii;
1937
1938 sc = ifp->if_softc;
1939 mii = &sc->sc_mii;
1940
1941 mii_pollstat(mii);
1942 ifmr->ifm_active = mii->mii_media_active;
1943 ifmr->ifm_status = mii->mii_media_status;
1944 }
1945
1946 static void
1947 vge_miibus_statchg(struct device *self)
1948 {
1949 struct vge_softc *sc;
1950 struct mii_data *mii;
1951 struct ifmedia_entry *ife;
1952
1953 sc = (void *)self;
1954 mii = &sc->sc_mii;
1955 ife = mii->mii_media.ifm_cur;
1956 /*
1957 * If the user manually selects a media mode, we need to turn
1958 * on the forced MAC mode bit in the DIAGCTL register. If the
1959 * user happens to choose a full duplex mode, we also need to
1960 * set the 'force full duplex' bit. This applies only to
1961 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1962 * mode is disabled, and in 1000baseT mode, full duplex is
1963 * always implied, so we turn on the forced mode bit but leave
1964 * the FDX bit cleared.
1965 */
1966
1967 switch (IFM_SUBTYPE(ife->ifm_media)) {
1968 case IFM_AUTO:
1969 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1970 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1971 break;
1972 case IFM_1000_T:
1973 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1974 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1975 break;
1976 case IFM_100_TX:
1977 case IFM_10_T:
1978 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1979 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1980 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1981 } else {
1982 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1983 }
1984 break;
1985 default:
1986 aprint_error("%s: unknown media type: %x\n",
1987 sc->sc_dev.dv_xname,
1988 IFM_SUBTYPE(ife->ifm_media));
1989 break;
1990 }
1991 }
1992
1993 static int
1994 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1995 {
1996 struct vge_softc *sc;
1997 struct ifreq *ifr;
1998 struct mii_data *mii;
1999 int s, error;
2000
2001 sc = ifp->if_softc;
2002 ifr = (struct ifreq *)data;
2003 error = 0;
2004
2005 s = splnet();
2006
2007 switch (command) {
2008 case SIOCSIFMTU:
2009 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2010 error = EINVAL;
2011 ifp->if_mtu = ifr->ifr_mtu;
2012 break;
2013 case SIOCSIFFLAGS:
2014 if (ifp->if_flags & IFF_UP) {
2015 if (ifp->if_flags & IFF_RUNNING &&
2016 ifp->if_flags & IFF_PROMISC &&
2017 !(sc->sc_if_flags & IFF_PROMISC)) {
2018 CSR_SETBIT_1(sc, VGE_RXCTL,
2019 VGE_RXCTL_RX_PROMISC);
2020 vge_setmulti(sc);
2021 } else if (ifp->if_flags & IFF_RUNNING &&
2022 !(ifp->if_flags & IFF_PROMISC) &&
2023 sc->sc_if_flags & IFF_PROMISC) {
2024 CSR_CLRBIT_1(sc, VGE_RXCTL,
2025 VGE_RXCTL_RX_PROMISC);
2026 vge_setmulti(sc);
2027 } else
2028 vge_init(ifp);
2029 } else {
2030 if (ifp->if_flags & IFF_RUNNING)
2031 vge_stop(sc);
2032 }
2033 sc->sc_if_flags = ifp->if_flags;
2034 break;
2035 case SIOCADDMULTI:
2036 case SIOCDELMULTI:
2037 error = (command == SIOCADDMULTI) ?
2038 ether_addmulti(ifr, &sc->sc_ethercom) :
2039 ether_delmulti(ifr, &sc->sc_ethercom);
2040
2041 if (error == ENETRESET) {
2042 /*
2043 * Multicast list has changed; set the hardware filter
2044 * accordingly.
2045 */
2046 if (ifp->if_flags & IFF_RUNNING)
2047 vge_setmulti(sc);
2048 error = 0;
2049 }
2050 break;
2051 case SIOCGIFMEDIA:
2052 case SIOCSIFMEDIA:
2053 mii = &sc->sc_mii;
2054 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2055 break;
2056 default:
2057 error = ether_ioctl(ifp, command, data);
2058 break;
2059 }
2060
2061 splx(s);
2062 return error;
2063 }
2064
2065 static void
2066 vge_watchdog(struct ifnet *ifp)
2067 {
2068 struct vge_softc *sc;
2069 int s;
2070
2071 sc = ifp->if_softc;
2072 s = splnet();
2073 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2074 ifp->if_oerrors++;
2075
2076 vge_txeof(sc);
2077 vge_rxeof(sc);
2078
2079 vge_init(ifp);
2080
2081 splx(s);
2082 }
2083
2084 /*
2085 * Stop the adapter and free any mbufs allocated to the
2086 * RX and TX lists.
2087 */
2088 static void
2089 vge_stop(struct vge_softc *sc)
2090 {
2091 struct ifnet *ifp;
2092 struct vge_txsoft *txs;
2093 struct vge_rxsoft *rxs;
2094 int i, s;
2095
2096 ifp = &sc->sc_ethercom.ec_if;
2097
2098 s = splnet();
2099 ifp->if_timer = 0;
2100
2101 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2102 #ifdef DEVICE_POLLING
2103 ether_poll_deregister(ifp);
2104 #endif /* DEVICE_POLLING */
2105
2106 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2107 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2108 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2109 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2110 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2111 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2112
2113 if (sc->sc_rx_mhead != NULL) {
2114 m_freem(sc->sc_rx_mhead);
2115 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2116 }
2117
2118 /* Free the TX list buffers. */
2119
2120 for (i = 0; i < VGE_NTXDESC; i++) {
2121 txs = &sc->sc_txsoft[i];
2122 if (txs->txs_mbuf != NULL) {
2123 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2124 m_freem(txs->txs_mbuf);
2125 txs->txs_mbuf = NULL;
2126 }
2127 }
2128
2129 /* Free the RX list buffers. */
2130
2131 for (i = 0; i < VGE_NRXDESC; i++) {
2132 rxs = &sc->sc_rxsoft[i];
2133 if (rxs->rxs_mbuf != NULL) {
2134 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2135 m_freem(rxs->rxs_mbuf);
2136 rxs->rxs_mbuf = NULL;
2137 }
2138 }
2139
2140 splx(s);
2141 }
2142
2143 #if VGE_POWER_MANAGEMENT
2144 /*
2145 * Device suspend routine. Stop the interface and save some PCI
2146 * settings in case the BIOS doesn't restore them properly on
2147 * resume.
2148 */
2149 static int
2150 vge_suspend(struct device *dev)
2151 {
2152 struct vge_softc *sc;
2153 int i;
2154
2155 sc = device_get_softc(dev);
2156
2157 vge_stop(sc);
2158
2159 for (i = 0; i < 5; i++)
2160 sc->sc_saved_maps[i] =
2161 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2162 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2163 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2164 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2165 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2166
2167 sc->suspended = 1;
2168
2169 return 0;
2170 }
2171
2172 /*
2173 * Device resume routine. Restore some PCI settings in case the BIOS
2174 * doesn't, re-enable busmastering, and restart the interface if
2175 * appropriate.
2176 */
2177 static int
2178 vge_resume(struct device *dev)
2179 {
2180 struct vge_softc *sc;
2181 struct ifnet *ifp;
2182 int i;
2183
2184 sc = (void *)dev;
2185 ifp = &sc->sc_ethercom.ec_if;
2186
2187 /* better way to do this? */
2188 for (i = 0; i < 5; i++)
2189 pci_write_config(dev, PCIR_MAPS + i * 4,
2190 sc->sc_saved_maps[i], 4);
2191 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2192 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2193 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2194 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2195
2196 /* reenable busmastering */
2197 pci_enable_busmaster(dev);
2198 pci_enable_io(dev, SYS_RES_MEMORY);
2199
2200 /* reinitialize interface if necessary */
2201 if (ifp->if_flags & IFF_UP)
2202 vge_init(sc);
2203
2204 sc->suspended = 0;
2205
2206 return 0;
2207 }
2208 #endif
2209
2210 /*
2211 * Stop all chip I/O so that the kernel's probe routines don't
2212 * get confused by errant DMAs when rebooting.
2213 */
2214 static void
2215 vge_shutdown(void *arg)
2216 {
2217 struct vge_softc *sc;
2218
2219 sc = arg;
2220 vge_stop(sc);
2221 }
2222