Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.29
      1 /* $NetBSD: if_vge.c,v 1.29 2006/11/26 15:04:15 tsutsui Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.29 2006/11/26 15:04:15 tsutsui Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 
    117 #define VGE_JUMBO_MTU		9000
    118 
    119 #define VGE_IFQ_MAXLEN		64
    120 
    121 #define VGE_RING_ALIGN		256
    122 
    123 #define VGE_NTXDESC		256
    124 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    125 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    126 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    127 
    128 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    129 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    130 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    131 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    132 
    133 #define VGE_ADDR_LO(y)		((uint64_t)(y) & 0xFFFFFFFF)
    134 #define VGE_ADDR_HI(y)		((uint64_t)(y) >> 32)
    135 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    136 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    137 
    138 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    139 
    140 /*
    141  * Mbuf adjust factor to force 32-bit alignment of IP header.
    142  * Drivers should pad ETHER_ALIGN bytes when setting up a
    143  * RX mbuf so the upper layers get the IP header properly aligned
    144  * past the 14-byte Ethernet header.
    145  *
    146  * See also comment in vge_encap().
    147  */
    148 #define ETHER_ALIGN		2
    149 
    150 #ifdef __NO_STRICT_ALIGNMENT
    151 #define VGE_RX_BUFSIZE		MCLBYTES
    152 #else
    153 #define VGE_RX_PAD		sizeof(uint32_t)
    154 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    155 #endif
    156 
    157 /*
    158  * Control structures are DMA'd to the vge chip. We allocate them in
    159  * a single clump that maps to a single DMA segment to make several things
    160  * easier.
    161  */
    162 struct vge_control_data {
    163 	/* TX descriptors */
    164 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    165 	/* RX descriptors */
    166 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    167 	/* dummy data for TX padding */
    168 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    169 };
    170 
    171 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    172 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    173 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    174 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    175 
    176 /*
    177  * Software state for TX jobs.
    178  */
    179 struct vge_txsoft {
    180 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    181 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    182 };
    183 
    184 /*
    185  * Software state for RX jobs.
    186  */
    187 struct vge_rxsoft {
    188 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    189 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    190 };
    191 
    192 
    193 struct vge_softc {
    194 	struct device		sc_dev;
    195 
    196 	bus_space_tag_t		sc_bst;		/* bus space tag */
    197 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    198 	bus_dma_tag_t		sc_dmat;
    199 
    200 	struct ethercom		sc_ethercom;	/* interface info */
    201 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    202 
    203 	void			*sc_intrhand;
    204 	struct mii_data		sc_mii;
    205 	uint8_t			sc_type;
    206 	int			sc_if_flags;
    207 	int			sc_link;
    208 	int			sc_camidx;
    209 	struct callout		sc_timeout;
    210 
    211 	bus_dmamap_t		sc_cddmamap;
    212 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    213 
    214 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    215 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    216 	struct vge_control_data	*sc_control_data;
    217 #define sc_txdescs		sc_control_data->vcd_txdescs
    218 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    219 
    220 	int			sc_tx_prodidx;
    221 	int			sc_tx_considx;
    222 	int			sc_tx_free;
    223 
    224 	struct mbuf		*sc_rx_mhead;
    225 	struct mbuf		*sc_rx_mtail;
    226 	int			sc_rx_prodidx;
    227 	int			sc_rx_consumed;
    228 
    229 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    230 	uint32_t		sc_saved_maps[5];	/* pci data */
    231 	uint32_t		sc_saved_biosaddr;
    232 	uint8_t			sc_saved_intline;
    233 	uint8_t			sc_saved_cachelnsz;
    234 	uint8_t			sc_saved_lattimer;
    235 };
    236 
    237 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    238 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    239 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    240 
    241 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    242 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    243 	    VGE_CDTXOFF(idx),						\
    244 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    245 	    (ops))
    246 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    247 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    248 	    VGE_CDTXOFF(idx) +						\
    249 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    250 	    sizeof(struct vge_txfrag) * (nsegs),			\
    251 	    (ops))
    252 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    253 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    254 	    VGE_CDRXOFF(idx),						\
    255 	    sizeof(struct vge_rxdesc),					\
    256 	    (ops))
    257 
    258 /*
    259  * register space access macros
    260  */
    261 #define CSR_WRITE_4(sc, reg, val)	\
    262 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    263 #define CSR_WRITE_2(sc, reg, val)	\
    264 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    265 #define CSR_WRITE_1(sc, reg, val)	\
    266 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    267 
    268 #define CSR_READ_4(sc, reg)		\
    269 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    270 #define CSR_READ_2(sc, reg)		\
    271 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    272 #define CSR_READ_1(sc, reg)		\
    273 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    274 
    275 #define CSR_SETBIT_1(sc, reg, x)	\
    276 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    277 #define CSR_SETBIT_2(sc, reg, x)	\
    278 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    279 #define CSR_SETBIT_4(sc, reg, x)	\
    280 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    281 
    282 #define CSR_CLRBIT_1(sc, reg, x)	\
    283 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    284 #define CSR_CLRBIT_2(sc, reg, x)	\
    285 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    286 #define CSR_CLRBIT_4(sc, reg, x)	\
    287 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    288 
    289 #define VGE_TIMEOUT		10000
    290 
    291 #define VGE_PCI_LOIO             0x10
    292 #define VGE_PCI_LOMEM            0x14
    293 
    294 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    295 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    296 
    297 static int vge_probe(struct device *, struct cfdata *, void *);
    298 static void vge_attach(struct device *, struct device *, void *);
    299 
    300 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    301 
    302 static int vge_allocmem(struct vge_softc *);
    303 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    304 #ifndef __NO_STRICT_ALIGNMENT
    305 static inline void vge_fixup_rx(struct mbuf *);
    306 #endif
    307 static void vge_rxeof(struct vge_softc *);
    308 static void vge_txeof(struct vge_softc *);
    309 static int vge_intr(void *);
    310 static void vge_tick(void *);
    311 static void vge_start(struct ifnet *);
    312 static int vge_ioctl(struct ifnet *, u_long, caddr_t);
    313 static int vge_init(struct ifnet *);
    314 static void vge_stop(struct vge_softc *);
    315 static void vge_watchdog(struct ifnet *);
    316 #if VGE_POWER_MANAGEMENT
    317 static int vge_suspend(struct device *);
    318 static int vge_resume(struct device *);
    319 #endif
    320 static void vge_shutdown(void *);
    321 static int vge_ifmedia_upd(struct ifnet *);
    322 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    323 
    324 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    325 
    326 static void vge_miipoll_start(struct vge_softc *);
    327 static void vge_miipoll_stop(struct vge_softc *);
    328 static int vge_miibus_readreg(struct device *, int, int);
    329 static void vge_miibus_writereg(struct device *, int, int, int);
    330 static void vge_miibus_statchg(struct device *);
    331 
    332 static void vge_cam_clear(struct vge_softc *);
    333 static int vge_cam_set(struct vge_softc *, uint8_t *);
    334 static void vge_setmulti(struct vge_softc *);
    335 static void vge_reset(struct vge_softc *);
    336 
    337 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    338     vge_probe, vge_attach, NULL, NULL);
    339 
    340 static inline void
    341 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    342 {
    343 
    344 	f->tf_addrlo = htole32((uint32_t)daddr);
    345 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    346 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    347 	else
    348 		f->tf_addrhi = 0;
    349 }
    350 
    351 static inline void
    352 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    353 {
    354 
    355 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    356 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    357 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    358 	else
    359 		rxd->rd_addrhi = 0;
    360 }
    361 
    362 /*
    363  * Defragment mbuf chain contents to be as linear as possible.
    364  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    365  * chain is always freed.
    366  * XXX temporary until there would be generic function doing this.
    367  */
    368 #define m_defrag	vge_m_defrag
    369 struct mbuf * vge_m_defrag(struct mbuf *, int);
    370 
    371 struct mbuf *
    372 vge_m_defrag(struct mbuf *mold, int flags)
    373 {
    374 	struct mbuf *m0, *mn, *n;
    375 	size_t sz = mold->m_pkthdr.len;
    376 
    377 #ifdef DIAGNOSTIC
    378 	if ((mold->m_flags & M_PKTHDR) == 0)
    379 		panic("m_defrag: not a mbuf chain header");
    380 #endif
    381 
    382 	MGETHDR(m0, flags, MT_DATA);
    383 	if (m0 == NULL)
    384 		return NULL;
    385 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    386 	mn = m0;
    387 
    388 	do {
    389 		if (sz > MHLEN) {
    390 			MCLGET(mn, M_DONTWAIT);
    391 			if ((mn->m_flags & M_EXT) == 0) {
    392 				m_freem(m0);
    393 				return NULL;
    394 			}
    395 		}
    396 
    397 		mn->m_len = MIN(sz, MCLBYTES);
    398 
    399 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    400 		     mtod(mn, caddr_t));
    401 
    402 		sz -= mn->m_len;
    403 
    404 		if (sz > 0) {
    405 			/* need more mbufs */
    406 			MGET(n, M_NOWAIT, MT_DATA);
    407 			if (n == NULL) {
    408 				m_freem(m0);
    409 				return NULL;
    410 			}
    411 
    412 			mn->m_next = n;
    413 			mn = n;
    414 		}
    415 	} while (sz > 0);
    416 
    417 	return m0;
    418 }
    419 
    420 /*
    421  * Read a word of data stored in the EEPROM at address 'addr.'
    422  */
    423 static uint16_t
    424 vge_read_eeprom(struct vge_softc *sc, int addr)
    425 {
    426 	int i;
    427 	uint16_t word = 0;
    428 
    429 	/*
    430 	 * Enter EEPROM embedded programming mode. In order to
    431 	 * access the EEPROM at all, we first have to set the
    432 	 * EELOAD bit in the CHIPCFG2 register.
    433 	 */
    434 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    435 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    436 
    437 	/* Select the address of the word we want to read */
    438 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    439 
    440 	/* Issue read command */
    441 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    442 
    443 	/* Wait for the done bit to be set. */
    444 	for (i = 0; i < VGE_TIMEOUT; i++) {
    445 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    446 			break;
    447 	}
    448 
    449 	if (i == VGE_TIMEOUT) {
    450 		aprint_error("%s: EEPROM read timed out\n",
    451 		    sc->sc_dev.dv_xname);
    452 		return 0;
    453 	}
    454 
    455 	/* Read the result */
    456 	word = CSR_READ_2(sc, VGE_EERDDAT);
    457 
    458 	/* Turn off EEPROM access mode. */
    459 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    460 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    461 
    462 	return word;
    463 }
    464 
    465 static void
    466 vge_miipoll_stop(struct vge_softc *sc)
    467 {
    468 	int i;
    469 
    470 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    471 
    472 	for (i = 0; i < VGE_TIMEOUT; i++) {
    473 		DELAY(1);
    474 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    475 			break;
    476 	}
    477 
    478 	if (i == VGE_TIMEOUT) {
    479 		aprint_error("%s: failed to idle MII autopoll\n",
    480 		    sc->sc_dev.dv_xname);
    481 	}
    482 }
    483 
    484 static void
    485 vge_miipoll_start(struct vge_softc *sc)
    486 {
    487 	int i;
    488 
    489 	/* First, make sure we're idle. */
    490 
    491 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    492 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    493 
    494 	for (i = 0; i < VGE_TIMEOUT; i++) {
    495 		DELAY(1);
    496 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    497 			break;
    498 	}
    499 
    500 	if (i == VGE_TIMEOUT) {
    501 		aprint_error("%s: failed to idle MII autopoll\n",
    502 		    sc->sc_dev.dv_xname);
    503 		return;
    504 	}
    505 
    506 	/* Now enable auto poll mode. */
    507 
    508 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    509 
    510 	/* And make sure it started. */
    511 
    512 	for (i = 0; i < VGE_TIMEOUT; i++) {
    513 		DELAY(1);
    514 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    515 			break;
    516 	}
    517 
    518 	if (i == VGE_TIMEOUT) {
    519 		aprint_error("%s: failed to start MII autopoll\n",
    520 		    sc->sc_dev.dv_xname);
    521 	}
    522 }
    523 
    524 static int
    525 vge_miibus_readreg(struct device *dev, int phy, int reg)
    526 {
    527 	struct vge_softc *sc;
    528 	int i, s;
    529 	uint16_t rval;
    530 
    531 	sc = (void *)dev;
    532 	rval = 0;
    533 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    534 		return 0;
    535 
    536 	s = splnet();
    537 	vge_miipoll_stop(sc);
    538 
    539 	/* Specify the register we want to read. */
    540 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    541 
    542 	/* Issue read command. */
    543 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    544 
    545 	/* Wait for the read command bit to self-clear. */
    546 	for (i = 0; i < VGE_TIMEOUT; i++) {
    547 		DELAY(1);
    548 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    549 			break;
    550 	}
    551 
    552 	if (i == VGE_TIMEOUT)
    553 		aprint_error("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    554 	else
    555 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    556 
    557 	vge_miipoll_start(sc);
    558 	splx(s);
    559 
    560 	return rval;
    561 }
    562 
    563 static void
    564 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
    565 {
    566 	struct vge_softc *sc;
    567 	int i, s;
    568 
    569 	sc = (void *)dev;
    570 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    571 		return;
    572 
    573 	s = splnet();
    574 	vge_miipoll_stop(sc);
    575 
    576 	/* Specify the register we want to write. */
    577 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    578 
    579 	/* Specify the data we want to write. */
    580 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    581 
    582 	/* Issue write command. */
    583 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    584 
    585 	/* Wait for the write command bit to self-clear. */
    586 	for (i = 0; i < VGE_TIMEOUT; i++) {
    587 		DELAY(1);
    588 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    589 			break;
    590 	}
    591 
    592 	if (i == VGE_TIMEOUT) {
    593 		aprint_error("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    594 	}
    595 
    596 	vge_miipoll_start(sc);
    597 	splx(s);
    598 }
    599 
    600 static void
    601 vge_cam_clear(struct vge_softc *sc)
    602 {
    603 	int i;
    604 
    605 	/*
    606 	 * Turn off all the mask bits. This tells the chip
    607 	 * that none of the entries in the CAM filter are valid.
    608 	 * desired entries will be enabled as we fill the filter in.
    609 	 */
    610 
    611 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    612 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    613 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    614 	for (i = 0; i < 8; i++)
    615 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    616 
    617 	/* Clear the VLAN filter too. */
    618 
    619 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    620 	for (i = 0; i < 8; i++)
    621 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    622 
    623 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    624 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    625 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    626 
    627 	sc->sc_camidx = 0;
    628 }
    629 
    630 static int
    631 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    632 {
    633 	int i, error;
    634 
    635 	error = 0;
    636 
    637 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    638 		return ENOSPC;
    639 
    640 	/* Select the CAM data page. */
    641 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    642 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    643 
    644 	/* Set the filter entry we want to update and enable writing. */
    645 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    646 
    647 	/* Write the address to the CAM registers */
    648 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    649 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    650 
    651 	/* Issue a write command. */
    652 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    653 
    654 	/* Wake for it to clear. */
    655 	for (i = 0; i < VGE_TIMEOUT; i++) {
    656 		DELAY(1);
    657 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    658 			break;
    659 	}
    660 
    661 	if (i == VGE_TIMEOUT) {
    662 		aprint_error("%s: setting CAM filter failed\n",
    663 		    sc->sc_dev.dv_xname);
    664 		error = EIO;
    665 		goto fail;
    666 	}
    667 
    668 	/* Select the CAM mask page. */
    669 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    670 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    671 
    672 	/* Set the mask bit that enables this filter. */
    673 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    674 	    1 << (sc->sc_camidx & 7));
    675 
    676 	sc->sc_camidx++;
    677 
    678  fail:
    679 	/* Turn off access to CAM. */
    680 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    681 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    682 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    683 
    684 	return error;
    685 }
    686 
    687 /*
    688  * Program the multicast filter. We use the 64-entry CAM filter
    689  * for perfect filtering. If there's more than 64 multicast addresses,
    690  * we use the hash filter instead.
    691  */
    692 static void
    693 vge_setmulti(struct vge_softc *sc)
    694 {
    695 	struct ifnet *ifp;
    696 	int error;
    697 	uint32_t h, hashes[2] = { 0, 0 };
    698 	struct ether_multi *enm;
    699 	struct ether_multistep step;
    700 
    701 	error = 0;
    702 	ifp = &sc->sc_ethercom.ec_if;
    703 
    704 	/* First, zot all the multicast entries. */
    705 	vge_cam_clear(sc);
    706 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    707 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    708 	ifp->if_flags &= ~IFF_ALLMULTI;
    709 
    710 	/*
    711 	 * If the user wants allmulti or promisc mode, enable reception
    712 	 * of all multicast frames.
    713 	 */
    714 	if (ifp->if_flags & IFF_PROMISC) {
    715  allmulti:
    716 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    717 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    718 		ifp->if_flags |= IFF_ALLMULTI;
    719 		return;
    720 	}
    721 
    722 	/* Now program new ones */
    723 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    724 	while (enm != NULL) {
    725 		/*
    726 		 * If multicast range, fall back to ALLMULTI.
    727 		 */
    728 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    729 				ETHER_ADDR_LEN) != 0)
    730 			goto allmulti;
    731 
    732 		error = vge_cam_set(sc, enm->enm_addrlo);
    733 		if (error)
    734 			break;
    735 
    736 		ETHER_NEXT_MULTI(step, enm);
    737 	}
    738 
    739 	/* If there were too many addresses, use the hash filter. */
    740 	if (error) {
    741 		vge_cam_clear(sc);
    742 
    743 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    744 		while (enm != NULL) {
    745 			/*
    746 			 * If multicast range, fall back to ALLMULTI.
    747 			 */
    748 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    749 					ETHER_ADDR_LEN) != 0)
    750 				goto allmulti;
    751 
    752 			h = ether_crc32_be(enm->enm_addrlo,
    753 			    ETHER_ADDR_LEN) >> 26;
    754 			hashes[h >> 5] |= 1 << (h & 0x1f);
    755 
    756 			ETHER_NEXT_MULTI(step, enm);
    757 		}
    758 
    759 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    760 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    761 	}
    762 }
    763 
    764 static void
    765 vge_reset(struct vge_softc *sc)
    766 {
    767 	int i;
    768 
    769 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    770 
    771 	for (i = 0; i < VGE_TIMEOUT; i++) {
    772 		DELAY(5);
    773 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    774 			break;
    775 	}
    776 
    777 	if (i == VGE_TIMEOUT) {
    778 		aprint_error("%s: soft reset timed out", sc->sc_dev.dv_xname);
    779 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    780 		DELAY(2000);
    781 	}
    782 
    783 	DELAY(5000);
    784 
    785 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    786 
    787 	for (i = 0; i < VGE_TIMEOUT; i++) {
    788 		DELAY(5);
    789 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    790 			break;
    791 	}
    792 
    793 	if (i == VGE_TIMEOUT) {
    794 		aprint_error("%s: EEPROM reload timed out\n",
    795 		    sc->sc_dev.dv_xname);
    796 		return;
    797 	}
    798 
    799 	/*
    800 	 * On some machine, the first read data from EEPROM could be
    801 	 * messed up, so read one dummy data here to avoid the mess.
    802 	 */
    803 	(void)vge_read_eeprom(sc, 0);
    804 
    805 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    806 }
    807 
    808 /*
    809  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    810  * IDs against our list and return a device name if we find a match.
    811  */
    812 static int
    813 vge_probe(struct device *parent, struct cfdata *match,
    814     void *aux)
    815 {
    816 	struct pci_attach_args *pa = aux;
    817 
    818 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    819 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    820 		return 1;
    821 
    822 	return 0;
    823 }
    824 
    825 static int
    826 vge_allocmem(struct vge_softc *sc)
    827 {
    828 	int error;
    829 	int nseg;
    830 	int i;
    831 	bus_dma_segment_t seg;
    832 
    833 	/*
    834 	 * Allocate memory for control data.
    835 	 */
    836 
    837 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    838 	     VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    839 	if (error) {
    840 		aprint_error("%s: could not allocate control data dma memory\n",
    841 		    sc->sc_dev.dv_xname);
    842 		return ENOMEM;
    843 	}
    844 
    845 	/* Map the memory to kernel VA space */
    846 
    847 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    848 	    sizeof(struct vge_control_data), (caddr_t *)&sc->sc_control_data,
    849 	    BUS_DMA_NOWAIT);
    850 	if (error) {
    851 		aprint_error("%s: could not map control data dma memory\n",
    852 		    sc->sc_dev.dv_xname);
    853 		return ENOMEM;
    854 	}
    855 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    856 
    857 	/*
    858 	 * Create map for control data.
    859 	 */
    860 	error = bus_dmamap_create(sc->sc_dmat,
    861 	    sizeof(struct vge_control_data), 1,
    862 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    863 	    &sc->sc_cddmamap);
    864 	if (error) {
    865 		aprint_error("%s: could not create control data dmamap\n",
    866 		    sc->sc_dev.dv_xname);
    867 		return ENOMEM;
    868 	}
    869 
    870 	/* Load the map for the control data. */
    871 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    872 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    873 	    BUS_DMA_NOWAIT);
    874 	if (error) {
    875 		aprint_error("%s: could not load control data dma memory\n",
    876 		    sc->sc_dev.dv_xname);
    877 		return ENOMEM;
    878 	}
    879 
    880 	/* Create DMA maps for TX buffers */
    881 
    882 	for (i = 0; i < VGE_NTXDESC; i++) {
    883 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    884 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    885 		    &sc->sc_txsoft[i].txs_dmamap);
    886 		if (error) {
    887 			aprint_error("%s: can't create DMA map for TX descs\n",
    888 			    sc->sc_dev.dv_xname);
    889 			return ENOMEM;
    890 		}
    891 	}
    892 
    893 	/* Create DMA maps for RX buffers */
    894 
    895 	for (i = 0; i < VGE_NRXDESC; i++) {
    896 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    897 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    898 		    &sc->sc_rxsoft[i].rxs_dmamap);
    899 		if (error) {
    900 			aprint_error("%s: can't create DMA map for RX descs\n",
    901 			    sc->sc_dev.dv_xname);
    902 			return ENOMEM;
    903 		}
    904 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    905 	}
    906 
    907 	return 0;
    908 }
    909 
    910 /*
    911  * Attach the interface. Allocate softc structures, do ifmedia
    912  * setup and ethernet/BPF attach.
    913  */
    914 static void
    915 vge_attach(struct device *parent, struct device *self, void *aux)
    916 {
    917 	uint8_t	*eaddr;
    918 	struct vge_softc *sc = (void *)self;
    919 	struct ifnet *ifp;
    920 	struct pci_attach_args *pa = aux;
    921 	pci_chipset_tag_t pc = pa->pa_pc;
    922 	const char *intrstr;
    923 	pci_intr_handle_t ih;
    924 	uint16_t val;
    925 
    926 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    927 		PCI_REVISION(pa->pa_class));
    928 
    929 	/* Make sure bus-mastering is enabled */
    930         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    931 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    932 	    PCI_COMMAND_MASTER_ENABLE);
    933 
    934 	/*
    935 	 * Map control/status registers.
    936 	 */
    937 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    938 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    939 		aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname);
    940 		return;
    941 	}
    942 
    943         /*
    944          * Map and establish our interrupt.
    945          */
    946 	if (pci_intr_map(pa, &ih)) {
    947 		aprint_error("%s: unable to map interrupt\n",
    948 		    sc->sc_dev.dv_xname);
    949 		return;
    950 	}
    951 	intrstr = pci_intr_string(pc, ih);
    952 	sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    953 	if (sc->sc_intrhand == NULL) {
    954 		aprint_error("%s: unable to establish interrupt",
    955 		    sc->sc_dev.dv_xname);
    956 		if (intrstr != NULL)
    957 			aprint_error(" at %s", intrstr);
    958 		aprint_error("\n");
    959 		return;
    960 	}
    961 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    962 
    963 	/* Reset the adapter. */
    964 	vge_reset(sc);
    965 
    966 	/*
    967 	 * Get station address from the EEPROM.
    968 	 */
    969 	eaddr = sc->sc_eaddr;
    970 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    971 	eaddr[0] = val & 0xff;
    972 	eaddr[1] = val >> 8;
    973 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    974 	eaddr[2] = val & 0xff;
    975 	eaddr[3] = val >> 8;
    976 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    977 	eaddr[4] = val & 0xff;
    978 	eaddr[5] = val >> 8;
    979 
    980 	aprint_normal("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    981 	    ether_sprintf(eaddr));
    982 
    983 	/*
    984 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    985 	 * but we don't use that for now.
    986 	 */
    987 	sc->sc_dmat = pa->pa_dmat;
    988 
    989 	if (vge_allocmem(sc))
    990 		return;
    991 
    992 	ifp = &sc->sc_ethercom.ec_if;
    993 	ifp->if_softc = sc;
    994 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    995 	ifp->if_mtu = ETHERMTU;
    996 	ifp->if_baudrate = IF_Gbps(1);
    997 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    998 	ifp->if_ioctl = vge_ioctl;
    999 	ifp->if_start = vge_start;
   1000 
   1001 	/*
   1002 	 * We can support 802.1Q VLAN-sized frames and jumbo
   1003 	 * Ethernet frames.
   1004 	 */
   1005 	sc->sc_ethercom.ec_capabilities |=
   1006 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
   1007 	    ETHERCAP_VLAN_HWTAGGING;
   1008 
   1009 	/*
   1010 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
   1011 	 */
   1012 	ifp->if_capabilities |=
   1013 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1014 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1015 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1016 
   1017 #ifdef DEVICE_POLLING
   1018 #ifdef IFCAP_POLLING
   1019 	ifp->if_capabilities |= IFCAP_POLLING;
   1020 #endif
   1021 #endif
   1022 	ifp->if_watchdog = vge_watchdog;
   1023 	ifp->if_init = vge_init;
   1024 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
   1025 
   1026 	/*
   1027 	 * Initialize our media structures and probe the MII.
   1028 	 */
   1029 	sc->sc_mii.mii_ifp = ifp;
   1030 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
   1031 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
   1032 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
   1033 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
   1034 	    vge_ifmedia_sts);
   1035 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1036 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1037 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1038 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1039 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1040 	} else
   1041 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1042 
   1043 	/*
   1044 	 * Attach the interface.
   1045 	 */
   1046 	if_attach(ifp);
   1047 	ether_ifattach(ifp, eaddr);
   1048 
   1049 	callout_init(&sc->sc_timeout);
   1050 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1051 
   1052 	/*
   1053 	 * Make sure the interface is shutdown during reboot.
   1054 	 */
   1055 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
   1056 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
   1057 		    sc->sc_dev.dv_xname);
   1058 	}
   1059 }
   1060 
   1061 static int
   1062 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1063 {
   1064 	struct mbuf *m_new;
   1065 	struct vge_rxdesc *rxd;
   1066 	struct vge_rxsoft *rxs;
   1067 	bus_dmamap_t map;
   1068 	int i;
   1069 #ifdef DIAGNOSTIC
   1070 	uint32_t rd_sts;
   1071 #endif
   1072 
   1073 	m_new = NULL;
   1074 	if (m == NULL) {
   1075 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1076 		if (m_new == NULL)
   1077 			return ENOBUFS;
   1078 
   1079 		MCLGET(m_new, M_DONTWAIT);
   1080 		if ((m_new->m_flags & M_EXT) == 0) {
   1081 			m_freem(m_new);
   1082 			return ENOBUFS;
   1083 		}
   1084 
   1085 		m = m_new;
   1086 	} else
   1087 		m->m_data = m->m_ext.ext_buf;
   1088 
   1089 
   1090 	/*
   1091 	 * This is part of an evil trick to deal with non-x86 platforms.
   1092 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1093 	 * boundaries, but that will hose non-x86 machines. To get around
   1094 	 * this, we leave some empty space at the start of each buffer
   1095 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1096 	 * to achieve word alignment. This is slightly more efficient
   1097 	 * than allocating a new buffer, copying the contents, and
   1098 	 * discarding the old buffer.
   1099 	 */
   1100 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1101 #ifndef __NO_STRICT_ALIGNMENT
   1102 	m->m_data += VGE_RX_PAD;
   1103 #endif
   1104 	rxs = &sc->sc_rxsoft[idx];
   1105 	map = rxs->rxs_dmamap;
   1106 
   1107 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1108 		goto out;
   1109 
   1110 	rxd = &sc->sc_rxdescs[idx];
   1111 
   1112 #ifdef DIAGNOSTIC
   1113 	/* If this descriptor is still owned by the chip, bail. */
   1114 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1115 	rd_sts = le32toh(rxd->rd_sts);
   1116 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1117 	if (rd_sts & VGE_RDSTS_OWN) {
   1118 		panic("%s: tried to map busy RX descriptor",
   1119 		    sc->sc_dev.dv_xname);
   1120 	}
   1121 #endif
   1122 
   1123 	rxs->rxs_mbuf = m;
   1124 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1125 	    BUS_DMASYNC_PREREAD);
   1126 
   1127 	rxd->rd_buflen =
   1128 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1129 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1130 	rxd->rd_sts = 0;
   1131 	rxd->rd_ctl = 0;
   1132 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1133 
   1134 	/*
   1135 	 * Note: the manual fails to document the fact that for
   1136 	 * proper opration, the driver needs to replentish the RX
   1137 	 * DMA ring 4 descriptors at a time (rather than one at a
   1138 	 * time, like most chips). We can allocate the new buffers
   1139 	 * but we should not set the OWN bits until we're ready
   1140 	 * to hand back 4 of them in one shot.
   1141 	 */
   1142 
   1143 #define VGE_RXCHUNK 4
   1144 	sc->sc_rx_consumed++;
   1145 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1146 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1147 			KASSERT(i >= 0);
   1148 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1149 			VGE_RXDESCSYNC(sc, i,
   1150 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1151 		}
   1152 		sc->sc_rx_consumed = 0;
   1153 	}
   1154 
   1155 	return 0;
   1156  out:
   1157 	if (m_new != NULL)
   1158 		m_freem(m_new);
   1159 	return ENOMEM;
   1160 }
   1161 
   1162 #ifndef __NO_STRICT_ALIGNMENT
   1163 static inline void
   1164 vge_fixup_rx(struct mbuf *m)
   1165 {
   1166 	int i;
   1167 	uint16_t *src, *dst;
   1168 
   1169 	src = mtod(m, uint16_t *);
   1170 	dst = src - 1;
   1171 
   1172 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1173 		*dst++ = *src++;
   1174 
   1175 	m->m_data -= ETHER_ALIGN;
   1176 }
   1177 #endif
   1178 
   1179 /*
   1180  * RX handler. We support the reception of jumbo frames that have
   1181  * been fragmented across multiple 2K mbuf cluster buffers.
   1182  */
   1183 static void
   1184 vge_rxeof(struct vge_softc *sc)
   1185 {
   1186 	struct mbuf *m;
   1187 	struct ifnet *ifp;
   1188 	int idx, total_len, lim;
   1189 	struct vge_rxdesc *cur_rxd;
   1190 	struct vge_rxsoft *rxs;
   1191 	uint32_t rxstat, rxctl;
   1192 
   1193 	ifp = &sc->sc_ethercom.ec_if;
   1194 	lim = 0;
   1195 
   1196 	/* Invalidate the descriptor memory */
   1197 
   1198 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1199 		cur_rxd = &sc->sc_rxdescs[idx];
   1200 
   1201 		VGE_RXDESCSYNC(sc, idx,
   1202 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1203 		rxstat = le32toh(cur_rxd->rd_sts);
   1204 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1205 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1206 			break;
   1207 		}
   1208 
   1209 		rxctl = le32toh(cur_rxd->rd_ctl);
   1210 		rxs = &sc->sc_rxsoft[idx];
   1211 		m = rxs->rxs_mbuf;
   1212 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1213 
   1214 		/* Invalidate the RX mbuf and unload its map */
   1215 
   1216 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1217 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1218 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1219 
   1220 		/*
   1221 		 * If the 'start of frame' bit is set, this indicates
   1222 		 * either the first fragment in a multi-fragment receive,
   1223 		 * or an intermediate fragment. Either way, we want to
   1224 		 * accumulate the buffers.
   1225 		 */
   1226 		if (rxstat & VGE_RXPKT_SOF) {
   1227 			m->m_len = VGE_RX_BUFSIZE;
   1228 			if (sc->sc_rx_mhead == NULL)
   1229 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1230 			else {
   1231 				m->m_flags &= ~M_PKTHDR;
   1232 				sc->sc_rx_mtail->m_next = m;
   1233 				sc->sc_rx_mtail = m;
   1234 			}
   1235 			vge_newbuf(sc, idx, NULL);
   1236 			continue;
   1237 		}
   1238 
   1239 		/*
   1240 		 * Bad/error frames will have the RXOK bit cleared.
   1241 		 * However, there's one error case we want to allow:
   1242 		 * if a VLAN tagged frame arrives and the chip can't
   1243 		 * match it against the CAM filter, it considers this
   1244 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1245 		 * We don't want to drop the frame though: our VLAN
   1246 		 * filtering is done in software.
   1247 		 */
   1248 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1249 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1250 			ifp->if_ierrors++;
   1251 			/*
   1252 			 * If this is part of a multi-fragment packet,
   1253 			 * discard all the pieces.
   1254 			 */
   1255 			if (sc->sc_rx_mhead != NULL) {
   1256 				m_freem(sc->sc_rx_mhead);
   1257 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1258 			}
   1259 			vge_newbuf(sc, idx, m);
   1260 			continue;
   1261 		}
   1262 
   1263 		/*
   1264 		 * If allocating a replacement mbuf fails,
   1265 		 * reload the current one.
   1266 		 */
   1267 
   1268 		if (vge_newbuf(sc, idx, NULL)) {
   1269 			ifp->if_ierrors++;
   1270 			if (sc->sc_rx_mhead != NULL) {
   1271 				m_freem(sc->sc_rx_mhead);
   1272 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1273 			}
   1274 			vge_newbuf(sc, idx, m);
   1275 			continue;
   1276 		}
   1277 
   1278 		if (sc->sc_rx_mhead != NULL) {
   1279 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1280 			/*
   1281 			 * Special case: if there's 4 bytes or less
   1282 			 * in this buffer, the mbuf can be discarded:
   1283 			 * the last 4 bytes is the CRC, which we don't
   1284 			 * care about anyway.
   1285 			 */
   1286 			if (m->m_len <= ETHER_CRC_LEN) {
   1287 				sc->sc_rx_mtail->m_len -=
   1288 				    (ETHER_CRC_LEN - m->m_len);
   1289 				m_freem(m);
   1290 			} else {
   1291 				m->m_len -= ETHER_CRC_LEN;
   1292 				m->m_flags &= ~M_PKTHDR;
   1293 				sc->sc_rx_mtail->m_next = m;
   1294 			}
   1295 			m = sc->sc_rx_mhead;
   1296 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1297 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1298 		} else
   1299 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1300 
   1301 #ifndef __NO_STRICT_ALIGNMENT
   1302 		vge_fixup_rx(m);
   1303 #endif
   1304 		ifp->if_ipackets++;
   1305 		m->m_pkthdr.rcvif = ifp;
   1306 
   1307 		/* Do RX checksumming if enabled */
   1308 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1309 
   1310 			/* Check IP header checksum */
   1311 			if (rxctl & VGE_RDCTL_IPPKT)
   1312 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1313 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1314 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1315 		}
   1316 
   1317 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1318 			/* Check UDP checksum */
   1319 			if (rxctl & VGE_RDCTL_TCPPKT)
   1320 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1321 
   1322 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1323 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1324 		}
   1325 
   1326 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1327 			/* Check UDP checksum */
   1328 			if (rxctl & VGE_RDCTL_UDPPKT)
   1329 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1330 
   1331 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1332 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1333 		}
   1334 
   1335 		if (rxstat & VGE_RDSTS_VTAG) {
   1336 			/*
   1337 			 * We use bswap16() here because:
   1338 			 * On LE machines, tag is stored in BE as stream data.
   1339 			 * On BE machines, tag is stored in BE as stream data
   1340 			 *  but it was already swapped by le32toh() above.
   1341 			 */
   1342 			VLAN_INPUT_TAG(ifp, m,
   1343 			    bswap16(rxctl & VGE_RDCTL_VLANID), continue);
   1344 		}
   1345 
   1346 #if NBPFILTER > 0
   1347 		/*
   1348 		 * Handle BPF listeners.
   1349 		 */
   1350 		if (ifp->if_bpf)
   1351 			bpf_mtap(ifp->if_bpf, m);
   1352 #endif
   1353 
   1354 		(*ifp->if_input)(ifp, m);
   1355 
   1356 		lim++;
   1357 		if (lim == VGE_NRXDESC)
   1358 			break;
   1359 
   1360 	}
   1361 
   1362 	sc->sc_rx_prodidx = idx;
   1363 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1364 }
   1365 
   1366 static void
   1367 vge_txeof(struct vge_softc *sc)
   1368 {
   1369 	struct ifnet *ifp;
   1370 	struct vge_txsoft *txs;
   1371 	uint32_t txstat;
   1372 	int idx;
   1373 
   1374 	ifp = &sc->sc_ethercom.ec_if;
   1375 
   1376 	for (idx = sc->sc_tx_considx;
   1377 	    sc->sc_tx_free < VGE_NTXDESC;
   1378 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1379 		VGE_TXDESCSYNC(sc, idx,
   1380 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1381 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1382 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1383 		if (txstat & VGE_TDSTS_OWN) {
   1384 			break;
   1385 		}
   1386 
   1387 		txs = &sc->sc_txsoft[idx];
   1388 		m_freem(txs->txs_mbuf);
   1389 		txs->txs_mbuf = NULL;
   1390 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1391 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1392 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1393 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1394 			ifp->if_collisions++;
   1395 		if (txstat & VGE_TDSTS_TXERR)
   1396 			ifp->if_oerrors++;
   1397 		else
   1398 			ifp->if_opackets++;
   1399 	}
   1400 
   1401 	sc->sc_tx_considx = idx;
   1402 
   1403 	if (sc->sc_tx_free > 0) {
   1404 		ifp->if_flags &= ~IFF_OACTIVE;
   1405 	}
   1406 
   1407 	/*
   1408 	 * If not all descriptors have been released reaped yet,
   1409 	 * reload the timer so that we will eventually get another
   1410 	 * interrupt that will cause us to re-enter this routine.
   1411 	 * This is done in case the transmitter has gone idle.
   1412 	 */
   1413 	if (sc->sc_tx_free < VGE_NTXDESC)
   1414 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1415 	else
   1416 		ifp->if_timer = 0;
   1417 }
   1418 
   1419 static void
   1420 vge_tick(void *xsc)
   1421 {
   1422 	struct vge_softc *sc;
   1423 	struct ifnet *ifp;
   1424 	struct mii_data *mii;
   1425 	int s;
   1426 
   1427 	sc = xsc;
   1428 	ifp = &sc->sc_ethercom.ec_if;
   1429 	mii = &sc->sc_mii;
   1430 
   1431 	s = splnet();
   1432 
   1433 	callout_schedule(&sc->sc_timeout, hz);
   1434 
   1435 	mii_tick(mii);
   1436 	if (sc->sc_link) {
   1437 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1438 			sc->sc_link = 0;
   1439 	} else {
   1440 		if (mii->mii_media_status & IFM_ACTIVE &&
   1441 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1442 			sc->sc_link = 1;
   1443 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1444 				vge_start(ifp);
   1445 		}
   1446 	}
   1447 
   1448 	splx(s);
   1449 }
   1450 
   1451 static int
   1452 vge_intr(void *arg)
   1453 {
   1454 	struct vge_softc *sc;
   1455 	struct ifnet *ifp;
   1456 	uint32_t status;
   1457 	int claim;
   1458 
   1459 	sc = arg;
   1460 	claim = 0;
   1461 	if (sc->sc_suspended) {
   1462 		return claim;
   1463 	}
   1464 
   1465 	ifp = &sc->sc_ethercom.ec_if;
   1466 
   1467 	if (!(ifp->if_flags & IFF_UP)) {
   1468 		return claim;
   1469 	}
   1470 
   1471 	/* Disable interrupts */
   1472 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1473 
   1474 	for (;;) {
   1475 
   1476 		status = CSR_READ_4(sc, VGE_ISR);
   1477 		/* If the card has gone away the read returns 0xffff. */
   1478 		if (status == 0xFFFFFFFF)
   1479 			break;
   1480 
   1481 		if (status) {
   1482 			claim = 1;
   1483 			CSR_WRITE_4(sc, VGE_ISR, status);
   1484 		}
   1485 
   1486 		if ((status & VGE_INTRS) == 0)
   1487 			break;
   1488 
   1489 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1490 			vge_rxeof(sc);
   1491 
   1492 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1493 			vge_rxeof(sc);
   1494 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1495 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1496 		}
   1497 
   1498 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1499 			vge_txeof(sc);
   1500 
   1501 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1502 			vge_init(ifp);
   1503 
   1504 		if (status & VGE_ISR_LINKSTS)
   1505 			vge_tick(sc);
   1506 	}
   1507 
   1508 	/* Re-enable interrupts */
   1509 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1510 
   1511 	if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
   1512 		vge_start(ifp);
   1513 
   1514 	return claim;
   1515 }
   1516 
   1517 static int
   1518 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1519 {
   1520 	struct vge_txsoft *txs;
   1521 	struct vge_txdesc *txd;
   1522 	struct vge_txfrag *f;
   1523 	struct mbuf *m_new;
   1524 	bus_dmamap_t map;
   1525 	int m_csumflags, seg, error, flags;
   1526 	struct m_tag *mtag;
   1527 	size_t sz;
   1528 	uint32_t td_sts, td_ctl;
   1529 
   1530 	KASSERT(sc->sc_tx_free > 0);
   1531 
   1532 	txd = &sc->sc_txdescs[idx];
   1533 
   1534 #ifdef DIAGNOSTIC
   1535 	/* If this descriptor is still owned by the chip, bail. */
   1536 	VGE_TXDESCSYNC(sc, idx,
   1537 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1538 	td_sts = le32toh(txd->td_sts);
   1539 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1540 	if (td_sts & VGE_TDSTS_OWN) {
   1541 		return ENOBUFS;
   1542 	}
   1543 #endif
   1544 
   1545 	/*
   1546 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1547 	 * updated by m_defrag()
   1548 	 */
   1549 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1550 
   1551 	txs = &sc->sc_txsoft[idx];
   1552 	map = txs->txs_dmamap;
   1553 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1554 
   1555 	/* If too many segments to map, coalesce */
   1556 	if (error == EFBIG ||
   1557 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1558 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1559 		m_new = m_defrag(m_head, M_DONTWAIT);
   1560 		if (m_new == NULL)
   1561 			return EFBIG;
   1562 
   1563 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1564 		    m_new, BUS_DMA_NOWAIT);
   1565 		if (error) {
   1566 			m_freem(m_new);
   1567 			return error;
   1568 		}
   1569 
   1570 		m_head = m_new;
   1571 	} else if (error)
   1572 		return error;
   1573 
   1574 	txs->txs_mbuf = m_head;
   1575 
   1576 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1577 	    BUS_DMASYNC_PREWRITE);
   1578 
   1579 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1580 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1581 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1582 	}
   1583 
   1584 	/* Argh. This chip does not autopad short frames */
   1585 	sz = m_head->m_pkthdr.len;
   1586 	if (sz < ETHER_PAD_LEN) {
   1587 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1588 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1589 		sz = ETHER_PAD_LEN;
   1590 		seg++;
   1591 	}
   1592 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1593 
   1594 	/*
   1595 	 * When telling the chip how many segments there are, we
   1596 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1597 	 * know why.
   1598 	 */
   1599 	seg++;
   1600 
   1601 	flags = 0;
   1602 	if (m_csumflags & M_CSUM_IPv4)
   1603 		flags |= VGE_TDCTL_IPCSUM;
   1604 	if (m_csumflags & M_CSUM_TCPv4)
   1605 		flags |= VGE_TDCTL_TCPCSUM;
   1606 	if (m_csumflags & M_CSUM_UDPv4)
   1607 		flags |= VGE_TDCTL_UDPCSUM;
   1608 	td_sts = sz << 16;
   1609 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1610 
   1611 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1612 		td_ctl |= VGE_TDCTL_JUMBO;
   1613 
   1614 	/*
   1615 	 * Set up hardware VLAN tagging.
   1616 	 */
   1617 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1618 	if (mtag != NULL) {
   1619 		/*
   1620 		 * No need htons() here since vge(4) chip assumes
   1621 		 * that tags are written in little endian and
   1622 		 * we already use htole32() here.
   1623 		 */
   1624 		td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
   1625 	}
   1626 	txd->td_ctl = htole32(td_ctl);
   1627 	txd->td_sts = htole32(td_sts);
   1628 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1629 
   1630 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1631 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1632 
   1633 	sc->sc_tx_free--;
   1634 
   1635 	return 0;
   1636 }
   1637 
   1638 /*
   1639  * Main transmit routine.
   1640  */
   1641 
   1642 static void
   1643 vge_start(struct ifnet *ifp)
   1644 {
   1645 	struct vge_softc *sc;
   1646 	struct vge_txsoft *txs;
   1647 	struct mbuf *m_head;
   1648 	int idx, pidx, ofree, error;
   1649 
   1650 	sc = ifp->if_softc;
   1651 
   1652 	if (!sc->sc_link ||
   1653 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1654 		return;
   1655 	}
   1656 
   1657 	m_head = NULL;
   1658 	idx = sc->sc_tx_prodidx;
   1659 	pidx = VGE_PREV_TXDESC(idx);
   1660 	ofree = sc->sc_tx_free;
   1661 
   1662 	/*
   1663 	 * Loop through the send queue, setting up transmit descriptors
   1664 	 * until we drain the queue, or use up all available transmit
   1665 	 * descriptors.
   1666 	 */
   1667 	for (;;) {
   1668 		/* Grab a packet off the queue. */
   1669 		IFQ_POLL(&ifp->if_snd, m_head);
   1670 		if (m_head == NULL)
   1671 			break;
   1672 
   1673 		if (sc->sc_tx_free == 0) {
   1674 			/*
   1675 			 * All slots used, stop for now.
   1676 			 */
   1677 			ifp->if_flags |= IFF_OACTIVE;
   1678 			break;
   1679 		}
   1680 
   1681 		txs = &sc->sc_txsoft[idx];
   1682 		KASSERT(txs->txs_mbuf == NULL);
   1683 
   1684 		if ((error = vge_encap(sc, m_head, idx))) {
   1685 			if (error == EFBIG) {
   1686 				aprint_error("%s: Tx packet consumes too many "
   1687 				    "DMA segments, dropping...\n",
   1688 				    sc->sc_dev.dv_xname);
   1689 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1690 				m_freem(m_head);
   1691 				continue;
   1692 			}
   1693 
   1694 			/*
   1695 			 * Short on resources, just stop for now.
   1696 			 */
   1697 			if (error == ENOBUFS)
   1698 				ifp->if_flags |= IFF_OACTIVE;
   1699 			break;
   1700 		}
   1701 
   1702 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1703 
   1704 		/*
   1705 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1706 		 */
   1707 
   1708 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1709 		    htole16(VGE_TXDESC_Q);
   1710 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1711 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1712 
   1713 		if (txs->txs_mbuf != m_head) {
   1714 			m_freem(m_head);
   1715 			m_head = txs->txs_mbuf;
   1716 		}
   1717 
   1718 		pidx = idx;
   1719 		idx = VGE_NEXT_TXDESC(idx);
   1720 
   1721 		/*
   1722 		 * If there's a BPF listener, bounce a copy of this frame
   1723 		 * to him.
   1724 		 */
   1725 #if NBPFILTER > 0
   1726 		if (ifp->if_bpf)
   1727 			bpf_mtap(ifp->if_bpf, m_head);
   1728 #endif
   1729 	}
   1730 
   1731 	if (sc->sc_tx_free < ofree) {
   1732 		/* TX packet queued */
   1733 
   1734 		sc->sc_tx_prodidx = idx;
   1735 
   1736 		/* Issue a transmit command. */
   1737 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1738 
   1739 		/*
   1740 		 * Use the countdown timer for interrupt moderation.
   1741 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1742 		 * countdown timer, which will begin counting until it hits
   1743 		 * the value in the SSTIMER register, and then trigger an
   1744 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1745 		 * the timer count is reloaded. Only when the transmitter
   1746 		 * is idle will the timer hit 0 and an interrupt fire.
   1747 		 */
   1748 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1749 
   1750 		/*
   1751 		 * Set a timeout in case the chip goes out to lunch.
   1752 		 */
   1753 		ifp->if_timer = 5;
   1754 	}
   1755 }
   1756 
   1757 static int
   1758 vge_init(struct ifnet *ifp)
   1759 {
   1760 	struct vge_softc *sc;
   1761 	struct vge_rxsoft *rxs;
   1762 	int i;
   1763 
   1764 	sc = ifp->if_softc;
   1765 
   1766 	/*
   1767 	 * Cancel pending I/O and free all RX/TX buffers.
   1768 	 */
   1769 	vge_stop(sc);
   1770 	vge_reset(sc);
   1771 
   1772 	/* Initialize the RX descriptors and mbufs. */
   1773 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1774 	for (i = 0; i < VGE_NRXDESC; i++) {
   1775 		rxs = &sc->sc_rxsoft[i];
   1776 		if (rxs->rxs_mbuf) {
   1777 			m_freem(rxs->rxs_mbuf);
   1778 			rxs->rxs_mbuf = NULL;
   1779 		}
   1780 		if (rxs->rxs_dmamap)
   1781 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1782 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1783 			aprint_error("%s: unable to allocate or map "
   1784 			    "rx buffer\n", sc->sc_dev.dv_xname);
   1785 			return 1; /* XXX */
   1786 		}
   1787 	}
   1788 	sc->sc_rx_prodidx = 0;
   1789 	sc->sc_rx_consumed = 0;
   1790 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1791 
   1792 	/* Initialize the  TX descriptors and mbufs. */
   1793 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1794 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1795 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1796 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1797 	for (i = 0; i < VGE_NTXDESC; i++)
   1798 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1799 
   1800 	sc->sc_tx_prodidx = 0;
   1801 	sc->sc_tx_considx = 0;
   1802 	sc->sc_tx_free = VGE_NTXDESC;
   1803 
   1804 	/* Set our station address */
   1805 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1806 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1807 
   1808 	/*
   1809 	 * Set receive FIFO threshold. Also allow transmission and
   1810 	 * reception of VLAN tagged frames.
   1811 	 */
   1812 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1813 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1814 
   1815 	/* Set DMA burst length */
   1816 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1817 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1818 
   1819 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1820 
   1821 	/* Set collision backoff algorithm */
   1822 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1823 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1824 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1825 
   1826 	/* Disable LPSEL field in priority resolution */
   1827 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1828 
   1829 	/*
   1830 	 * Load the addresses of the DMA queues into the chip.
   1831 	 * Note that we only use one transmit queue.
   1832 	 */
   1833 
   1834 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1835 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1836 
   1837 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1838 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1839 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1840 
   1841 	/* Enable and wake up the RX descriptor queue */
   1842 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1843 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1844 
   1845 	/* Enable the TX descriptor queue */
   1846 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1847 
   1848 	/* Set up the receive filter -- allow large frames for VLANs. */
   1849 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1850 
   1851 	/* If we want promiscuous mode, set the allframes bit. */
   1852 	if (ifp->if_flags & IFF_PROMISC) {
   1853 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1854 	}
   1855 
   1856 	/* Set capture broadcast bit to capture broadcast frames. */
   1857 	if (ifp->if_flags & IFF_BROADCAST) {
   1858 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1859 	}
   1860 
   1861 	/* Set multicast bit to capture multicast frames. */
   1862 	if (ifp->if_flags & IFF_MULTICAST) {
   1863 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1864 	}
   1865 
   1866 	/* Init the cam filter. */
   1867 	vge_cam_clear(sc);
   1868 
   1869 	/* Init the multicast filter. */
   1870 	vge_setmulti(sc);
   1871 
   1872 	/* Enable flow control */
   1873 
   1874 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1875 
   1876 	/* Enable jumbo frame reception (if desired) */
   1877 
   1878 	/* Start the MAC. */
   1879 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1880 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1881 	CSR_WRITE_1(sc, VGE_CRS0,
   1882 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1883 
   1884 	/*
   1885 	 * Configure one-shot timer for microsecond
   1886 	 * resulution and load it for 500 usecs.
   1887 	 */
   1888 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1889 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1890 
   1891 	/*
   1892 	 * Configure interrupt moderation for receive. Enable
   1893 	 * the holdoff counter and load it, and set the RX
   1894 	 * suppression count to the number of descriptors we
   1895 	 * want to allow before triggering an interrupt.
   1896 	 * The holdoff timer is in units of 20 usecs.
   1897 	 */
   1898 
   1899 #ifdef notyet
   1900 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1901 	/* Select the interrupt holdoff timer page. */
   1902 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1903 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1904 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1905 
   1906 	/* Enable use of the holdoff timer. */
   1907 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1908 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1909 
   1910 	/* Select the RX suppression threshold page. */
   1911 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1912 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1913 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1914 
   1915 	/* Restore the page select bits. */
   1916 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1917 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1918 #endif
   1919 
   1920 #ifdef DEVICE_POLLING
   1921 	/*
   1922 	 * Disable interrupts if we are polling.
   1923 	 */
   1924 	if (ifp->if_flags & IFF_POLLING) {
   1925 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1926 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1927 	} else	/* otherwise ... */
   1928 #endif /* DEVICE_POLLING */
   1929 	{
   1930 	/*
   1931 	 * Enable interrupts.
   1932 	 */
   1933 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1934 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1935 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1936 	}
   1937 
   1938 	mii_mediachg(&sc->sc_mii);
   1939 
   1940 	ifp->if_flags |= IFF_RUNNING;
   1941 	ifp->if_flags &= ~IFF_OACTIVE;
   1942 
   1943 	sc->sc_if_flags = 0;
   1944 	sc->sc_link = 0;
   1945 
   1946 	callout_schedule(&sc->sc_timeout, hz);
   1947 
   1948 	return 0;
   1949 }
   1950 
   1951 /*
   1952  * Set media options.
   1953  */
   1954 static int
   1955 vge_ifmedia_upd(struct ifnet *ifp)
   1956 {
   1957 	struct vge_softc *sc;
   1958 
   1959 	sc = ifp->if_softc;
   1960 	mii_mediachg(&sc->sc_mii);
   1961 
   1962 	return 0;
   1963 }
   1964 
   1965 /*
   1966  * Report current media status.
   1967  */
   1968 static void
   1969 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1970 {
   1971 	struct vge_softc *sc;
   1972 	struct mii_data *mii;
   1973 
   1974 	sc = ifp->if_softc;
   1975 	mii = &sc->sc_mii;
   1976 
   1977 	mii_pollstat(mii);
   1978 	ifmr->ifm_active = mii->mii_media_active;
   1979 	ifmr->ifm_status = mii->mii_media_status;
   1980 }
   1981 
   1982 static void
   1983 vge_miibus_statchg(struct device *self)
   1984 {
   1985 	struct vge_softc *sc;
   1986 	struct mii_data *mii;
   1987 	struct ifmedia_entry *ife;
   1988 
   1989 	sc = (void *)self;
   1990 	mii = &sc->sc_mii;
   1991 	ife = mii->mii_media.ifm_cur;
   1992 	/*
   1993 	 * If the user manually selects a media mode, we need to turn
   1994 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1995 	 * user happens to choose a full duplex mode, we also need to
   1996 	 * set the 'force full duplex' bit. This applies only to
   1997 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1998 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1999 	 * always implied, so we turn on the forced mode bit but leave
   2000 	 * the FDX bit cleared.
   2001 	 */
   2002 
   2003 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   2004 	case IFM_AUTO:
   2005 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2006 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2007 		break;
   2008 	case IFM_1000_T:
   2009 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2010 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2011 		break;
   2012 	case IFM_100_TX:
   2013 	case IFM_10_T:
   2014 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2015 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   2016 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2017 		} else {
   2018 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2019 		}
   2020 		break;
   2021 	default:
   2022 		aprint_error("%s: unknown media type: %x\n",
   2023 		    sc->sc_dev.dv_xname,
   2024 		    IFM_SUBTYPE(ife->ifm_media));
   2025 		break;
   2026 	}
   2027 }
   2028 
   2029 static int
   2030 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   2031 {
   2032 	struct vge_softc *sc;
   2033 	struct ifreq *ifr;
   2034 	struct mii_data *mii;
   2035 	int s, error;
   2036 
   2037 	sc = ifp->if_softc;
   2038 	ifr = (struct ifreq *)data;
   2039 	error = 0;
   2040 
   2041 	s = splnet();
   2042 
   2043 	switch (command) {
   2044 	case SIOCSIFMTU:
   2045 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   2046 			error = EINVAL;
   2047 		ifp->if_mtu = ifr->ifr_mtu;
   2048 		break;
   2049 	case SIOCSIFFLAGS:
   2050 		if (ifp->if_flags & IFF_UP) {
   2051 			if (ifp->if_flags & IFF_RUNNING &&
   2052 			    ifp->if_flags & IFF_PROMISC &&
   2053 			    !(sc->sc_if_flags & IFF_PROMISC)) {
   2054 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2055 				    VGE_RXCTL_RX_PROMISC);
   2056 				vge_setmulti(sc);
   2057 			} else if (ifp->if_flags & IFF_RUNNING &&
   2058 			    !(ifp->if_flags & IFF_PROMISC) &&
   2059 			    sc->sc_if_flags & IFF_PROMISC) {
   2060 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2061 				    VGE_RXCTL_RX_PROMISC);
   2062 				vge_setmulti(sc);
   2063                         } else
   2064 				vge_init(ifp);
   2065 		} else {
   2066 			if (ifp->if_flags & IFF_RUNNING)
   2067 				vge_stop(sc);
   2068 		}
   2069 		sc->sc_if_flags = ifp->if_flags;
   2070 		break;
   2071 	case SIOCADDMULTI:
   2072 	case SIOCDELMULTI:
   2073 		error = (command == SIOCADDMULTI) ?
   2074 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   2075 		    ether_delmulti(ifr, &sc->sc_ethercom);
   2076 
   2077 		if (error == ENETRESET) {
   2078 			/*
   2079 			 * Multicast list has changed; set the hardware filter
   2080 			 * accordingly.
   2081 			 */
   2082 			if (ifp->if_flags & IFF_RUNNING)
   2083 				vge_setmulti(sc);
   2084 			error = 0;
   2085 		}
   2086 		break;
   2087 	case SIOCGIFMEDIA:
   2088 	case SIOCSIFMEDIA:
   2089 		mii = &sc->sc_mii;
   2090 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2091 		break;
   2092 	default:
   2093 		error = ether_ioctl(ifp, command, data);
   2094 		break;
   2095 	}
   2096 
   2097 	splx(s);
   2098 	return error;
   2099 }
   2100 
   2101 static void
   2102 vge_watchdog(struct ifnet *ifp)
   2103 {
   2104 	struct vge_softc *sc;
   2105 	int s;
   2106 
   2107 	sc = ifp->if_softc;
   2108 	s = splnet();
   2109 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2110 	ifp->if_oerrors++;
   2111 
   2112 	vge_txeof(sc);
   2113 	vge_rxeof(sc);
   2114 
   2115 	vge_init(ifp);
   2116 
   2117 	splx(s);
   2118 }
   2119 
   2120 /*
   2121  * Stop the adapter and free any mbufs allocated to the
   2122  * RX and TX lists.
   2123  */
   2124 static void
   2125 vge_stop(struct vge_softc *sc)
   2126 {
   2127 	struct ifnet *ifp;
   2128 	struct vge_txsoft *txs;
   2129 	struct vge_rxsoft *rxs;
   2130 	int i, s;
   2131 
   2132 	ifp = &sc->sc_ethercom.ec_if;
   2133 
   2134 	s = splnet();
   2135 	ifp->if_timer = 0;
   2136 
   2137 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2138 #ifdef DEVICE_POLLING
   2139 	ether_poll_deregister(ifp);
   2140 #endif /* DEVICE_POLLING */
   2141 
   2142 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2143 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2144 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2145 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2146 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2147 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2148 
   2149 	if (sc->sc_rx_mhead != NULL) {
   2150 		m_freem(sc->sc_rx_mhead);
   2151 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2152 	}
   2153 
   2154 	/* Free the TX list buffers. */
   2155 
   2156 	for (i = 0; i < VGE_NTXDESC; i++) {
   2157 		txs = &sc->sc_txsoft[i];
   2158 		if (txs->txs_mbuf != NULL) {
   2159 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2160 			m_freem(txs->txs_mbuf);
   2161 			txs->txs_mbuf = NULL;
   2162 		}
   2163 	}
   2164 
   2165 	/* Free the RX list buffers. */
   2166 
   2167 	for (i = 0; i < VGE_NRXDESC; i++) {
   2168 		rxs = &sc->sc_rxsoft[i];
   2169 		if (rxs->rxs_mbuf != NULL) {
   2170 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2171 			m_freem(rxs->rxs_mbuf);
   2172 			rxs->rxs_mbuf = NULL;
   2173 		}
   2174 	}
   2175 
   2176 	splx(s);
   2177 }
   2178 
   2179 #if VGE_POWER_MANAGEMENT
   2180 /*
   2181  * Device suspend routine.  Stop the interface and save some PCI
   2182  * settings in case the BIOS doesn't restore them properly on
   2183  * resume.
   2184  */
   2185 static int
   2186 vge_suspend(struct device *dev)
   2187 {
   2188 	struct vge_softc *sc;
   2189 	int i;
   2190 
   2191 	sc = device_get_softc(dev);
   2192 
   2193 	vge_stop(sc);
   2194 
   2195         for (i = 0; i < 5; i++)
   2196 		sc->sc_saved_maps[i] =
   2197 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2198 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2199 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2200 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2201 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2202 
   2203 	sc->suspended = 1;
   2204 
   2205 	return 0;
   2206 }
   2207 
   2208 /*
   2209  * Device resume routine.  Restore some PCI settings in case the BIOS
   2210  * doesn't, re-enable busmastering, and restart the interface if
   2211  * appropriate.
   2212  */
   2213 static int
   2214 vge_resume(struct device *dev)
   2215 {
   2216 	struct vge_softc *sc;
   2217 	struct ifnet *ifp;
   2218 	int i;
   2219 
   2220 	sc = (void *)dev;
   2221 	ifp = &sc->sc_ethercom.ec_if;
   2222 
   2223         /* better way to do this? */
   2224 	for (i = 0; i < 5; i++)
   2225 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2226 		    sc->sc_saved_maps[i], 4);
   2227 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2228 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2229 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2230 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2231 
   2232 	/* reenable busmastering */
   2233 	pci_enable_busmaster(dev);
   2234 	pci_enable_io(dev, SYS_RES_MEMORY);
   2235 
   2236 	/* reinitialize interface if necessary */
   2237 	if (ifp->if_flags & IFF_UP)
   2238 		vge_init(sc);
   2239 
   2240 	sc->suspended = 0;
   2241 
   2242 	return 0;
   2243 }
   2244 #endif
   2245 
   2246 /*
   2247  * Stop all chip I/O so that the kernel's probe routines don't
   2248  * get confused by errant DMAs when rebooting.
   2249  */
   2250 static void
   2251 vge_shutdown(void *arg)
   2252 {
   2253 	struct vge_softc *sc;
   2254 
   2255 	sc = arg;
   2256 	vge_stop(sc);
   2257 }
   2258