if_vge.c revision 1.30 1 /* $NetBSD: if_vge.c,v 1.30 2006/11/26 15:40:14 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.30 2006/11/26 15:40:14 tsutsui Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/device.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104
105 #include <net/bpf.h>
106
107 #include <machine/bus.h>
108
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
111
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
115
116 #include <dev/pci/if_vgereg.h>
117
118 #define VGE_JUMBO_MTU 9000
119
120 #define VGE_IFQ_MAXLEN 64
121
122 #define VGE_RING_ALIGN 256
123
124 #define VGE_NTXDESC 256
125 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
126 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
127 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
128
129 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
130 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
131 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
132 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
133
134 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
135 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
136 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
137 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
138
139 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
140
141 /*
142 * Mbuf adjust factor to force 32-bit alignment of IP header.
143 * Drivers should pad ETHER_ALIGN bytes when setting up a
144 * RX mbuf so the upper layers get the IP header properly aligned
145 * past the 14-byte Ethernet header.
146 *
147 * See also comment in vge_encap().
148 */
149 #define ETHER_ALIGN 2
150
151 #ifdef __NO_STRICT_ALIGNMENT
152 #define VGE_RX_BUFSIZE MCLBYTES
153 #else
154 #define VGE_RX_PAD sizeof(uint32_t)
155 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
156 #endif
157
158 /*
159 * Control structures are DMA'd to the vge chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct vge_control_data {
164 /* TX descriptors */
165 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
166 /* RX descriptors */
167 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
168 /* dummy data for TX padding */
169 uint8_t vcd_pad[ETHER_PAD_LEN];
170 };
171
172 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
173 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
174 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
175 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
176
177 /*
178 * Software state for TX jobs.
179 */
180 struct vge_txsoft {
181 struct mbuf *txs_mbuf; /* head of our mbuf chain */
182 bus_dmamap_t txs_dmamap; /* our DMA map */
183 };
184
185 /*
186 * Software state for RX jobs.
187 */
188 struct vge_rxsoft {
189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t rxs_dmamap; /* our DMA map */
191 };
192
193
194 struct vge_softc {
195 struct device sc_dev;
196
197 bus_space_tag_t sc_bst; /* bus space tag */
198 bus_space_handle_t sc_bsh; /* bus space handle */
199 bus_dma_tag_t sc_dmat;
200
201 struct ethercom sc_ethercom; /* interface info */
202 uint8_t sc_eaddr[ETHER_ADDR_LEN];
203
204 void *sc_intrhand;
205 struct mii_data sc_mii;
206 uint8_t sc_type;
207 int sc_if_flags;
208 int sc_link;
209 int sc_camidx;
210 struct callout sc_timeout;
211
212 bus_dmamap_t sc_cddmamap;
213 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
214
215 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
216 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
217 struct vge_control_data *sc_control_data;
218 #define sc_txdescs sc_control_data->vcd_txdescs
219 #define sc_rxdescs sc_control_data->vcd_rxdescs
220
221 int sc_tx_prodidx;
222 int sc_tx_considx;
223 int sc_tx_free;
224
225 struct mbuf *sc_rx_mhead;
226 struct mbuf *sc_rx_mtail;
227 int sc_rx_prodidx;
228 int sc_rx_consumed;
229
230 int sc_suspended; /* 0 = normal 1 = suspended */
231 uint32_t sc_saved_maps[5]; /* pci data */
232 uint32_t sc_saved_biosaddr;
233 uint8_t sc_saved_intline;
234 uint8_t sc_saved_cachelnsz;
235 uint8_t sc_saved_lattimer;
236 };
237
238 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
239 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
240 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
241
242 #define VGE_TXDESCSYNC(sc, idx, ops) \
243 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
244 VGE_CDTXOFF(idx), \
245 offsetof(struct vge_txdesc, td_frag[0]), \
246 (ops))
247 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
248 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 VGE_CDTXOFF(idx) + \
250 offsetof(struct vge_txdesc, td_frag[0]), \
251 sizeof(struct vge_txfrag) * (nsegs), \
252 (ops))
253 #define VGE_RXDESCSYNC(sc, idx, ops) \
254 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 VGE_CDRXOFF(idx), \
256 sizeof(struct vge_rxdesc), \
257 (ops))
258
259 /*
260 * register space access macros
261 */
262 #define CSR_WRITE_4(sc, reg, val) \
263 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
264 #define CSR_WRITE_2(sc, reg, val) \
265 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
266 #define CSR_WRITE_1(sc, reg, val) \
267 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
268
269 #define CSR_READ_4(sc, reg) \
270 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
271 #define CSR_READ_2(sc, reg) \
272 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
273 #define CSR_READ_1(sc, reg) \
274 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
275
276 #define CSR_SETBIT_1(sc, reg, x) \
277 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
278 #define CSR_SETBIT_2(sc, reg, x) \
279 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
280 #define CSR_SETBIT_4(sc, reg, x) \
281 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
282
283 #define CSR_CLRBIT_1(sc, reg, x) \
284 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
285 #define CSR_CLRBIT_2(sc, reg, x) \
286 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
287 #define CSR_CLRBIT_4(sc, reg, x) \
288 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
289
290 #define VGE_TIMEOUT 10000
291
292 #define VGE_PCI_LOIO 0x10
293 #define VGE_PCI_LOMEM 0x14
294
295 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
296 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
297
298 static int vge_probe(struct device *, struct cfdata *, void *);
299 static void vge_attach(struct device *, struct device *, void *);
300
301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
302
303 static int vge_allocmem(struct vge_softc *);
304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
305 #ifndef __NO_STRICT_ALIGNMENT
306 static inline void vge_fixup_rx(struct mbuf *);
307 #endif
308 static void vge_rxeof(struct vge_softc *);
309 static void vge_txeof(struct vge_softc *);
310 static int vge_intr(void *);
311 static void vge_tick(void *);
312 static void vge_start(struct ifnet *);
313 static int vge_ioctl(struct ifnet *, u_long, caddr_t);
314 static int vge_init(struct ifnet *);
315 static void vge_stop(struct vge_softc *);
316 static void vge_watchdog(struct ifnet *);
317 #if VGE_POWER_MANAGEMENT
318 static int vge_suspend(struct device *);
319 static int vge_resume(struct device *);
320 #endif
321 static void vge_shutdown(void *);
322 static int vge_ifmedia_upd(struct ifnet *);
323 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
324
325 static uint16_t vge_read_eeprom(struct vge_softc *, int);
326
327 static void vge_miipoll_start(struct vge_softc *);
328 static void vge_miipoll_stop(struct vge_softc *);
329 static int vge_miibus_readreg(struct device *, int, int);
330 static void vge_miibus_writereg(struct device *, int, int, int);
331 static void vge_miibus_statchg(struct device *);
332
333 static void vge_cam_clear(struct vge_softc *);
334 static int vge_cam_set(struct vge_softc *, uint8_t *);
335 static void vge_setmulti(struct vge_softc *);
336 static void vge_reset(struct vge_softc *);
337
338 CFATTACH_DECL(vge, sizeof(struct vge_softc),
339 vge_probe, vge_attach, NULL, NULL);
340
341 static inline void
342 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
343 {
344
345 f->tf_addrlo = htole32((uint32_t)daddr);
346 if (sizeof(bus_addr_t) == sizeof(uint64_t))
347 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
348 else
349 f->tf_addrhi = 0;
350 }
351
352 static inline void
353 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
354 {
355
356 rxd->rd_addrlo = htole32((uint32_t)daddr);
357 if (sizeof(bus_addr_t) == sizeof(uint64_t))
358 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
359 else
360 rxd->rd_addrhi = 0;
361 }
362
363 /*
364 * Defragment mbuf chain contents to be as linear as possible.
365 * Returns new mbuf chain on success, NULL on failure. Old mbuf
366 * chain is always freed.
367 * XXX temporary until there would be generic function doing this.
368 */
369 #define m_defrag vge_m_defrag
370 struct mbuf * vge_m_defrag(struct mbuf *, int);
371
372 struct mbuf *
373 vge_m_defrag(struct mbuf *mold, int flags)
374 {
375 struct mbuf *m0, *mn, *n;
376 size_t sz = mold->m_pkthdr.len;
377
378 #ifdef DIAGNOSTIC
379 if ((mold->m_flags & M_PKTHDR) == 0)
380 panic("m_defrag: not a mbuf chain header");
381 #endif
382
383 MGETHDR(m0, flags, MT_DATA);
384 if (m0 == NULL)
385 return NULL;
386 m0->m_pkthdr.len = mold->m_pkthdr.len;
387 mn = m0;
388
389 do {
390 if (sz > MHLEN) {
391 MCLGET(mn, M_DONTWAIT);
392 if ((mn->m_flags & M_EXT) == 0) {
393 m_freem(m0);
394 return NULL;
395 }
396 }
397
398 mn->m_len = MIN(sz, MCLBYTES);
399
400 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
401 mtod(mn, caddr_t));
402
403 sz -= mn->m_len;
404
405 if (sz > 0) {
406 /* need more mbufs */
407 MGET(n, M_NOWAIT, MT_DATA);
408 if (n == NULL) {
409 m_freem(m0);
410 return NULL;
411 }
412
413 mn->m_next = n;
414 mn = n;
415 }
416 } while (sz > 0);
417
418 return m0;
419 }
420
421 /*
422 * Read a word of data stored in the EEPROM at address 'addr.'
423 */
424 static uint16_t
425 vge_read_eeprom(struct vge_softc *sc, int addr)
426 {
427 int i;
428 uint16_t word = 0;
429
430 /*
431 * Enter EEPROM embedded programming mode. In order to
432 * access the EEPROM at all, we first have to set the
433 * EELOAD bit in the CHIPCFG2 register.
434 */
435 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
436 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
437
438 /* Select the address of the word we want to read */
439 CSR_WRITE_1(sc, VGE_EEADDR, addr);
440
441 /* Issue read command */
442 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
443
444 /* Wait for the done bit to be set. */
445 for (i = 0; i < VGE_TIMEOUT; i++) {
446 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
447 break;
448 }
449
450 if (i == VGE_TIMEOUT) {
451 aprint_error("%s: EEPROM read timed out\n",
452 sc->sc_dev.dv_xname);
453 return 0;
454 }
455
456 /* Read the result */
457 word = CSR_READ_2(sc, VGE_EERDDAT);
458
459 /* Turn off EEPROM access mode. */
460 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
461 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
462
463 return word;
464 }
465
466 static void
467 vge_miipoll_stop(struct vge_softc *sc)
468 {
469 int i;
470
471 CSR_WRITE_1(sc, VGE_MIICMD, 0);
472
473 for (i = 0; i < VGE_TIMEOUT; i++) {
474 DELAY(1);
475 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
476 break;
477 }
478
479 if (i == VGE_TIMEOUT) {
480 aprint_error("%s: failed to idle MII autopoll\n",
481 sc->sc_dev.dv_xname);
482 }
483 }
484
485 static void
486 vge_miipoll_start(struct vge_softc *sc)
487 {
488 int i;
489
490 /* First, make sure we're idle. */
491
492 CSR_WRITE_1(sc, VGE_MIICMD, 0);
493 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
494
495 for (i = 0; i < VGE_TIMEOUT; i++) {
496 DELAY(1);
497 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
498 break;
499 }
500
501 if (i == VGE_TIMEOUT) {
502 aprint_error("%s: failed to idle MII autopoll\n",
503 sc->sc_dev.dv_xname);
504 return;
505 }
506
507 /* Now enable auto poll mode. */
508
509 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
510
511 /* And make sure it started. */
512
513 for (i = 0; i < VGE_TIMEOUT; i++) {
514 DELAY(1);
515 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
516 break;
517 }
518
519 if (i == VGE_TIMEOUT) {
520 aprint_error("%s: failed to start MII autopoll\n",
521 sc->sc_dev.dv_xname);
522 }
523 }
524
525 static int
526 vge_miibus_readreg(struct device *dev, int phy, int reg)
527 {
528 struct vge_softc *sc;
529 int i, s;
530 uint16_t rval;
531
532 sc = (void *)dev;
533 rval = 0;
534 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
535 return 0;
536
537 s = splnet();
538 vge_miipoll_stop(sc);
539
540 /* Specify the register we want to read. */
541 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
542
543 /* Issue read command. */
544 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
545
546 /* Wait for the read command bit to self-clear. */
547 for (i = 0; i < VGE_TIMEOUT; i++) {
548 DELAY(1);
549 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
550 break;
551 }
552
553 if (i == VGE_TIMEOUT)
554 aprint_error("%s: MII read timed out\n", sc->sc_dev.dv_xname);
555 else
556 rval = CSR_READ_2(sc, VGE_MIIDATA);
557
558 vge_miipoll_start(sc);
559 splx(s);
560
561 return rval;
562 }
563
564 static void
565 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
566 {
567 struct vge_softc *sc;
568 int i, s;
569
570 sc = (void *)dev;
571 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
572 return;
573
574 s = splnet();
575 vge_miipoll_stop(sc);
576
577 /* Specify the register we want to write. */
578 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
579
580 /* Specify the data we want to write. */
581 CSR_WRITE_2(sc, VGE_MIIDATA, data);
582
583 /* Issue write command. */
584 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
585
586 /* Wait for the write command bit to self-clear. */
587 for (i = 0; i < VGE_TIMEOUT; i++) {
588 DELAY(1);
589 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
590 break;
591 }
592
593 if (i == VGE_TIMEOUT) {
594 aprint_error("%s: MII write timed out\n", sc->sc_dev.dv_xname);
595 }
596
597 vge_miipoll_start(sc);
598 splx(s);
599 }
600
601 static void
602 vge_cam_clear(struct vge_softc *sc)
603 {
604 int i;
605
606 /*
607 * Turn off all the mask bits. This tells the chip
608 * that none of the entries in the CAM filter are valid.
609 * desired entries will be enabled as we fill the filter in.
610 */
611
612 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
613 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
614 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
615 for (i = 0; i < 8; i++)
616 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
617
618 /* Clear the VLAN filter too. */
619
620 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
621 for (i = 0; i < 8; i++)
622 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
623
624 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
625 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
626 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
627
628 sc->sc_camidx = 0;
629 }
630
631 static int
632 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
633 {
634 int i, error;
635
636 error = 0;
637
638 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
639 return ENOSPC;
640
641 /* Select the CAM data page. */
642 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
643 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
644
645 /* Set the filter entry we want to update and enable writing. */
646 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
647
648 /* Write the address to the CAM registers */
649 for (i = 0; i < ETHER_ADDR_LEN; i++)
650 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
651
652 /* Issue a write command. */
653 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
654
655 /* Wake for it to clear. */
656 for (i = 0; i < VGE_TIMEOUT; i++) {
657 DELAY(1);
658 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
659 break;
660 }
661
662 if (i == VGE_TIMEOUT) {
663 aprint_error("%s: setting CAM filter failed\n",
664 sc->sc_dev.dv_xname);
665 error = EIO;
666 goto fail;
667 }
668
669 /* Select the CAM mask page. */
670 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
671 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
672
673 /* Set the mask bit that enables this filter. */
674 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
675 1 << (sc->sc_camidx & 7));
676
677 sc->sc_camidx++;
678
679 fail:
680 /* Turn off access to CAM. */
681 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
682 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
683 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
684
685 return error;
686 }
687
688 /*
689 * Program the multicast filter. We use the 64-entry CAM filter
690 * for perfect filtering. If there's more than 64 multicast addresses,
691 * we use the hash filter instead.
692 */
693 static void
694 vge_setmulti(struct vge_softc *sc)
695 {
696 struct ifnet *ifp;
697 int error;
698 uint32_t h, hashes[2] = { 0, 0 };
699 struct ether_multi *enm;
700 struct ether_multistep step;
701
702 error = 0;
703 ifp = &sc->sc_ethercom.ec_if;
704
705 /* First, zot all the multicast entries. */
706 vge_cam_clear(sc);
707 CSR_WRITE_4(sc, VGE_MAR0, 0);
708 CSR_WRITE_4(sc, VGE_MAR1, 0);
709 ifp->if_flags &= ~IFF_ALLMULTI;
710
711 /*
712 * If the user wants allmulti or promisc mode, enable reception
713 * of all multicast frames.
714 */
715 if (ifp->if_flags & IFF_PROMISC) {
716 allmulti:
717 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
718 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
719 ifp->if_flags |= IFF_ALLMULTI;
720 return;
721 }
722
723 /* Now program new ones */
724 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
725 while (enm != NULL) {
726 /*
727 * If multicast range, fall back to ALLMULTI.
728 */
729 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
730 ETHER_ADDR_LEN) != 0)
731 goto allmulti;
732
733 error = vge_cam_set(sc, enm->enm_addrlo);
734 if (error)
735 break;
736
737 ETHER_NEXT_MULTI(step, enm);
738 }
739
740 /* If there were too many addresses, use the hash filter. */
741 if (error) {
742 vge_cam_clear(sc);
743
744 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
745 while (enm != NULL) {
746 /*
747 * If multicast range, fall back to ALLMULTI.
748 */
749 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
750 ETHER_ADDR_LEN) != 0)
751 goto allmulti;
752
753 h = ether_crc32_be(enm->enm_addrlo,
754 ETHER_ADDR_LEN) >> 26;
755 hashes[h >> 5] |= 1 << (h & 0x1f);
756
757 ETHER_NEXT_MULTI(step, enm);
758 }
759
760 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
761 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
762 }
763 }
764
765 static void
766 vge_reset(struct vge_softc *sc)
767 {
768 int i;
769
770 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
771
772 for (i = 0; i < VGE_TIMEOUT; i++) {
773 DELAY(5);
774 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
775 break;
776 }
777
778 if (i == VGE_TIMEOUT) {
779 aprint_error("%s: soft reset timed out", sc->sc_dev.dv_xname);
780 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
781 DELAY(2000);
782 }
783
784 DELAY(5000);
785
786 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
787
788 for (i = 0; i < VGE_TIMEOUT; i++) {
789 DELAY(5);
790 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
791 break;
792 }
793
794 if (i == VGE_TIMEOUT) {
795 aprint_error("%s: EEPROM reload timed out\n",
796 sc->sc_dev.dv_xname);
797 return;
798 }
799
800 /*
801 * On some machine, the first read data from EEPROM could be
802 * messed up, so read one dummy data here to avoid the mess.
803 */
804 (void)vge_read_eeprom(sc, 0);
805
806 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
807 }
808
809 /*
810 * Probe for a VIA gigabit chip. Check the PCI vendor and device
811 * IDs against our list and return a device name if we find a match.
812 */
813 static int
814 vge_probe(struct device *parent, struct cfdata *match,
815 void *aux)
816 {
817 struct pci_attach_args *pa = aux;
818
819 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
820 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
821 return 1;
822
823 return 0;
824 }
825
826 static int
827 vge_allocmem(struct vge_softc *sc)
828 {
829 int error;
830 int nseg;
831 int i;
832 bus_dma_segment_t seg;
833
834 /*
835 * Allocate memory for control data.
836 */
837
838 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
839 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
840 if (error) {
841 aprint_error("%s: could not allocate control data dma memory\n",
842 sc->sc_dev.dv_xname);
843 return ENOMEM;
844 }
845
846 /* Map the memory to kernel VA space */
847
848 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
849 sizeof(struct vge_control_data), (caddr_t *)&sc->sc_control_data,
850 BUS_DMA_NOWAIT);
851 if (error) {
852 aprint_error("%s: could not map control data dma memory\n",
853 sc->sc_dev.dv_xname);
854 return ENOMEM;
855 }
856 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
857
858 /*
859 * Create map for control data.
860 */
861 error = bus_dmamap_create(sc->sc_dmat,
862 sizeof(struct vge_control_data), 1,
863 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
864 &sc->sc_cddmamap);
865 if (error) {
866 aprint_error("%s: could not create control data dmamap\n",
867 sc->sc_dev.dv_xname);
868 return ENOMEM;
869 }
870
871 /* Load the map for the control data. */
872 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
873 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
874 BUS_DMA_NOWAIT);
875 if (error) {
876 aprint_error("%s: could not load control data dma memory\n",
877 sc->sc_dev.dv_xname);
878 return ENOMEM;
879 }
880
881 /* Create DMA maps for TX buffers */
882
883 for (i = 0; i < VGE_NTXDESC; i++) {
884 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
885 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
886 &sc->sc_txsoft[i].txs_dmamap);
887 if (error) {
888 aprint_error("%s: can't create DMA map for TX descs\n",
889 sc->sc_dev.dv_xname);
890 return ENOMEM;
891 }
892 }
893
894 /* Create DMA maps for RX buffers */
895
896 for (i = 0; i < VGE_NRXDESC; i++) {
897 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
898 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
899 &sc->sc_rxsoft[i].rxs_dmamap);
900 if (error) {
901 aprint_error("%s: can't create DMA map for RX descs\n",
902 sc->sc_dev.dv_xname);
903 return ENOMEM;
904 }
905 sc->sc_rxsoft[i].rxs_mbuf = NULL;
906 }
907
908 return 0;
909 }
910
911 /*
912 * Attach the interface. Allocate softc structures, do ifmedia
913 * setup and ethernet/BPF attach.
914 */
915 static void
916 vge_attach(struct device *parent, struct device *self, void *aux)
917 {
918 uint8_t *eaddr;
919 struct vge_softc *sc = (void *)self;
920 struct ifnet *ifp;
921 struct pci_attach_args *pa = aux;
922 pci_chipset_tag_t pc = pa->pa_pc;
923 const char *intrstr;
924 pci_intr_handle_t ih;
925 uint16_t val;
926
927 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
928 PCI_REVISION(pa->pa_class));
929
930 /* Make sure bus-mastering is enabled */
931 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
932 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
933 PCI_COMMAND_MASTER_ENABLE);
934
935 /*
936 * Map control/status registers.
937 */
938 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
939 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
940 aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname);
941 return;
942 }
943
944 /*
945 * Map and establish our interrupt.
946 */
947 if (pci_intr_map(pa, &ih)) {
948 aprint_error("%s: unable to map interrupt\n",
949 sc->sc_dev.dv_xname);
950 return;
951 }
952 intrstr = pci_intr_string(pc, ih);
953 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
954 if (sc->sc_intrhand == NULL) {
955 aprint_error("%s: unable to establish interrupt",
956 sc->sc_dev.dv_xname);
957 if (intrstr != NULL)
958 aprint_error(" at %s", intrstr);
959 aprint_error("\n");
960 return;
961 }
962 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
963
964 /* Reset the adapter. */
965 vge_reset(sc);
966
967 /*
968 * Get station address from the EEPROM.
969 */
970 eaddr = sc->sc_eaddr;
971 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
972 eaddr[0] = val & 0xff;
973 eaddr[1] = val >> 8;
974 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
975 eaddr[2] = val & 0xff;
976 eaddr[3] = val >> 8;
977 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
978 eaddr[4] = val & 0xff;
979 eaddr[5] = val >> 8;
980
981 aprint_normal("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
982 ether_sprintf(eaddr));
983
984 /*
985 * Use the 32bit tag. Hardware supports 48bit physical addresses,
986 * but we don't use that for now.
987 */
988 sc->sc_dmat = pa->pa_dmat;
989
990 if (vge_allocmem(sc))
991 return;
992
993 ifp = &sc->sc_ethercom.ec_if;
994 ifp->if_softc = sc;
995 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
996 ifp->if_mtu = ETHERMTU;
997 ifp->if_baudrate = IF_Gbps(1);
998 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
999 ifp->if_ioctl = vge_ioctl;
1000 ifp->if_start = vge_start;
1001
1002 /*
1003 * We can support 802.1Q VLAN-sized frames and jumbo
1004 * Ethernet frames.
1005 */
1006 sc->sc_ethercom.ec_capabilities |=
1007 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1008 ETHERCAP_VLAN_HWTAGGING;
1009
1010 /*
1011 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1012 */
1013 ifp->if_capabilities |=
1014 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1015 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1016 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1017
1018 #ifdef DEVICE_POLLING
1019 #ifdef IFCAP_POLLING
1020 ifp->if_capabilities |= IFCAP_POLLING;
1021 #endif
1022 #endif
1023 ifp->if_watchdog = vge_watchdog;
1024 ifp->if_init = vge_init;
1025 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1026
1027 /*
1028 * Initialize our media structures and probe the MII.
1029 */
1030 sc->sc_mii.mii_ifp = ifp;
1031 sc->sc_mii.mii_readreg = vge_miibus_readreg;
1032 sc->sc_mii.mii_writereg = vge_miibus_writereg;
1033 sc->sc_mii.mii_statchg = vge_miibus_statchg;
1034 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
1035 vge_ifmedia_sts);
1036 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1037 MII_OFFSET_ANY, MIIF_DOPAUSE);
1038 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1039 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1040 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1041 } else
1042 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1043
1044 /*
1045 * Attach the interface.
1046 */
1047 if_attach(ifp);
1048 ether_ifattach(ifp, eaddr);
1049
1050 callout_init(&sc->sc_timeout);
1051 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1052
1053 /*
1054 * Make sure the interface is shutdown during reboot.
1055 */
1056 if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1057 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1058 sc->sc_dev.dv_xname);
1059 }
1060 }
1061
1062 static int
1063 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1064 {
1065 struct mbuf *m_new;
1066 struct vge_rxdesc *rxd;
1067 struct vge_rxsoft *rxs;
1068 bus_dmamap_t map;
1069 int i;
1070 #ifdef DIAGNOSTIC
1071 uint32_t rd_sts;
1072 #endif
1073
1074 m_new = NULL;
1075 if (m == NULL) {
1076 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1077 if (m_new == NULL)
1078 return ENOBUFS;
1079
1080 MCLGET(m_new, M_DONTWAIT);
1081 if ((m_new->m_flags & M_EXT) == 0) {
1082 m_freem(m_new);
1083 return ENOBUFS;
1084 }
1085
1086 m = m_new;
1087 } else
1088 m->m_data = m->m_ext.ext_buf;
1089
1090
1091 /*
1092 * This is part of an evil trick to deal with non-x86 platforms.
1093 * The VIA chip requires RX buffers to be aligned on 32-bit
1094 * boundaries, but that will hose non-x86 machines. To get around
1095 * this, we leave some empty space at the start of each buffer
1096 * and for non-x86 hosts, we copy the buffer back two bytes
1097 * to achieve word alignment. This is slightly more efficient
1098 * than allocating a new buffer, copying the contents, and
1099 * discarding the old buffer.
1100 */
1101 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1102 #ifndef __NO_STRICT_ALIGNMENT
1103 m->m_data += VGE_RX_PAD;
1104 #endif
1105 rxs = &sc->sc_rxsoft[idx];
1106 map = rxs->rxs_dmamap;
1107
1108 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1109 goto out;
1110
1111 rxd = &sc->sc_rxdescs[idx];
1112
1113 #ifdef DIAGNOSTIC
1114 /* If this descriptor is still owned by the chip, bail. */
1115 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1116 rd_sts = le32toh(rxd->rd_sts);
1117 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1118 if (rd_sts & VGE_RDSTS_OWN) {
1119 panic("%s: tried to map busy RX descriptor",
1120 sc->sc_dev.dv_xname);
1121 }
1122 #endif
1123
1124 rxs->rxs_mbuf = m;
1125 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1126 BUS_DMASYNC_PREREAD);
1127
1128 rxd->rd_buflen =
1129 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1130 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1131 rxd->rd_sts = 0;
1132 rxd->rd_ctl = 0;
1133 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1134
1135 /*
1136 * Note: the manual fails to document the fact that for
1137 * proper opration, the driver needs to replentish the RX
1138 * DMA ring 4 descriptors at a time (rather than one at a
1139 * time, like most chips). We can allocate the new buffers
1140 * but we should not set the OWN bits until we're ready
1141 * to hand back 4 of them in one shot.
1142 */
1143
1144 #define VGE_RXCHUNK 4
1145 sc->sc_rx_consumed++;
1146 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1147 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1148 KASSERT(i >= 0);
1149 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1150 VGE_RXDESCSYNC(sc, i,
1151 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1152 }
1153 sc->sc_rx_consumed = 0;
1154 }
1155
1156 return 0;
1157 out:
1158 if (m_new != NULL)
1159 m_freem(m_new);
1160 return ENOMEM;
1161 }
1162
1163 #ifndef __NO_STRICT_ALIGNMENT
1164 static inline void
1165 vge_fixup_rx(struct mbuf *m)
1166 {
1167 int i;
1168 uint16_t *src, *dst;
1169
1170 src = mtod(m, uint16_t *);
1171 dst = src - 1;
1172
1173 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1174 *dst++ = *src++;
1175
1176 m->m_data -= ETHER_ALIGN;
1177 }
1178 #endif
1179
1180 /*
1181 * RX handler. We support the reception of jumbo frames that have
1182 * been fragmented across multiple 2K mbuf cluster buffers.
1183 */
1184 static void
1185 vge_rxeof(struct vge_softc *sc)
1186 {
1187 struct mbuf *m;
1188 struct ifnet *ifp;
1189 int idx, total_len, lim;
1190 struct vge_rxdesc *cur_rxd;
1191 struct vge_rxsoft *rxs;
1192 uint32_t rxstat, rxctl;
1193
1194 ifp = &sc->sc_ethercom.ec_if;
1195 lim = 0;
1196
1197 /* Invalidate the descriptor memory */
1198
1199 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1200 cur_rxd = &sc->sc_rxdescs[idx];
1201
1202 VGE_RXDESCSYNC(sc, idx,
1203 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1204 rxstat = le32toh(cur_rxd->rd_sts);
1205 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1206 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1207 break;
1208 }
1209
1210 rxctl = le32toh(cur_rxd->rd_ctl);
1211 rxs = &sc->sc_rxsoft[idx];
1212 m = rxs->rxs_mbuf;
1213 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1214
1215 /* Invalidate the RX mbuf and unload its map */
1216
1217 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1218 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1219 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1220
1221 /*
1222 * If the 'start of frame' bit is set, this indicates
1223 * either the first fragment in a multi-fragment receive,
1224 * or an intermediate fragment. Either way, we want to
1225 * accumulate the buffers.
1226 */
1227 if (rxstat & VGE_RXPKT_SOF) {
1228 m->m_len = VGE_RX_BUFSIZE;
1229 if (sc->sc_rx_mhead == NULL)
1230 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1231 else {
1232 m->m_flags &= ~M_PKTHDR;
1233 sc->sc_rx_mtail->m_next = m;
1234 sc->sc_rx_mtail = m;
1235 }
1236 vge_newbuf(sc, idx, NULL);
1237 continue;
1238 }
1239
1240 /*
1241 * Bad/error frames will have the RXOK bit cleared.
1242 * However, there's one error case we want to allow:
1243 * if a VLAN tagged frame arrives and the chip can't
1244 * match it against the CAM filter, it considers this
1245 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1246 * We don't want to drop the frame though: our VLAN
1247 * filtering is done in software.
1248 */
1249 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1250 && !(rxstat & VGE_RDSTS_CSUMERR)) {
1251 ifp->if_ierrors++;
1252 /*
1253 * If this is part of a multi-fragment packet,
1254 * discard all the pieces.
1255 */
1256 if (sc->sc_rx_mhead != NULL) {
1257 m_freem(sc->sc_rx_mhead);
1258 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1259 }
1260 vge_newbuf(sc, idx, m);
1261 continue;
1262 }
1263
1264 /*
1265 * If allocating a replacement mbuf fails,
1266 * reload the current one.
1267 */
1268
1269 if (vge_newbuf(sc, idx, NULL)) {
1270 ifp->if_ierrors++;
1271 if (sc->sc_rx_mhead != NULL) {
1272 m_freem(sc->sc_rx_mhead);
1273 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1274 }
1275 vge_newbuf(sc, idx, m);
1276 continue;
1277 }
1278
1279 if (sc->sc_rx_mhead != NULL) {
1280 m->m_len = total_len % VGE_RX_BUFSIZE;
1281 /*
1282 * Special case: if there's 4 bytes or less
1283 * in this buffer, the mbuf can be discarded:
1284 * the last 4 bytes is the CRC, which we don't
1285 * care about anyway.
1286 */
1287 if (m->m_len <= ETHER_CRC_LEN) {
1288 sc->sc_rx_mtail->m_len -=
1289 (ETHER_CRC_LEN - m->m_len);
1290 m_freem(m);
1291 } else {
1292 m->m_len -= ETHER_CRC_LEN;
1293 m->m_flags &= ~M_PKTHDR;
1294 sc->sc_rx_mtail->m_next = m;
1295 }
1296 m = sc->sc_rx_mhead;
1297 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1298 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1299 } else
1300 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1301
1302 #ifndef __NO_STRICT_ALIGNMENT
1303 vge_fixup_rx(m);
1304 #endif
1305 ifp->if_ipackets++;
1306 m->m_pkthdr.rcvif = ifp;
1307
1308 /* Do RX checksumming if enabled */
1309 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1310
1311 /* Check IP header checksum */
1312 if (rxctl & VGE_RDCTL_IPPKT)
1313 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1314 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1315 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1316 }
1317
1318 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1319 /* Check UDP checksum */
1320 if (rxctl & VGE_RDCTL_TCPPKT)
1321 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1322
1323 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1324 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1325 }
1326
1327 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1328 /* Check UDP checksum */
1329 if (rxctl & VGE_RDCTL_UDPPKT)
1330 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1331
1332 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1333 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1334 }
1335
1336 if (rxstat & VGE_RDSTS_VTAG) {
1337 /*
1338 * We use bswap16() here because:
1339 * On LE machines, tag is stored in BE as stream data.
1340 * On BE machines, tag is stored in BE as stream data
1341 * but it was already swapped by le32toh() above.
1342 */
1343 VLAN_INPUT_TAG(ifp, m,
1344 bswap16(rxctl & VGE_RDCTL_VLANID), continue);
1345 }
1346
1347 #if NBPFILTER > 0
1348 /*
1349 * Handle BPF listeners.
1350 */
1351 if (ifp->if_bpf)
1352 bpf_mtap(ifp->if_bpf, m);
1353 #endif
1354
1355 (*ifp->if_input)(ifp, m);
1356
1357 lim++;
1358 if (lim == VGE_NRXDESC)
1359 break;
1360
1361 }
1362
1363 sc->sc_rx_prodidx = idx;
1364 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1365 }
1366
1367 static void
1368 vge_txeof(struct vge_softc *sc)
1369 {
1370 struct ifnet *ifp;
1371 struct vge_txsoft *txs;
1372 uint32_t txstat;
1373 int idx;
1374
1375 ifp = &sc->sc_ethercom.ec_if;
1376
1377 for (idx = sc->sc_tx_considx;
1378 sc->sc_tx_free < VGE_NTXDESC;
1379 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1380 VGE_TXDESCSYNC(sc, idx,
1381 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1382 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1383 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1384 if (txstat & VGE_TDSTS_OWN) {
1385 break;
1386 }
1387
1388 txs = &sc->sc_txsoft[idx];
1389 m_freem(txs->txs_mbuf);
1390 txs->txs_mbuf = NULL;
1391 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1392 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1393 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1394 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1395 ifp->if_collisions++;
1396 if (txstat & VGE_TDSTS_TXERR)
1397 ifp->if_oerrors++;
1398 else
1399 ifp->if_opackets++;
1400 }
1401
1402 sc->sc_tx_considx = idx;
1403
1404 if (sc->sc_tx_free > 0) {
1405 ifp->if_flags &= ~IFF_OACTIVE;
1406 }
1407
1408 /*
1409 * If not all descriptors have been released reaped yet,
1410 * reload the timer so that we will eventually get another
1411 * interrupt that will cause us to re-enter this routine.
1412 * This is done in case the transmitter has gone idle.
1413 */
1414 if (sc->sc_tx_free < VGE_NTXDESC)
1415 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1416 else
1417 ifp->if_timer = 0;
1418 }
1419
1420 static void
1421 vge_tick(void *xsc)
1422 {
1423 struct vge_softc *sc;
1424 struct ifnet *ifp;
1425 struct mii_data *mii;
1426 int s;
1427
1428 sc = xsc;
1429 ifp = &sc->sc_ethercom.ec_if;
1430 mii = &sc->sc_mii;
1431
1432 s = splnet();
1433
1434 callout_schedule(&sc->sc_timeout, hz);
1435
1436 mii_tick(mii);
1437 if (sc->sc_link) {
1438 if (!(mii->mii_media_status & IFM_ACTIVE))
1439 sc->sc_link = 0;
1440 } else {
1441 if (mii->mii_media_status & IFM_ACTIVE &&
1442 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1443 sc->sc_link = 1;
1444 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1445 vge_start(ifp);
1446 }
1447 }
1448
1449 splx(s);
1450 }
1451
1452 static int
1453 vge_intr(void *arg)
1454 {
1455 struct vge_softc *sc;
1456 struct ifnet *ifp;
1457 uint32_t status;
1458 int claim;
1459
1460 sc = arg;
1461 claim = 0;
1462 if (sc->sc_suspended) {
1463 return claim;
1464 }
1465
1466 ifp = &sc->sc_ethercom.ec_if;
1467
1468 if (!(ifp->if_flags & IFF_UP)) {
1469 return claim;
1470 }
1471
1472 /* Disable interrupts */
1473 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1474
1475 for (;;) {
1476
1477 status = CSR_READ_4(sc, VGE_ISR);
1478 /* If the card has gone away the read returns 0xffff. */
1479 if (status == 0xFFFFFFFF)
1480 break;
1481
1482 if (status) {
1483 claim = 1;
1484 CSR_WRITE_4(sc, VGE_ISR, status);
1485 }
1486
1487 if ((status & VGE_INTRS) == 0)
1488 break;
1489
1490 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1491 vge_rxeof(sc);
1492
1493 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1494 vge_rxeof(sc);
1495 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1496 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1497 }
1498
1499 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1500 vge_txeof(sc);
1501
1502 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1503 vge_init(ifp);
1504
1505 if (status & VGE_ISR_LINKSTS)
1506 vge_tick(sc);
1507 }
1508
1509 /* Re-enable interrupts */
1510 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1511
1512 if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
1513 vge_start(ifp);
1514
1515 return claim;
1516 }
1517
1518 static int
1519 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1520 {
1521 struct vge_txsoft *txs;
1522 struct vge_txdesc *txd;
1523 struct vge_txfrag *f;
1524 struct mbuf *m_new;
1525 bus_dmamap_t map;
1526 int m_csumflags, seg, error, flags;
1527 struct m_tag *mtag;
1528 size_t sz;
1529 uint32_t td_sts, td_ctl;
1530
1531 KASSERT(sc->sc_tx_free > 0);
1532
1533 txd = &sc->sc_txdescs[idx];
1534
1535 #ifdef DIAGNOSTIC
1536 /* If this descriptor is still owned by the chip, bail. */
1537 VGE_TXDESCSYNC(sc, idx,
1538 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1539 td_sts = le32toh(txd->td_sts);
1540 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1541 if (td_sts & VGE_TDSTS_OWN) {
1542 return ENOBUFS;
1543 }
1544 #endif
1545
1546 /*
1547 * Preserve m_pkthdr.csum_flags here since m_head might be
1548 * updated by m_defrag()
1549 */
1550 m_csumflags = m_head->m_pkthdr.csum_flags;
1551
1552 txs = &sc->sc_txsoft[idx];
1553 map = txs->txs_dmamap;
1554 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1555
1556 /* If too many segments to map, coalesce */
1557 if (error == EFBIG ||
1558 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1559 map->dm_nsegs == VGE_TX_FRAGS)) {
1560 m_new = m_defrag(m_head, M_DONTWAIT);
1561 if (m_new == NULL)
1562 return EFBIG;
1563
1564 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1565 m_new, BUS_DMA_NOWAIT);
1566 if (error) {
1567 m_freem(m_new);
1568 return error;
1569 }
1570
1571 m_head = m_new;
1572 } else if (error)
1573 return error;
1574
1575 txs->txs_mbuf = m_head;
1576
1577 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1578 BUS_DMASYNC_PREWRITE);
1579
1580 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1581 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1582 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1583 }
1584
1585 /* Argh. This chip does not autopad short frames */
1586 sz = m_head->m_pkthdr.len;
1587 if (sz < ETHER_PAD_LEN) {
1588 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1589 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1590 sz = ETHER_PAD_LEN;
1591 seg++;
1592 }
1593 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1594
1595 /*
1596 * When telling the chip how many segments there are, we
1597 * must use nsegs + 1 instead of just nsegs. Darned if I
1598 * know why.
1599 */
1600 seg++;
1601
1602 flags = 0;
1603 if (m_csumflags & M_CSUM_IPv4)
1604 flags |= VGE_TDCTL_IPCSUM;
1605 if (m_csumflags & M_CSUM_TCPv4)
1606 flags |= VGE_TDCTL_TCPCSUM;
1607 if (m_csumflags & M_CSUM_UDPv4)
1608 flags |= VGE_TDCTL_UDPCSUM;
1609 td_sts = sz << 16;
1610 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1611
1612 if (sz > ETHERMTU + ETHER_HDR_LEN)
1613 td_ctl |= VGE_TDCTL_JUMBO;
1614
1615 /*
1616 * Set up hardware VLAN tagging.
1617 */
1618 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1619 if (mtag != NULL) {
1620 /*
1621 * No need htons() here since vge(4) chip assumes
1622 * that tags are written in little endian and
1623 * we already use htole32() here.
1624 */
1625 td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
1626 }
1627 txd->td_ctl = htole32(td_ctl);
1628 txd->td_sts = htole32(td_sts);
1629 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1630
1631 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1632 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1633
1634 sc->sc_tx_free--;
1635
1636 return 0;
1637 }
1638
1639 /*
1640 * Main transmit routine.
1641 */
1642
1643 static void
1644 vge_start(struct ifnet *ifp)
1645 {
1646 struct vge_softc *sc;
1647 struct vge_txsoft *txs;
1648 struct mbuf *m_head;
1649 int idx, pidx, ofree, error;
1650
1651 sc = ifp->if_softc;
1652
1653 if (!sc->sc_link ||
1654 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1655 return;
1656 }
1657
1658 m_head = NULL;
1659 idx = sc->sc_tx_prodidx;
1660 pidx = VGE_PREV_TXDESC(idx);
1661 ofree = sc->sc_tx_free;
1662
1663 /*
1664 * Loop through the send queue, setting up transmit descriptors
1665 * until we drain the queue, or use up all available transmit
1666 * descriptors.
1667 */
1668 for (;;) {
1669 /* Grab a packet off the queue. */
1670 IFQ_POLL(&ifp->if_snd, m_head);
1671 if (m_head == NULL)
1672 break;
1673
1674 if (sc->sc_tx_free == 0) {
1675 /*
1676 * All slots used, stop for now.
1677 */
1678 ifp->if_flags |= IFF_OACTIVE;
1679 break;
1680 }
1681
1682 txs = &sc->sc_txsoft[idx];
1683 KASSERT(txs->txs_mbuf == NULL);
1684
1685 if ((error = vge_encap(sc, m_head, idx))) {
1686 if (error == EFBIG) {
1687 aprint_error("%s: Tx packet consumes too many "
1688 "DMA segments, dropping...\n",
1689 sc->sc_dev.dv_xname);
1690 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1691 m_freem(m_head);
1692 continue;
1693 }
1694
1695 /*
1696 * Short on resources, just stop for now.
1697 */
1698 if (error == ENOBUFS)
1699 ifp->if_flags |= IFF_OACTIVE;
1700 break;
1701 }
1702
1703 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1704
1705 /*
1706 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1707 */
1708
1709 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1710 htole16(VGE_TXDESC_Q);
1711 VGE_TXFRAGSYNC(sc, pidx, 1,
1712 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1713
1714 if (txs->txs_mbuf != m_head) {
1715 m_freem(m_head);
1716 m_head = txs->txs_mbuf;
1717 }
1718
1719 pidx = idx;
1720 idx = VGE_NEXT_TXDESC(idx);
1721
1722 /*
1723 * If there's a BPF listener, bounce a copy of this frame
1724 * to him.
1725 */
1726 #if NBPFILTER > 0
1727 if (ifp->if_bpf)
1728 bpf_mtap(ifp->if_bpf, m_head);
1729 #endif
1730 }
1731
1732 if (sc->sc_tx_free < ofree) {
1733 /* TX packet queued */
1734
1735 sc->sc_tx_prodidx = idx;
1736
1737 /* Issue a transmit command. */
1738 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1739
1740 /*
1741 * Use the countdown timer for interrupt moderation.
1742 * 'TX done' interrupts are disabled. Instead, we reset the
1743 * countdown timer, which will begin counting until it hits
1744 * the value in the SSTIMER register, and then trigger an
1745 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1746 * the timer count is reloaded. Only when the transmitter
1747 * is idle will the timer hit 0 and an interrupt fire.
1748 */
1749 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1750
1751 /*
1752 * Set a timeout in case the chip goes out to lunch.
1753 */
1754 ifp->if_timer = 5;
1755 }
1756 }
1757
1758 static int
1759 vge_init(struct ifnet *ifp)
1760 {
1761 struct vge_softc *sc;
1762 struct vge_rxsoft *rxs;
1763 int i;
1764
1765 sc = ifp->if_softc;
1766
1767 /*
1768 * Cancel pending I/O and free all RX/TX buffers.
1769 */
1770 vge_stop(sc);
1771 vge_reset(sc);
1772
1773 /* Initialize the RX descriptors and mbufs. */
1774 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1775 for (i = 0; i < VGE_NRXDESC; i++) {
1776 rxs = &sc->sc_rxsoft[i];
1777 if (rxs->rxs_mbuf) {
1778 m_freem(rxs->rxs_mbuf);
1779 rxs->rxs_mbuf = NULL;
1780 }
1781 if (rxs->rxs_dmamap)
1782 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1783 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1784 aprint_error("%s: unable to allocate or map "
1785 "rx buffer\n", sc->sc_dev.dv_xname);
1786 return 1; /* XXX */
1787 }
1788 }
1789 sc->sc_rx_prodidx = 0;
1790 sc->sc_rx_consumed = 0;
1791 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1792
1793 /* Initialize the TX descriptors and mbufs. */
1794 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1795 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1796 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1797 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1798 for (i = 0; i < VGE_NTXDESC; i++)
1799 sc->sc_txsoft[i].txs_mbuf = NULL;
1800
1801 sc->sc_tx_prodidx = 0;
1802 sc->sc_tx_considx = 0;
1803 sc->sc_tx_free = VGE_NTXDESC;
1804
1805 /* Set our station address */
1806 for (i = 0; i < ETHER_ADDR_LEN; i++)
1807 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1808
1809 /*
1810 * Set receive FIFO threshold. Also allow transmission and
1811 * reception of VLAN tagged frames.
1812 */
1813 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1814 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1815
1816 /* Set DMA burst length */
1817 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1818 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1819
1820 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1821
1822 /* Set collision backoff algorithm */
1823 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1824 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1825 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1826
1827 /* Disable LPSEL field in priority resolution */
1828 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1829
1830 /*
1831 * Load the addresses of the DMA queues into the chip.
1832 * Note that we only use one transmit queue.
1833 */
1834
1835 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1836 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1837
1838 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1839 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1840 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1841
1842 /* Enable and wake up the RX descriptor queue */
1843 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1844 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1845
1846 /* Enable the TX descriptor queue */
1847 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1848
1849 /* Set up the receive filter -- allow large frames for VLANs. */
1850 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1851
1852 /* If we want promiscuous mode, set the allframes bit. */
1853 if (ifp->if_flags & IFF_PROMISC) {
1854 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1855 }
1856
1857 /* Set capture broadcast bit to capture broadcast frames. */
1858 if (ifp->if_flags & IFF_BROADCAST) {
1859 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1860 }
1861
1862 /* Set multicast bit to capture multicast frames. */
1863 if (ifp->if_flags & IFF_MULTICAST) {
1864 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1865 }
1866
1867 /* Init the cam filter. */
1868 vge_cam_clear(sc);
1869
1870 /* Init the multicast filter. */
1871 vge_setmulti(sc);
1872
1873 /* Enable flow control */
1874
1875 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1876
1877 /* Enable jumbo frame reception (if desired) */
1878
1879 /* Start the MAC. */
1880 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1881 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1882 CSR_WRITE_1(sc, VGE_CRS0,
1883 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1884
1885 /*
1886 * Configure one-shot timer for microsecond
1887 * resulution and load it for 500 usecs.
1888 */
1889 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1890 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1891
1892 /*
1893 * Configure interrupt moderation for receive. Enable
1894 * the holdoff counter and load it, and set the RX
1895 * suppression count to the number of descriptors we
1896 * want to allow before triggering an interrupt.
1897 * The holdoff timer is in units of 20 usecs.
1898 */
1899
1900 #ifdef notyet
1901 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1902 /* Select the interrupt holdoff timer page. */
1903 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1904 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1905 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1906
1907 /* Enable use of the holdoff timer. */
1908 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1909 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1910
1911 /* Select the RX suppression threshold page. */
1912 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1913 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1914 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1915
1916 /* Restore the page select bits. */
1917 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1918 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1919 #endif
1920
1921 #ifdef DEVICE_POLLING
1922 /*
1923 * Disable interrupts if we are polling.
1924 */
1925 if (ifp->if_flags & IFF_POLLING) {
1926 CSR_WRITE_4(sc, VGE_IMR, 0);
1927 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1928 } else /* otherwise ... */
1929 #endif /* DEVICE_POLLING */
1930 {
1931 /*
1932 * Enable interrupts.
1933 */
1934 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1935 CSR_WRITE_4(sc, VGE_ISR, 0);
1936 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1937 }
1938
1939 mii_mediachg(&sc->sc_mii);
1940
1941 ifp->if_flags |= IFF_RUNNING;
1942 ifp->if_flags &= ~IFF_OACTIVE;
1943
1944 sc->sc_if_flags = 0;
1945 sc->sc_link = 0;
1946
1947 callout_schedule(&sc->sc_timeout, hz);
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * Set media options.
1954 */
1955 static int
1956 vge_ifmedia_upd(struct ifnet *ifp)
1957 {
1958 struct vge_softc *sc;
1959
1960 sc = ifp->if_softc;
1961 mii_mediachg(&sc->sc_mii);
1962
1963 return 0;
1964 }
1965
1966 /*
1967 * Report current media status.
1968 */
1969 static void
1970 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1971 {
1972 struct vge_softc *sc;
1973 struct mii_data *mii;
1974
1975 sc = ifp->if_softc;
1976 mii = &sc->sc_mii;
1977
1978 mii_pollstat(mii);
1979 ifmr->ifm_active = mii->mii_media_active;
1980 ifmr->ifm_status = mii->mii_media_status;
1981 }
1982
1983 static void
1984 vge_miibus_statchg(struct device *self)
1985 {
1986 struct vge_softc *sc;
1987 struct mii_data *mii;
1988 struct ifmedia_entry *ife;
1989
1990 sc = (void *)self;
1991 mii = &sc->sc_mii;
1992 ife = mii->mii_media.ifm_cur;
1993 /*
1994 * If the user manually selects a media mode, we need to turn
1995 * on the forced MAC mode bit in the DIAGCTL register. If the
1996 * user happens to choose a full duplex mode, we also need to
1997 * set the 'force full duplex' bit. This applies only to
1998 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1999 * mode is disabled, and in 1000baseT mode, full duplex is
2000 * always implied, so we turn on the forced mode bit but leave
2001 * the FDX bit cleared.
2002 */
2003
2004 switch (IFM_SUBTYPE(ife->ifm_media)) {
2005 case IFM_AUTO:
2006 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2007 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2008 break;
2009 case IFM_1000_T:
2010 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2011 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2012 break;
2013 case IFM_100_TX:
2014 case IFM_10_T:
2015 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2016 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2017 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2018 } else {
2019 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2020 }
2021 break;
2022 default:
2023 aprint_error("%s: unknown media type: %x\n",
2024 sc->sc_dev.dv_xname,
2025 IFM_SUBTYPE(ife->ifm_media));
2026 break;
2027 }
2028 }
2029
2030 static int
2031 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2032 {
2033 struct vge_softc *sc;
2034 struct ifreq *ifr;
2035 struct mii_data *mii;
2036 int s, error;
2037
2038 sc = ifp->if_softc;
2039 ifr = (struct ifreq *)data;
2040 error = 0;
2041
2042 s = splnet();
2043
2044 switch (command) {
2045 case SIOCSIFMTU:
2046 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2047 error = EINVAL;
2048 ifp->if_mtu = ifr->ifr_mtu;
2049 break;
2050 case SIOCSIFFLAGS:
2051 if (ifp->if_flags & IFF_UP) {
2052 if (ifp->if_flags & IFF_RUNNING &&
2053 ifp->if_flags & IFF_PROMISC &&
2054 !(sc->sc_if_flags & IFF_PROMISC)) {
2055 CSR_SETBIT_1(sc, VGE_RXCTL,
2056 VGE_RXCTL_RX_PROMISC);
2057 vge_setmulti(sc);
2058 } else if (ifp->if_flags & IFF_RUNNING &&
2059 !(ifp->if_flags & IFF_PROMISC) &&
2060 sc->sc_if_flags & IFF_PROMISC) {
2061 CSR_CLRBIT_1(sc, VGE_RXCTL,
2062 VGE_RXCTL_RX_PROMISC);
2063 vge_setmulti(sc);
2064 } else
2065 vge_init(ifp);
2066 } else {
2067 if (ifp->if_flags & IFF_RUNNING)
2068 vge_stop(sc);
2069 }
2070 sc->sc_if_flags = ifp->if_flags;
2071 break;
2072 case SIOCADDMULTI:
2073 case SIOCDELMULTI:
2074 error = (command == SIOCADDMULTI) ?
2075 ether_addmulti(ifr, &sc->sc_ethercom) :
2076 ether_delmulti(ifr, &sc->sc_ethercom);
2077
2078 if (error == ENETRESET) {
2079 /*
2080 * Multicast list has changed; set the hardware filter
2081 * accordingly.
2082 */
2083 if (ifp->if_flags & IFF_RUNNING)
2084 vge_setmulti(sc);
2085 error = 0;
2086 }
2087 break;
2088 case SIOCGIFMEDIA:
2089 case SIOCSIFMEDIA:
2090 mii = &sc->sc_mii;
2091 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2092 break;
2093 default:
2094 error = ether_ioctl(ifp, command, data);
2095 break;
2096 }
2097
2098 splx(s);
2099 return error;
2100 }
2101
2102 static void
2103 vge_watchdog(struct ifnet *ifp)
2104 {
2105 struct vge_softc *sc;
2106 int s;
2107
2108 sc = ifp->if_softc;
2109 s = splnet();
2110 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2111 ifp->if_oerrors++;
2112
2113 vge_txeof(sc);
2114 vge_rxeof(sc);
2115
2116 vge_init(ifp);
2117
2118 splx(s);
2119 }
2120
2121 /*
2122 * Stop the adapter and free any mbufs allocated to the
2123 * RX and TX lists.
2124 */
2125 static void
2126 vge_stop(struct vge_softc *sc)
2127 {
2128 struct ifnet *ifp;
2129 struct vge_txsoft *txs;
2130 struct vge_rxsoft *rxs;
2131 int i, s;
2132
2133 ifp = &sc->sc_ethercom.ec_if;
2134
2135 s = splnet();
2136 ifp->if_timer = 0;
2137
2138 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2139 #ifdef DEVICE_POLLING
2140 ether_poll_deregister(ifp);
2141 #endif /* DEVICE_POLLING */
2142
2143 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2144 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2145 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2146 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2147 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2148 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2149
2150 if (sc->sc_rx_mhead != NULL) {
2151 m_freem(sc->sc_rx_mhead);
2152 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2153 }
2154
2155 /* Free the TX list buffers. */
2156
2157 for (i = 0; i < VGE_NTXDESC; i++) {
2158 txs = &sc->sc_txsoft[i];
2159 if (txs->txs_mbuf != NULL) {
2160 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2161 m_freem(txs->txs_mbuf);
2162 txs->txs_mbuf = NULL;
2163 }
2164 }
2165
2166 /* Free the RX list buffers. */
2167
2168 for (i = 0; i < VGE_NRXDESC; i++) {
2169 rxs = &sc->sc_rxsoft[i];
2170 if (rxs->rxs_mbuf != NULL) {
2171 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2172 m_freem(rxs->rxs_mbuf);
2173 rxs->rxs_mbuf = NULL;
2174 }
2175 }
2176
2177 splx(s);
2178 }
2179
2180 #if VGE_POWER_MANAGEMENT
2181 /*
2182 * Device suspend routine. Stop the interface and save some PCI
2183 * settings in case the BIOS doesn't restore them properly on
2184 * resume.
2185 */
2186 static int
2187 vge_suspend(struct device *dev)
2188 {
2189 struct vge_softc *sc;
2190 int i;
2191
2192 sc = device_get_softc(dev);
2193
2194 vge_stop(sc);
2195
2196 for (i = 0; i < 5; i++)
2197 sc->sc_saved_maps[i] =
2198 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2199 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2200 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2201 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2202 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2203
2204 sc->suspended = 1;
2205
2206 return 0;
2207 }
2208
2209 /*
2210 * Device resume routine. Restore some PCI settings in case the BIOS
2211 * doesn't, re-enable busmastering, and restart the interface if
2212 * appropriate.
2213 */
2214 static int
2215 vge_resume(struct device *dev)
2216 {
2217 struct vge_softc *sc;
2218 struct ifnet *ifp;
2219 int i;
2220
2221 sc = (void *)dev;
2222 ifp = &sc->sc_ethercom.ec_if;
2223
2224 /* better way to do this? */
2225 for (i = 0; i < 5; i++)
2226 pci_write_config(dev, PCIR_MAPS + i * 4,
2227 sc->sc_saved_maps[i], 4);
2228 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2229 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2230 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2231 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2232
2233 /* reenable busmastering */
2234 pci_enable_busmaster(dev);
2235 pci_enable_io(dev, SYS_RES_MEMORY);
2236
2237 /* reinitialize interface if necessary */
2238 if (ifp->if_flags & IFF_UP)
2239 vge_init(sc);
2240
2241 sc->suspended = 0;
2242
2243 return 0;
2244 }
2245 #endif
2246
2247 /*
2248 * Stop all chip I/O so that the kernel's probe routines don't
2249 * get confused by errant DMAs when rebooting.
2250 */
2251 static void
2252 vge_shutdown(void *arg)
2253 {
2254 struct vge_softc *sc;
2255
2256 sc = arg;
2257 vge_stop(sc);
2258 }
2259