if_vge.c revision 1.32 1 /* $NetBSD: if_vge.c,v 1.32 2006/12/01 11:06:59 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.32 2006/12/01 11:06:59 tsutsui Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/device.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104
105 #include <net/bpf.h>
106
107 #include <machine/bus.h>
108
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
111
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
115
116 #include <dev/pci/if_vgereg.h>
117
118 #define VGE_JUMBO_MTU 9000
119
120 #define VGE_IFQ_MAXLEN 64
121
122 #define VGE_RING_ALIGN 256
123
124 #define VGE_NTXDESC 256
125 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
126 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
127 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
128
129 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
130 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
131 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
132 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
133
134 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
135 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
136 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
137 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
138
139 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
140
141 /*
142 * Mbuf adjust factor to force 32-bit alignment of IP header.
143 * Drivers should pad ETHER_ALIGN bytes when setting up a
144 * RX mbuf so the upper layers get the IP header properly aligned
145 * past the 14-byte Ethernet header.
146 *
147 * See also comment in vge_encap().
148 */
149 #define ETHER_ALIGN 2
150
151 #ifdef __NO_STRICT_ALIGNMENT
152 #define VGE_RX_BUFSIZE MCLBYTES
153 #else
154 #define VGE_RX_PAD sizeof(uint32_t)
155 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
156 #endif
157
158 /*
159 * Control structures are DMA'd to the vge chip. We allocate them in
160 * a single clump that maps to a single DMA segment to make several things
161 * easier.
162 */
163 struct vge_control_data {
164 /* TX descriptors */
165 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
166 /* RX descriptors */
167 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
168 /* dummy data for TX padding */
169 uint8_t vcd_pad[ETHER_PAD_LEN];
170 };
171
172 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
173 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
174 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
175 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
176
177 /*
178 * Software state for TX jobs.
179 */
180 struct vge_txsoft {
181 struct mbuf *txs_mbuf; /* head of our mbuf chain */
182 bus_dmamap_t txs_dmamap; /* our DMA map */
183 };
184
185 /*
186 * Software state for RX jobs.
187 */
188 struct vge_rxsoft {
189 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
190 bus_dmamap_t rxs_dmamap; /* our DMA map */
191 };
192
193
194 struct vge_softc {
195 struct device sc_dev;
196
197 bus_space_tag_t sc_bst; /* bus space tag */
198 bus_space_handle_t sc_bsh; /* bus space handle */
199 bus_dma_tag_t sc_dmat;
200
201 struct ethercom sc_ethercom; /* interface info */
202 uint8_t sc_eaddr[ETHER_ADDR_LEN];
203
204 void *sc_intrhand;
205 struct mii_data sc_mii;
206 uint8_t sc_type;
207 int sc_if_flags;
208 int sc_link;
209 int sc_camidx;
210 struct callout sc_timeout;
211
212 bus_dmamap_t sc_cddmamap;
213 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
214
215 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
216 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
217 struct vge_control_data *sc_control_data;
218 #define sc_txdescs sc_control_data->vcd_txdescs
219 #define sc_rxdescs sc_control_data->vcd_rxdescs
220
221 int sc_tx_prodidx;
222 int sc_tx_considx;
223 int sc_tx_free;
224
225 struct mbuf *sc_rx_mhead;
226 struct mbuf *sc_rx_mtail;
227 int sc_rx_prodidx;
228 int sc_rx_consumed;
229
230 int sc_suspended; /* 0 = normal 1 = suspended */
231 uint32_t sc_saved_maps[5]; /* pci data */
232 uint32_t sc_saved_biosaddr;
233 uint8_t sc_saved_intline;
234 uint8_t sc_saved_cachelnsz;
235 uint8_t sc_saved_lattimer;
236 };
237
238 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
239 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
240 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
241
242 #define VGE_TXDESCSYNC(sc, idx, ops) \
243 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
244 VGE_CDTXOFF(idx), \
245 offsetof(struct vge_txdesc, td_frag[0]), \
246 (ops))
247 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
248 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 VGE_CDTXOFF(idx) + \
250 offsetof(struct vge_txdesc, td_frag[0]), \
251 sizeof(struct vge_txfrag) * (nsegs), \
252 (ops))
253 #define VGE_RXDESCSYNC(sc, idx, ops) \
254 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 VGE_CDRXOFF(idx), \
256 sizeof(struct vge_rxdesc), \
257 (ops))
258
259 /*
260 * register space access macros
261 */
262 #define CSR_WRITE_4(sc, reg, val) \
263 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
264 #define CSR_WRITE_2(sc, reg, val) \
265 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
266 #define CSR_WRITE_1(sc, reg, val) \
267 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
268
269 #define CSR_READ_4(sc, reg) \
270 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
271 #define CSR_READ_2(sc, reg) \
272 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
273 #define CSR_READ_1(sc, reg) \
274 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
275
276 #define CSR_SETBIT_1(sc, reg, x) \
277 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
278 #define CSR_SETBIT_2(sc, reg, x) \
279 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
280 #define CSR_SETBIT_4(sc, reg, x) \
281 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
282
283 #define CSR_CLRBIT_1(sc, reg, x) \
284 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
285 #define CSR_CLRBIT_2(sc, reg, x) \
286 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
287 #define CSR_CLRBIT_4(sc, reg, x) \
288 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
289
290 #define VGE_TIMEOUT 10000
291
292 #define VGE_PCI_LOIO 0x10
293 #define VGE_PCI_LOMEM 0x14
294
295 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
296 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
297
298 static int vge_match(struct device *, struct cfdata *, void *);
299 static void vge_attach(struct device *, struct device *, void *);
300
301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
302
303 static int vge_allocmem(struct vge_softc *);
304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
305 #ifndef __NO_STRICT_ALIGNMENT
306 static inline void vge_fixup_rx(struct mbuf *);
307 #endif
308 static void vge_rxeof(struct vge_softc *);
309 static void vge_txeof(struct vge_softc *);
310 static int vge_intr(void *);
311 static void vge_tick(void *);
312 static void vge_start(struct ifnet *);
313 static int vge_ioctl(struct ifnet *, u_long, caddr_t);
314 static int vge_init(struct ifnet *);
315 static void vge_stop(struct vge_softc *);
316 static void vge_watchdog(struct ifnet *);
317 #if VGE_POWER_MANAGEMENT
318 static int vge_suspend(struct device *);
319 static int vge_resume(struct device *);
320 #endif
321 static void vge_shutdown(void *);
322 static int vge_ifmedia_upd(struct ifnet *);
323 static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
324
325 static uint16_t vge_read_eeprom(struct vge_softc *, int);
326
327 static void vge_miipoll_start(struct vge_softc *);
328 static void vge_miipoll_stop(struct vge_softc *);
329 static int vge_miibus_readreg(struct device *, int, int);
330 static void vge_miibus_writereg(struct device *, int, int, int);
331 static void vge_miibus_statchg(struct device *);
332
333 static void vge_cam_clear(struct vge_softc *);
334 static int vge_cam_set(struct vge_softc *, uint8_t *);
335 static void vge_setmulti(struct vge_softc *);
336 static void vge_reset(struct vge_softc *);
337
338 CFATTACH_DECL(vge, sizeof(struct vge_softc),
339 vge_match, vge_attach, NULL, NULL);
340
341 static inline void
342 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
343 {
344
345 f->tf_addrlo = htole32((uint32_t)daddr);
346 if (sizeof(bus_addr_t) == sizeof(uint64_t))
347 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
348 else
349 f->tf_addrhi = 0;
350 }
351
352 static inline void
353 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
354 {
355
356 rxd->rd_addrlo = htole32((uint32_t)daddr);
357 if (sizeof(bus_addr_t) == sizeof(uint64_t))
358 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
359 else
360 rxd->rd_addrhi = 0;
361 }
362
363 /*
364 * Defragment mbuf chain contents to be as linear as possible.
365 * Returns new mbuf chain on success, NULL on failure. Old mbuf
366 * chain is always freed.
367 * XXX temporary until there would be generic function doing this.
368 */
369 #define m_defrag vge_m_defrag
370 struct mbuf * vge_m_defrag(struct mbuf *, int);
371
372 struct mbuf *
373 vge_m_defrag(struct mbuf *mold, int flags)
374 {
375 struct mbuf *m0, *mn, *n;
376 size_t sz = mold->m_pkthdr.len;
377
378 #ifdef DIAGNOSTIC
379 if ((mold->m_flags & M_PKTHDR) == 0)
380 panic("m_defrag: not a mbuf chain header");
381 #endif
382
383 MGETHDR(m0, flags, MT_DATA);
384 if (m0 == NULL)
385 return NULL;
386 m0->m_pkthdr.len = mold->m_pkthdr.len;
387 mn = m0;
388
389 do {
390 if (sz > MHLEN) {
391 MCLGET(mn, M_DONTWAIT);
392 if ((mn->m_flags & M_EXT) == 0) {
393 m_freem(m0);
394 return NULL;
395 }
396 }
397
398 mn->m_len = MIN(sz, MCLBYTES);
399
400 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
401 mtod(mn, caddr_t));
402
403 sz -= mn->m_len;
404
405 if (sz > 0) {
406 /* need more mbufs */
407 MGET(n, M_NOWAIT, MT_DATA);
408 if (n == NULL) {
409 m_freem(m0);
410 return NULL;
411 }
412
413 mn->m_next = n;
414 mn = n;
415 }
416 } while (sz > 0);
417
418 return m0;
419 }
420
421 /*
422 * Read a word of data stored in the EEPROM at address 'addr.'
423 */
424 static uint16_t
425 vge_read_eeprom(struct vge_softc *sc, int addr)
426 {
427 int i;
428 uint16_t word = 0;
429
430 /*
431 * Enter EEPROM embedded programming mode. In order to
432 * access the EEPROM at all, we first have to set the
433 * EELOAD bit in the CHIPCFG2 register.
434 */
435 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
436 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
437
438 /* Select the address of the word we want to read */
439 CSR_WRITE_1(sc, VGE_EEADDR, addr);
440
441 /* Issue read command */
442 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
443
444 /* Wait for the done bit to be set. */
445 for (i = 0; i < VGE_TIMEOUT; i++) {
446 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
447 break;
448 }
449
450 if (i == VGE_TIMEOUT) {
451 aprint_error("%s: EEPROM read timed out\n",
452 sc->sc_dev.dv_xname);
453 return 0;
454 }
455
456 /* Read the result */
457 word = CSR_READ_2(sc, VGE_EERDDAT);
458
459 /* Turn off EEPROM access mode. */
460 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
461 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
462
463 return word;
464 }
465
466 static void
467 vge_miipoll_stop(struct vge_softc *sc)
468 {
469 int i;
470
471 CSR_WRITE_1(sc, VGE_MIICMD, 0);
472
473 for (i = 0; i < VGE_TIMEOUT; i++) {
474 DELAY(1);
475 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
476 break;
477 }
478
479 if (i == VGE_TIMEOUT) {
480 aprint_error("%s: failed to idle MII autopoll\n",
481 sc->sc_dev.dv_xname);
482 }
483 }
484
485 static void
486 vge_miipoll_start(struct vge_softc *sc)
487 {
488 int i;
489
490 /* First, make sure we're idle. */
491
492 CSR_WRITE_1(sc, VGE_MIICMD, 0);
493 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
494
495 for (i = 0; i < VGE_TIMEOUT; i++) {
496 DELAY(1);
497 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
498 break;
499 }
500
501 if (i == VGE_TIMEOUT) {
502 aprint_error("%s: failed to idle MII autopoll\n",
503 sc->sc_dev.dv_xname);
504 return;
505 }
506
507 /* Now enable auto poll mode. */
508
509 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
510
511 /* And make sure it started. */
512
513 for (i = 0; i < VGE_TIMEOUT; i++) {
514 DELAY(1);
515 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
516 break;
517 }
518
519 if (i == VGE_TIMEOUT) {
520 aprint_error("%s: failed to start MII autopoll\n",
521 sc->sc_dev.dv_xname);
522 }
523 }
524
525 static int
526 vge_miibus_readreg(struct device *dev, int phy, int reg)
527 {
528 struct vge_softc *sc;
529 int i, s;
530 uint16_t rval;
531
532 sc = (void *)dev;
533 rval = 0;
534 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
535 return 0;
536
537 s = splnet();
538 vge_miipoll_stop(sc);
539
540 /* Specify the register we want to read. */
541 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
542
543 /* Issue read command. */
544 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
545
546 /* Wait for the read command bit to self-clear. */
547 for (i = 0; i < VGE_TIMEOUT; i++) {
548 DELAY(1);
549 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
550 break;
551 }
552
553 if (i == VGE_TIMEOUT)
554 aprint_error("%s: MII read timed out\n", sc->sc_dev.dv_xname);
555 else
556 rval = CSR_READ_2(sc, VGE_MIIDATA);
557
558 vge_miipoll_start(sc);
559 splx(s);
560
561 return rval;
562 }
563
564 static void
565 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
566 {
567 struct vge_softc *sc;
568 int i, s;
569
570 sc = (void *)dev;
571 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
572 return;
573
574 s = splnet();
575 vge_miipoll_stop(sc);
576
577 /* Specify the register we want to write. */
578 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
579
580 /* Specify the data we want to write. */
581 CSR_WRITE_2(sc, VGE_MIIDATA, data);
582
583 /* Issue write command. */
584 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
585
586 /* Wait for the write command bit to self-clear. */
587 for (i = 0; i < VGE_TIMEOUT; i++) {
588 DELAY(1);
589 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
590 break;
591 }
592
593 if (i == VGE_TIMEOUT) {
594 aprint_error("%s: MII write timed out\n", sc->sc_dev.dv_xname);
595 }
596
597 vge_miipoll_start(sc);
598 splx(s);
599 }
600
601 static void
602 vge_cam_clear(struct vge_softc *sc)
603 {
604 int i;
605
606 /*
607 * Turn off all the mask bits. This tells the chip
608 * that none of the entries in the CAM filter are valid.
609 * desired entries will be enabled as we fill the filter in.
610 */
611
612 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
613 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
614 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
615 for (i = 0; i < 8; i++)
616 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
617
618 /* Clear the VLAN filter too. */
619
620 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
621 for (i = 0; i < 8; i++)
622 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
623
624 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
625 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
626 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
627
628 sc->sc_camidx = 0;
629 }
630
631 static int
632 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
633 {
634 int i, error;
635
636 error = 0;
637
638 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
639 return ENOSPC;
640
641 /* Select the CAM data page. */
642 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
643 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
644
645 /* Set the filter entry we want to update and enable writing. */
646 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
647
648 /* Write the address to the CAM registers */
649 for (i = 0; i < ETHER_ADDR_LEN; i++)
650 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
651
652 /* Issue a write command. */
653 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
654
655 /* Wake for it to clear. */
656 for (i = 0; i < VGE_TIMEOUT; i++) {
657 DELAY(1);
658 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
659 break;
660 }
661
662 if (i == VGE_TIMEOUT) {
663 aprint_error("%s: setting CAM filter failed\n",
664 sc->sc_dev.dv_xname);
665 error = EIO;
666 goto fail;
667 }
668
669 /* Select the CAM mask page. */
670 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
671 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
672
673 /* Set the mask bit that enables this filter. */
674 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
675 1 << (sc->sc_camidx & 7));
676
677 sc->sc_camidx++;
678
679 fail:
680 /* Turn off access to CAM. */
681 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
682 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
683 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
684
685 return error;
686 }
687
688 /*
689 * Program the multicast filter. We use the 64-entry CAM filter
690 * for perfect filtering. If there's more than 64 multicast addresses,
691 * we use the hash filter instead.
692 */
693 static void
694 vge_setmulti(struct vge_softc *sc)
695 {
696 struct ifnet *ifp;
697 int error;
698 uint32_t h, hashes[2] = { 0, 0 };
699 struct ether_multi *enm;
700 struct ether_multistep step;
701
702 error = 0;
703 ifp = &sc->sc_ethercom.ec_if;
704
705 /* First, zot all the multicast entries. */
706 vge_cam_clear(sc);
707 CSR_WRITE_4(sc, VGE_MAR0, 0);
708 CSR_WRITE_4(sc, VGE_MAR1, 0);
709 ifp->if_flags &= ~IFF_ALLMULTI;
710
711 /*
712 * If the user wants allmulti or promisc mode, enable reception
713 * of all multicast frames.
714 */
715 if (ifp->if_flags & IFF_PROMISC) {
716 allmulti:
717 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
718 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
719 ifp->if_flags |= IFF_ALLMULTI;
720 return;
721 }
722
723 /* Now program new ones */
724 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
725 while (enm != NULL) {
726 /*
727 * If multicast range, fall back to ALLMULTI.
728 */
729 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
730 ETHER_ADDR_LEN) != 0)
731 goto allmulti;
732
733 error = vge_cam_set(sc, enm->enm_addrlo);
734 if (error)
735 break;
736
737 ETHER_NEXT_MULTI(step, enm);
738 }
739
740 /* If there were too many addresses, use the hash filter. */
741 if (error) {
742 vge_cam_clear(sc);
743
744 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
745 while (enm != NULL) {
746 /*
747 * If multicast range, fall back to ALLMULTI.
748 */
749 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
750 ETHER_ADDR_LEN) != 0)
751 goto allmulti;
752
753 h = ether_crc32_be(enm->enm_addrlo,
754 ETHER_ADDR_LEN) >> 26;
755 hashes[h >> 5] |= 1 << (h & 0x1f);
756
757 ETHER_NEXT_MULTI(step, enm);
758 }
759
760 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
761 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
762 }
763 }
764
765 static void
766 vge_reset(struct vge_softc *sc)
767 {
768 int i;
769
770 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
771
772 for (i = 0; i < VGE_TIMEOUT; i++) {
773 DELAY(5);
774 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
775 break;
776 }
777
778 if (i == VGE_TIMEOUT) {
779 aprint_error("%s: soft reset timed out", sc->sc_dev.dv_xname);
780 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
781 DELAY(2000);
782 }
783
784 DELAY(5000);
785
786 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
787
788 for (i = 0; i < VGE_TIMEOUT; i++) {
789 DELAY(5);
790 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
791 break;
792 }
793
794 if (i == VGE_TIMEOUT) {
795 aprint_error("%s: EEPROM reload timed out\n",
796 sc->sc_dev.dv_xname);
797 return;
798 }
799
800 /*
801 * On some machine, the first read data from EEPROM could be
802 * messed up, so read one dummy data here to avoid the mess.
803 */
804 (void)vge_read_eeprom(sc, 0);
805
806 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
807 }
808
809 /*
810 * Probe for a VIA gigabit chip. Check the PCI vendor and device
811 * IDs against our list and return a device name if we find a match.
812 */
813 static int
814 vge_match(struct device *parent, struct cfdata *match, void *aux)
815 {
816 struct pci_attach_args *pa = aux;
817
818 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
819 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
820 return 1;
821
822 return 0;
823 }
824
825 static int
826 vge_allocmem(struct vge_softc *sc)
827 {
828 int error;
829 int nseg;
830 int i;
831 bus_dma_segment_t seg;
832
833 /*
834 * Allocate memory for control data.
835 */
836
837 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
838 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
839 if (error) {
840 aprint_error("%s: could not allocate control data dma memory\n",
841 sc->sc_dev.dv_xname);
842 return ENOMEM;
843 }
844
845 /* Map the memory to kernel VA space */
846
847 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
848 sizeof(struct vge_control_data), (caddr_t *)&sc->sc_control_data,
849 BUS_DMA_NOWAIT);
850 if (error) {
851 aprint_error("%s: could not map control data dma memory\n",
852 sc->sc_dev.dv_xname);
853 return ENOMEM;
854 }
855 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
856
857 /*
858 * Create map for control data.
859 */
860 error = bus_dmamap_create(sc->sc_dmat,
861 sizeof(struct vge_control_data), 1,
862 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
863 &sc->sc_cddmamap);
864 if (error) {
865 aprint_error("%s: could not create control data dmamap\n",
866 sc->sc_dev.dv_xname);
867 return ENOMEM;
868 }
869
870 /* Load the map for the control data. */
871 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
872 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
873 BUS_DMA_NOWAIT);
874 if (error) {
875 aprint_error("%s: could not load control data dma memory\n",
876 sc->sc_dev.dv_xname);
877 return ENOMEM;
878 }
879
880 /* Create DMA maps for TX buffers */
881
882 for (i = 0; i < VGE_NTXDESC; i++) {
883 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
884 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
885 &sc->sc_txsoft[i].txs_dmamap);
886 if (error) {
887 aprint_error("%s: can't create DMA map for TX descs\n",
888 sc->sc_dev.dv_xname);
889 return ENOMEM;
890 }
891 }
892
893 /* Create DMA maps for RX buffers */
894
895 for (i = 0; i < VGE_NRXDESC; i++) {
896 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
897 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
898 &sc->sc_rxsoft[i].rxs_dmamap);
899 if (error) {
900 aprint_error("%s: can't create DMA map for RX descs\n",
901 sc->sc_dev.dv_xname);
902 return ENOMEM;
903 }
904 sc->sc_rxsoft[i].rxs_mbuf = NULL;
905 }
906
907 return 0;
908 }
909
910 /*
911 * Attach the interface. Allocate softc structures, do ifmedia
912 * setup and ethernet/BPF attach.
913 */
914 static void
915 vge_attach(struct device *parent, struct device *self, void *aux)
916 {
917 uint8_t *eaddr;
918 struct vge_softc *sc = (void *)self;
919 struct ifnet *ifp;
920 struct pci_attach_args *pa = aux;
921 pci_chipset_tag_t pc = pa->pa_pc;
922 const char *intrstr;
923 pci_intr_handle_t ih;
924 uint16_t val;
925
926 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
927 PCI_REVISION(pa->pa_class));
928
929 /* Make sure bus-mastering is enabled */
930 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
931 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
932 PCI_COMMAND_MASTER_ENABLE);
933
934 /*
935 * Map control/status registers.
936 */
937 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
938 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
939 aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname);
940 return;
941 }
942
943 /*
944 * Map and establish our interrupt.
945 */
946 if (pci_intr_map(pa, &ih)) {
947 aprint_error("%s: unable to map interrupt\n",
948 sc->sc_dev.dv_xname);
949 return;
950 }
951 intrstr = pci_intr_string(pc, ih);
952 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
953 if (sc->sc_intrhand == NULL) {
954 aprint_error("%s: unable to establish interrupt",
955 sc->sc_dev.dv_xname);
956 if (intrstr != NULL)
957 aprint_error(" at %s", intrstr);
958 aprint_error("\n");
959 return;
960 }
961 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
962
963 /* Reset the adapter. */
964 vge_reset(sc);
965
966 /*
967 * Get station address from the EEPROM.
968 */
969 eaddr = sc->sc_eaddr;
970 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
971 eaddr[0] = val & 0xff;
972 eaddr[1] = val >> 8;
973 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
974 eaddr[2] = val & 0xff;
975 eaddr[3] = val >> 8;
976 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
977 eaddr[4] = val & 0xff;
978 eaddr[5] = val >> 8;
979
980 aprint_normal("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
981 ether_sprintf(eaddr));
982
983 /*
984 * Use the 32bit tag. Hardware supports 48bit physical addresses,
985 * but we don't use that for now.
986 */
987 sc->sc_dmat = pa->pa_dmat;
988
989 if (vge_allocmem(sc) != 0)
990 return;
991
992 ifp = &sc->sc_ethercom.ec_if;
993 ifp->if_softc = sc;
994 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
995 ifp->if_mtu = ETHERMTU;
996 ifp->if_baudrate = IF_Gbps(1);
997 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
998 ifp->if_ioctl = vge_ioctl;
999 ifp->if_start = vge_start;
1000
1001 /*
1002 * We can support 802.1Q VLAN-sized frames and jumbo
1003 * Ethernet frames.
1004 */
1005 sc->sc_ethercom.ec_capabilities |=
1006 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1007 ETHERCAP_VLAN_HWTAGGING;
1008
1009 /*
1010 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1011 */
1012 ifp->if_capabilities |=
1013 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1014 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1015 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1016
1017 #ifdef DEVICE_POLLING
1018 #ifdef IFCAP_POLLING
1019 ifp->if_capabilities |= IFCAP_POLLING;
1020 #endif
1021 #endif
1022 ifp->if_watchdog = vge_watchdog;
1023 ifp->if_init = vge_init;
1024 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1025
1026 /*
1027 * Initialize our media structures and probe the MII.
1028 */
1029 sc->sc_mii.mii_ifp = ifp;
1030 sc->sc_mii.mii_readreg = vge_miibus_readreg;
1031 sc->sc_mii.mii_writereg = vge_miibus_writereg;
1032 sc->sc_mii.mii_statchg = vge_miibus_statchg;
1033 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
1034 vge_ifmedia_sts);
1035 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1036 MII_OFFSET_ANY, MIIF_DOPAUSE);
1037 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1038 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1039 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1040 } else
1041 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1042
1043 /*
1044 * Attach the interface.
1045 */
1046 if_attach(ifp);
1047 ether_ifattach(ifp, eaddr);
1048
1049 callout_init(&sc->sc_timeout);
1050 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1051
1052 /*
1053 * Make sure the interface is shutdown during reboot.
1054 */
1055 if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1056 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
1057 sc->sc_dev.dv_xname);
1058 }
1059 }
1060
1061 static int
1062 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1063 {
1064 struct mbuf *m_new;
1065 struct vge_rxdesc *rxd;
1066 struct vge_rxsoft *rxs;
1067 bus_dmamap_t map;
1068 int i;
1069 #ifdef DIAGNOSTIC
1070 uint32_t rd_sts;
1071 #endif
1072
1073 m_new = NULL;
1074 if (m == NULL) {
1075 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1076 if (m_new == NULL)
1077 return ENOBUFS;
1078
1079 MCLGET(m_new, M_DONTWAIT);
1080 if ((m_new->m_flags & M_EXT) == 0) {
1081 m_freem(m_new);
1082 return ENOBUFS;
1083 }
1084
1085 m = m_new;
1086 } else
1087 m->m_data = m->m_ext.ext_buf;
1088
1089
1090 /*
1091 * This is part of an evil trick to deal with non-x86 platforms.
1092 * The VIA chip requires RX buffers to be aligned on 32-bit
1093 * boundaries, but that will hose non-x86 machines. To get around
1094 * this, we leave some empty space at the start of each buffer
1095 * and for non-x86 hosts, we copy the buffer back two bytes
1096 * to achieve word alignment. This is slightly more efficient
1097 * than allocating a new buffer, copying the contents, and
1098 * discarding the old buffer.
1099 */
1100 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1101 #ifndef __NO_STRICT_ALIGNMENT
1102 m->m_data += VGE_RX_PAD;
1103 #endif
1104 rxs = &sc->sc_rxsoft[idx];
1105 map = rxs->rxs_dmamap;
1106
1107 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1108 goto out;
1109
1110 rxd = &sc->sc_rxdescs[idx];
1111
1112 #ifdef DIAGNOSTIC
1113 /* If this descriptor is still owned by the chip, bail. */
1114 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1115 rd_sts = le32toh(rxd->rd_sts);
1116 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1117 if (rd_sts & VGE_RDSTS_OWN) {
1118 panic("%s: tried to map busy RX descriptor",
1119 sc->sc_dev.dv_xname);
1120 }
1121 #endif
1122
1123 rxs->rxs_mbuf = m;
1124 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1125 BUS_DMASYNC_PREREAD);
1126
1127 rxd->rd_buflen =
1128 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1129 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1130 rxd->rd_sts = 0;
1131 rxd->rd_ctl = 0;
1132 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1133
1134 /*
1135 * Note: the manual fails to document the fact that for
1136 * proper opration, the driver needs to replentish the RX
1137 * DMA ring 4 descriptors at a time (rather than one at a
1138 * time, like most chips). We can allocate the new buffers
1139 * but we should not set the OWN bits until we're ready
1140 * to hand back 4 of them in one shot.
1141 */
1142
1143 #define VGE_RXCHUNK 4
1144 sc->sc_rx_consumed++;
1145 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1146 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1147 KASSERT(i >= 0);
1148 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1149 VGE_RXDESCSYNC(sc, i,
1150 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1151 }
1152 sc->sc_rx_consumed = 0;
1153 }
1154
1155 return 0;
1156 out:
1157 if (m_new != NULL)
1158 m_freem(m_new);
1159 return ENOMEM;
1160 }
1161
1162 #ifndef __NO_STRICT_ALIGNMENT
1163 static inline void
1164 vge_fixup_rx(struct mbuf *m)
1165 {
1166 int i;
1167 uint16_t *src, *dst;
1168
1169 src = mtod(m, uint16_t *);
1170 dst = src - 1;
1171
1172 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1173 *dst++ = *src++;
1174
1175 m->m_data -= ETHER_ALIGN;
1176 }
1177 #endif
1178
1179 /*
1180 * RX handler. We support the reception of jumbo frames that have
1181 * been fragmented across multiple 2K mbuf cluster buffers.
1182 */
1183 static void
1184 vge_rxeof(struct vge_softc *sc)
1185 {
1186 struct mbuf *m;
1187 struct ifnet *ifp;
1188 int idx, total_len, lim;
1189 struct vge_rxdesc *cur_rxd;
1190 struct vge_rxsoft *rxs;
1191 uint32_t rxstat, rxctl;
1192
1193 ifp = &sc->sc_ethercom.ec_if;
1194 lim = 0;
1195
1196 /* Invalidate the descriptor memory */
1197
1198 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1199 cur_rxd = &sc->sc_rxdescs[idx];
1200
1201 VGE_RXDESCSYNC(sc, idx,
1202 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1203 rxstat = le32toh(cur_rxd->rd_sts);
1204 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1205 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1206 break;
1207 }
1208
1209 rxctl = le32toh(cur_rxd->rd_ctl);
1210 rxs = &sc->sc_rxsoft[idx];
1211 m = rxs->rxs_mbuf;
1212 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1213
1214 /* Invalidate the RX mbuf and unload its map */
1215
1216 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1217 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1218 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1219
1220 /*
1221 * If the 'start of frame' bit is set, this indicates
1222 * either the first fragment in a multi-fragment receive,
1223 * or an intermediate fragment. Either way, we want to
1224 * accumulate the buffers.
1225 */
1226 if (rxstat & VGE_RXPKT_SOF) {
1227 m->m_len = VGE_RX_BUFSIZE;
1228 if (sc->sc_rx_mhead == NULL)
1229 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1230 else {
1231 m->m_flags &= ~M_PKTHDR;
1232 sc->sc_rx_mtail->m_next = m;
1233 sc->sc_rx_mtail = m;
1234 }
1235 vge_newbuf(sc, idx, NULL);
1236 continue;
1237 }
1238
1239 /*
1240 * Bad/error frames will have the RXOK bit cleared.
1241 * However, there's one error case we want to allow:
1242 * if a VLAN tagged frame arrives and the chip can't
1243 * match it against the CAM filter, it considers this
1244 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1245 * We don't want to drop the frame though: our VLAN
1246 * filtering is done in software.
1247 */
1248 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1249 (rxstat & VGE_RDSTS_VIDM) == 0 &&
1250 (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1251 ifp->if_ierrors++;
1252 /*
1253 * If this is part of a multi-fragment packet,
1254 * discard all the pieces.
1255 */
1256 if (sc->sc_rx_mhead != NULL) {
1257 m_freem(sc->sc_rx_mhead);
1258 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1259 }
1260 vge_newbuf(sc, idx, m);
1261 continue;
1262 }
1263
1264 /*
1265 * If allocating a replacement mbuf fails,
1266 * reload the current one.
1267 */
1268
1269 if (vge_newbuf(sc, idx, NULL)) {
1270 ifp->if_ierrors++;
1271 if (sc->sc_rx_mhead != NULL) {
1272 m_freem(sc->sc_rx_mhead);
1273 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1274 }
1275 vge_newbuf(sc, idx, m);
1276 continue;
1277 }
1278
1279 if (sc->sc_rx_mhead != NULL) {
1280 m->m_len = total_len % VGE_RX_BUFSIZE;
1281 /*
1282 * Special case: if there's 4 bytes or less
1283 * in this buffer, the mbuf can be discarded:
1284 * the last 4 bytes is the CRC, which we don't
1285 * care about anyway.
1286 */
1287 if (m->m_len <= ETHER_CRC_LEN) {
1288 sc->sc_rx_mtail->m_len -=
1289 (ETHER_CRC_LEN - m->m_len);
1290 m_freem(m);
1291 } else {
1292 m->m_len -= ETHER_CRC_LEN;
1293 m->m_flags &= ~M_PKTHDR;
1294 sc->sc_rx_mtail->m_next = m;
1295 }
1296 m = sc->sc_rx_mhead;
1297 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1298 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1299 } else
1300 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1301
1302 #ifndef __NO_STRICT_ALIGNMENT
1303 vge_fixup_rx(m);
1304 #endif
1305 ifp->if_ipackets++;
1306 m->m_pkthdr.rcvif = ifp;
1307
1308 /* Do RX checksumming if enabled */
1309 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1310
1311 /* Check IP header checksum */
1312 if (rxctl & VGE_RDCTL_IPPKT)
1313 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1314 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1315 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1316 }
1317
1318 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1319 /* Check UDP checksum */
1320 if (rxctl & VGE_RDCTL_TCPPKT)
1321 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1322
1323 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1324 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1325 }
1326
1327 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1328 /* Check UDP checksum */
1329 if (rxctl & VGE_RDCTL_UDPPKT)
1330 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1331
1332 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1333 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1334 }
1335
1336 if (rxstat & VGE_RDSTS_VTAG) {
1337 /*
1338 * We use bswap16() here because:
1339 * On LE machines, tag is stored in BE as stream data.
1340 * On BE machines, tag is stored in BE as stream data
1341 * but it was already swapped by le32toh() above.
1342 */
1343 VLAN_INPUT_TAG(ifp, m,
1344 bswap16(rxctl & VGE_RDCTL_VLANID), continue);
1345 }
1346
1347 #if NBPFILTER > 0
1348 /*
1349 * Handle BPF listeners.
1350 */
1351 if (ifp->if_bpf)
1352 bpf_mtap(ifp->if_bpf, m);
1353 #endif
1354
1355 (*ifp->if_input)(ifp, m);
1356
1357 lim++;
1358 if (lim == VGE_NRXDESC)
1359 break;
1360 }
1361
1362 sc->sc_rx_prodidx = idx;
1363 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1364 }
1365
1366 static void
1367 vge_txeof(struct vge_softc *sc)
1368 {
1369 struct ifnet *ifp;
1370 struct vge_txsoft *txs;
1371 uint32_t txstat;
1372 int idx;
1373
1374 ifp = &sc->sc_ethercom.ec_if;
1375
1376 for (idx = sc->sc_tx_considx;
1377 sc->sc_tx_free < VGE_NTXDESC;
1378 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1379 VGE_TXDESCSYNC(sc, idx,
1380 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1381 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1382 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1383 if (txstat & VGE_TDSTS_OWN) {
1384 break;
1385 }
1386
1387 txs = &sc->sc_txsoft[idx];
1388 m_freem(txs->txs_mbuf);
1389 txs->txs_mbuf = NULL;
1390 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1391 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1392 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1393 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1394 ifp->if_collisions++;
1395 if (txstat & VGE_TDSTS_TXERR)
1396 ifp->if_oerrors++;
1397 else
1398 ifp->if_opackets++;
1399 }
1400
1401 sc->sc_tx_considx = idx;
1402
1403 if (sc->sc_tx_free > 0) {
1404 ifp->if_flags &= ~IFF_OACTIVE;
1405 }
1406
1407 /*
1408 * If not all descriptors have been released reaped yet,
1409 * reload the timer so that we will eventually get another
1410 * interrupt that will cause us to re-enter this routine.
1411 * This is done in case the transmitter has gone idle.
1412 */
1413 if (sc->sc_tx_free < VGE_NTXDESC)
1414 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1415 else
1416 ifp->if_timer = 0;
1417 }
1418
1419 static void
1420 vge_tick(void *xsc)
1421 {
1422 struct vge_softc *sc;
1423 struct ifnet *ifp;
1424 struct mii_data *mii;
1425 int s;
1426
1427 sc = xsc;
1428 ifp = &sc->sc_ethercom.ec_if;
1429 mii = &sc->sc_mii;
1430
1431 s = splnet();
1432
1433 callout_schedule(&sc->sc_timeout, hz);
1434
1435 mii_tick(mii);
1436 if (sc->sc_link) {
1437 if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1438 sc->sc_link = 0;
1439 } else {
1440 if (mii->mii_media_status & IFM_ACTIVE &&
1441 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1442 sc->sc_link = 1;
1443 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1444 vge_start(ifp);
1445 }
1446 }
1447
1448 splx(s);
1449 }
1450
1451 static int
1452 vge_intr(void *arg)
1453 {
1454 struct vge_softc *sc;
1455 struct ifnet *ifp;
1456 uint32_t status;
1457 int claim;
1458
1459 sc = arg;
1460 claim = 0;
1461 if (sc->sc_suspended) {
1462 return claim;
1463 }
1464
1465 ifp = &sc->sc_ethercom.ec_if;
1466
1467 if ((ifp->if_flags & IFF_UP) == 0) {
1468 return claim;
1469 }
1470
1471 /* Disable interrupts */
1472 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1473
1474 for (;;) {
1475
1476 status = CSR_READ_4(sc, VGE_ISR);
1477 /* If the card has gone away the read returns 0xffff. */
1478 if (status == 0xFFFFFFFF)
1479 break;
1480
1481 if (status) {
1482 claim = 1;
1483 CSR_WRITE_4(sc, VGE_ISR, status);
1484 }
1485
1486 if ((status & VGE_INTRS) == 0)
1487 break;
1488
1489 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1490 vge_rxeof(sc);
1491
1492 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1493 vge_rxeof(sc);
1494 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1495 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1496 }
1497
1498 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1499 vge_txeof(sc);
1500
1501 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1502 vge_init(ifp);
1503
1504 if (status & VGE_ISR_LINKSTS)
1505 vge_tick(sc);
1506 }
1507
1508 /* Re-enable interrupts */
1509 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1510
1511 if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
1512 vge_start(ifp);
1513
1514 return claim;
1515 }
1516
1517 static int
1518 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1519 {
1520 struct vge_txsoft *txs;
1521 struct vge_txdesc *txd;
1522 struct vge_txfrag *f;
1523 struct mbuf *m_new;
1524 bus_dmamap_t map;
1525 int m_csumflags, seg, error, flags;
1526 struct m_tag *mtag;
1527 size_t sz;
1528 uint32_t td_sts, td_ctl;
1529
1530 KASSERT(sc->sc_tx_free > 0);
1531
1532 txd = &sc->sc_txdescs[idx];
1533
1534 #ifdef DIAGNOSTIC
1535 /* If this descriptor is still owned by the chip, bail. */
1536 VGE_TXDESCSYNC(sc, idx,
1537 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1538 td_sts = le32toh(txd->td_sts);
1539 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1540 if (td_sts & VGE_TDSTS_OWN) {
1541 return ENOBUFS;
1542 }
1543 #endif
1544
1545 /*
1546 * Preserve m_pkthdr.csum_flags here since m_head might be
1547 * updated by m_defrag()
1548 */
1549 m_csumflags = m_head->m_pkthdr.csum_flags;
1550
1551 txs = &sc->sc_txsoft[idx];
1552 map = txs->txs_dmamap;
1553 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1554
1555 /* If too many segments to map, coalesce */
1556 if (error == EFBIG ||
1557 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1558 map->dm_nsegs == VGE_TX_FRAGS)) {
1559 m_new = m_defrag(m_head, M_DONTWAIT);
1560 if (m_new == NULL)
1561 return EFBIG;
1562
1563 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1564 m_new, BUS_DMA_NOWAIT);
1565 if (error) {
1566 m_freem(m_new);
1567 return error;
1568 }
1569
1570 m_head = m_new;
1571 } else if (error)
1572 return error;
1573
1574 txs->txs_mbuf = m_head;
1575
1576 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1577 BUS_DMASYNC_PREWRITE);
1578
1579 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1580 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1581 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1582 }
1583
1584 /* Argh. This chip does not autopad short frames */
1585 sz = m_head->m_pkthdr.len;
1586 if (sz < ETHER_PAD_LEN) {
1587 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1588 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1589 sz = ETHER_PAD_LEN;
1590 seg++;
1591 }
1592 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1593
1594 /*
1595 * When telling the chip how many segments there are, we
1596 * must use nsegs + 1 instead of just nsegs. Darned if I
1597 * know why.
1598 */
1599 seg++;
1600
1601 flags = 0;
1602 if (m_csumflags & M_CSUM_IPv4)
1603 flags |= VGE_TDCTL_IPCSUM;
1604 if (m_csumflags & M_CSUM_TCPv4)
1605 flags |= VGE_TDCTL_TCPCSUM;
1606 if (m_csumflags & M_CSUM_UDPv4)
1607 flags |= VGE_TDCTL_UDPCSUM;
1608 td_sts = sz << 16;
1609 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1610
1611 if (sz > ETHERMTU + ETHER_HDR_LEN)
1612 td_ctl |= VGE_TDCTL_JUMBO;
1613
1614 /*
1615 * Set up hardware VLAN tagging.
1616 */
1617 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1618 if (mtag != NULL) {
1619 /*
1620 * No need htons() here since vge(4) chip assumes
1621 * that tags are written in little endian and
1622 * we already use htole32() here.
1623 */
1624 td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
1625 }
1626 txd->td_ctl = htole32(td_ctl);
1627 txd->td_sts = htole32(td_sts);
1628 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629
1630 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1631 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1632
1633 sc->sc_tx_free--;
1634
1635 return 0;
1636 }
1637
1638 /*
1639 * Main transmit routine.
1640 */
1641
1642 static void
1643 vge_start(struct ifnet *ifp)
1644 {
1645 struct vge_softc *sc;
1646 struct vge_txsoft *txs;
1647 struct mbuf *m_head;
1648 int idx, pidx, ofree, error;
1649
1650 sc = ifp->if_softc;
1651
1652 if (!sc->sc_link ||
1653 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1654 return;
1655 }
1656
1657 m_head = NULL;
1658 idx = sc->sc_tx_prodidx;
1659 pidx = VGE_PREV_TXDESC(idx);
1660 ofree = sc->sc_tx_free;
1661
1662 /*
1663 * Loop through the send queue, setting up transmit descriptors
1664 * until we drain the queue, or use up all available transmit
1665 * descriptors.
1666 */
1667 for (;;) {
1668 /* Grab a packet off the queue. */
1669 IFQ_POLL(&ifp->if_snd, m_head);
1670 if (m_head == NULL)
1671 break;
1672
1673 if (sc->sc_tx_free == 0) {
1674 /*
1675 * All slots used, stop for now.
1676 */
1677 ifp->if_flags |= IFF_OACTIVE;
1678 break;
1679 }
1680
1681 txs = &sc->sc_txsoft[idx];
1682 KASSERT(txs->txs_mbuf == NULL);
1683
1684 if ((error = vge_encap(sc, m_head, idx))) {
1685 if (error == EFBIG) {
1686 aprint_error("%s: Tx packet consumes too many "
1687 "DMA segments, dropping...\n",
1688 sc->sc_dev.dv_xname);
1689 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1690 m_freem(m_head);
1691 continue;
1692 }
1693
1694 /*
1695 * Short on resources, just stop for now.
1696 */
1697 if (error == ENOBUFS)
1698 ifp->if_flags |= IFF_OACTIVE;
1699 break;
1700 }
1701
1702 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1703
1704 /*
1705 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1706 */
1707
1708 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1709 htole16(VGE_TXDESC_Q);
1710 VGE_TXFRAGSYNC(sc, pidx, 1,
1711 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1712
1713 if (txs->txs_mbuf != m_head) {
1714 m_freem(m_head);
1715 m_head = txs->txs_mbuf;
1716 }
1717
1718 pidx = idx;
1719 idx = VGE_NEXT_TXDESC(idx);
1720
1721 /*
1722 * If there's a BPF listener, bounce a copy of this frame
1723 * to him.
1724 */
1725 #if NBPFILTER > 0
1726 if (ifp->if_bpf)
1727 bpf_mtap(ifp->if_bpf, m_head);
1728 #endif
1729 }
1730
1731 if (sc->sc_tx_free < ofree) {
1732 /* TX packet queued */
1733
1734 sc->sc_tx_prodidx = idx;
1735
1736 /* Issue a transmit command. */
1737 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1738
1739 /*
1740 * Use the countdown timer for interrupt moderation.
1741 * 'TX done' interrupts are disabled. Instead, we reset the
1742 * countdown timer, which will begin counting until it hits
1743 * the value in the SSTIMER register, and then trigger an
1744 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1745 * the timer count is reloaded. Only when the transmitter
1746 * is idle will the timer hit 0 and an interrupt fire.
1747 */
1748 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1749
1750 /*
1751 * Set a timeout in case the chip goes out to lunch.
1752 */
1753 ifp->if_timer = 5;
1754 }
1755 }
1756
1757 static int
1758 vge_init(struct ifnet *ifp)
1759 {
1760 struct vge_softc *sc;
1761 int i;
1762
1763 sc = ifp->if_softc;
1764
1765 /*
1766 * Cancel pending I/O and free all RX/TX buffers.
1767 */
1768 vge_stop(sc);
1769 vge_reset(sc);
1770
1771 /* Initialize the RX descriptors and mbufs. */
1772 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1773 for (i = 0; i < VGE_NRXDESC; i++) {
1774 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1775 aprint_error("%s: unable to allocate or map "
1776 "rx buffer\n", sc->sc_dev.dv_xname);
1777 return 1; /* XXX */
1778 }
1779 }
1780 sc->sc_rx_prodidx = 0;
1781 sc->sc_rx_consumed = 0;
1782 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1783
1784 /* Initialize the TX descriptors and mbufs. */
1785 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1786 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1787 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1788 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1789 for (i = 0; i < VGE_NTXDESC; i++)
1790 sc->sc_txsoft[i].txs_mbuf = NULL;
1791
1792 sc->sc_tx_prodidx = 0;
1793 sc->sc_tx_considx = 0;
1794 sc->sc_tx_free = VGE_NTXDESC;
1795
1796 /* Set our station address */
1797 for (i = 0; i < ETHER_ADDR_LEN; i++)
1798 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1799
1800 /*
1801 * Set receive FIFO threshold. Also allow transmission and
1802 * reception of VLAN tagged frames.
1803 */
1804 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1805 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1806
1807 /* Set DMA burst length */
1808 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1809 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1810
1811 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1812
1813 /* Set collision backoff algorithm */
1814 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1815 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1816 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1817
1818 /* Disable LPSEL field in priority resolution */
1819 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1820
1821 /*
1822 * Load the addresses of the DMA queues into the chip.
1823 * Note that we only use one transmit queue.
1824 */
1825
1826 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1827 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1828
1829 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1830 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1831 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1832
1833 /* Enable and wake up the RX descriptor queue */
1834 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1835 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1836
1837 /* Enable the TX descriptor queue */
1838 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1839
1840 /* Set up the receive filter -- allow large frames for VLANs. */
1841 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1842
1843 /* If we want promiscuous mode, set the allframes bit. */
1844 if (ifp->if_flags & IFF_PROMISC) {
1845 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1846 }
1847
1848 /* Set capture broadcast bit to capture broadcast frames. */
1849 if (ifp->if_flags & IFF_BROADCAST) {
1850 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1851 }
1852
1853 /* Set multicast bit to capture multicast frames. */
1854 if (ifp->if_flags & IFF_MULTICAST) {
1855 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1856 }
1857
1858 /* Init the cam filter. */
1859 vge_cam_clear(sc);
1860
1861 /* Init the multicast filter. */
1862 vge_setmulti(sc);
1863
1864 /* Enable flow control */
1865
1866 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1867
1868 /* Enable jumbo frame reception (if desired) */
1869
1870 /* Start the MAC. */
1871 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1872 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1873 CSR_WRITE_1(sc, VGE_CRS0,
1874 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1875
1876 /*
1877 * Configure one-shot timer for microsecond
1878 * resulution and load it for 500 usecs.
1879 */
1880 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1881 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1882
1883 /*
1884 * Configure interrupt moderation for receive. Enable
1885 * the holdoff counter and load it, and set the RX
1886 * suppression count to the number of descriptors we
1887 * want to allow before triggering an interrupt.
1888 * The holdoff timer is in units of 20 usecs.
1889 */
1890
1891 #ifdef notyet
1892 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1893 /* Select the interrupt holdoff timer page. */
1894 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1895 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1896 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1897
1898 /* Enable use of the holdoff timer. */
1899 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1900 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1901
1902 /* Select the RX suppression threshold page. */
1903 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1904 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1905 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1906
1907 /* Restore the page select bits. */
1908 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1909 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1910 #endif
1911
1912 #ifdef DEVICE_POLLING
1913 /*
1914 * Disable interrupts if we are polling.
1915 */
1916 if (ifp->if_flags & IFF_POLLING) {
1917 CSR_WRITE_4(sc, VGE_IMR, 0);
1918 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1919 } else /* otherwise ... */
1920 #endif /* DEVICE_POLLING */
1921 {
1922 /*
1923 * Enable interrupts.
1924 */
1925 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1926 CSR_WRITE_4(sc, VGE_ISR, 0);
1927 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1928 }
1929
1930 mii_mediachg(&sc->sc_mii);
1931
1932 ifp->if_flags |= IFF_RUNNING;
1933 ifp->if_flags &= ~IFF_OACTIVE;
1934
1935 sc->sc_if_flags = 0;
1936 sc->sc_link = 0;
1937
1938 callout_schedule(&sc->sc_timeout, hz);
1939
1940 return 0;
1941 }
1942
1943 /*
1944 * Set media options.
1945 */
1946 static int
1947 vge_ifmedia_upd(struct ifnet *ifp)
1948 {
1949 struct vge_softc *sc;
1950
1951 sc = ifp->if_softc;
1952 mii_mediachg(&sc->sc_mii);
1953
1954 return 0;
1955 }
1956
1957 /*
1958 * Report current media status.
1959 */
1960 static void
1961 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1962 {
1963 struct vge_softc *sc;
1964 struct mii_data *mii;
1965
1966 sc = ifp->if_softc;
1967 mii = &sc->sc_mii;
1968
1969 mii_pollstat(mii);
1970 ifmr->ifm_active = mii->mii_media_active;
1971 ifmr->ifm_status = mii->mii_media_status;
1972 }
1973
1974 static void
1975 vge_miibus_statchg(struct device *self)
1976 {
1977 struct vge_softc *sc;
1978 struct mii_data *mii;
1979 struct ifmedia_entry *ife;
1980
1981 sc = (void *)self;
1982 mii = &sc->sc_mii;
1983 ife = mii->mii_media.ifm_cur;
1984 /*
1985 * If the user manually selects a media mode, we need to turn
1986 * on the forced MAC mode bit in the DIAGCTL register. If the
1987 * user happens to choose a full duplex mode, we also need to
1988 * set the 'force full duplex' bit. This applies only to
1989 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1990 * mode is disabled, and in 1000baseT mode, full duplex is
1991 * always implied, so we turn on the forced mode bit but leave
1992 * the FDX bit cleared.
1993 */
1994
1995 switch (IFM_SUBTYPE(ife->ifm_media)) {
1996 case IFM_AUTO:
1997 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1998 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1999 break;
2000 case IFM_1000_T:
2001 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2002 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2003 break;
2004 case IFM_100_TX:
2005 case IFM_10_T:
2006 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2007 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2008 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2009 } else {
2010 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2011 }
2012 break;
2013 default:
2014 aprint_error("%s: unknown media type: %x\n",
2015 sc->sc_dev.dv_xname,
2016 IFM_SUBTYPE(ife->ifm_media));
2017 break;
2018 }
2019 }
2020
2021 static int
2022 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2023 {
2024 struct vge_softc *sc;
2025 struct ifreq *ifr;
2026 struct mii_data *mii;
2027 int s, error;
2028
2029 sc = ifp->if_softc;
2030 ifr = (struct ifreq *)data;
2031 error = 0;
2032
2033 s = splnet();
2034
2035 switch (command) {
2036 case SIOCSIFMTU:
2037 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2038 error = EINVAL;
2039 ifp->if_mtu = ifr->ifr_mtu;
2040 break;
2041 case SIOCSIFFLAGS:
2042 if (ifp->if_flags & IFF_UP) {
2043 if (ifp->if_flags & IFF_RUNNING &&
2044 ifp->if_flags & IFF_PROMISC &&
2045 (sc->sc_if_flags & IFF_PROMISC) == 0) {
2046 CSR_SETBIT_1(sc, VGE_RXCTL,
2047 VGE_RXCTL_RX_PROMISC);
2048 vge_setmulti(sc);
2049 } else if (ifp->if_flags & IFF_RUNNING &&
2050 (ifp->if_flags & IFF_PROMISC) == 0 &&
2051 sc->sc_if_flags & IFF_PROMISC) {
2052 CSR_CLRBIT_1(sc, VGE_RXCTL,
2053 VGE_RXCTL_RX_PROMISC);
2054 vge_setmulti(sc);
2055 } else
2056 vge_init(ifp);
2057 } else {
2058 if (ifp->if_flags & IFF_RUNNING)
2059 vge_stop(sc);
2060 }
2061 sc->sc_if_flags = ifp->if_flags;
2062 break;
2063 case SIOCADDMULTI:
2064 case SIOCDELMULTI:
2065 error = (command == SIOCADDMULTI) ?
2066 ether_addmulti(ifr, &sc->sc_ethercom) :
2067 ether_delmulti(ifr, &sc->sc_ethercom);
2068
2069 if (error == ENETRESET) {
2070 /*
2071 * Multicast list has changed; set the hardware filter
2072 * accordingly.
2073 */
2074 if (ifp->if_flags & IFF_RUNNING)
2075 vge_setmulti(sc);
2076 error = 0;
2077 }
2078 break;
2079 case SIOCGIFMEDIA:
2080 case SIOCSIFMEDIA:
2081 mii = &sc->sc_mii;
2082 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2083 break;
2084 default:
2085 error = ether_ioctl(ifp, command, data);
2086 break;
2087 }
2088
2089 splx(s);
2090 return error;
2091 }
2092
2093 static void
2094 vge_watchdog(struct ifnet *ifp)
2095 {
2096 struct vge_softc *sc;
2097 int s;
2098
2099 sc = ifp->if_softc;
2100 s = splnet();
2101 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2102 ifp->if_oerrors++;
2103
2104 vge_txeof(sc);
2105 vge_rxeof(sc);
2106
2107 vge_init(ifp);
2108
2109 splx(s);
2110 }
2111
2112 /*
2113 * Stop the adapter and free any mbufs allocated to the
2114 * RX and TX lists.
2115 */
2116 static void
2117 vge_stop(struct vge_softc *sc)
2118 {
2119 struct ifnet *ifp;
2120 struct vge_txsoft *txs;
2121 struct vge_rxsoft *rxs;
2122 int i, s;
2123
2124 ifp = &sc->sc_ethercom.ec_if;
2125
2126 s = splnet();
2127 ifp->if_timer = 0;
2128
2129 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2130 #ifdef DEVICE_POLLING
2131 ether_poll_deregister(ifp);
2132 #endif /* DEVICE_POLLING */
2133
2134 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2135 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2136 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2137 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2138 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2139 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2140
2141 if (sc->sc_rx_mhead != NULL) {
2142 m_freem(sc->sc_rx_mhead);
2143 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2144 }
2145
2146 /* Free the TX list buffers. */
2147
2148 for (i = 0; i < VGE_NTXDESC; i++) {
2149 txs = &sc->sc_txsoft[i];
2150 if (txs->txs_mbuf != NULL) {
2151 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2152 m_freem(txs->txs_mbuf);
2153 txs->txs_mbuf = NULL;
2154 }
2155 }
2156
2157 /* Free the RX list buffers. */
2158
2159 for (i = 0; i < VGE_NRXDESC; i++) {
2160 rxs = &sc->sc_rxsoft[i];
2161 if (rxs->rxs_mbuf != NULL) {
2162 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2163 m_freem(rxs->rxs_mbuf);
2164 rxs->rxs_mbuf = NULL;
2165 }
2166 }
2167
2168 splx(s);
2169 }
2170
2171 #if VGE_POWER_MANAGEMENT
2172 /*
2173 * Device suspend routine. Stop the interface and save some PCI
2174 * settings in case the BIOS doesn't restore them properly on
2175 * resume.
2176 */
2177 static int
2178 vge_suspend(struct device *dev)
2179 {
2180 struct vge_softc *sc;
2181 int i;
2182
2183 sc = device_get_softc(dev);
2184
2185 vge_stop(sc);
2186
2187 for (i = 0; i < 5; i++)
2188 sc->sc_saved_maps[i] =
2189 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2190 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2191 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2192 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2193 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2194
2195 sc->suspended = 1;
2196
2197 return 0;
2198 }
2199
2200 /*
2201 * Device resume routine. Restore some PCI settings in case the BIOS
2202 * doesn't, re-enable busmastering, and restart the interface if
2203 * appropriate.
2204 */
2205 static int
2206 vge_resume(struct device *dev)
2207 {
2208 struct vge_softc *sc;
2209 struct ifnet *ifp;
2210 int i;
2211
2212 sc = (void *)dev;
2213 ifp = &sc->sc_ethercom.ec_if;
2214
2215 /* better way to do this? */
2216 for (i = 0; i < 5; i++)
2217 pci_write_config(dev, PCIR_MAPS + i * 4,
2218 sc->sc_saved_maps[i], 4);
2219 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2220 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2221 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2222 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2223
2224 /* reenable busmastering */
2225 pci_enable_busmaster(dev);
2226 pci_enable_io(dev, SYS_RES_MEMORY);
2227
2228 /* reinitialize interface if necessary */
2229 if (ifp->if_flags & IFF_UP)
2230 vge_init(sc);
2231
2232 sc->suspended = 0;
2233
2234 return 0;
2235 }
2236 #endif
2237
2238 /*
2239 * Stop all chip I/O so that the kernel's probe routines don't
2240 * get confused by errant DMAs when rebooting.
2241 */
2242 static void
2243 vge_shutdown(void *arg)
2244 {
2245 struct vge_softc *sc;
2246
2247 sc = arg;
2248 vge_stop(sc);
2249 }
2250