Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.4.2.1
      1 /* $NetBSD: if_vge.c,v 1.4.2.1 2005/09/11 22:06:32 tron Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.4.2.1 2005/09/11 22:06:32 tron Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 #include <dev/pci/if_vgevar.h>
    117 
    118 static int vge_probe	(struct device *, struct cfdata *, void *);
    119 static void vge_attach	(struct device *, struct device *, void *);
    120 
    121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
    122 
    123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
    124 static void vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
    125 static int vge_allocmem		(struct vge_softc *);
    126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
    127 static int vge_rx_list_init	(struct vge_softc *);
    128 static int vge_tx_list_init	(struct vge_softc *);
    129 #ifdef VGE_FIXUP_RX
    130 static __inline void vge_fixup_rx
    131 				(struct mbuf *);
    132 #endif
    133 static void vge_rxeof		(struct vge_softc *);
    134 static void vge_txeof		(struct vge_softc *);
    135 static int vge_intr		(void *);
    136 static void vge_tick		(void *);
    137 static void vge_start		(struct ifnet *);
    138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
    139 static int vge_init		(struct ifnet *);
    140 static void vge_stop		(struct vge_softc *);
    141 static void vge_watchdog	(struct ifnet *);
    142 #if VGE_POWER_MANAGEMENT
    143 static int vge_suspend		(struct device *);
    144 static int vge_resume		(struct device *);
    145 #endif
    146 static void vge_shutdown	(void *);
    147 static int vge_ifmedia_upd	(struct ifnet *);
    148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
    149 
    150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
    151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
    152 
    153 static void vge_miipoll_start	(struct vge_softc *);
    154 static void vge_miipoll_stop	(struct vge_softc *);
    155 static int vge_miibus_readreg	(struct device *, int, int);
    156 static void vge_miibus_writereg	(struct device *, int, int, int);
    157 static void vge_miibus_statchg	(struct device *);
    158 
    159 static void vge_cam_clear	(struct vge_softc *);
    160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
    161 static void vge_setmulti	(struct vge_softc *);
    162 static void vge_reset		(struct vge_softc *);
    163 
    164 #define VGE_PCI_LOIO             0x10
    165 #define VGE_PCI_LOMEM            0x14
    166 
    167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    168     vge_probe, vge_attach, NULL, NULL);
    169 
    170 /*
    171  * Defragment mbuf chain contents to be as linear as possible.
    172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    173  * chain is always freed.
    174  * XXX temporary until there would be generic function doing this.
    175  */
    176 #define m_defrag	vge_m_defrag
    177 struct mbuf * vge_m_defrag(struct mbuf *, int);
    178 
    179 struct mbuf *
    180 vge_m_defrag(struct mbuf *mold, int flags)
    181 {
    182 	struct mbuf *m0, *mn, *n;
    183 	size_t sz = mold->m_pkthdr.len;
    184 
    185 #ifdef DIAGNOSTIC
    186 	if ((mold->m_flags & M_PKTHDR) == 0)
    187 		panic("m_defrag: not a mbuf chain header");
    188 #endif
    189 
    190 	MGETHDR(m0, flags, MT_DATA);
    191 	if (m0 == NULL)
    192 		return NULL;
    193 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    194 	mn = m0;
    195 
    196 	do {
    197 		if (sz > MHLEN) {
    198 			MCLGET(mn, M_DONTWAIT);
    199 			if ((mn->m_flags & M_EXT) == 0) {
    200 				m_freem(m0);
    201 				return NULL;
    202 			}
    203 		}
    204 
    205 		mn->m_len = MIN(sz, MCLBYTES);
    206 
    207 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    208 		     mtod(mn, caddr_t));
    209 
    210 		sz -= mn->m_len;
    211 
    212 		if (sz > 0) {
    213 			/* need more mbufs */
    214 			MGET(n, M_NOWAIT, MT_DATA);
    215 			if (n == NULL) {
    216 				m_freem(m0);
    217 				return NULL;
    218 			}
    219 
    220 			mn->m_next = n;
    221 			mn = n;
    222 		}
    223 	} while (sz > 0);
    224 
    225 	return m0;
    226 }
    227 
    228 /*
    229  * Read a word of data stored in the EEPROM at address 'addr.'
    230  */
    231 static void
    232 vge_eeprom_getword(sc, addr, dest)
    233 	struct vge_softc	*sc;
    234 	int			addr;
    235 	u_int16_t		*dest;
    236 {
    237 	register int		i;
    238 	u_int16_t		word = 0;
    239 
    240 	/*
    241 	 * Enter EEPROM embedded programming mode. In order to
    242 	 * access the EEPROM at all, we first have to set the
    243 	 * EELOAD bit in the CHIPCFG2 register.
    244 	 */
    245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    247 
    248 	/* Select the address of the word we want to read */
    249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    250 
    251 	/* Issue read command */
    252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    253 
    254 	/* Wait for the done bit to be set. */
    255 	for (i = 0; i < VGE_TIMEOUT; i++) {
    256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    257 			break;
    258 	}
    259 
    260 	if (i == VGE_TIMEOUT) {
    261 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
    262 		*dest = 0;
    263 		return;
    264 	}
    265 
    266 	/* Read the result */
    267 	word = CSR_READ_2(sc, VGE_EERDDAT);
    268 
    269 	/* Turn off EEPROM access mode. */
    270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    272 
    273 	*dest = word;
    274 
    275 	return;
    276 }
    277 
    278 /*
    279  * Read a sequence of words from the EEPROM.
    280  */
    281 static void
    282 vge_read_eeprom(sc, dest, off, cnt, swap)
    283 	struct vge_softc	*sc;
    284 	caddr_t			dest;
    285 	int			off;
    286 	int			cnt;
    287 	int			swap;
    288 {
    289 	int			i;
    290 	u_int16_t		word = 0, *ptr;
    291 
    292 	for (i = 0; i < cnt; i++) {
    293 		vge_eeprom_getword(sc, off + i, &word);
    294 		ptr = (u_int16_t *)(dest + (i * 2));
    295 		if (swap)
    296 			*ptr = ntohs(word);
    297 		else
    298 			*ptr = word;
    299 	}
    300 }
    301 
    302 static void
    303 vge_miipoll_stop(sc)
    304 	struct vge_softc	*sc;
    305 {
    306 	int			i;
    307 
    308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    309 
    310 	for (i = 0; i < VGE_TIMEOUT; i++) {
    311 		DELAY(1);
    312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    313 			break;
    314 	}
    315 
    316 	if (i == VGE_TIMEOUT) {
    317 		printf("%s: failed to idle MII autopoll\n",
    318 		    sc->sc_dev.dv_xname);
    319 	}
    320 
    321 	return;
    322 }
    323 
    324 static void
    325 vge_miipoll_start(sc)
    326 	struct vge_softc	*sc;
    327 {
    328 	int			i;
    329 
    330 	/* First, make sure we're idle. */
    331 
    332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    334 
    335 	for (i = 0; i < VGE_TIMEOUT; i++) {
    336 		DELAY(1);
    337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    338 			break;
    339 	}
    340 
    341 	if (i == VGE_TIMEOUT) {
    342 		printf("%s: failed to idle MII autopoll\n",
    343 		    sc->sc_dev.dv_xname);
    344 		return;
    345 	}
    346 
    347 	/* Now enable auto poll mode. */
    348 
    349 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    350 
    351 	/* And make sure it started. */
    352 
    353 	for (i = 0; i < VGE_TIMEOUT; i++) {
    354 		DELAY(1);
    355 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    356 			break;
    357 	}
    358 
    359 	if (i == VGE_TIMEOUT) {
    360 		printf("%s: failed to start MII autopoll\n",
    361 		    sc->sc_dev.dv_xname);
    362 	}
    363 }
    364 
    365 static int
    366 vge_miibus_readreg(dev, phy, reg)
    367 	struct device *dev;
    368 	int phy, reg;
    369 {
    370 	struct vge_softc	*sc = (struct vge_softc *)dev;
    371 	int			i;
    372 	u_int16_t		rval = 0;
    373 
    374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    375 		return(0);
    376 
    377 	VGE_LOCK(sc);
    378 	vge_miipoll_stop(sc);
    379 
    380 	/* Specify the register we want to read. */
    381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    382 
    383 	/* Issue read command. */
    384 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    385 
    386 	/* Wait for the read command bit to self-clear. */
    387 	for (i = 0; i < VGE_TIMEOUT; i++) {
    388 		DELAY(1);
    389 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    390 			break;
    391 	}
    392 
    393 	if (i == VGE_TIMEOUT)
    394 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    395 	else
    396 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    397 
    398 	vge_miipoll_start(sc);
    399 	VGE_UNLOCK(sc);
    400 
    401 	return (rval);
    402 }
    403 
    404 static void
    405 vge_miibus_writereg(dev, phy, reg, data)
    406 	struct device	*dev;
    407 	int		phy, reg, data;
    408 {
    409 	struct vge_softc	*sc = (struct vge_softc *)dev;
    410 	int			i;
    411 
    412 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    413 		return;
    414 
    415 	VGE_LOCK(sc);
    416 	vge_miipoll_stop(sc);
    417 
    418 	/* Specify the register we want to write. */
    419 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    420 
    421 	/* Specify the data we want to write. */
    422 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    423 
    424 	/* Issue write command. */
    425 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    426 
    427 	/* Wait for the write command bit to self-clear. */
    428 	for (i = 0; i < VGE_TIMEOUT; i++) {
    429 		DELAY(1);
    430 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    431 			break;
    432 	}
    433 
    434 	if (i == VGE_TIMEOUT) {
    435 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    436 	}
    437 
    438 	vge_miipoll_start(sc);
    439 	VGE_UNLOCK(sc);
    440 }
    441 
    442 static void
    443 vge_cam_clear(sc)
    444 	struct vge_softc	*sc;
    445 {
    446 	int			i;
    447 
    448 	/*
    449 	 * Turn off all the mask bits. This tells the chip
    450 	 * that none of the entries in the CAM filter are valid.
    451 	 * desired entries will be enabled as we fill the filter in.
    452 	 */
    453 
    454 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    456 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    457 	for (i = 0; i < 8; i++)
    458 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    459 
    460 	/* Clear the VLAN filter too. */
    461 
    462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    463 	for (i = 0; i < 8; i++)
    464 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    465 
    466 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    469 
    470 	sc->vge_camidx = 0;
    471 
    472 	return;
    473 }
    474 
    475 static int
    476 vge_cam_set(sc, addr)
    477 	struct vge_softc	*sc;
    478 	uint8_t			*addr;
    479 {
    480 	int			i, error = 0;
    481 
    482 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
    483 		return(ENOSPC);
    484 
    485 	/* Select the CAM data page. */
    486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    488 
    489 	/* Set the filter entry we want to update and enable writing. */
    490 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
    491 
    492 	/* Write the address to the CAM registers */
    493 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    494 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    495 
    496 	/* Issue a write command. */
    497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    498 
    499 	/* Wake for it to clear. */
    500 	for (i = 0; i < VGE_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    503 			break;
    504 	}
    505 
    506 	if (i == VGE_TIMEOUT) {
    507 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
    508 		error = EIO;
    509 		goto fail;
    510 	}
    511 
    512 	/* Select the CAM mask page. */
    513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    515 
    516 	/* Set the mask bit that enables this filter. */
    517 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
    518 	    1<<(sc->vge_camidx & 7));
    519 
    520 	sc->vge_camidx++;
    521 
    522 fail:
    523 	/* Turn off access to CAM. */
    524 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    525 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    526 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    527 
    528 	return (error);
    529 }
    530 
    531 /*
    532  * Program the multicast filter. We use the 64-entry CAM filter
    533  * for perfect filtering. If there's more than 64 multicast addresses,
    534  * we use the hash filter insted.
    535  */
    536 static void
    537 vge_setmulti(sc)
    538 	struct vge_softc	*sc;
    539 {
    540 	struct ifnet		*ifp;
    541 	int			error = 0;
    542 	u_int32_t		h, hashes[2] = { 0, 0 };
    543 	struct ether_multi *enm;
    544 	struct ether_multistep step;
    545 
    546 	ifp = &sc->sc_ethercom.ec_if;
    547 
    548 	/* First, zot all the multicast entries. */
    549 	vge_cam_clear(sc);
    550 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    551 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    552 	ifp->if_flags &= ~IFF_ALLMULTI;
    553 
    554 	/*
    555 	 * If the user wants allmulti or promisc mode, enable reception
    556 	 * of all multicast frames.
    557 	 */
    558 	if (ifp->if_flags & IFF_PROMISC) {
    559     allmulti:
    560 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    561 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    562 		ifp->if_flags |= IFF_ALLMULTI;
    563 		return;
    564 	}
    565 
    566 	/* Now program new ones */
    567 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    568 	while(enm != NULL) {
    569 		/*
    570 		 * If multicast range, fall back to ALLMULTI.
    571 		 */
    572 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    573 				ETHER_ADDR_LEN) != 0)
    574 			goto allmulti;
    575 
    576 		error = vge_cam_set(sc, enm->enm_addrlo);
    577 		if (error)
    578 			break;
    579 
    580 		ETHER_NEXT_MULTI(step, enm);
    581 	}
    582 
    583 	/* If there were too many addresses, use the hash filter. */
    584 	if (error) {
    585 		vge_cam_clear(sc);
    586 
    587 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    588 		while(enm != NULL) {
    589 			/*
    590 			 * If multicast range, fall back to ALLMULTI.
    591 			 */
    592 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    593 					ETHER_ADDR_LEN) != 0)
    594 				goto allmulti;
    595 
    596 			h = ether_crc32_be(enm->enm_addrlo,
    597 			    ETHER_ADDR_LEN) >> 26;
    598 			hashes[h >> 5] |= 1 << (h & 0x1f);
    599 
    600 			ETHER_NEXT_MULTI(step, enm);
    601 		}
    602 
    603 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    604 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    605 	}
    606 
    607 	return;
    608 }
    609 
    610 static void
    611 vge_reset(sc)
    612 	struct vge_softc		*sc;
    613 {
    614 	register int		i;
    615 
    616 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    617 
    618 	for (i = 0; i < VGE_TIMEOUT; i++) {
    619 		DELAY(5);
    620 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    621 			break;
    622 	}
    623 
    624 	if (i == VGE_TIMEOUT) {
    625 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
    626 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    627 		DELAY(2000);
    628 	}
    629 
    630 	DELAY(5000);
    631 
    632 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    633 
    634 	for (i = 0; i < VGE_TIMEOUT; i++) {
    635 		DELAY(5);
    636 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    637 			break;
    638 	}
    639 
    640 	if (i == VGE_TIMEOUT) {
    641 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
    642 		return;
    643 	}
    644 
    645 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    646 
    647 	return;
    648 }
    649 
    650 /*
    651  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    652  * IDs against our list and return a device name if we find a match.
    653  */
    654 static int
    655 vge_probe(struct device *parent, struct cfdata *match, void *aux)
    656 {
    657 	struct pci_attach_args *pa = aux;
    658 
    659 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    660 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    661 		return 1;
    662 
    663 	return (0);
    664 }
    665 
    666 static int
    667 vge_dma_map_rx_desc(sc, idx)
    668 	struct vge_softc	*sc;
    669 	int			idx;
    670 {
    671 	struct vge_rx_desc	*d = NULL;
    672 	bus_dma_segment_t	*segs;
    673 
    674 	/*
    675 	 * Map the segment array into descriptors.
    676 	 */
    677 
    678 	d = &sc->vge_ldata.vge_rx_list[idx];
    679 
    680 	/* If this descriptor is still owned by the chip, bail. */
    681 
    682 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
    683 		printf("%s: tried to map busy descriptor\n",
    684 		    sc->sc_dev.dv_xname);
    685 		return (EBUSY);
    686 	}
    687 
    688 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
    689 
    690 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
    691 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
    692 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
    693 	d->vge_sts = 0;
    694 	d->vge_ctl = 0;
    695 
    696 	return (0);
    697 }
    698 
    699 static void
    700 vge_dma_map_tx_desc(sc, m0, idx, flags)
    701 	struct vge_softc	*sc;
    702 	struct mbuf		*m0;
    703 	int			idx, flags;
    704 {
    705 	struct vge_tx_desc	*d = &sc->vge_ldata.vge_tx_list[idx];
    706 	struct vge_tx_frag	*f;
    707 	int			i = 0;
    708 	bus_dma_segment_t	*segs;
    709 	size_t			sz;
    710 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
    711 
    712 	/* Map the segment array into descriptors. */
    713 
    714 	segs = map->dm_segs;
    715 	for (i = 0; i < map->dm_nsegs; i++) {
    716 		f = &d->vge_frag[i];
    717 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
    718 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
    719 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
    720 	}
    721 
    722 	/* Argh. This chip does not autopad short frames */
    723 
    724 	sz = m0->m_pkthdr.len;
    725 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
    726 		f = &d->vge_frag[i];
    727 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
    728 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
    729 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
    730 		sz = VGE_MIN_FRAMELEN;
    731 		i++;
    732 	}
    733 
    734 	/*
    735 	 * When telling the chip how many segments there are, we
    736 	 * must use nsegs + 1 instead of just nsegs. Darned if I
    737 	 * know why.
    738 	 */
    739 	i++;
    740 
    741 	d->vge_sts = sz << 16;
    742 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
    743 
    744 	if (sz > ETHERMTU + ETHER_HDR_LEN)
    745 		d->vge_ctl |= VGE_TDCTL_JUMBO;
    746 }
    747 
    748 static int
    749 vge_allocmem(sc)
    750 	struct vge_softc *sc;
    751 {
    752 	int			error;
    753 	int			nseg;
    754 	int			i;
    755 	bus_dma_segment_t	seg;
    756 
    757 	/*
    758 	 * Allocate map for TX descriptor list.
    759 	 */
    760 	error = bus_dmamap_create(sc->vge_dmat,
    761 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
    762 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
    763 	    &sc->vge_ldata.vge_tx_list_map);
    764 	if (error) {
    765 		printf("%s: could not allocate TX dma list map\n",
    766 		    sc->sc_dev.dv_xname);
    767 		return (ENOMEM);
    768 	}
    769 
    770 	/*
    771 	 * Allocate memory for TX descriptor list.
    772 	 */
    773 
    774 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
    775 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    776 	if (error) {
    777 		printf("%s: could not allocate TX ring dma memory\n",
    778 		    sc->sc_dev.dv_xname);
    779 		return (ENOMEM);
    780 	}
    781 
    782 	/* Map the memory to kernel VA space */
    783 
    784 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
    785 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
    786 	if (error) {
    787 		printf("%s: could not map TX ring dma memory\n",
    788 		    sc->sc_dev.dv_xname);
    789 		return (ENOMEM);
    790 	}
    791 
    792 	/* Load the map for the TX ring. */
    793 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
    794 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
    795 	if (error) {
    796 		printf("%s: could not load TX ring dma memory\n",
    797 		    sc->sc_dev.dv_xname);
    798 		return (ENOMEM);
    799 	}
    800 
    801 	sc->vge_ldata.vge_tx_list_addr =
    802 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
    803 
    804 	/* Create DMA maps for TX buffers */
    805 
    806 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
    807 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
    808 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
    809 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    810 		    &sc->vge_ldata.vge_tx_dmamap[i]);
    811 		if (error) {
    812 			printf("%s: can't create DMA map for TX\n",
    813 			    sc->sc_dev.dv_xname);
    814 			return (ENOMEM);
    815 		}
    816 	}
    817 
    818 	/*
    819 	 * Allocate map for RX descriptor list.
    820 	 */
    821 	error = bus_dmamap_create(sc->vge_dmat,
    822 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
    823 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
    824 	    &sc->vge_ldata.vge_rx_list_map);
    825 	if (error) {
    826 		printf("%s: could not allocate RX dma list map\n",
    827 		    sc->sc_dev.dv_xname);
    828 		return (ENOMEM);
    829 	}
    830 
    831 	/* Allocate DMA'able memory for the RX ring */
    832 
    833 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
    834 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    835 	if (error)
    836 		return (ENOMEM);
    837 
    838 	/* Map the memory to kernel VA space */
    839 
    840 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
    841 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
    842 	if (error)
    843 		return (ENOMEM);
    844 
    845 	/* Load the map for the RX ring. */
    846 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
    847 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
    848 	if (error) {
    849 		printf("%s: could not load RX ring dma memory\n",
    850 		    sc->sc_dev.dv_xname);
    851 		return (ENOMEM);
    852 	}
    853 
    854 	sc->vge_ldata.vge_rx_list_addr =
    855 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
    856 
    857 	/* Create DMA maps for RX buffers */
    858 
    859 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
    860 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
    861 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    862 		    &sc->vge_ldata.vge_rx_dmamap[i]);
    863 		if (error) {
    864 			printf("%s: can't create DMA map for RX\n",
    865 			     sc->sc_dev.dv_xname);
    866 			return (ENOMEM);
    867 		}
    868 	}
    869 
    870 	return (0);
    871 }
    872 
    873 /*
    874  * Attach the interface. Allocate softc structures, do ifmedia
    875  * setup and ethernet/BPF attach.
    876  */
    877 static void
    878 vge_attach(struct device *parent, struct device *self, void *aux)
    879 {
    880 	u_char			eaddr[ETHER_ADDR_LEN];
    881 	struct vge_softc	*sc = (struct vge_softc *)self;
    882 	struct ifnet		*ifp;
    883 	struct pci_attach_args *pa = aux;
    884 	pci_chipset_tag_t pc = pa->pa_pc;
    885 	const char *intrstr;
    886 	pci_intr_handle_t ih;
    887 
    888 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    889 		PCI_REVISION(pa->pa_class));
    890 
    891 	/* Make sure bus-mastering is enabled */
    892         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    893 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    894 		PCI_COMMAND_MASTER_ENABLE);
    895 
    896 	/*
    897 	 * Map control/status registers.
    898 	 */
    899 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
    900 	    PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
    901 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
    902 		aprint_error("%s: couldn't map memory\n",
    903 			sc->sc_dev.dv_xname);
    904 		return;
    905 	}
    906 
    907         /*
    908          * Map and establish our interrupt.
    909          */
    910 	if (pci_intr_map(pa, &ih)) {
    911 		aprint_error("%s: unable to map interrupt\n",
    912 		    sc->sc_dev.dv_xname);
    913 		return;
    914 	}
    915 	intrstr = pci_intr_string(pc, ih);
    916 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    917 	if (sc->vge_intrhand == NULL) {
    918 		printf("%s: unable to establish interrupt",
    919 		    sc->sc_dev.dv_xname);
    920 		if (intrstr != NULL)
    921 			printf(" at %s", intrstr);
    922 		printf("\n");
    923 		return;
    924 	}
    925 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    926 
    927 	/* Reset the adapter. */
    928 	vge_reset(sc);
    929 
    930 	/*
    931 	 * Get station address from the EEPROM.
    932 	 */
    933 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
    934 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
    935 
    936 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    937 	    ether_sprintf(eaddr));
    938 
    939 	/*
    940 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    941 	 * but we don't use that for now.
    942 	 */
    943 	sc->vge_dmat = pa->pa_dmat;
    944 
    945 	if (vge_allocmem(sc))
    946 		return;
    947 
    948 	ifp = &sc->sc_ethercom.ec_if;
    949 	ifp->if_softc = sc;
    950 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    951 	ifp->if_mtu = ETHERMTU;
    952 	ifp->if_baudrate = IF_Gbps(1);
    953 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    954 	ifp->if_ioctl = vge_ioctl;
    955 	ifp->if_start = vge_start;
    956 
    957 	/*
    958 	 * We can support 802.1Q VLAN-sized frames and jumbo
    959 	 * Ethernet frames.
    960 	 */
    961 	sc->sc_ethercom.ec_capabilities |=
    962 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    963 	    ETHERCAP_VLAN_HWTAGGING;
    964 
    965 	/*
    966 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    967 	 */
    968 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
    969 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    970 
    971 #ifdef DEVICE_POLLING
    972 #ifdef IFCAP_POLLING
    973 	ifp->if_capabilities |= IFCAP_POLLING;
    974 #endif
    975 #endif
    976 	ifp->if_watchdog = vge_watchdog;
    977 	ifp->if_init = vge_init;
    978 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    979 
    980 	/*
    981 	 * Initialize our media structures and probe the MII.
    982 	 */
    983 	sc->sc_mii.mii_ifp = ifp;
    984 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    985 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    986 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
    987 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
    988 	    vge_ifmedia_sts);
    989 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    990 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    991 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    992 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    993 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    994 	} else
    995 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    996 
    997 	/*
    998 	 * Attach the interface.
    999 	 */
   1000 	if_attach(ifp);
   1001 	ether_ifattach(ifp, eaddr);
   1002 
   1003 	callout_init(&sc->vge_timeout);
   1004 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
   1005 
   1006 	/*
   1007 	 * Make sure the interface is shutdown during reboot.
   1008 	 */
   1009 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
   1010 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1011 		    sc->sc_dev.dv_xname);
   1012 	}
   1013 }
   1014 
   1015 static int
   1016 vge_newbuf(sc, idx, m)
   1017 	struct vge_softc	*sc;
   1018 	int			idx;
   1019 	struct mbuf		*m;
   1020 {
   1021 	struct mbuf		*n = NULL;
   1022 	int			i, error;
   1023 
   1024 	if (m == NULL) {
   1025 		n = m_gethdr(M_DONTWAIT, MT_DATA);
   1026 		if (n == NULL)
   1027 			return (ENOBUFS);
   1028 
   1029 		m_clget(n, M_DONTWAIT);
   1030 		if ((n->m_flags & M_EXT) == 0) {
   1031 			m_freem(n);
   1032 			return (ENOBUFS);
   1033 		}
   1034 
   1035 		m = n;
   1036 	} else
   1037 		m->m_data = m->m_ext.ext_buf;
   1038 
   1039 
   1040 #ifdef VGE_FIXUP_RX
   1041 	/*
   1042 	 * This is part of an evil trick to deal with non-x86 platforms.
   1043 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1044 	 * boundaries, but that will hose non-x86 machines. To get around
   1045 	 * this, we leave some empty space at the start of each buffer
   1046 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1047 	 * to achieve word alignment. This is slightly more efficient
   1048 	 * than allocating a new buffer, copying the contents, and
   1049 	 * discarding the old buffer.
   1050 	 */
   1051 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
   1052 	m_adj(m, VGE_ETHER_ALIGN);
   1053 #else
   1054 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1055 #endif
   1056 
   1057 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
   1058 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
   1059 	if (error || vge_dma_map_rx_desc(sc, idx)) {
   1060 		if (n != NULL)
   1061 			m_freem(n);
   1062 		return (ENOMEM);
   1063 	}
   1064 
   1065 	/*
   1066 	 * Note: the manual fails to document the fact that for
   1067 	 * proper opration, the driver needs to replentish the RX
   1068 	 * DMA ring 4 descriptors at a time (rather than one at a
   1069 	 * time, like most chips). We can allocate the new buffers
   1070 	 * but we should not set the OWN bits until we're ready
   1071 	 * to hand back 4 of them in one shot.
   1072 	 */
   1073 
   1074 #define VGE_RXCHUNK 4
   1075 	sc->vge_rx_consumed++;
   1076 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
   1077 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
   1078 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
   1079 			    htole32(VGE_RDSTS_OWN);
   1080 		sc->vge_rx_consumed = 0;
   1081 	}
   1082 
   1083 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
   1084 
   1085 	bus_dmamap_sync(sc->vge_dmat,
   1086 	    sc->vge_ldata.vge_rx_dmamap[idx],
   1087 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
   1088 	    BUS_DMASYNC_PREREAD);
   1089 
   1090 	return (0);
   1091 }
   1092 
   1093 static int
   1094 vge_tx_list_init(sc)
   1095 	struct vge_softc		*sc;
   1096 {
   1097 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
   1098 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
   1099 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
   1100 
   1101 	bus_dmamap_sync(sc->vge_dmat,
   1102 	    sc->vge_ldata.vge_tx_list_map,
   1103 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1104 	    BUS_DMASYNC_PREWRITE);
   1105 
   1106 	sc->vge_ldata.vge_tx_prodidx = 0;
   1107 	sc->vge_ldata.vge_tx_considx = 0;
   1108 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
   1109 
   1110 	return (0);
   1111 }
   1112 
   1113 static int
   1114 vge_rx_list_init(sc)
   1115 	struct vge_softc		*sc;
   1116 {
   1117 	int			i;
   1118 
   1119 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
   1120 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
   1121 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
   1122 
   1123 	sc->vge_rx_consumed = 0;
   1124 
   1125 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   1126 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
   1127 			return (ENOBUFS);
   1128 	}
   1129 
   1130 	/* Flush the RX descriptors */
   1131 
   1132 	bus_dmamap_sync(sc->vge_dmat,
   1133 	    sc->vge_ldata.vge_rx_list_map,
   1134 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1135 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1136 
   1137 	sc->vge_ldata.vge_rx_prodidx = 0;
   1138 	sc->vge_rx_consumed = 0;
   1139 	sc->vge_head = sc->vge_tail = NULL;
   1140 
   1141 	return (0);
   1142 }
   1143 
   1144 #ifdef VGE_FIXUP_RX
   1145 static __inline void
   1146 vge_fixup_rx(m)
   1147 	struct mbuf		*m;
   1148 {
   1149 	int			i;
   1150 	uint16_t		*src, *dst;
   1151 
   1152 	src = mtod(m, uint16_t *);
   1153 	dst = src - 1;
   1154 
   1155 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1156 		*dst++ = *src++;
   1157 
   1158 	m->m_data -= ETHER_ALIGN;
   1159 
   1160 	return;
   1161 }
   1162 #endif
   1163 
   1164 /*
   1165  * RX handler. We support the reception of jumbo frames that have
   1166  * been fragmented across multiple 2K mbuf cluster buffers.
   1167  */
   1168 static void
   1169 vge_rxeof(sc)
   1170 	struct vge_softc	*sc;
   1171 {
   1172 	struct mbuf		*m;
   1173 	struct ifnet		*ifp;
   1174 	int			i, total_len;
   1175 	int			lim = 0;
   1176 	struct vge_rx_desc	*cur_rx;
   1177 	u_int32_t		rxstat, rxctl;
   1178 
   1179 	VGE_LOCK_ASSERT(sc);
   1180 	ifp = &sc->sc_ethercom.ec_if;
   1181 	i = sc->vge_ldata.vge_rx_prodidx;
   1182 
   1183 	/* Invalidate the descriptor memory */
   1184 
   1185 	bus_dmamap_sync(sc->vge_dmat,
   1186 	    sc->vge_ldata.vge_rx_list_map,
   1187 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1188 	    BUS_DMASYNC_POSTREAD);
   1189 
   1190 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
   1191 
   1192 #ifdef DEVICE_POLLING
   1193 		if (ifp->if_flags & IFF_POLLING) {
   1194 			if (sc->rxcycles <= 0)
   1195 				break;
   1196 			sc->rxcycles--;
   1197 		}
   1198 #endif /* DEVICE_POLLING */
   1199 
   1200 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
   1201 		m = sc->vge_ldata.vge_rx_mbuf[i];
   1202 		total_len = VGE_RXBYTES(cur_rx);
   1203 		rxstat = le32toh(cur_rx->vge_sts);
   1204 		rxctl = le32toh(cur_rx->vge_ctl);
   1205 
   1206 		/* Invalidate the RX mbuf and unload its map */
   1207 
   1208 		bus_dmamap_sync(sc->vge_dmat,
   1209 		    sc->vge_ldata.vge_rx_dmamap[i],
   1210 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
   1211 		    BUS_DMASYNC_POSTWRITE);
   1212 		bus_dmamap_unload(sc->vge_dmat,
   1213 		    sc->vge_ldata.vge_rx_dmamap[i]);
   1214 
   1215 		/*
   1216 		 * If the 'start of frame' bit is set, this indicates
   1217 		 * either the first fragment in a multi-fragment receive,
   1218 		 * or an intermediate fragment. Either way, we want to
   1219 		 * accumulate the buffers.
   1220 		 */
   1221 		if (rxstat & VGE_RXPKT_SOF) {
   1222 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
   1223 			if (sc->vge_head == NULL)
   1224 				sc->vge_head = sc->vge_tail = m;
   1225 			else {
   1226 				m->m_flags &= ~M_PKTHDR;
   1227 				sc->vge_tail->m_next = m;
   1228 				sc->vge_tail = m;
   1229 			}
   1230 			vge_newbuf(sc, i, NULL);
   1231 			VGE_RX_DESC_INC(i);
   1232 			continue;
   1233 		}
   1234 
   1235 		/*
   1236 		 * Bad/error frames will have the RXOK bit cleared.
   1237 		 * However, there's one error case we want to allow:
   1238 		 * if a VLAN tagged frame arrives and the chip can't
   1239 		 * match it against the CAM filter, it considers this
   1240 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1241 		 * We don't want to drop the frame though: our VLAN
   1242 		 * filtering is done in software.
   1243 		 */
   1244 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1245 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1246 			ifp->if_ierrors++;
   1247 			/*
   1248 			 * If this is part of a multi-fragment packet,
   1249 			 * discard all the pieces.
   1250 			 */
   1251 			if (sc->vge_head != NULL) {
   1252 				m_freem(sc->vge_head);
   1253 				sc->vge_head = sc->vge_tail = NULL;
   1254 			}
   1255 			vge_newbuf(sc, i, m);
   1256 			VGE_RX_DESC_INC(i);
   1257 			continue;
   1258 		}
   1259 
   1260 		/*
   1261 		 * If allocating a replacement mbuf fails,
   1262 		 * reload the current one.
   1263 		 */
   1264 
   1265 		if (vge_newbuf(sc, i, NULL)) {
   1266 			ifp->if_ierrors++;
   1267 			if (sc->vge_head != NULL) {
   1268 				m_freem(sc->vge_head);
   1269 				sc->vge_head = sc->vge_tail = NULL;
   1270 			}
   1271 			vge_newbuf(sc, i, m);
   1272 			VGE_RX_DESC_INC(i);
   1273 			continue;
   1274 		}
   1275 
   1276 		VGE_RX_DESC_INC(i);
   1277 
   1278 		if (sc->vge_head != NULL) {
   1279 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
   1280 			/*
   1281 			 * Special case: if there's 4 bytes or less
   1282 			 * in this buffer, the mbuf can be discarded:
   1283 			 * the last 4 bytes is the CRC, which we don't
   1284 			 * care about anyway.
   1285 			 */
   1286 			if (m->m_len <= ETHER_CRC_LEN) {
   1287 				sc->vge_tail->m_len -=
   1288 				    (ETHER_CRC_LEN - m->m_len);
   1289 				m_freem(m);
   1290 			} else {
   1291 				m->m_len -= ETHER_CRC_LEN;
   1292 				m->m_flags &= ~M_PKTHDR;
   1293 				sc->vge_tail->m_next = m;
   1294 			}
   1295 			m = sc->vge_head;
   1296 			sc->vge_head = sc->vge_tail = NULL;
   1297 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1298 		} else
   1299 			m->m_pkthdr.len = m->m_len =
   1300 			    (total_len - ETHER_CRC_LEN);
   1301 
   1302 #ifdef VGE_FIXUP_RX
   1303 		vge_fixup_rx(m);
   1304 #endif
   1305 		ifp->if_ipackets++;
   1306 		m->m_pkthdr.rcvif = ifp;
   1307 
   1308 		/* Do RX checksumming if enabled */
   1309 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1310 
   1311 			/* Check IP header checksum */
   1312 			if (rxctl & VGE_RDCTL_IPPKT)
   1313 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1314 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1315 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1316 		}
   1317 
   1318 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1319 			/* Check UDP checksum */
   1320 			if (rxctl & VGE_RDCTL_TCPPKT)
   1321 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1322 
   1323 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1324 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1325 		}
   1326 
   1327 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1328 			/* Check UDP checksum */
   1329 			if (rxctl & VGE_RDCTL_UDPPKT)
   1330 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1331 
   1332 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1333 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1334 		}
   1335 
   1336 		if (rxstat & VGE_RDSTS_VTAG)
   1337 			VLAN_INPUT_TAG(ifp, m,
   1338 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
   1339 
   1340 #if NBPFILTER > 0
   1341 		/*
   1342 		 * Handle BPF listeners.
   1343 		 */
   1344 		if (ifp->if_bpf)
   1345 			bpf_mtap(ifp->if_bpf, m);
   1346 #endif
   1347 
   1348 		VGE_UNLOCK(sc);
   1349 		(*ifp->if_input)(ifp, m);
   1350 		VGE_LOCK(sc);
   1351 
   1352 		lim++;
   1353 		if (lim == VGE_RX_DESC_CNT)
   1354 			break;
   1355 
   1356 	}
   1357 
   1358 	/* Flush the RX DMA ring */
   1359 
   1360 	bus_dmamap_sync(sc->vge_dmat,
   1361 	    sc->vge_ldata.vge_rx_list_map,
   1362 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1363 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1364 
   1365 	sc->vge_ldata.vge_rx_prodidx = i;
   1366 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1367 
   1368 
   1369 	return;
   1370 }
   1371 
   1372 static void
   1373 vge_txeof(sc)
   1374 	struct vge_softc		*sc;
   1375 {
   1376 	struct ifnet		*ifp;
   1377 	u_int32_t		txstat;
   1378 	int			idx;
   1379 
   1380 	ifp = &sc->sc_ethercom.ec_if;
   1381 	idx = sc->vge_ldata.vge_tx_considx;
   1382 
   1383 	/* Invalidate the TX descriptor list */
   1384 
   1385 	bus_dmamap_sync(sc->vge_dmat,
   1386 	    sc->vge_ldata.vge_tx_list_map,
   1387 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1388 	    BUS_DMASYNC_POSTREAD);
   1389 
   1390 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
   1391 
   1392 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
   1393 		if (txstat & VGE_TDSTS_OWN)
   1394 			break;
   1395 
   1396 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
   1397 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
   1398 		bus_dmamap_unload(sc->vge_dmat,
   1399 		    sc->vge_ldata.vge_tx_dmamap[idx]);
   1400 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1401 			ifp->if_collisions++;
   1402 		if (txstat & VGE_TDSTS_TXERR)
   1403 			ifp->if_oerrors++;
   1404 		else
   1405 			ifp->if_opackets++;
   1406 
   1407 		sc->vge_ldata.vge_tx_free++;
   1408 		VGE_TX_DESC_INC(idx);
   1409 	}
   1410 
   1411 	/* No changes made to the TX ring, so no flush needed */
   1412 
   1413 	if (idx != sc->vge_ldata.vge_tx_considx) {
   1414 		sc->vge_ldata.vge_tx_considx = idx;
   1415 		ifp->if_flags &= ~IFF_OACTIVE;
   1416 		ifp->if_timer = 0;
   1417 	}
   1418 
   1419 	/*
   1420 	 * If not all descriptors have been released reaped yet,
   1421 	 * reload the timer so that we will eventually get another
   1422 	 * interrupt that will cause us to re-enter this routine.
   1423 	 * This is done in case the transmitter has gone idle.
   1424 	 */
   1425 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
   1426 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1427 	}
   1428 
   1429 	return;
   1430 }
   1431 
   1432 static void
   1433 vge_tick(xsc)
   1434 	void			*xsc;
   1435 {
   1436 	struct vge_softc	*sc = xsc;
   1437 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1438 	struct mii_data		*mii = &sc->sc_mii;
   1439 	int s;
   1440 
   1441 	s = splnet();
   1442 
   1443 	VGE_LOCK(sc);
   1444 
   1445 	callout_schedule(&sc->vge_timeout, hz);
   1446 
   1447 	mii_tick(mii);
   1448 	if (sc->vge_link) {
   1449 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1450 			sc->vge_link = 0;
   1451 	} else {
   1452 		if (mii->mii_media_status & IFM_ACTIVE &&
   1453 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1454 			sc->vge_link = 1;
   1455 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1456 				vge_start(ifp);
   1457 		}
   1458 	}
   1459 
   1460 	VGE_UNLOCK(sc);
   1461 
   1462 	splx(s);
   1463 }
   1464 
   1465 #ifdef DEVICE_POLLING
   1466 static void
   1467 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
   1468 {
   1469 	struct vge_softc *sc = ifp->if_softc;
   1470 
   1471 	VGE_LOCK(sc);
   1472 #ifdef IFCAP_POLLING
   1473 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1474 		ether_poll_deregister(ifp);
   1475 		cmd = POLL_DEREGISTER;
   1476 	}
   1477 #endif
   1478 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1479 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1480 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   1481 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1482 		goto done;
   1483 	}
   1484 
   1485 	sc->rxcycles = count;
   1486 	vge_rxeof(sc);
   1487 	vge_txeof(sc);
   1488 
   1489 #if __FreeBSD_version < 502114
   1490 	if (ifp->if_snd.ifq_head != NULL)
   1491 #else
   1492 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
   1493 #endif
   1494 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
   1495 
   1496 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1497 		u_int32_t       status;
   1498 		status = CSR_READ_4(sc, VGE_ISR);
   1499 		if (status == 0xFFFFFFFF)
   1500 			goto done;
   1501 		if (status)
   1502 			CSR_WRITE_4(sc, VGE_ISR, status);
   1503 
   1504 		/*
   1505 		 * XXX check behaviour on receiver stalls.
   1506 		 */
   1507 
   1508 		if (status & VGE_ISR_TXDMA_STALL ||
   1509 		    status & VGE_ISR_RXDMA_STALL)
   1510 			vge_init(sc);
   1511 
   1512 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1513 			vge_rxeof(sc);
   1514 			ifp->if_ierrors++;
   1515 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1516 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1517 		}
   1518 	}
   1519 done:
   1520 	VGE_UNLOCK(sc);
   1521 }
   1522 #endif /* DEVICE_POLLING */
   1523 
   1524 static int
   1525 vge_intr(arg)
   1526 	void			*arg;
   1527 {
   1528 	struct vge_softc	*sc = arg;
   1529 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1530 	u_int32_t		status;
   1531 	int claim = 0;
   1532 
   1533 	if (sc->suspended) {
   1534 		return claim;
   1535 	}
   1536 
   1537 	VGE_LOCK(sc);
   1538 
   1539 	if (!(ifp->if_flags & IFF_UP)) {
   1540 		VGE_UNLOCK(sc);
   1541 		return claim;
   1542 	}
   1543 
   1544 #ifdef DEVICE_POLLING
   1545 	if  (ifp->if_flags & IFF_POLLING)
   1546 		goto done;
   1547 	if (
   1548 #ifdef IFCAP_POLLING
   1549 	    (ifp->if_capenable & IFCAP_POLLING) &&
   1550 #endif
   1551 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
   1552 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1553 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1554 		vge_poll(ifp, 0, 1);
   1555 		goto done;
   1556 	}
   1557 
   1558 #endif /* DEVICE_POLLING */
   1559 
   1560 	/* Disable interrupts */
   1561 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1562 
   1563 	for (;;) {
   1564 
   1565 		status = CSR_READ_4(sc, VGE_ISR);
   1566 		/* If the card has gone away the read returns 0xffff. */
   1567 		if (status == 0xFFFFFFFF)
   1568 			break;
   1569 
   1570 		if (status) {
   1571 			claim = 1;
   1572 			CSR_WRITE_4(sc, VGE_ISR, status);
   1573 		}
   1574 
   1575 		if ((status & VGE_INTRS) == 0)
   1576 			break;
   1577 
   1578 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1579 			vge_rxeof(sc);
   1580 
   1581 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1582 			vge_rxeof(sc);
   1583 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1584 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1585 		}
   1586 
   1587 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1588 			vge_txeof(sc);
   1589 
   1590 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1591 			vge_init(ifp);
   1592 
   1593 		if (status & VGE_ISR_LINKSTS)
   1594 			vge_tick(sc);
   1595 	}
   1596 
   1597 	/* Re-enable interrupts */
   1598 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1599 
   1600 #ifdef DEVICE_POLLING
   1601 done:
   1602 #endif
   1603 	VGE_UNLOCK(sc);
   1604 
   1605 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1606 		vge_start(ifp);
   1607 
   1608 	return claim;
   1609 }
   1610 
   1611 static int
   1612 vge_encap(sc, m_head, idx)
   1613 	struct vge_softc	*sc;
   1614 	struct mbuf		*m_head;
   1615 	int			idx;
   1616 {
   1617 	struct mbuf		*m_new = NULL;
   1618 	bus_dmamap_t		map;
   1619 	int			error, flags;
   1620 	struct m_tag		*mtag;
   1621 
   1622 	/* If this descriptor is still owned by the chip, bail. */
   1623 	if (sc->vge_ldata.vge_tx_free <= 2
   1624 	    || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
   1625 		return (ENOBUFS);
   1626 
   1627 	flags = 0;
   1628 
   1629 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1630 		flags |= VGE_TDCTL_IPCSUM;
   1631 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1632 		flags |= VGE_TDCTL_TCPCSUM;
   1633 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1634 		flags |= VGE_TDCTL_UDPCSUM;
   1635 
   1636 	map = sc->vge_ldata.vge_tx_dmamap[idx];
   1637 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1638 	    m_head, BUS_DMA_NOWAIT);
   1639 
   1640 	/* If too many segments to map, coalesce */
   1641 	if (error == EFBIG) {
   1642 		m_new = m_defrag(m_head, M_DONTWAIT);
   1643 		if (m_new == NULL)
   1644 			return (error);
   1645 
   1646 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1647 		    m_new, BUS_DMA_NOWAIT);
   1648 		if (error) {
   1649 			m_freem(m_new);
   1650 			return (error);
   1651 		}
   1652 
   1653 		m_head = m_new;
   1654 	} else if (error)
   1655 		return (error);
   1656 
   1657 	vge_dma_map_tx_desc(sc, m_head, idx, flags);
   1658 
   1659 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
   1660 	sc->vge_ldata.vge_tx_free--;
   1661 
   1662 	/*
   1663 	 * Set up hardware VLAN tagging.
   1664 	 */
   1665 
   1666 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1667 	if (mtag != NULL)
   1668 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
   1669 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
   1670 
   1671 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
   1672 
   1673 	return (0);
   1674 }
   1675 
   1676 /*
   1677  * Main transmit routine.
   1678  */
   1679 
   1680 static void
   1681 vge_start(ifp)
   1682 	struct ifnet		*ifp;
   1683 {
   1684 	struct vge_softc	*sc;
   1685 	struct mbuf		*m_head = NULL;
   1686 	int			idx, pidx = 0, error;
   1687 
   1688 	sc = ifp->if_softc;
   1689 	VGE_LOCK(sc);
   1690 
   1691 	if (!sc->vge_link
   1692 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1693 		VGE_UNLOCK(sc);
   1694 		return;
   1695 	}
   1696 
   1697 	idx = sc->vge_ldata.vge_tx_prodidx;
   1698 
   1699 	pidx = idx - 1;
   1700 	if (pidx < 0)
   1701 		pidx = VGE_TX_DESC_CNT - 1;
   1702 
   1703 	/*
   1704 	 * Loop through the send queue, setting up transmit descriptors
   1705 	 * until we drain the queue, or use up all available transmit
   1706 	 * descriptors.
   1707 	 */
   1708 	for(;;) {
   1709 		/* Grab a packet off the queue. */
   1710 		IFQ_POLL(&ifp->if_snd, m_head);
   1711 		if (m_head == NULL)
   1712 			break;
   1713 
   1714 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
   1715 			/*
   1716 			 * Slot already used, stop for now.
   1717 			 */
   1718 			ifp->if_flags |= IFF_OACTIVE;
   1719 			break;
   1720 		}
   1721 
   1722 		if ((error = vge_encap(sc, m_head, idx))) {
   1723 			if (error == EFBIG) {
   1724 				printf("%s: Tx packet consumes too many "
   1725 				    "DMA segments, dropping...\n",
   1726 				    sc->sc_dev.dv_xname);
   1727 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1728 				m_freem(m_head);
   1729 				continue;
   1730 			}
   1731 
   1732 			/*
   1733 			 * Short on resources, just stop for now.
   1734 			 */
   1735 			if (error == ENOBUFS)
   1736 				ifp->if_flags |= IFF_OACTIVE;
   1737 			break;
   1738 		}
   1739 
   1740 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1741 
   1742 		/*
   1743 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1744 		 */
   1745 
   1746 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
   1747 		    htole16(VGE_TXDESC_Q);
   1748 
   1749 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
   1750 			m_freem(m_head);
   1751 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
   1752 		}
   1753 
   1754 		pidx = idx;
   1755 		VGE_TX_DESC_INC(idx);
   1756 
   1757 		/*
   1758 		 * If there's a BPF listener, bounce a copy of this frame
   1759 		 * to him.
   1760 		 */
   1761 #if NBPFILTER > 0
   1762 		if (ifp->if_bpf)
   1763 			bpf_mtap(ifp->if_bpf, m_head);
   1764 #endif
   1765 	}
   1766 
   1767 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
   1768 		VGE_UNLOCK(sc);
   1769 		return;
   1770 	}
   1771 
   1772 	/* Flush the TX descriptors */
   1773 
   1774 	bus_dmamap_sync(sc->vge_dmat,
   1775 	    sc->vge_ldata.vge_tx_list_map,
   1776 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1777 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1778 
   1779 	/* Issue a transmit command. */
   1780 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1781 
   1782 	sc->vge_ldata.vge_tx_prodidx = idx;
   1783 
   1784 	/*
   1785 	 * Use the countdown timer for interrupt moderation.
   1786 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1787 	 * countdown timer, which will begin counting until it hits
   1788 	 * the value in the SSTIMER register, and then trigger an
   1789 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1790 	 * the timer count is reloaded. Only when the transmitter
   1791 	 * is idle will the timer hit 0 and an interrupt fire.
   1792 	 */
   1793 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1794 
   1795 	VGE_UNLOCK(sc);
   1796 
   1797 	/*
   1798 	 * Set a timeout in case the chip goes out to lunch.
   1799 	 */
   1800 	ifp->if_timer = 5;
   1801 
   1802 	return;
   1803 }
   1804 
   1805 static int
   1806 vge_init(ifp)
   1807 	struct ifnet *ifp;
   1808 {
   1809 	struct vge_softc	*sc = ifp->if_softc;
   1810 	struct mii_data		*mii = &sc->sc_mii;
   1811 	int			i;
   1812 
   1813 	VGE_LOCK(sc);
   1814 
   1815 	/*
   1816 	 * Cancel pending I/O and free all RX/TX buffers.
   1817 	 */
   1818 	vge_stop(sc);
   1819 	vge_reset(sc);
   1820 
   1821 	/*
   1822 	 * Initialize the RX and TX descriptors and mbufs.
   1823 	 */
   1824 
   1825 	vge_rx_list_init(sc);
   1826 	vge_tx_list_init(sc);
   1827 
   1828 	/* Set our station address */
   1829 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1830 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
   1831 
   1832 	/*
   1833 	 * Set receive FIFO threshold. Also allow transmission and
   1834 	 * reception of VLAN tagged frames.
   1835 	 */
   1836 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1837 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1838 
   1839 	/* Set DMA burst length */
   1840 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1841 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1842 
   1843 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1844 
   1845 	/* Set collision backoff algorithm */
   1846 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1847 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1848 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1849 
   1850 	/* Disable LPSEL field in priority resolution */
   1851 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1852 
   1853 	/*
   1854 	 * Load the addresses of the DMA queues into the chip.
   1855 	 * Note that we only use one transmit queue.
   1856 	 */
   1857 
   1858 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
   1859 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
   1860 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
   1861 
   1862 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
   1863 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
   1864 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
   1865 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
   1866 
   1867 	/* Enable and wake up the RX descriptor queue */
   1868 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1869 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1870 
   1871 	/* Enable the TX descriptor queue */
   1872 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1873 
   1874 	/* Set up the receive filter -- allow large frames for VLANs. */
   1875 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1876 
   1877 	/* If we want promiscuous mode, set the allframes bit. */
   1878 	if (ifp->if_flags & IFF_PROMISC) {
   1879 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1880 	}
   1881 
   1882 	/* Set capture broadcast bit to capture broadcast frames. */
   1883 	if (ifp->if_flags & IFF_BROADCAST) {
   1884 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1885 	}
   1886 
   1887 	/* Set multicast bit to capture multicast frames. */
   1888 	if (ifp->if_flags & IFF_MULTICAST) {
   1889 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1890 	}
   1891 
   1892 	/* Init the cam filter. */
   1893 	vge_cam_clear(sc);
   1894 
   1895 	/* Init the multicast filter. */
   1896 	vge_setmulti(sc);
   1897 
   1898 	/* Enable flow control */
   1899 
   1900 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1901 
   1902 	/* Enable jumbo frame reception (if desired) */
   1903 
   1904 	/* Start the MAC. */
   1905 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1906 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1907 	CSR_WRITE_1(sc, VGE_CRS0,
   1908 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1909 
   1910 	/*
   1911 	 * Configure one-shot timer for microsecond
   1912 	 * resulution and load it for 500 usecs.
   1913 	 */
   1914 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1915 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1916 
   1917 	/*
   1918 	 * Configure interrupt moderation for receive. Enable
   1919 	 * the holdoff counter and load it, and set the RX
   1920 	 * suppression count to the number of descriptors we
   1921 	 * want to allow before triggering an interrupt.
   1922 	 * The holdoff timer is in units of 20 usecs.
   1923 	 */
   1924 
   1925 #ifdef notyet
   1926 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1927 	/* Select the interrupt holdoff timer page. */
   1928 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1929 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1930 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1931 
   1932 	/* Enable use of the holdoff timer. */
   1933 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1934 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1935 
   1936 	/* Select the RX suppression threshold page. */
   1937 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1938 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1939 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1940 
   1941 	/* Restore the page select bits. */
   1942 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1943 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1944 #endif
   1945 
   1946 #ifdef DEVICE_POLLING
   1947 	/*
   1948 	 * Disable interrupts if we are polling.
   1949 	 */
   1950 	if (ifp->if_flags & IFF_POLLING) {
   1951 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1952 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1953 	} else	/* otherwise ... */
   1954 #endif /* DEVICE_POLLING */
   1955 	{
   1956 	/*
   1957 	 * Enable interrupts.
   1958 	 */
   1959 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1960 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1961 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1962 	}
   1963 
   1964 	mii_mediachg(mii);
   1965 
   1966 	ifp->if_flags |= IFF_RUNNING;
   1967 	ifp->if_flags &= ~IFF_OACTIVE;
   1968 
   1969 	sc->vge_if_flags = 0;
   1970 	sc->vge_link = 0;
   1971 
   1972 	VGE_UNLOCK(sc);
   1973 
   1974 	callout_schedule(&sc->vge_timeout, hz);
   1975 
   1976 	return (0);
   1977 }
   1978 
   1979 /*
   1980  * Set media options.
   1981  */
   1982 static int
   1983 vge_ifmedia_upd(ifp)
   1984 	struct ifnet		*ifp;
   1985 {
   1986 	struct vge_softc	*sc = ifp->if_softc;
   1987 	struct mii_data		*mii = &sc->sc_mii;
   1988 
   1989 	mii_mediachg(mii);
   1990 
   1991 	return (0);
   1992 }
   1993 
   1994 /*
   1995  * Report current media status.
   1996  */
   1997 static void
   1998 vge_ifmedia_sts(ifp, ifmr)
   1999 	struct ifnet		*ifp;
   2000 	struct ifmediareq	*ifmr;
   2001 {
   2002 	struct vge_softc	*sc = ifp->if_softc;
   2003 	struct mii_data		*mii = &sc->sc_mii;
   2004 
   2005 	mii_pollstat(mii);
   2006 	ifmr->ifm_active = mii->mii_media_active;
   2007 	ifmr->ifm_status = mii->mii_media_status;
   2008 
   2009 	return;
   2010 }
   2011 
   2012 static void
   2013 vge_miibus_statchg(self)
   2014 	struct device	*self;
   2015 {
   2016 	struct vge_softc	*sc = (struct vge_softc *) self;
   2017 	struct mii_data		*mii = &sc->sc_mii;
   2018 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
   2019 
   2020 	/*
   2021 	 * If the user manually selects a media mode, we need to turn
   2022 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   2023 	 * user happens to choose a full duplex mode, we also need to
   2024 	 * set the 'force full duplex' bit. This applies only to
   2025 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   2026 	 * mode is disabled, and in 1000baseT mode, full duplex is
   2027 	 * always implied, so we turn on the forced mode bit but leave
   2028 	 * the FDX bit cleared.
   2029 	 */
   2030 
   2031 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   2032 	case IFM_AUTO:
   2033 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2034 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2035 		break;
   2036 	case IFM_1000_T:
   2037 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2038 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2039 		break;
   2040 	case IFM_100_TX:
   2041 	case IFM_10_T:
   2042 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2043 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   2044 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2045 		} else {
   2046 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2047 		}
   2048 		break;
   2049 	default:
   2050 		printf("%s: unknown media type: %x\n",
   2051 		    sc->sc_dev.dv_xname,
   2052 		    IFM_SUBTYPE(ife->ifm_media));
   2053 		break;
   2054 	}
   2055 
   2056 	return;
   2057 }
   2058 
   2059 static int
   2060 vge_ioctl(ifp, command, data)
   2061 	struct ifnet		*ifp;
   2062 	u_long			command;
   2063 	caddr_t			data;
   2064 {
   2065 	struct vge_softc	*sc = ifp->if_softc;
   2066 	struct ifreq		*ifr = (struct ifreq *) data;
   2067 	struct mii_data		*mii;
   2068 	int			s, error = 0;
   2069 
   2070 	s = splnet();
   2071 
   2072 	switch (command) {
   2073 	case SIOCSIFMTU:
   2074 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   2075 			error = EINVAL;
   2076 		ifp->if_mtu = ifr->ifr_mtu;
   2077 		break;
   2078 	case SIOCSIFFLAGS:
   2079 		if (ifp->if_flags & IFF_UP) {
   2080 			if (ifp->if_flags & IFF_RUNNING &&
   2081 			    ifp->if_flags & IFF_PROMISC &&
   2082 			    !(sc->vge_if_flags & IFF_PROMISC)) {
   2083 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2084 				    VGE_RXCTL_RX_PROMISC);
   2085 				vge_setmulti(sc);
   2086 			} else if (ifp->if_flags & IFF_RUNNING &&
   2087 			    !(ifp->if_flags & IFF_PROMISC) &&
   2088 			    sc->vge_if_flags & IFF_PROMISC) {
   2089 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2090 				    VGE_RXCTL_RX_PROMISC);
   2091 				vge_setmulti(sc);
   2092                         } else
   2093 				vge_init(ifp);
   2094 		} else {
   2095 			if (ifp->if_flags & IFF_RUNNING)
   2096 				vge_stop(sc);
   2097 		}
   2098 		sc->vge_if_flags = ifp->if_flags;
   2099 		break;
   2100 	case SIOCADDMULTI:
   2101 	case SIOCDELMULTI:
   2102 		error = (command == SIOCADDMULTI) ?
   2103 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   2104 		    ether_delmulti(ifr, &sc->sc_ethercom);
   2105 
   2106 		if (error == ENETRESET) {
   2107 			/*
   2108 			 * Multicast list has changed; set the hardware filter
   2109 			 * accordingly.
   2110 			 */
   2111 			if (ifp->if_flags & IFF_RUNNING)
   2112 				vge_setmulti(sc);
   2113 			error = 0;
   2114 		}
   2115 		break;
   2116 	case SIOCGIFMEDIA:
   2117 	case SIOCSIFMEDIA:
   2118 		mii = &sc->sc_mii;
   2119 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2120 		break;
   2121 	default:
   2122 		error = ether_ioctl(ifp, command, data);
   2123 		break;
   2124 	}
   2125 
   2126 	splx(s);
   2127 	return (error);
   2128 }
   2129 
   2130 static void
   2131 vge_watchdog(ifp)
   2132 	struct ifnet		*ifp;
   2133 {
   2134 	struct vge_softc		*sc;
   2135 
   2136 	sc = ifp->if_softc;
   2137 	VGE_LOCK(sc);
   2138 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2139 	ifp->if_oerrors++;
   2140 
   2141 	vge_txeof(sc);
   2142 	vge_rxeof(sc);
   2143 
   2144 	vge_init(ifp);
   2145 
   2146 	VGE_UNLOCK(sc);
   2147 
   2148 	return;
   2149 }
   2150 
   2151 /*
   2152  * Stop the adapter and free any mbufs allocated to the
   2153  * RX and TX lists.
   2154  */
   2155 static void
   2156 vge_stop(sc)
   2157 	struct vge_softc		*sc;
   2158 {
   2159 	register int		i;
   2160 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2161 
   2162 	VGE_LOCK(sc);
   2163 	ifp->if_timer = 0;
   2164 
   2165 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2166 #ifdef DEVICE_POLLING
   2167 	ether_poll_deregister(ifp);
   2168 #endif /* DEVICE_POLLING */
   2169 
   2170 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2171 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2172 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2173 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2174 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2175 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2176 
   2177 	if (sc->vge_head != NULL) {
   2178 		m_freem(sc->vge_head);
   2179 		sc->vge_head = sc->vge_tail = NULL;
   2180 	}
   2181 
   2182 	/* Free the TX list buffers. */
   2183 
   2184 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
   2185 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
   2186 			bus_dmamap_unload(sc->vge_dmat,
   2187 			    sc->vge_ldata.vge_tx_dmamap[i]);
   2188 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
   2189 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
   2190 		}
   2191 	}
   2192 
   2193 	/* Free the RX list buffers. */
   2194 
   2195 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   2196 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
   2197 			bus_dmamap_unload(sc->vge_dmat,
   2198 			    sc->vge_ldata.vge_rx_dmamap[i]);
   2199 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
   2200 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
   2201 		}
   2202 	}
   2203 
   2204 	VGE_UNLOCK(sc);
   2205 
   2206 	return;
   2207 }
   2208 
   2209 #if VGE_POWER_MANAGEMENT
   2210 /*
   2211  * Device suspend routine.  Stop the interface and save some PCI
   2212  * settings in case the BIOS doesn't restore them properly on
   2213  * resume.
   2214  */
   2215 static int
   2216 vge_suspend(dev)
   2217 	struct device *		dev;
   2218 {
   2219 	struct vge_softc	*sc;
   2220 	int			i;
   2221 
   2222 	sc = device_get_softc(dev);
   2223 
   2224 	vge_stop(sc);
   2225 
   2226         for (i = 0; i < 5; i++)
   2227 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2228 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2229 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2230 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2231 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2232 
   2233 	sc->suspended = 1;
   2234 
   2235 	return (0);
   2236 }
   2237 
   2238 /*
   2239  * Device resume routine.  Restore some PCI settings in case the BIOS
   2240  * doesn't, re-enable busmastering, and restart the interface if
   2241  * appropriate.
   2242  */
   2243 static int
   2244 vge_resume(dev)
   2245 	struct device *		dev;
   2246 {
   2247 	struct vge_softc	*sc = (struct vge_softc *)dev;
   2248 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2249 	int			i;
   2250 
   2251         /* better way to do this? */
   2252 	for (i = 0; i < 5; i++)
   2253 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
   2254 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
   2255 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
   2256 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
   2257 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
   2258 
   2259 	/* reenable busmastering */
   2260 	pci_enable_busmaster(dev);
   2261 	pci_enable_io(dev, SYS_RES_MEMORY);
   2262 
   2263 	/* reinitialize interface if necessary */
   2264 	if (ifp->if_flags & IFF_UP)
   2265 		vge_init(sc);
   2266 
   2267 	sc->suspended = 0;
   2268 
   2269 	return (0);
   2270 }
   2271 #endif
   2272 
   2273 /*
   2274  * Stop all chip I/O so that the kernel's probe routines don't
   2275  * get confused by errant DMAs when rebooting.
   2276  */
   2277 static void
   2278 vge_shutdown(arg)
   2279 	void *arg;
   2280 {
   2281 	struct vge_softc *sc = (struct vge_softc *)arg;
   2282 
   2283 	vge_stop(sc);
   2284 }
   2285