if_vge.c revision 1.4.2.1 1 /* $NetBSD: if_vge.c,v 1.4.2.1 2005/09/11 22:06:32 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.4.2.1 2005/09/11 22:06:32 tron Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <machine/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116 #include <dev/pci/if_vgevar.h>
117
118 static int vge_probe (struct device *, struct cfdata *, void *);
119 static void vge_attach (struct device *, struct device *, void *);
120
121 static int vge_encap (struct vge_softc *, struct mbuf *, int);
122
123 static int vge_dma_map_rx_desc (struct vge_softc *, int);
124 static void vge_dma_map_tx_desc (struct vge_softc *, struct mbuf *, int, int);
125 static int vge_allocmem (struct vge_softc *);
126 static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
127 static int vge_rx_list_init (struct vge_softc *);
128 static int vge_tx_list_init (struct vge_softc *);
129 #ifdef VGE_FIXUP_RX
130 static __inline void vge_fixup_rx
131 (struct mbuf *);
132 #endif
133 static void vge_rxeof (struct vge_softc *);
134 static void vge_txeof (struct vge_softc *);
135 static int vge_intr (void *);
136 static void vge_tick (void *);
137 static void vge_start (struct ifnet *);
138 static int vge_ioctl (struct ifnet *, u_long, caddr_t);
139 static int vge_init (struct ifnet *);
140 static void vge_stop (struct vge_softc *);
141 static void vge_watchdog (struct ifnet *);
142 #if VGE_POWER_MANAGEMENT
143 static int vge_suspend (struct device *);
144 static int vge_resume (struct device *);
145 #endif
146 static void vge_shutdown (void *);
147 static int vge_ifmedia_upd (struct ifnet *);
148 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
149
150 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
151 static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int);
152
153 static void vge_miipoll_start (struct vge_softc *);
154 static void vge_miipoll_stop (struct vge_softc *);
155 static int vge_miibus_readreg (struct device *, int, int);
156 static void vge_miibus_writereg (struct device *, int, int, int);
157 static void vge_miibus_statchg (struct device *);
158
159 static void vge_cam_clear (struct vge_softc *);
160 static int vge_cam_set (struct vge_softc *, uint8_t *);
161 static void vge_setmulti (struct vge_softc *);
162 static void vge_reset (struct vge_softc *);
163
164 #define VGE_PCI_LOIO 0x10
165 #define VGE_PCI_LOMEM 0x14
166
167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
168 vge_probe, vge_attach, NULL, NULL);
169
170 /*
171 * Defragment mbuf chain contents to be as linear as possible.
172 * Returns new mbuf chain on success, NULL on failure. Old mbuf
173 * chain is always freed.
174 * XXX temporary until there would be generic function doing this.
175 */
176 #define m_defrag vge_m_defrag
177 struct mbuf * vge_m_defrag(struct mbuf *, int);
178
179 struct mbuf *
180 vge_m_defrag(struct mbuf *mold, int flags)
181 {
182 struct mbuf *m0, *mn, *n;
183 size_t sz = mold->m_pkthdr.len;
184
185 #ifdef DIAGNOSTIC
186 if ((mold->m_flags & M_PKTHDR) == 0)
187 panic("m_defrag: not a mbuf chain header");
188 #endif
189
190 MGETHDR(m0, flags, MT_DATA);
191 if (m0 == NULL)
192 return NULL;
193 m0->m_pkthdr.len = mold->m_pkthdr.len;
194 mn = m0;
195
196 do {
197 if (sz > MHLEN) {
198 MCLGET(mn, M_DONTWAIT);
199 if ((mn->m_flags & M_EXT) == 0) {
200 m_freem(m0);
201 return NULL;
202 }
203 }
204
205 mn->m_len = MIN(sz, MCLBYTES);
206
207 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
208 mtod(mn, caddr_t));
209
210 sz -= mn->m_len;
211
212 if (sz > 0) {
213 /* need more mbufs */
214 MGET(n, M_NOWAIT, MT_DATA);
215 if (n == NULL) {
216 m_freem(m0);
217 return NULL;
218 }
219
220 mn->m_next = n;
221 mn = n;
222 }
223 } while (sz > 0);
224
225 return m0;
226 }
227
228 /*
229 * Read a word of data stored in the EEPROM at address 'addr.'
230 */
231 static void
232 vge_eeprom_getword(sc, addr, dest)
233 struct vge_softc *sc;
234 int addr;
235 u_int16_t *dest;
236 {
237 register int i;
238 u_int16_t word = 0;
239
240 /*
241 * Enter EEPROM embedded programming mode. In order to
242 * access the EEPROM at all, we first have to set the
243 * EELOAD bit in the CHIPCFG2 register.
244 */
245 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247
248 /* Select the address of the word we want to read */
249 CSR_WRITE_1(sc, VGE_EEADDR, addr);
250
251 /* Issue read command */
252 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253
254 /* Wait for the done bit to be set. */
255 for (i = 0; i < VGE_TIMEOUT; i++) {
256 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257 break;
258 }
259
260 if (i == VGE_TIMEOUT) {
261 printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
262 *dest = 0;
263 return;
264 }
265
266 /* Read the result */
267 word = CSR_READ_2(sc, VGE_EERDDAT);
268
269 /* Turn off EEPROM access mode. */
270 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273 *dest = word;
274
275 return;
276 }
277
278 /*
279 * Read a sequence of words from the EEPROM.
280 */
281 static void
282 vge_read_eeprom(sc, dest, off, cnt, swap)
283 struct vge_softc *sc;
284 caddr_t dest;
285 int off;
286 int cnt;
287 int swap;
288 {
289 int i;
290 u_int16_t word = 0, *ptr;
291
292 for (i = 0; i < cnt; i++) {
293 vge_eeprom_getword(sc, off + i, &word);
294 ptr = (u_int16_t *)(dest + (i * 2));
295 if (swap)
296 *ptr = ntohs(word);
297 else
298 *ptr = word;
299 }
300 }
301
302 static void
303 vge_miipoll_stop(sc)
304 struct vge_softc *sc;
305 {
306 int i;
307
308 CSR_WRITE_1(sc, VGE_MIICMD, 0);
309
310 for (i = 0; i < VGE_TIMEOUT; i++) {
311 DELAY(1);
312 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313 break;
314 }
315
316 if (i == VGE_TIMEOUT) {
317 printf("%s: failed to idle MII autopoll\n",
318 sc->sc_dev.dv_xname);
319 }
320
321 return;
322 }
323
324 static void
325 vge_miipoll_start(sc)
326 struct vge_softc *sc;
327 {
328 int i;
329
330 /* First, make sure we're idle. */
331
332 CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334
335 for (i = 0; i < VGE_TIMEOUT; i++) {
336 DELAY(1);
337 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 break;
339 }
340
341 if (i == VGE_TIMEOUT) {
342 printf("%s: failed to idle MII autopoll\n",
343 sc->sc_dev.dv_xname);
344 return;
345 }
346
347 /* Now enable auto poll mode. */
348
349 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
350
351 /* And make sure it started. */
352
353 for (i = 0; i < VGE_TIMEOUT; i++) {
354 DELAY(1);
355 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
356 break;
357 }
358
359 if (i == VGE_TIMEOUT) {
360 printf("%s: failed to start MII autopoll\n",
361 sc->sc_dev.dv_xname);
362 }
363 }
364
365 static int
366 vge_miibus_readreg(dev, phy, reg)
367 struct device *dev;
368 int phy, reg;
369 {
370 struct vge_softc *sc = (struct vge_softc *)dev;
371 int i;
372 u_int16_t rval = 0;
373
374 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
375 return(0);
376
377 VGE_LOCK(sc);
378 vge_miipoll_stop(sc);
379
380 /* Specify the register we want to read. */
381 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
382
383 /* Issue read command. */
384 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
385
386 /* Wait for the read command bit to self-clear. */
387 for (i = 0; i < VGE_TIMEOUT; i++) {
388 DELAY(1);
389 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
390 break;
391 }
392
393 if (i == VGE_TIMEOUT)
394 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
395 else
396 rval = CSR_READ_2(sc, VGE_MIIDATA);
397
398 vge_miipoll_start(sc);
399 VGE_UNLOCK(sc);
400
401 return (rval);
402 }
403
404 static void
405 vge_miibus_writereg(dev, phy, reg, data)
406 struct device *dev;
407 int phy, reg, data;
408 {
409 struct vge_softc *sc = (struct vge_softc *)dev;
410 int i;
411
412 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
413 return;
414
415 VGE_LOCK(sc);
416 vge_miipoll_stop(sc);
417
418 /* Specify the register we want to write. */
419 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
420
421 /* Specify the data we want to write. */
422 CSR_WRITE_2(sc, VGE_MIIDATA, data);
423
424 /* Issue write command. */
425 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
426
427 /* Wait for the write command bit to self-clear. */
428 for (i = 0; i < VGE_TIMEOUT; i++) {
429 DELAY(1);
430 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
431 break;
432 }
433
434 if (i == VGE_TIMEOUT) {
435 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
436 }
437
438 vge_miipoll_start(sc);
439 VGE_UNLOCK(sc);
440 }
441
442 static void
443 vge_cam_clear(sc)
444 struct vge_softc *sc;
445 {
446 int i;
447
448 /*
449 * Turn off all the mask bits. This tells the chip
450 * that none of the entries in the CAM filter are valid.
451 * desired entries will be enabled as we fill the filter in.
452 */
453
454 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
455 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
456 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
457 for (i = 0; i < 8; i++)
458 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
459
460 /* Clear the VLAN filter too. */
461
462 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
463 for (i = 0; i < 8; i++)
464 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
465
466 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
467 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
469
470 sc->vge_camidx = 0;
471
472 return;
473 }
474
475 static int
476 vge_cam_set(sc, addr)
477 struct vge_softc *sc;
478 uint8_t *addr;
479 {
480 int i, error = 0;
481
482 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
483 return(ENOSPC);
484
485 /* Select the CAM data page. */
486 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
488
489 /* Set the filter entry we want to update and enable writing. */
490 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
491
492 /* Write the address to the CAM registers */
493 for (i = 0; i < ETHER_ADDR_LEN; i++)
494 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
495
496 /* Issue a write command. */
497 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
498
499 /* Wake for it to clear. */
500 for (i = 0; i < VGE_TIMEOUT; i++) {
501 DELAY(1);
502 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
503 break;
504 }
505
506 if (i == VGE_TIMEOUT) {
507 printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
508 error = EIO;
509 goto fail;
510 }
511
512 /* Select the CAM mask page. */
513 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
514 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
515
516 /* Set the mask bit that enables this filter. */
517 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
518 1<<(sc->vge_camidx & 7));
519
520 sc->vge_camidx++;
521
522 fail:
523 /* Turn off access to CAM. */
524 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
525 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
526 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
527
528 return (error);
529 }
530
531 /*
532 * Program the multicast filter. We use the 64-entry CAM filter
533 * for perfect filtering. If there's more than 64 multicast addresses,
534 * we use the hash filter insted.
535 */
536 static void
537 vge_setmulti(sc)
538 struct vge_softc *sc;
539 {
540 struct ifnet *ifp;
541 int error = 0;
542 u_int32_t h, hashes[2] = { 0, 0 };
543 struct ether_multi *enm;
544 struct ether_multistep step;
545
546 ifp = &sc->sc_ethercom.ec_if;
547
548 /* First, zot all the multicast entries. */
549 vge_cam_clear(sc);
550 CSR_WRITE_4(sc, VGE_MAR0, 0);
551 CSR_WRITE_4(sc, VGE_MAR1, 0);
552 ifp->if_flags &= ~IFF_ALLMULTI;
553
554 /*
555 * If the user wants allmulti or promisc mode, enable reception
556 * of all multicast frames.
557 */
558 if (ifp->if_flags & IFF_PROMISC) {
559 allmulti:
560 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
561 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
562 ifp->if_flags |= IFF_ALLMULTI;
563 return;
564 }
565
566 /* Now program new ones */
567 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
568 while(enm != NULL) {
569 /*
570 * If multicast range, fall back to ALLMULTI.
571 */
572 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
573 ETHER_ADDR_LEN) != 0)
574 goto allmulti;
575
576 error = vge_cam_set(sc, enm->enm_addrlo);
577 if (error)
578 break;
579
580 ETHER_NEXT_MULTI(step, enm);
581 }
582
583 /* If there were too many addresses, use the hash filter. */
584 if (error) {
585 vge_cam_clear(sc);
586
587 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
588 while(enm != NULL) {
589 /*
590 * If multicast range, fall back to ALLMULTI.
591 */
592 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
593 ETHER_ADDR_LEN) != 0)
594 goto allmulti;
595
596 h = ether_crc32_be(enm->enm_addrlo,
597 ETHER_ADDR_LEN) >> 26;
598 hashes[h >> 5] |= 1 << (h & 0x1f);
599
600 ETHER_NEXT_MULTI(step, enm);
601 }
602
603 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
604 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
605 }
606
607 return;
608 }
609
610 static void
611 vge_reset(sc)
612 struct vge_softc *sc;
613 {
614 register int i;
615
616 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
617
618 for (i = 0; i < VGE_TIMEOUT; i++) {
619 DELAY(5);
620 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
621 break;
622 }
623
624 if (i == VGE_TIMEOUT) {
625 printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
626 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
627 DELAY(2000);
628 }
629
630 DELAY(5000);
631
632 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
633
634 for (i = 0; i < VGE_TIMEOUT; i++) {
635 DELAY(5);
636 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
637 break;
638 }
639
640 if (i == VGE_TIMEOUT) {
641 printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
642 return;
643 }
644
645 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
646
647 return;
648 }
649
650 /*
651 * Probe for a VIA gigabit chip. Check the PCI vendor and device
652 * IDs against our list and return a device name if we find a match.
653 */
654 static int
655 vge_probe(struct device *parent, struct cfdata *match, void *aux)
656 {
657 struct pci_attach_args *pa = aux;
658
659 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
660 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
661 return 1;
662
663 return (0);
664 }
665
666 static int
667 vge_dma_map_rx_desc(sc, idx)
668 struct vge_softc *sc;
669 int idx;
670 {
671 struct vge_rx_desc *d = NULL;
672 bus_dma_segment_t *segs;
673
674 /*
675 * Map the segment array into descriptors.
676 */
677
678 d = &sc->vge_ldata.vge_rx_list[idx];
679
680 /* If this descriptor is still owned by the chip, bail. */
681
682 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
683 printf("%s: tried to map busy descriptor\n",
684 sc->sc_dev.dv_xname);
685 return (EBUSY);
686 }
687
688 segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
689
690 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
691 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
692 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
693 d->vge_sts = 0;
694 d->vge_ctl = 0;
695
696 return (0);
697 }
698
699 static void
700 vge_dma_map_tx_desc(sc, m0, idx, flags)
701 struct vge_softc *sc;
702 struct mbuf *m0;
703 int idx, flags;
704 {
705 struct vge_tx_desc *d = &sc->vge_ldata.vge_tx_list[idx];
706 struct vge_tx_frag *f;
707 int i = 0;
708 bus_dma_segment_t *segs;
709 size_t sz;
710 bus_dmamap_t map = sc->vge_ldata.vge_tx_dmamap[idx];
711
712 /* Map the segment array into descriptors. */
713
714 segs = map->dm_segs;
715 for (i = 0; i < map->dm_nsegs; i++) {
716 f = &d->vge_frag[i];
717 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
718 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
719 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
720 }
721
722 /* Argh. This chip does not autopad short frames */
723
724 sz = m0->m_pkthdr.len;
725 if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
726 f = &d->vge_frag[i];
727 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
728 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
729 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
730 sz = VGE_MIN_FRAMELEN;
731 i++;
732 }
733
734 /*
735 * When telling the chip how many segments there are, we
736 * must use nsegs + 1 instead of just nsegs. Darned if I
737 * know why.
738 */
739 i++;
740
741 d->vge_sts = sz << 16;
742 d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
743
744 if (sz > ETHERMTU + ETHER_HDR_LEN)
745 d->vge_ctl |= VGE_TDCTL_JUMBO;
746 }
747
748 static int
749 vge_allocmem(sc)
750 struct vge_softc *sc;
751 {
752 int error;
753 int nseg;
754 int i;
755 bus_dma_segment_t seg;
756
757 /*
758 * Allocate map for TX descriptor list.
759 */
760 error = bus_dmamap_create(sc->vge_dmat,
761 round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
762 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
763 &sc->vge_ldata.vge_tx_list_map);
764 if (error) {
765 printf("%s: could not allocate TX dma list map\n",
766 sc->sc_dev.dv_xname);
767 return (ENOMEM);
768 }
769
770 /*
771 * Allocate memory for TX descriptor list.
772 */
773
774 error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
775 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
776 if (error) {
777 printf("%s: could not allocate TX ring dma memory\n",
778 sc->sc_dev.dv_xname);
779 return (ENOMEM);
780 }
781
782 /* Map the memory to kernel VA space */
783
784 error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
785 (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
786 if (error) {
787 printf("%s: could not map TX ring dma memory\n",
788 sc->sc_dev.dv_xname);
789 return (ENOMEM);
790 }
791
792 /* Load the map for the TX ring. */
793 error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
794 sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
795 if (error) {
796 printf("%s: could not load TX ring dma memory\n",
797 sc->sc_dev.dv_xname);
798 return (ENOMEM);
799 }
800
801 sc->vge_ldata.vge_tx_list_addr =
802 sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
803
804 /* Create DMA maps for TX buffers */
805
806 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
807 error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
808 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
809 BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
810 &sc->vge_ldata.vge_tx_dmamap[i]);
811 if (error) {
812 printf("%s: can't create DMA map for TX\n",
813 sc->sc_dev.dv_xname);
814 return (ENOMEM);
815 }
816 }
817
818 /*
819 * Allocate map for RX descriptor list.
820 */
821 error = bus_dmamap_create(sc->vge_dmat,
822 round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
823 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
824 &sc->vge_ldata.vge_rx_list_map);
825 if (error) {
826 printf("%s: could not allocate RX dma list map\n",
827 sc->sc_dev.dv_xname);
828 return (ENOMEM);
829 }
830
831 /* Allocate DMA'able memory for the RX ring */
832
833 error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
834 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
835 if (error)
836 return (ENOMEM);
837
838 /* Map the memory to kernel VA space */
839
840 error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
841 (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
842 if (error)
843 return (ENOMEM);
844
845 /* Load the map for the RX ring. */
846 error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
847 sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
848 if (error) {
849 printf("%s: could not load RX ring dma memory\n",
850 sc->sc_dev.dv_xname);
851 return (ENOMEM);
852 }
853
854 sc->vge_ldata.vge_rx_list_addr =
855 sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
856
857 /* Create DMA maps for RX buffers */
858
859 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
860 error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
861 1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
862 &sc->vge_ldata.vge_rx_dmamap[i]);
863 if (error) {
864 printf("%s: can't create DMA map for RX\n",
865 sc->sc_dev.dv_xname);
866 return (ENOMEM);
867 }
868 }
869
870 return (0);
871 }
872
873 /*
874 * Attach the interface. Allocate softc structures, do ifmedia
875 * setup and ethernet/BPF attach.
876 */
877 static void
878 vge_attach(struct device *parent, struct device *self, void *aux)
879 {
880 u_char eaddr[ETHER_ADDR_LEN];
881 struct vge_softc *sc = (struct vge_softc *)self;
882 struct ifnet *ifp;
883 struct pci_attach_args *pa = aux;
884 pci_chipset_tag_t pc = pa->pa_pc;
885 const char *intrstr;
886 pci_intr_handle_t ih;
887
888 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
889 PCI_REVISION(pa->pa_class));
890
891 /* Make sure bus-mastering is enabled */
892 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
893 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
894 PCI_COMMAND_MASTER_ENABLE);
895
896 /*
897 * Map control/status registers.
898 */
899 if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
900 PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
901 &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
902 aprint_error("%s: couldn't map memory\n",
903 sc->sc_dev.dv_xname);
904 return;
905 }
906
907 /*
908 * Map and establish our interrupt.
909 */
910 if (pci_intr_map(pa, &ih)) {
911 aprint_error("%s: unable to map interrupt\n",
912 sc->sc_dev.dv_xname);
913 return;
914 }
915 intrstr = pci_intr_string(pc, ih);
916 sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
917 if (sc->vge_intrhand == NULL) {
918 printf("%s: unable to establish interrupt",
919 sc->sc_dev.dv_xname);
920 if (intrstr != NULL)
921 printf(" at %s", intrstr);
922 printf("\n");
923 return;
924 }
925 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
926
927 /* Reset the adapter. */
928 vge_reset(sc);
929
930 /*
931 * Get station address from the EEPROM.
932 */
933 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
934 bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
935
936 printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
937 ether_sprintf(eaddr));
938
939 /*
940 * Use the 32bit tag. Hardware supports 48bit physical addresses,
941 * but we don't use that for now.
942 */
943 sc->vge_dmat = pa->pa_dmat;
944
945 if (vge_allocmem(sc))
946 return;
947
948 ifp = &sc->sc_ethercom.ec_if;
949 ifp->if_softc = sc;
950 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
951 ifp->if_mtu = ETHERMTU;
952 ifp->if_baudrate = IF_Gbps(1);
953 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
954 ifp->if_ioctl = vge_ioctl;
955 ifp->if_start = vge_start;
956
957 /*
958 * We can support 802.1Q VLAN-sized frames and jumbo
959 * Ethernet frames.
960 */
961 sc->sc_ethercom.ec_capabilities |=
962 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
963 ETHERCAP_VLAN_HWTAGGING;
964
965 /*
966 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
967 */
968 ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
969 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
970
971 #ifdef DEVICE_POLLING
972 #ifdef IFCAP_POLLING
973 ifp->if_capabilities |= IFCAP_POLLING;
974 #endif
975 #endif
976 ifp->if_watchdog = vge_watchdog;
977 ifp->if_init = vge_init;
978 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
979
980 /*
981 * Initialize our media structures and probe the MII.
982 */
983 sc->sc_mii.mii_ifp = ifp;
984 sc->sc_mii.mii_readreg = vge_miibus_readreg;
985 sc->sc_mii.mii_writereg = vge_miibus_writereg;
986 sc->sc_mii.mii_statchg = vge_miibus_statchg;
987 ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
988 vge_ifmedia_sts);
989 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
990 MII_OFFSET_ANY, MIIF_DOPAUSE);
991 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
992 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
993 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
994 } else
995 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
996
997 /*
998 * Attach the interface.
999 */
1000 if_attach(ifp);
1001 ether_ifattach(ifp, eaddr);
1002
1003 callout_init(&sc->vge_timeout);
1004 callout_setfunc(&sc->vge_timeout, vge_tick, sc);
1005
1006 /*
1007 * Make sure the interface is shutdown during reboot.
1008 */
1009 if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
1010 printf("%s: WARNING: unable to establish shutdown hook\n",
1011 sc->sc_dev.dv_xname);
1012 }
1013 }
1014
1015 static int
1016 vge_newbuf(sc, idx, m)
1017 struct vge_softc *sc;
1018 int idx;
1019 struct mbuf *m;
1020 {
1021 struct mbuf *n = NULL;
1022 int i, error;
1023
1024 if (m == NULL) {
1025 n = m_gethdr(M_DONTWAIT, MT_DATA);
1026 if (n == NULL)
1027 return (ENOBUFS);
1028
1029 m_clget(n, M_DONTWAIT);
1030 if ((n->m_flags & M_EXT) == 0) {
1031 m_freem(n);
1032 return (ENOBUFS);
1033 }
1034
1035 m = n;
1036 } else
1037 m->m_data = m->m_ext.ext_buf;
1038
1039
1040 #ifdef VGE_FIXUP_RX
1041 /*
1042 * This is part of an evil trick to deal with non-x86 platforms.
1043 * The VIA chip requires RX buffers to be aligned on 32-bit
1044 * boundaries, but that will hose non-x86 machines. To get around
1045 * this, we leave some empty space at the start of each buffer
1046 * and for non-x86 hosts, we copy the buffer back two bytes
1047 * to achieve word alignment. This is slightly more efficient
1048 * than allocating a new buffer, copying the contents, and
1049 * discarding the old buffer.
1050 */
1051 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1052 m_adj(m, VGE_ETHER_ALIGN);
1053 #else
1054 m->m_len = m->m_pkthdr.len = MCLBYTES;
1055 #endif
1056
1057 error = bus_dmamap_load_mbuf(sc->vge_dmat,
1058 sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
1059 if (error || vge_dma_map_rx_desc(sc, idx)) {
1060 if (n != NULL)
1061 m_freem(n);
1062 return (ENOMEM);
1063 }
1064
1065 /*
1066 * Note: the manual fails to document the fact that for
1067 * proper opration, the driver needs to replentish the RX
1068 * DMA ring 4 descriptors at a time (rather than one at a
1069 * time, like most chips). We can allocate the new buffers
1070 * but we should not set the OWN bits until we're ready
1071 * to hand back 4 of them in one shot.
1072 */
1073
1074 #define VGE_RXCHUNK 4
1075 sc->vge_rx_consumed++;
1076 if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1077 for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1078 sc->vge_ldata.vge_rx_list[i].vge_sts |=
1079 htole32(VGE_RDSTS_OWN);
1080 sc->vge_rx_consumed = 0;
1081 }
1082
1083 sc->vge_ldata.vge_rx_mbuf[idx] = m;
1084
1085 bus_dmamap_sync(sc->vge_dmat,
1086 sc->vge_ldata.vge_rx_dmamap[idx],
1087 0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
1088 BUS_DMASYNC_PREREAD);
1089
1090 return (0);
1091 }
1092
1093 static int
1094 vge_tx_list_init(sc)
1095 struct vge_softc *sc;
1096 {
1097 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1098 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1099 (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1100
1101 bus_dmamap_sync(sc->vge_dmat,
1102 sc->vge_ldata.vge_tx_list_map,
1103 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1104 BUS_DMASYNC_PREWRITE);
1105
1106 sc->vge_ldata.vge_tx_prodidx = 0;
1107 sc->vge_ldata.vge_tx_considx = 0;
1108 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1109
1110 return (0);
1111 }
1112
1113 static int
1114 vge_rx_list_init(sc)
1115 struct vge_softc *sc;
1116 {
1117 int i;
1118
1119 bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1120 bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1121 (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1122
1123 sc->vge_rx_consumed = 0;
1124
1125 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1126 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1127 return (ENOBUFS);
1128 }
1129
1130 /* Flush the RX descriptors */
1131
1132 bus_dmamap_sync(sc->vge_dmat,
1133 sc->vge_ldata.vge_rx_list_map,
1134 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1135 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1136
1137 sc->vge_ldata.vge_rx_prodidx = 0;
1138 sc->vge_rx_consumed = 0;
1139 sc->vge_head = sc->vge_tail = NULL;
1140
1141 return (0);
1142 }
1143
1144 #ifdef VGE_FIXUP_RX
1145 static __inline void
1146 vge_fixup_rx(m)
1147 struct mbuf *m;
1148 {
1149 int i;
1150 uint16_t *src, *dst;
1151
1152 src = mtod(m, uint16_t *);
1153 dst = src - 1;
1154
1155 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1156 *dst++ = *src++;
1157
1158 m->m_data -= ETHER_ALIGN;
1159
1160 return;
1161 }
1162 #endif
1163
1164 /*
1165 * RX handler. We support the reception of jumbo frames that have
1166 * been fragmented across multiple 2K mbuf cluster buffers.
1167 */
1168 static void
1169 vge_rxeof(sc)
1170 struct vge_softc *sc;
1171 {
1172 struct mbuf *m;
1173 struct ifnet *ifp;
1174 int i, total_len;
1175 int lim = 0;
1176 struct vge_rx_desc *cur_rx;
1177 u_int32_t rxstat, rxctl;
1178
1179 VGE_LOCK_ASSERT(sc);
1180 ifp = &sc->sc_ethercom.ec_if;
1181 i = sc->vge_ldata.vge_rx_prodidx;
1182
1183 /* Invalidate the descriptor memory */
1184
1185 bus_dmamap_sync(sc->vge_dmat,
1186 sc->vge_ldata.vge_rx_list_map,
1187 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1188 BUS_DMASYNC_POSTREAD);
1189
1190 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1191
1192 #ifdef DEVICE_POLLING
1193 if (ifp->if_flags & IFF_POLLING) {
1194 if (sc->rxcycles <= 0)
1195 break;
1196 sc->rxcycles--;
1197 }
1198 #endif /* DEVICE_POLLING */
1199
1200 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1201 m = sc->vge_ldata.vge_rx_mbuf[i];
1202 total_len = VGE_RXBYTES(cur_rx);
1203 rxstat = le32toh(cur_rx->vge_sts);
1204 rxctl = le32toh(cur_rx->vge_ctl);
1205
1206 /* Invalidate the RX mbuf and unload its map */
1207
1208 bus_dmamap_sync(sc->vge_dmat,
1209 sc->vge_ldata.vge_rx_dmamap[i],
1210 0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
1211 BUS_DMASYNC_POSTWRITE);
1212 bus_dmamap_unload(sc->vge_dmat,
1213 sc->vge_ldata.vge_rx_dmamap[i]);
1214
1215 /*
1216 * If the 'start of frame' bit is set, this indicates
1217 * either the first fragment in a multi-fragment receive,
1218 * or an intermediate fragment. Either way, we want to
1219 * accumulate the buffers.
1220 */
1221 if (rxstat & VGE_RXPKT_SOF) {
1222 m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1223 if (sc->vge_head == NULL)
1224 sc->vge_head = sc->vge_tail = m;
1225 else {
1226 m->m_flags &= ~M_PKTHDR;
1227 sc->vge_tail->m_next = m;
1228 sc->vge_tail = m;
1229 }
1230 vge_newbuf(sc, i, NULL);
1231 VGE_RX_DESC_INC(i);
1232 continue;
1233 }
1234
1235 /*
1236 * Bad/error frames will have the RXOK bit cleared.
1237 * However, there's one error case we want to allow:
1238 * if a VLAN tagged frame arrives and the chip can't
1239 * match it against the CAM filter, it considers this
1240 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1241 * We don't want to drop the frame though: our VLAN
1242 * filtering is done in software.
1243 */
1244 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1245 && !(rxstat & VGE_RDSTS_CSUMERR)) {
1246 ifp->if_ierrors++;
1247 /*
1248 * If this is part of a multi-fragment packet,
1249 * discard all the pieces.
1250 */
1251 if (sc->vge_head != NULL) {
1252 m_freem(sc->vge_head);
1253 sc->vge_head = sc->vge_tail = NULL;
1254 }
1255 vge_newbuf(sc, i, m);
1256 VGE_RX_DESC_INC(i);
1257 continue;
1258 }
1259
1260 /*
1261 * If allocating a replacement mbuf fails,
1262 * reload the current one.
1263 */
1264
1265 if (vge_newbuf(sc, i, NULL)) {
1266 ifp->if_ierrors++;
1267 if (sc->vge_head != NULL) {
1268 m_freem(sc->vge_head);
1269 sc->vge_head = sc->vge_tail = NULL;
1270 }
1271 vge_newbuf(sc, i, m);
1272 VGE_RX_DESC_INC(i);
1273 continue;
1274 }
1275
1276 VGE_RX_DESC_INC(i);
1277
1278 if (sc->vge_head != NULL) {
1279 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1280 /*
1281 * Special case: if there's 4 bytes or less
1282 * in this buffer, the mbuf can be discarded:
1283 * the last 4 bytes is the CRC, which we don't
1284 * care about anyway.
1285 */
1286 if (m->m_len <= ETHER_CRC_LEN) {
1287 sc->vge_tail->m_len -=
1288 (ETHER_CRC_LEN - m->m_len);
1289 m_freem(m);
1290 } else {
1291 m->m_len -= ETHER_CRC_LEN;
1292 m->m_flags &= ~M_PKTHDR;
1293 sc->vge_tail->m_next = m;
1294 }
1295 m = sc->vge_head;
1296 sc->vge_head = sc->vge_tail = NULL;
1297 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1298 } else
1299 m->m_pkthdr.len = m->m_len =
1300 (total_len - ETHER_CRC_LEN);
1301
1302 #ifdef VGE_FIXUP_RX
1303 vge_fixup_rx(m);
1304 #endif
1305 ifp->if_ipackets++;
1306 m->m_pkthdr.rcvif = ifp;
1307
1308 /* Do RX checksumming if enabled */
1309 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1310
1311 /* Check IP header checksum */
1312 if (rxctl & VGE_RDCTL_IPPKT)
1313 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1314 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1315 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1316 }
1317
1318 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1319 /* Check UDP checksum */
1320 if (rxctl & VGE_RDCTL_TCPPKT)
1321 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1322
1323 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1324 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1325 }
1326
1327 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1328 /* Check UDP checksum */
1329 if (rxctl & VGE_RDCTL_UDPPKT)
1330 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1331
1332 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1333 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1334 }
1335
1336 if (rxstat & VGE_RDSTS_VTAG)
1337 VLAN_INPUT_TAG(ifp, m,
1338 ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1339
1340 #if NBPFILTER > 0
1341 /*
1342 * Handle BPF listeners.
1343 */
1344 if (ifp->if_bpf)
1345 bpf_mtap(ifp->if_bpf, m);
1346 #endif
1347
1348 VGE_UNLOCK(sc);
1349 (*ifp->if_input)(ifp, m);
1350 VGE_LOCK(sc);
1351
1352 lim++;
1353 if (lim == VGE_RX_DESC_CNT)
1354 break;
1355
1356 }
1357
1358 /* Flush the RX DMA ring */
1359
1360 bus_dmamap_sync(sc->vge_dmat,
1361 sc->vge_ldata.vge_rx_list_map,
1362 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
1363 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1364
1365 sc->vge_ldata.vge_rx_prodidx = i;
1366 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1367
1368
1369 return;
1370 }
1371
1372 static void
1373 vge_txeof(sc)
1374 struct vge_softc *sc;
1375 {
1376 struct ifnet *ifp;
1377 u_int32_t txstat;
1378 int idx;
1379
1380 ifp = &sc->sc_ethercom.ec_if;
1381 idx = sc->vge_ldata.vge_tx_considx;
1382
1383 /* Invalidate the TX descriptor list */
1384
1385 bus_dmamap_sync(sc->vge_dmat,
1386 sc->vge_ldata.vge_tx_list_map,
1387 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1388 BUS_DMASYNC_POSTREAD);
1389
1390 while (idx != sc->vge_ldata.vge_tx_prodidx) {
1391
1392 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1393 if (txstat & VGE_TDSTS_OWN)
1394 break;
1395
1396 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1397 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1398 bus_dmamap_unload(sc->vge_dmat,
1399 sc->vge_ldata.vge_tx_dmamap[idx]);
1400 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1401 ifp->if_collisions++;
1402 if (txstat & VGE_TDSTS_TXERR)
1403 ifp->if_oerrors++;
1404 else
1405 ifp->if_opackets++;
1406
1407 sc->vge_ldata.vge_tx_free++;
1408 VGE_TX_DESC_INC(idx);
1409 }
1410
1411 /* No changes made to the TX ring, so no flush needed */
1412
1413 if (idx != sc->vge_ldata.vge_tx_considx) {
1414 sc->vge_ldata.vge_tx_considx = idx;
1415 ifp->if_flags &= ~IFF_OACTIVE;
1416 ifp->if_timer = 0;
1417 }
1418
1419 /*
1420 * If not all descriptors have been released reaped yet,
1421 * reload the timer so that we will eventually get another
1422 * interrupt that will cause us to re-enter this routine.
1423 * This is done in case the transmitter has gone idle.
1424 */
1425 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1426 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1427 }
1428
1429 return;
1430 }
1431
1432 static void
1433 vge_tick(xsc)
1434 void *xsc;
1435 {
1436 struct vge_softc *sc = xsc;
1437 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1438 struct mii_data *mii = &sc->sc_mii;
1439 int s;
1440
1441 s = splnet();
1442
1443 VGE_LOCK(sc);
1444
1445 callout_schedule(&sc->vge_timeout, hz);
1446
1447 mii_tick(mii);
1448 if (sc->vge_link) {
1449 if (!(mii->mii_media_status & IFM_ACTIVE))
1450 sc->vge_link = 0;
1451 } else {
1452 if (mii->mii_media_status & IFM_ACTIVE &&
1453 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1454 sc->vge_link = 1;
1455 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1456 vge_start(ifp);
1457 }
1458 }
1459
1460 VGE_UNLOCK(sc);
1461
1462 splx(s);
1463 }
1464
1465 #ifdef DEVICE_POLLING
1466 static void
1467 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1468 {
1469 struct vge_softc *sc = ifp->if_softc;
1470
1471 VGE_LOCK(sc);
1472 #ifdef IFCAP_POLLING
1473 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1474 ether_poll_deregister(ifp);
1475 cmd = POLL_DEREGISTER;
1476 }
1477 #endif
1478 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1479 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1480 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1481 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1482 goto done;
1483 }
1484
1485 sc->rxcycles = count;
1486 vge_rxeof(sc);
1487 vge_txeof(sc);
1488
1489 #if __FreeBSD_version < 502114
1490 if (ifp->if_snd.ifq_head != NULL)
1491 #else
1492 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1493 #endif
1494 taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1495
1496 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1497 u_int32_t status;
1498 status = CSR_READ_4(sc, VGE_ISR);
1499 if (status == 0xFFFFFFFF)
1500 goto done;
1501 if (status)
1502 CSR_WRITE_4(sc, VGE_ISR, status);
1503
1504 /*
1505 * XXX check behaviour on receiver stalls.
1506 */
1507
1508 if (status & VGE_ISR_TXDMA_STALL ||
1509 status & VGE_ISR_RXDMA_STALL)
1510 vge_init(sc);
1511
1512 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1513 vge_rxeof(sc);
1514 ifp->if_ierrors++;
1515 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1516 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1517 }
1518 }
1519 done:
1520 VGE_UNLOCK(sc);
1521 }
1522 #endif /* DEVICE_POLLING */
1523
1524 static int
1525 vge_intr(arg)
1526 void *arg;
1527 {
1528 struct vge_softc *sc = arg;
1529 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1530 u_int32_t status;
1531 int claim = 0;
1532
1533 if (sc->suspended) {
1534 return claim;
1535 }
1536
1537 VGE_LOCK(sc);
1538
1539 if (!(ifp->if_flags & IFF_UP)) {
1540 VGE_UNLOCK(sc);
1541 return claim;
1542 }
1543
1544 #ifdef DEVICE_POLLING
1545 if (ifp->if_flags & IFF_POLLING)
1546 goto done;
1547 if (
1548 #ifdef IFCAP_POLLING
1549 (ifp->if_capenable & IFCAP_POLLING) &&
1550 #endif
1551 ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1552 CSR_WRITE_4(sc, VGE_IMR, 0);
1553 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1554 vge_poll(ifp, 0, 1);
1555 goto done;
1556 }
1557
1558 #endif /* DEVICE_POLLING */
1559
1560 /* Disable interrupts */
1561 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1562
1563 for (;;) {
1564
1565 status = CSR_READ_4(sc, VGE_ISR);
1566 /* If the card has gone away the read returns 0xffff. */
1567 if (status == 0xFFFFFFFF)
1568 break;
1569
1570 if (status) {
1571 claim = 1;
1572 CSR_WRITE_4(sc, VGE_ISR, status);
1573 }
1574
1575 if ((status & VGE_INTRS) == 0)
1576 break;
1577
1578 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1579 vge_rxeof(sc);
1580
1581 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1582 vge_rxeof(sc);
1583 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1584 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1585 }
1586
1587 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1588 vge_txeof(sc);
1589
1590 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1591 vge_init(ifp);
1592
1593 if (status & VGE_ISR_LINKSTS)
1594 vge_tick(sc);
1595 }
1596
1597 /* Re-enable interrupts */
1598 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1599
1600 #ifdef DEVICE_POLLING
1601 done:
1602 #endif
1603 VGE_UNLOCK(sc);
1604
1605 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1606 vge_start(ifp);
1607
1608 return claim;
1609 }
1610
1611 static int
1612 vge_encap(sc, m_head, idx)
1613 struct vge_softc *sc;
1614 struct mbuf *m_head;
1615 int idx;
1616 {
1617 struct mbuf *m_new = NULL;
1618 bus_dmamap_t map;
1619 int error, flags;
1620 struct m_tag *mtag;
1621
1622 /* If this descriptor is still owned by the chip, bail. */
1623 if (sc->vge_ldata.vge_tx_free <= 2
1624 || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
1625 return (ENOBUFS);
1626
1627 flags = 0;
1628
1629 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1630 flags |= VGE_TDCTL_IPCSUM;
1631 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1632 flags |= VGE_TDCTL_TCPCSUM;
1633 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1634 flags |= VGE_TDCTL_UDPCSUM;
1635
1636 map = sc->vge_ldata.vge_tx_dmamap[idx];
1637 error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1638 m_head, BUS_DMA_NOWAIT);
1639
1640 /* If too many segments to map, coalesce */
1641 if (error == EFBIG) {
1642 m_new = m_defrag(m_head, M_DONTWAIT);
1643 if (m_new == NULL)
1644 return (error);
1645
1646 error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
1647 m_new, BUS_DMA_NOWAIT);
1648 if (error) {
1649 m_freem(m_new);
1650 return (error);
1651 }
1652
1653 m_head = m_new;
1654 } else if (error)
1655 return (error);
1656
1657 vge_dma_map_tx_desc(sc, m_head, idx, flags);
1658
1659 sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1660 sc->vge_ldata.vge_tx_free--;
1661
1662 /*
1663 * Set up hardware VLAN tagging.
1664 */
1665
1666 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1667 if (mtag != NULL)
1668 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1669 htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1670
1671 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1672
1673 return (0);
1674 }
1675
1676 /*
1677 * Main transmit routine.
1678 */
1679
1680 static void
1681 vge_start(ifp)
1682 struct ifnet *ifp;
1683 {
1684 struct vge_softc *sc;
1685 struct mbuf *m_head = NULL;
1686 int idx, pidx = 0, error;
1687
1688 sc = ifp->if_softc;
1689 VGE_LOCK(sc);
1690
1691 if (!sc->vge_link
1692 || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1693 VGE_UNLOCK(sc);
1694 return;
1695 }
1696
1697 idx = sc->vge_ldata.vge_tx_prodidx;
1698
1699 pidx = idx - 1;
1700 if (pidx < 0)
1701 pidx = VGE_TX_DESC_CNT - 1;
1702
1703 /*
1704 * Loop through the send queue, setting up transmit descriptors
1705 * until we drain the queue, or use up all available transmit
1706 * descriptors.
1707 */
1708 for(;;) {
1709 /* Grab a packet off the queue. */
1710 IFQ_POLL(&ifp->if_snd, m_head);
1711 if (m_head == NULL)
1712 break;
1713
1714 if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
1715 /*
1716 * Slot already used, stop for now.
1717 */
1718 ifp->if_flags |= IFF_OACTIVE;
1719 break;
1720 }
1721
1722 if ((error = vge_encap(sc, m_head, idx))) {
1723 if (error == EFBIG) {
1724 printf("%s: Tx packet consumes too many "
1725 "DMA segments, dropping...\n",
1726 sc->sc_dev.dv_xname);
1727 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1728 m_freem(m_head);
1729 continue;
1730 }
1731
1732 /*
1733 * Short on resources, just stop for now.
1734 */
1735 if (error == ENOBUFS)
1736 ifp->if_flags |= IFF_OACTIVE;
1737 break;
1738 }
1739
1740 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1741
1742 /*
1743 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1744 */
1745
1746 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1747 htole16(VGE_TXDESC_Q);
1748
1749 if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
1750 m_freem(m_head);
1751 m_head = sc->vge_ldata.vge_tx_mbuf[idx];
1752 }
1753
1754 pidx = idx;
1755 VGE_TX_DESC_INC(idx);
1756
1757 /*
1758 * If there's a BPF listener, bounce a copy of this frame
1759 * to him.
1760 */
1761 #if NBPFILTER > 0
1762 if (ifp->if_bpf)
1763 bpf_mtap(ifp->if_bpf, m_head);
1764 #endif
1765 }
1766
1767 if (idx == sc->vge_ldata.vge_tx_prodidx) {
1768 VGE_UNLOCK(sc);
1769 return;
1770 }
1771
1772 /* Flush the TX descriptors */
1773
1774 bus_dmamap_sync(sc->vge_dmat,
1775 sc->vge_ldata.vge_tx_list_map,
1776 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
1777 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1778
1779 /* Issue a transmit command. */
1780 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1781
1782 sc->vge_ldata.vge_tx_prodidx = idx;
1783
1784 /*
1785 * Use the countdown timer for interrupt moderation.
1786 * 'TX done' interrupts are disabled. Instead, we reset the
1787 * countdown timer, which will begin counting until it hits
1788 * the value in the SSTIMER register, and then trigger an
1789 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1790 * the timer count is reloaded. Only when the transmitter
1791 * is idle will the timer hit 0 and an interrupt fire.
1792 */
1793 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1794
1795 VGE_UNLOCK(sc);
1796
1797 /*
1798 * Set a timeout in case the chip goes out to lunch.
1799 */
1800 ifp->if_timer = 5;
1801
1802 return;
1803 }
1804
1805 static int
1806 vge_init(ifp)
1807 struct ifnet *ifp;
1808 {
1809 struct vge_softc *sc = ifp->if_softc;
1810 struct mii_data *mii = &sc->sc_mii;
1811 int i;
1812
1813 VGE_LOCK(sc);
1814
1815 /*
1816 * Cancel pending I/O and free all RX/TX buffers.
1817 */
1818 vge_stop(sc);
1819 vge_reset(sc);
1820
1821 /*
1822 * Initialize the RX and TX descriptors and mbufs.
1823 */
1824
1825 vge_rx_list_init(sc);
1826 vge_tx_list_init(sc);
1827
1828 /* Set our station address */
1829 for (i = 0; i < ETHER_ADDR_LEN; i++)
1830 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
1831
1832 /*
1833 * Set receive FIFO threshold. Also allow transmission and
1834 * reception of VLAN tagged frames.
1835 */
1836 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1837 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1838
1839 /* Set DMA burst length */
1840 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1841 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1842
1843 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1844
1845 /* Set collision backoff algorithm */
1846 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1847 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1848 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1849
1850 /* Disable LPSEL field in priority resolution */
1851 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1852
1853 /*
1854 * Load the addresses of the DMA queues into the chip.
1855 * Note that we only use one transmit queue.
1856 */
1857
1858 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1859 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1860 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1861
1862 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1863 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1864 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1865 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1866
1867 /* Enable and wake up the RX descriptor queue */
1868 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1869 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1870
1871 /* Enable the TX descriptor queue */
1872 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1873
1874 /* Set up the receive filter -- allow large frames for VLANs. */
1875 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1876
1877 /* If we want promiscuous mode, set the allframes bit. */
1878 if (ifp->if_flags & IFF_PROMISC) {
1879 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1880 }
1881
1882 /* Set capture broadcast bit to capture broadcast frames. */
1883 if (ifp->if_flags & IFF_BROADCAST) {
1884 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1885 }
1886
1887 /* Set multicast bit to capture multicast frames. */
1888 if (ifp->if_flags & IFF_MULTICAST) {
1889 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1890 }
1891
1892 /* Init the cam filter. */
1893 vge_cam_clear(sc);
1894
1895 /* Init the multicast filter. */
1896 vge_setmulti(sc);
1897
1898 /* Enable flow control */
1899
1900 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1901
1902 /* Enable jumbo frame reception (if desired) */
1903
1904 /* Start the MAC. */
1905 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1906 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1907 CSR_WRITE_1(sc, VGE_CRS0,
1908 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1909
1910 /*
1911 * Configure one-shot timer for microsecond
1912 * resulution and load it for 500 usecs.
1913 */
1914 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1915 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1916
1917 /*
1918 * Configure interrupt moderation for receive. Enable
1919 * the holdoff counter and load it, and set the RX
1920 * suppression count to the number of descriptors we
1921 * want to allow before triggering an interrupt.
1922 * The holdoff timer is in units of 20 usecs.
1923 */
1924
1925 #ifdef notyet
1926 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1927 /* Select the interrupt holdoff timer page. */
1928 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1929 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1930 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1931
1932 /* Enable use of the holdoff timer. */
1933 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1934 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1935
1936 /* Select the RX suppression threshold page. */
1937 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1938 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1939 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1940
1941 /* Restore the page select bits. */
1942 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1943 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1944 #endif
1945
1946 #ifdef DEVICE_POLLING
1947 /*
1948 * Disable interrupts if we are polling.
1949 */
1950 if (ifp->if_flags & IFF_POLLING) {
1951 CSR_WRITE_4(sc, VGE_IMR, 0);
1952 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1953 } else /* otherwise ... */
1954 #endif /* DEVICE_POLLING */
1955 {
1956 /*
1957 * Enable interrupts.
1958 */
1959 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1960 CSR_WRITE_4(sc, VGE_ISR, 0);
1961 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1962 }
1963
1964 mii_mediachg(mii);
1965
1966 ifp->if_flags |= IFF_RUNNING;
1967 ifp->if_flags &= ~IFF_OACTIVE;
1968
1969 sc->vge_if_flags = 0;
1970 sc->vge_link = 0;
1971
1972 VGE_UNLOCK(sc);
1973
1974 callout_schedule(&sc->vge_timeout, hz);
1975
1976 return (0);
1977 }
1978
1979 /*
1980 * Set media options.
1981 */
1982 static int
1983 vge_ifmedia_upd(ifp)
1984 struct ifnet *ifp;
1985 {
1986 struct vge_softc *sc = ifp->if_softc;
1987 struct mii_data *mii = &sc->sc_mii;
1988
1989 mii_mediachg(mii);
1990
1991 return (0);
1992 }
1993
1994 /*
1995 * Report current media status.
1996 */
1997 static void
1998 vge_ifmedia_sts(ifp, ifmr)
1999 struct ifnet *ifp;
2000 struct ifmediareq *ifmr;
2001 {
2002 struct vge_softc *sc = ifp->if_softc;
2003 struct mii_data *mii = &sc->sc_mii;
2004
2005 mii_pollstat(mii);
2006 ifmr->ifm_active = mii->mii_media_active;
2007 ifmr->ifm_status = mii->mii_media_status;
2008
2009 return;
2010 }
2011
2012 static void
2013 vge_miibus_statchg(self)
2014 struct device *self;
2015 {
2016 struct vge_softc *sc = (struct vge_softc *) self;
2017 struct mii_data *mii = &sc->sc_mii;
2018 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
2019
2020 /*
2021 * If the user manually selects a media mode, we need to turn
2022 * on the forced MAC mode bit in the DIAGCTL register. If the
2023 * user happens to choose a full duplex mode, we also need to
2024 * set the 'force full duplex' bit. This applies only to
2025 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2026 * mode is disabled, and in 1000baseT mode, full duplex is
2027 * always implied, so we turn on the forced mode bit but leave
2028 * the FDX bit cleared.
2029 */
2030
2031 switch (IFM_SUBTYPE(ife->ifm_media)) {
2032 case IFM_AUTO:
2033 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2034 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2035 break;
2036 case IFM_1000_T:
2037 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2038 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2039 break;
2040 case IFM_100_TX:
2041 case IFM_10_T:
2042 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2043 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2044 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2045 } else {
2046 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2047 }
2048 break;
2049 default:
2050 printf("%s: unknown media type: %x\n",
2051 sc->sc_dev.dv_xname,
2052 IFM_SUBTYPE(ife->ifm_media));
2053 break;
2054 }
2055
2056 return;
2057 }
2058
2059 static int
2060 vge_ioctl(ifp, command, data)
2061 struct ifnet *ifp;
2062 u_long command;
2063 caddr_t data;
2064 {
2065 struct vge_softc *sc = ifp->if_softc;
2066 struct ifreq *ifr = (struct ifreq *) data;
2067 struct mii_data *mii;
2068 int s, error = 0;
2069
2070 s = splnet();
2071
2072 switch (command) {
2073 case SIOCSIFMTU:
2074 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2075 error = EINVAL;
2076 ifp->if_mtu = ifr->ifr_mtu;
2077 break;
2078 case SIOCSIFFLAGS:
2079 if (ifp->if_flags & IFF_UP) {
2080 if (ifp->if_flags & IFF_RUNNING &&
2081 ifp->if_flags & IFF_PROMISC &&
2082 !(sc->vge_if_flags & IFF_PROMISC)) {
2083 CSR_SETBIT_1(sc, VGE_RXCTL,
2084 VGE_RXCTL_RX_PROMISC);
2085 vge_setmulti(sc);
2086 } else if (ifp->if_flags & IFF_RUNNING &&
2087 !(ifp->if_flags & IFF_PROMISC) &&
2088 sc->vge_if_flags & IFF_PROMISC) {
2089 CSR_CLRBIT_1(sc, VGE_RXCTL,
2090 VGE_RXCTL_RX_PROMISC);
2091 vge_setmulti(sc);
2092 } else
2093 vge_init(ifp);
2094 } else {
2095 if (ifp->if_flags & IFF_RUNNING)
2096 vge_stop(sc);
2097 }
2098 sc->vge_if_flags = ifp->if_flags;
2099 break;
2100 case SIOCADDMULTI:
2101 case SIOCDELMULTI:
2102 error = (command == SIOCADDMULTI) ?
2103 ether_addmulti(ifr, &sc->sc_ethercom) :
2104 ether_delmulti(ifr, &sc->sc_ethercom);
2105
2106 if (error == ENETRESET) {
2107 /*
2108 * Multicast list has changed; set the hardware filter
2109 * accordingly.
2110 */
2111 if (ifp->if_flags & IFF_RUNNING)
2112 vge_setmulti(sc);
2113 error = 0;
2114 }
2115 break;
2116 case SIOCGIFMEDIA:
2117 case SIOCSIFMEDIA:
2118 mii = &sc->sc_mii;
2119 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2120 break;
2121 default:
2122 error = ether_ioctl(ifp, command, data);
2123 break;
2124 }
2125
2126 splx(s);
2127 return (error);
2128 }
2129
2130 static void
2131 vge_watchdog(ifp)
2132 struct ifnet *ifp;
2133 {
2134 struct vge_softc *sc;
2135
2136 sc = ifp->if_softc;
2137 VGE_LOCK(sc);
2138 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2139 ifp->if_oerrors++;
2140
2141 vge_txeof(sc);
2142 vge_rxeof(sc);
2143
2144 vge_init(ifp);
2145
2146 VGE_UNLOCK(sc);
2147
2148 return;
2149 }
2150
2151 /*
2152 * Stop the adapter and free any mbufs allocated to the
2153 * RX and TX lists.
2154 */
2155 static void
2156 vge_stop(sc)
2157 struct vge_softc *sc;
2158 {
2159 register int i;
2160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2161
2162 VGE_LOCK(sc);
2163 ifp->if_timer = 0;
2164
2165 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2166 #ifdef DEVICE_POLLING
2167 ether_poll_deregister(ifp);
2168 #endif /* DEVICE_POLLING */
2169
2170 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2171 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2172 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2173 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2174 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2175 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2176
2177 if (sc->vge_head != NULL) {
2178 m_freem(sc->vge_head);
2179 sc->vge_head = sc->vge_tail = NULL;
2180 }
2181
2182 /* Free the TX list buffers. */
2183
2184 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2185 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2186 bus_dmamap_unload(sc->vge_dmat,
2187 sc->vge_ldata.vge_tx_dmamap[i]);
2188 m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2189 sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2190 }
2191 }
2192
2193 /* Free the RX list buffers. */
2194
2195 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2196 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2197 bus_dmamap_unload(sc->vge_dmat,
2198 sc->vge_ldata.vge_rx_dmamap[i]);
2199 m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2200 sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2201 }
2202 }
2203
2204 VGE_UNLOCK(sc);
2205
2206 return;
2207 }
2208
2209 #if VGE_POWER_MANAGEMENT
2210 /*
2211 * Device suspend routine. Stop the interface and save some PCI
2212 * settings in case the BIOS doesn't restore them properly on
2213 * resume.
2214 */
2215 static int
2216 vge_suspend(dev)
2217 struct device * dev;
2218 {
2219 struct vge_softc *sc;
2220 int i;
2221
2222 sc = device_get_softc(dev);
2223
2224 vge_stop(sc);
2225
2226 for (i = 0; i < 5; i++)
2227 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2228 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2229 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2230 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2231 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2232
2233 sc->suspended = 1;
2234
2235 return (0);
2236 }
2237
2238 /*
2239 * Device resume routine. Restore some PCI settings in case the BIOS
2240 * doesn't, re-enable busmastering, and restart the interface if
2241 * appropriate.
2242 */
2243 static int
2244 vge_resume(dev)
2245 struct device * dev;
2246 {
2247 struct vge_softc *sc = (struct vge_softc *)dev;
2248 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2249 int i;
2250
2251 /* better way to do this? */
2252 for (i = 0; i < 5; i++)
2253 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2254 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2255 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2256 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2257 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2258
2259 /* reenable busmastering */
2260 pci_enable_busmaster(dev);
2261 pci_enable_io(dev, SYS_RES_MEMORY);
2262
2263 /* reinitialize interface if necessary */
2264 if (ifp->if_flags & IFF_UP)
2265 vge_init(sc);
2266
2267 sc->suspended = 0;
2268
2269 return (0);
2270 }
2271 #endif
2272
2273 /*
2274 * Stop all chip I/O so that the kernel's probe routines don't
2275 * get confused by errant DMAs when rebooting.
2276 */
2277 static void
2278 vge_shutdown(arg)
2279 void *arg;
2280 {
2281 struct vge_softc *sc = (struct vge_softc *)arg;
2282
2283 vge_stop(sc);
2284 }
2285