Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.4.4.2
      1 /* $NetBSD: if_vge.c,v 1.4.4.2 2005/03/19 08:35:11 yamt Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.4.4.2 2005/03/19 08:35:11 yamt Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <machine/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 #include <dev/pci/if_vgevar.h>
    117 
    118 static int vge_probe	(struct device *, struct cfdata *, void *);
    119 static void vge_attach	(struct device *, struct device *, void *);
    120 
    121 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
    122 
    123 static int vge_dma_map_rx_desc	(struct vge_softc *, int);
    124 static void vge_dma_map_tx_desc	(struct vge_softc *, struct mbuf *, int, int);
    125 static int vge_allocmem		(struct vge_softc *);
    126 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
    127 static int vge_rx_list_init	(struct vge_softc *);
    128 static int vge_tx_list_init	(struct vge_softc *);
    129 #ifdef VGE_FIXUP_RX
    130 static __inline void vge_fixup_rx
    131 				(struct mbuf *);
    132 #endif
    133 static void vge_rxeof		(struct vge_softc *);
    134 static void vge_txeof		(struct vge_softc *);
    135 static int vge_intr		(void *);
    136 static void vge_tick		(void *);
    137 static void vge_start		(struct ifnet *);
    138 static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
    139 static int vge_init		(struct ifnet *);
    140 static void vge_stop		(struct vge_softc *);
    141 static void vge_watchdog	(struct ifnet *);
    142 #if VGE_POWER_MANAGEMENT
    143 static int vge_suspend		(struct device *);
    144 static int vge_resume		(struct device *);
    145 #endif
    146 static void vge_shutdown	(void *);
    147 static int vge_ifmedia_upd	(struct ifnet *);
    148 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
    149 
    150 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
    151 static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
    152 
    153 static void vge_miipoll_start	(struct vge_softc *);
    154 static void vge_miipoll_stop	(struct vge_softc *);
    155 static int vge_miibus_readreg	(struct device *, int, int);
    156 static void vge_miibus_writereg	(struct device *, int, int, int);
    157 static void vge_miibus_statchg	(struct device *);
    158 
    159 static void vge_cam_clear	(struct vge_softc *);
    160 static int vge_cam_set		(struct vge_softc *, uint8_t *);
    161 static void vge_setmulti	(struct vge_softc *);
    162 static void vge_reset		(struct vge_softc *);
    163 
    164 #define VGE_PCI_LOIO             0x10
    165 #define VGE_PCI_LOMEM            0x14
    166 
    167 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    168     vge_probe, vge_attach, NULL, NULL);
    169 
    170 /*
    171  * Defragment mbuf chain contents to be as linear as possible.
    172  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    173  * chain is always freed.
    174  * XXX temporary until there would be generic function doing this.
    175  */
    176 #define m_defrag	vge_m_defrag
    177 struct mbuf * vge_m_defrag(struct mbuf *, int);
    178 
    179 struct mbuf *
    180 vge_m_defrag(struct mbuf *mold, int flags)
    181 {
    182 	struct mbuf *m0, *mn, *n;
    183 	size_t sz = mold->m_pkthdr.len;
    184 
    185 #ifdef DIAGNOSTIC
    186 	if ((mold->m_flags & M_PKTHDR) == 0)
    187 		panic("m_defrag: not a mbuf chain header");
    188 #endif
    189 
    190 	MGETHDR(m0, flags, MT_DATA);
    191 	if (m0 == NULL)
    192 		return NULL;
    193 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    194 	mn = m0;
    195 
    196 	do {
    197 		if (sz > MHLEN) {
    198 			MCLGET(mn, M_DONTWAIT);
    199 			if ((mn->m_flags & M_EXT) == 0) {
    200 				m_freem(m0);
    201 				return NULL;
    202 			}
    203 		}
    204 
    205 		mn->m_len = MIN(sz, MCLBYTES);
    206 
    207 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    208 		     mtod(mn, caddr_t));
    209 
    210 		sz -= mn->m_len;
    211 
    212 		if (sz > 0) {
    213 			/* need more mbufs */
    214 			MGET(n, M_NOWAIT, MT_DATA);
    215 			if (n == NULL) {
    216 				m_freem(m0);
    217 				return NULL;
    218 			}
    219 
    220 			mn->m_next = n;
    221 			mn = n;
    222 		}
    223 	} while (sz > 0);
    224 
    225 	return m0;
    226 }
    227 
    228 /*
    229  * Read a word of data stored in the EEPROM at address 'addr.'
    230  */
    231 static void
    232 vge_eeprom_getword(sc, addr, dest)
    233 	struct vge_softc	*sc;
    234 	int			addr;
    235 	u_int16_t		*dest;
    236 {
    237 	register int		i;
    238 	u_int16_t		word = 0;
    239 
    240 	/*
    241 	 * Enter EEPROM embedded programming mode. In order to
    242 	 * access the EEPROM at all, we first have to set the
    243 	 * EELOAD bit in the CHIPCFG2 register.
    244 	 */
    245 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    246 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    247 
    248 	/* Select the address of the word we want to read */
    249 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    250 
    251 	/* Issue read command */
    252 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    253 
    254 	/* Wait for the done bit to be set. */
    255 	for (i = 0; i < VGE_TIMEOUT; i++) {
    256 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    257 			break;
    258 	}
    259 
    260 	if (i == VGE_TIMEOUT) {
    261 		printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname);
    262 		*dest = 0;
    263 		return;
    264 	}
    265 
    266 	/* Read the result */
    267 	word = CSR_READ_2(sc, VGE_EERDDAT);
    268 
    269 	/* Turn off EEPROM access mode. */
    270 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    271 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    272 
    273 	*dest = word;
    274 
    275 	return;
    276 }
    277 
    278 /*
    279  * Read a sequence of words from the EEPROM.
    280  */
    281 static void
    282 vge_read_eeprom(sc, dest, off, cnt, swap)
    283 	struct vge_softc	*sc;
    284 	caddr_t			dest;
    285 	int			off;
    286 	int			cnt;
    287 	int			swap;
    288 {
    289 	int			i;
    290 	u_int16_t		word = 0, *ptr;
    291 
    292 	for (i = 0; i < cnt; i++) {
    293 		vge_eeprom_getword(sc, off + i, &word);
    294 		ptr = (u_int16_t *)(dest + (i * 2));
    295 		if (swap)
    296 			*ptr = ntohs(word);
    297 		else
    298 			*ptr = word;
    299 	}
    300 }
    301 
    302 static void
    303 vge_miipoll_stop(sc)
    304 	struct vge_softc	*sc;
    305 {
    306 	int			i;
    307 
    308 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    309 
    310 	for (i = 0; i < VGE_TIMEOUT; i++) {
    311 		DELAY(1);
    312 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    313 			break;
    314 	}
    315 
    316 	if (i == VGE_TIMEOUT) {
    317 		printf("%s: failed to idle MII autopoll\n",
    318 		    sc->sc_dev.dv_xname);
    319 	}
    320 
    321 	return;
    322 }
    323 
    324 static void
    325 vge_miipoll_start(sc)
    326 	struct vge_softc	*sc;
    327 {
    328 	int			i;
    329 
    330 	/* First, make sure we're idle. */
    331 
    332 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    333 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    334 
    335 	for (i = 0; i < VGE_TIMEOUT; i++) {
    336 		DELAY(1);
    337 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    338 			break;
    339 	}
    340 
    341 	if (i == VGE_TIMEOUT) {
    342 		printf("%s: failed to idle MII autopoll\n",
    343 		    sc->sc_dev.dv_xname);
    344 		return;
    345 	}
    346 
    347 	/* Now enable auto poll mode. */
    348 
    349 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    350 
    351 	/* And make sure it started. */
    352 
    353 	for (i = 0; i < VGE_TIMEOUT; i++) {
    354 		DELAY(1);
    355 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    356 			break;
    357 	}
    358 
    359 	if (i == VGE_TIMEOUT) {
    360 		printf("%s: failed to start MII autopoll\n",
    361 		    sc->sc_dev.dv_xname);
    362 	}
    363 }
    364 
    365 static int
    366 vge_miibus_readreg(dev, phy, reg)
    367 	struct device *dev;
    368 	int phy, reg;
    369 {
    370 	struct vge_softc	*sc = (struct vge_softc *)dev;
    371 	int			i;
    372 	u_int16_t		rval = 0;
    373 
    374 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    375 		return(0);
    376 
    377 	VGE_LOCK(sc);
    378 	vge_miipoll_stop(sc);
    379 
    380 	/* Specify the register we want to read. */
    381 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    382 
    383 	/* Issue read command. */
    384 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    385 
    386 	/* Wait for the read command bit to self-clear. */
    387 	for (i = 0; i < VGE_TIMEOUT; i++) {
    388 		DELAY(1);
    389 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    390 			break;
    391 	}
    392 
    393 	if (i == VGE_TIMEOUT)
    394 		printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
    395 	else
    396 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    397 
    398 	vge_miipoll_start(sc);
    399 	VGE_UNLOCK(sc);
    400 
    401 	return (rval);
    402 }
    403 
    404 static void
    405 vge_miibus_writereg(dev, phy, reg, data)
    406 	struct device	*dev;
    407 	int		phy, reg, data;
    408 {
    409 	struct vge_softc	*sc = (struct vge_softc *)dev;
    410 	int			i;
    411 
    412 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    413 		return;
    414 
    415 	VGE_LOCK(sc);
    416 	vge_miipoll_stop(sc);
    417 
    418 	/* Specify the register we want to write. */
    419 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    420 
    421 	/* Specify the data we want to write. */
    422 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    423 
    424 	/* Issue write command. */
    425 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    426 
    427 	/* Wait for the write command bit to self-clear. */
    428 	for (i = 0; i < VGE_TIMEOUT; i++) {
    429 		DELAY(1);
    430 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    431 			break;
    432 	}
    433 
    434 	if (i == VGE_TIMEOUT) {
    435 		printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
    436 	}
    437 
    438 	vge_miipoll_start(sc);
    439 	VGE_UNLOCK(sc);
    440 }
    441 
    442 static void
    443 vge_cam_clear(sc)
    444 	struct vge_softc	*sc;
    445 {
    446 	int			i;
    447 
    448 	/*
    449 	 * Turn off all the mask bits. This tells the chip
    450 	 * that none of the entries in the CAM filter are valid.
    451 	 * desired entries will be enabled as we fill the filter in.
    452 	 */
    453 
    454 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    455 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    456 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    457 	for (i = 0; i < 8; i++)
    458 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    459 
    460 	/* Clear the VLAN filter too. */
    461 
    462 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    463 	for (i = 0; i < 8; i++)
    464 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    465 
    466 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    467 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    468 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    469 
    470 	sc->vge_camidx = 0;
    471 
    472 	return;
    473 }
    474 
    475 static int
    476 vge_cam_set(sc, addr)
    477 	struct vge_softc	*sc;
    478 	uint8_t			*addr;
    479 {
    480 	int			i, error = 0;
    481 
    482 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
    483 		return(ENOSPC);
    484 
    485 	/* Select the CAM data page. */
    486 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    487 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    488 
    489 	/* Set the filter entry we want to update and enable writing. */
    490 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
    491 
    492 	/* Write the address to the CAM registers */
    493 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    494 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    495 
    496 	/* Issue a write command. */
    497 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    498 
    499 	/* Wake for it to clear. */
    500 	for (i = 0; i < VGE_TIMEOUT; i++) {
    501 		DELAY(1);
    502 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    503 			break;
    504 	}
    505 
    506 	if (i == VGE_TIMEOUT) {
    507 		printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname);
    508 		error = EIO;
    509 		goto fail;
    510 	}
    511 
    512 	/* Select the CAM mask page. */
    513 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    514 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    515 
    516 	/* Set the mask bit that enables this filter. */
    517 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
    518 	    1<<(sc->vge_camidx & 7));
    519 
    520 	sc->vge_camidx++;
    521 
    522 fail:
    523 	/* Turn off access to CAM. */
    524 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    525 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    526 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    527 
    528 	return (error);
    529 }
    530 
    531 /*
    532  * Program the multicast filter. We use the 64-entry CAM filter
    533  * for perfect filtering. If there's more than 64 multicast addresses,
    534  * we use the hash filter insted.
    535  */
    536 static void
    537 vge_setmulti(sc)
    538 	struct vge_softc	*sc;
    539 {
    540 	struct ifnet		*ifp;
    541 	int			error = 0;
    542 	u_int32_t		h, hashes[2] = { 0, 0 };
    543 	struct ether_multi *enm;
    544 	struct ether_multistep step;
    545 
    546 	ifp = &sc->sc_ethercom.ec_if;
    547 
    548 	/* First, zot all the multicast entries. */
    549 	vge_cam_clear(sc);
    550 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    551 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    552 
    553 	/*
    554 	 * If the user wants allmulti or promisc mode, enable reception
    555 	 * of all multicast frames.
    556 	 */
    557 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    558     allmulti:
    559 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    560 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    561 		return;
    562 	}
    563 
    564 	/* Now program new ones */
    565 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    566 	while(enm != NULL) {
    567 		/*
    568 		 * If multicast range, fall back to ALLMULTI.
    569 		 */
    570 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    571 				ETHER_ADDR_LEN) != 0)
    572 			goto allmulti;
    573 
    574 		error = vge_cam_set(sc,
    575 		    LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
    576 		if (error)
    577 			break;
    578 
    579 		ETHER_NEXT_MULTI(step, enm);
    580 	}
    581 
    582 	/* If there were too many addresses, use the hash filter. */
    583 	if (error) {
    584 		vge_cam_clear(sc);
    585 
    586 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    587 		while(enm != NULL) {
    588 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
    589 			    enm->enm_addrlo), ETHER_ADDR_LEN) >> 26;
    590 			if (h < 32)
    591 				hashes[0] |= (1 << h);
    592 			else
    593 				hashes[1] |= (1 << (h - 32));
    594 		}
    595 
    596 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    597 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    598 	}
    599 
    600 	return;
    601 }
    602 
    603 static void
    604 vge_reset(sc)
    605 	struct vge_softc		*sc;
    606 {
    607 	register int		i;
    608 
    609 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    610 
    611 	for (i = 0; i < VGE_TIMEOUT; i++) {
    612 		DELAY(5);
    613 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    614 			break;
    615 	}
    616 
    617 	if (i == VGE_TIMEOUT) {
    618 		printf("%s: soft reset timed out", sc->sc_dev.dv_xname);
    619 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    620 		DELAY(2000);
    621 	}
    622 
    623 	DELAY(5000);
    624 
    625 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    626 
    627 	for (i = 0; i < VGE_TIMEOUT; i++) {
    628 		DELAY(5);
    629 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    630 			break;
    631 	}
    632 
    633 	if (i == VGE_TIMEOUT) {
    634 		printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname);
    635 		return;
    636 	}
    637 
    638 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    639 
    640 	return;
    641 }
    642 
    643 /*
    644  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    645  * IDs against our list and return a device name if we find a match.
    646  */
    647 static int
    648 vge_probe(struct device *parent, struct cfdata *match, void *aux)
    649 {
    650 	struct pci_attach_args *pa = aux;
    651 
    652 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    653 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    654 		return 1;
    655 
    656 	return (0);
    657 }
    658 
    659 static int
    660 vge_dma_map_rx_desc(sc, idx)
    661 	struct vge_softc	*sc;
    662 	int			idx;
    663 {
    664 	struct vge_rx_desc	*d = NULL;
    665 	bus_dma_segment_t	*segs;
    666 
    667 	/*
    668 	 * Map the segment array into descriptors.
    669 	 */
    670 
    671 	d = &sc->vge_ldata.vge_rx_list[idx];
    672 
    673 	/* If this descriptor is still owned by the chip, bail. */
    674 
    675 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
    676 		printf("%s: tried to map busy descriptor\n",
    677 		    sc->sc_dev.dv_xname);
    678 		return (EBUSY);
    679 	}
    680 
    681 	segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs;
    682 
    683 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
    684 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
    685 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
    686 	d->vge_sts = 0;
    687 	d->vge_ctl = 0;
    688 
    689 	return (0);
    690 }
    691 
    692 static void
    693 vge_dma_map_tx_desc(sc, m0, idx, flags)
    694 	struct vge_softc	*sc;
    695 	struct mbuf		*m0;
    696 	int			idx, flags;
    697 {
    698 	struct vge_tx_desc	*d = &sc->vge_ldata.vge_tx_list[idx];
    699 	struct vge_tx_frag	*f;
    700 	int			i = 0;
    701 	bus_dma_segment_t	*segs;
    702 	size_t			sz;
    703 	bus_dmamap_t		map = sc->vge_ldata.vge_tx_dmamap[idx];
    704 
    705 	/* Map the segment array into descriptors. */
    706 
    707 	segs = map->dm_segs;
    708 	for (i = 0; i < map->dm_nsegs; i++) {
    709 		f = &d->vge_frag[i];
    710 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
    711 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
    712 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
    713 	}
    714 
    715 	/* Argh. This chip does not autopad short frames */
    716 
    717 	sz = m0->m_pkthdr.len;
    718 	if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
    719 		f = &d->vge_frag[i];
    720 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz));
    721 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
    722 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
    723 		sz = VGE_MIN_FRAMELEN;
    724 		i++;
    725 	}
    726 
    727 	/*
    728 	 * When telling the chip how many segments there are, we
    729 	 * must use nsegs + 1 instead of just nsegs. Darned if I
    730 	 * know why.
    731 	 */
    732 	i++;
    733 
    734 	d->vge_sts = sz << 16;
    735 	d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM;
    736 
    737 	if (sz > ETHERMTU + ETHER_HDR_LEN)
    738 		d->vge_ctl |= VGE_TDCTL_JUMBO;
    739 }
    740 
    741 static int
    742 vge_allocmem(sc)
    743 	struct vge_softc *sc;
    744 {
    745 	int			error;
    746 	int			nseg;
    747 	int			i;
    748 	bus_dma_segment_t	seg;
    749 
    750 	/*
    751 	 * Allocate map for TX descriptor list.
    752 	 */
    753 	error = bus_dmamap_create(sc->vge_dmat,
    754 	    round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ),
    755 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
    756 	    &sc->vge_ldata.vge_tx_list_map);
    757 	if (error) {
    758 		printf("%s: could not allocate TX dma list map\n",
    759 		    sc->sc_dev.dv_xname);
    760 		return (ENOMEM);
    761 	}
    762 
    763 	/*
    764 	 * Allocate memory for TX descriptor list.
    765 	 */
    766 
    767 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN,
    768 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    769 	if (error) {
    770 		printf("%s: could not allocate TX ring dma memory\n",
    771 		    sc->sc_dev.dv_xname);
    772 		return (ENOMEM);
    773 	}
    774 
    775 	/* Map the memory to kernel VA space */
    776 
    777 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
    778 	     (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT);
    779 	if (error) {
    780 		printf("%s: could not map TX ring dma memory\n",
    781 		    sc->sc_dev.dv_xname);
    782 		return (ENOMEM);
    783 	}
    784 
    785 	/* Load the map for the TX ring. */
    786 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map,
    787 	    sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
    788 	if (error) {
    789 		printf("%s: could not load TX ring dma memory\n",
    790 		    sc->sc_dev.dv_xname);
    791 		return (ENOMEM);
    792 	}
    793 
    794 	sc->vge_ldata.vge_tx_list_addr =
    795 		sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr;
    796 
    797 	/* Create DMA maps for TX buffers */
    798 
    799 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
    800 		error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN,
    801 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0,
    802 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    803 		    &sc->vge_ldata.vge_tx_dmamap[i]);
    804 		if (error) {
    805 			printf("%s: can't create DMA map for TX\n",
    806 			    sc->sc_dev.dv_xname);
    807 			return (ENOMEM);
    808 		}
    809 	}
    810 
    811 	/*
    812 	 * Allocate map for RX descriptor list.
    813 	 */
    814 	error = bus_dmamap_create(sc->vge_dmat,
    815 	    round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ),
    816 	    0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT,
    817 	    &sc->vge_ldata.vge_rx_list_map);
    818 	if (error) {
    819 		printf("%s: could not allocate RX dma list map\n",
    820 		    sc->sc_dev.dv_xname);
    821 		return (ENOMEM);
    822 	}
    823 
    824 	/* Allocate DMA'able memory for the RX ring */
    825 
    826 	error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN,
    827 	    0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    828 	if (error)
    829 		return (ENOMEM);
    830 
    831 	/* Map the memory to kernel VA space */
    832 
    833 	error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len,
    834 	     (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT);
    835 	if (error)
    836 		return (ENOMEM);
    837 
    838 	/* Load the map for the RX ring. */
    839 	error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map,
    840 	    sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT);
    841 	if (error) {
    842 		printf("%s: could not load RX ring dma memory\n",
    843 		    sc->sc_dev.dv_xname);
    844 		return (ENOMEM);
    845 	}
    846 
    847 	sc->vge_ldata.vge_rx_list_addr =
    848 		sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr;
    849 
    850 	/* Create DMA maps for RX buffers */
    851 
    852 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
    853 		error = bus_dmamap_create(sc->vge_dmat, MCLBYTES,
    854 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
    855 		    &sc->vge_ldata.vge_rx_dmamap[i]);
    856 		if (error) {
    857 			printf("%s: can't create DMA map for RX\n",
    858 			     sc->sc_dev.dv_xname);
    859 			return (ENOMEM);
    860 		}
    861 	}
    862 
    863 	return (0);
    864 }
    865 
    866 /*
    867  * Attach the interface. Allocate softc structures, do ifmedia
    868  * setup and ethernet/BPF attach.
    869  */
    870 static void
    871 vge_attach(struct device *parent, struct device *self, void *aux)
    872 {
    873 	u_char			eaddr[ETHER_ADDR_LEN];
    874 	struct vge_softc	*sc = (struct vge_softc *)self;
    875 	struct ifnet		*ifp;
    876 	struct pci_attach_args *pa = aux;
    877 	pci_chipset_tag_t pc = pa->pa_pc;
    878 	const char *intrstr;
    879 	pci_intr_handle_t ih;
    880 
    881 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    882 		PCI_REVISION(pa->pa_class));
    883 
    884 	/* Make sure bus-mastering is enabled */
    885         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    886 		pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    887 		PCI_COMMAND_MASTER_ENABLE);
    888 
    889 	/*
    890 	 * Map control/status registers.
    891 	 */
    892 	if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM,
    893 	    PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR,
    894 	    &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) {
    895 		aprint_error("%s: couldn't map memory\n",
    896 			sc->sc_dev.dv_xname);
    897 		return;
    898 	}
    899 
    900         /*
    901          * Map and establish our interrupt.
    902          */
    903 	if (pci_intr_map(pa, &ih)) {
    904 		aprint_error("%s: unable to map interrupt\n",
    905 		    sc->sc_dev.dv_xname);
    906 		return;
    907 	}
    908 	intrstr = pci_intr_string(pc, ih);
    909 	sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    910 	if (sc->vge_intrhand == NULL) {
    911 		printf("%s: unable to establish interrupt",
    912 		    sc->sc_dev.dv_xname);
    913 		if (intrstr != NULL)
    914 			printf(" at %s", intrstr);
    915 		printf("\n");
    916 		return;
    917 	}
    918 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    919 
    920 	/* Reset the adapter. */
    921 	vge_reset(sc);
    922 
    923 	/*
    924 	 * Get station address from the EEPROM.
    925 	 */
    926 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
    927 	bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN);
    928 
    929 	printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname,
    930 	    ether_sprintf(eaddr));
    931 
    932 	/*
    933 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    934 	 * but we don't use that for now.
    935 	 */
    936 	sc->vge_dmat = pa->pa_dmat;
    937 
    938 	if (vge_allocmem(sc))
    939 		return;
    940 
    941 	ifp = &sc->sc_ethercom.ec_if;
    942 	ifp->if_softc = sc;
    943 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    944 	ifp->if_mtu = ETHERMTU;
    945 	ifp->if_baudrate = IF_Gbps(1);
    946 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    947 	ifp->if_ioctl = vge_ioctl;
    948 	ifp->if_start = vge_start;
    949 
    950 	/*
    951 	 * We can support 802.1Q VLAN-sized frames and jumbo
    952 	 * Ethernet frames.
    953 	 */
    954 	sc->sc_ethercom.ec_capabilities |=
    955 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    956 	    ETHERCAP_VLAN_HWTAGGING;
    957 
    958 	/*
    959 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    960 	 */
    961 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 |
    962 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    963 
    964 #ifdef DEVICE_POLLING
    965 #ifdef IFCAP_POLLING
    966 	ifp->if_capabilities |= IFCAP_POLLING;
    967 #endif
    968 #endif
    969 	ifp->if_watchdog = vge_watchdog;
    970 	ifp->if_init = vge_init;
    971 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    972 
    973 	/*
    974 	 * Initialize our media structures and probe the MII.
    975 	 */
    976 	sc->sc_mii.mii_ifp = ifp;
    977 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    978 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    979 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
    980 	ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd,
    981 	    vge_ifmedia_sts);
    982 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    983 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    984 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    985 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    986 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    987 	} else
    988 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    989 
    990 	/*
    991 	 * Attach the interface.
    992 	 */
    993 	if_attach(ifp);
    994 	ether_ifattach(ifp, eaddr);
    995 
    996 	callout_init(&sc->vge_timeout);
    997 	callout_setfunc(&sc->vge_timeout, vge_tick, sc);
    998 
    999 	/*
   1000 	 * Make sure the interface is shutdown during reboot.
   1001 	 */
   1002 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
   1003 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1004 		    sc->sc_dev.dv_xname);
   1005 	}
   1006 }
   1007 
   1008 static int
   1009 vge_newbuf(sc, idx, m)
   1010 	struct vge_softc	*sc;
   1011 	int			idx;
   1012 	struct mbuf		*m;
   1013 {
   1014 	struct mbuf		*n = NULL;
   1015 	int			i, error;
   1016 
   1017 	if (m == NULL) {
   1018 		n = m_gethdr(M_DONTWAIT, MT_DATA);
   1019 		if (n == NULL)
   1020 			return (ENOBUFS);
   1021 
   1022 		m_clget(n, M_DONTWAIT);
   1023 		if ((n->m_flags & M_EXT) == 0) {
   1024 			m_freem(n);
   1025 			return (ENOBUFS);
   1026 		}
   1027 
   1028 		m = n;
   1029 	} else
   1030 		m->m_data = m->m_ext.ext_buf;
   1031 
   1032 
   1033 #ifdef VGE_FIXUP_RX
   1034 	/*
   1035 	 * This is part of an evil trick to deal with non-x86 platforms.
   1036 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1037 	 * boundaries, but that will hose non-x86 machines. To get around
   1038 	 * this, we leave some empty space at the start of each buffer
   1039 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1040 	 * to achieve word alignment. This is slightly more efficient
   1041 	 * than allocating a new buffer, copying the contents, and
   1042 	 * discarding the old buffer.
   1043 	 */
   1044 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
   1045 	m_adj(m, VGE_ETHER_ALIGN);
   1046 #else
   1047 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1048 #endif
   1049 
   1050 	error = bus_dmamap_load_mbuf(sc->vge_dmat,
   1051 	    sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT);
   1052 	if (error || vge_dma_map_rx_desc(sc, idx)) {
   1053 		if (n != NULL)
   1054 			m_freem(n);
   1055 		return (ENOMEM);
   1056 	}
   1057 
   1058 	/*
   1059 	 * Note: the manual fails to document the fact that for
   1060 	 * proper opration, the driver needs to replentish the RX
   1061 	 * DMA ring 4 descriptors at a time (rather than one at a
   1062 	 * time, like most chips). We can allocate the new buffers
   1063 	 * but we should not set the OWN bits until we're ready
   1064 	 * to hand back 4 of them in one shot.
   1065 	 */
   1066 
   1067 #define VGE_RXCHUNK 4
   1068 	sc->vge_rx_consumed++;
   1069 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
   1070 		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
   1071 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
   1072 			    htole32(VGE_RDSTS_OWN);
   1073 		sc->vge_rx_consumed = 0;
   1074 	}
   1075 
   1076 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
   1077 
   1078 	bus_dmamap_sync(sc->vge_dmat,
   1079 	    sc->vge_ldata.vge_rx_dmamap[idx],
   1080 	    0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize,
   1081 	    BUS_DMASYNC_PREREAD);
   1082 
   1083 	return (0);
   1084 }
   1085 
   1086 static int
   1087 vge_tx_list_init(sc)
   1088 	struct vge_softc		*sc;
   1089 {
   1090 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
   1091 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
   1092 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
   1093 
   1094 	bus_dmamap_sync(sc->vge_dmat,
   1095 	    sc->vge_ldata.vge_tx_list_map,
   1096 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1097 	    BUS_DMASYNC_PREWRITE);
   1098 
   1099 	sc->vge_ldata.vge_tx_prodidx = 0;
   1100 	sc->vge_ldata.vge_tx_considx = 0;
   1101 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
   1102 
   1103 	return (0);
   1104 }
   1105 
   1106 static int
   1107 vge_rx_list_init(sc)
   1108 	struct vge_softc		*sc;
   1109 {
   1110 	int			i;
   1111 
   1112 	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
   1113 	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
   1114 	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
   1115 
   1116 	sc->vge_rx_consumed = 0;
   1117 
   1118 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   1119 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
   1120 			return (ENOBUFS);
   1121 	}
   1122 
   1123 	/* Flush the RX descriptors */
   1124 
   1125 	bus_dmamap_sync(sc->vge_dmat,
   1126 	    sc->vge_ldata.vge_rx_list_map,
   1127 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1128 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1129 
   1130 	sc->vge_ldata.vge_rx_prodidx = 0;
   1131 	sc->vge_rx_consumed = 0;
   1132 	sc->vge_head = sc->vge_tail = NULL;
   1133 
   1134 	return (0);
   1135 }
   1136 
   1137 #ifdef VGE_FIXUP_RX
   1138 static __inline void
   1139 vge_fixup_rx(m)
   1140 	struct mbuf		*m;
   1141 {
   1142 	int			i;
   1143 	uint16_t		*src, *dst;
   1144 
   1145 	src = mtod(m, uint16_t *);
   1146 	dst = src - 1;
   1147 
   1148 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1149 		*dst++ = *src++;
   1150 
   1151 	m->m_data -= ETHER_ALIGN;
   1152 
   1153 	return;
   1154 }
   1155 #endif
   1156 
   1157 /*
   1158  * RX handler. We support the reception of jumbo frames that have
   1159  * been fragmented across multiple 2K mbuf cluster buffers.
   1160  */
   1161 static void
   1162 vge_rxeof(sc)
   1163 	struct vge_softc	*sc;
   1164 {
   1165 	struct mbuf		*m;
   1166 	struct ifnet		*ifp;
   1167 	int			i, total_len;
   1168 	int			lim = 0;
   1169 	struct vge_rx_desc	*cur_rx;
   1170 	u_int32_t		rxstat, rxctl;
   1171 
   1172 	VGE_LOCK_ASSERT(sc);
   1173 	ifp = &sc->sc_ethercom.ec_if;
   1174 	i = sc->vge_ldata.vge_rx_prodidx;
   1175 
   1176 	/* Invalidate the descriptor memory */
   1177 
   1178 	bus_dmamap_sync(sc->vge_dmat,
   1179 	    sc->vge_ldata.vge_rx_list_map,
   1180 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1181 	    BUS_DMASYNC_POSTREAD);
   1182 
   1183 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
   1184 
   1185 #ifdef DEVICE_POLLING
   1186 		if (ifp->if_flags & IFF_POLLING) {
   1187 			if (sc->rxcycles <= 0)
   1188 				break;
   1189 			sc->rxcycles--;
   1190 		}
   1191 #endif /* DEVICE_POLLING */
   1192 
   1193 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
   1194 		m = sc->vge_ldata.vge_rx_mbuf[i];
   1195 		total_len = VGE_RXBYTES(cur_rx);
   1196 		rxstat = le32toh(cur_rx->vge_sts);
   1197 		rxctl = le32toh(cur_rx->vge_ctl);
   1198 
   1199 		/* Invalidate the RX mbuf and unload its map */
   1200 
   1201 		bus_dmamap_sync(sc->vge_dmat,
   1202 		    sc->vge_ldata.vge_rx_dmamap[i],
   1203 		    0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize,
   1204 		    BUS_DMASYNC_POSTWRITE);
   1205 		bus_dmamap_unload(sc->vge_dmat,
   1206 		    sc->vge_ldata.vge_rx_dmamap[i]);
   1207 
   1208 		/*
   1209 		 * If the 'start of frame' bit is set, this indicates
   1210 		 * either the first fragment in a multi-fragment receive,
   1211 		 * or an intermediate fragment. Either way, we want to
   1212 		 * accumulate the buffers.
   1213 		 */
   1214 		if (rxstat & VGE_RXPKT_SOF) {
   1215 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
   1216 			if (sc->vge_head == NULL)
   1217 				sc->vge_head = sc->vge_tail = m;
   1218 			else {
   1219 				m->m_flags &= ~M_PKTHDR;
   1220 				sc->vge_tail->m_next = m;
   1221 				sc->vge_tail = m;
   1222 			}
   1223 			vge_newbuf(sc, i, NULL);
   1224 			VGE_RX_DESC_INC(i);
   1225 			continue;
   1226 		}
   1227 
   1228 		/*
   1229 		 * Bad/error frames will have the RXOK bit cleared.
   1230 		 * However, there's one error case we want to allow:
   1231 		 * if a VLAN tagged frame arrives and the chip can't
   1232 		 * match it against the CAM filter, it considers this
   1233 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1234 		 * We don't want to drop the frame though: our VLAN
   1235 		 * filtering is done in software.
   1236 		 */
   1237 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
   1238 		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
   1239 			ifp->if_ierrors++;
   1240 			/*
   1241 			 * If this is part of a multi-fragment packet,
   1242 			 * discard all the pieces.
   1243 			 */
   1244 			if (sc->vge_head != NULL) {
   1245 				m_freem(sc->vge_head);
   1246 				sc->vge_head = sc->vge_tail = NULL;
   1247 			}
   1248 			vge_newbuf(sc, i, m);
   1249 			VGE_RX_DESC_INC(i);
   1250 			continue;
   1251 		}
   1252 
   1253 		/*
   1254 		 * If allocating a replacement mbuf fails,
   1255 		 * reload the current one.
   1256 		 */
   1257 
   1258 		if (vge_newbuf(sc, i, NULL)) {
   1259 			ifp->if_ierrors++;
   1260 			if (sc->vge_head != NULL) {
   1261 				m_freem(sc->vge_head);
   1262 				sc->vge_head = sc->vge_tail = NULL;
   1263 			}
   1264 			vge_newbuf(sc, i, m);
   1265 			VGE_RX_DESC_INC(i);
   1266 			continue;
   1267 		}
   1268 
   1269 		VGE_RX_DESC_INC(i);
   1270 
   1271 		if (sc->vge_head != NULL) {
   1272 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
   1273 			/*
   1274 			 * Special case: if there's 4 bytes or less
   1275 			 * in this buffer, the mbuf can be discarded:
   1276 			 * the last 4 bytes is the CRC, which we don't
   1277 			 * care about anyway.
   1278 			 */
   1279 			if (m->m_len <= ETHER_CRC_LEN) {
   1280 				sc->vge_tail->m_len -=
   1281 				    (ETHER_CRC_LEN - m->m_len);
   1282 				m_freem(m);
   1283 			} else {
   1284 				m->m_len -= ETHER_CRC_LEN;
   1285 				m->m_flags &= ~M_PKTHDR;
   1286 				sc->vge_tail->m_next = m;
   1287 			}
   1288 			m = sc->vge_head;
   1289 			sc->vge_head = sc->vge_tail = NULL;
   1290 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1291 		} else
   1292 			m->m_pkthdr.len = m->m_len =
   1293 			    (total_len - ETHER_CRC_LEN);
   1294 
   1295 #ifdef VGE_FIXUP_RX
   1296 		vge_fixup_rx(m);
   1297 #endif
   1298 		ifp->if_ipackets++;
   1299 		m->m_pkthdr.rcvif = ifp;
   1300 
   1301 		/* Do RX checksumming if enabled */
   1302 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1303 
   1304 			/* Check IP header checksum */
   1305 			if (rxctl & VGE_RDCTL_IPPKT)
   1306 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1307 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1308 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1309 		}
   1310 
   1311 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1312 			/* Check UDP checksum */
   1313 			if (rxctl & VGE_RDCTL_TCPPKT)
   1314 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1315 
   1316 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1317 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1318 		}
   1319 
   1320 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1321 			/* Check UDP checksum */
   1322 			if (rxctl & VGE_RDCTL_UDPPKT)
   1323 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1324 
   1325 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1326 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1327 		}
   1328 
   1329 		if (rxstat & VGE_RDSTS_VTAG)
   1330 			VLAN_INPUT_TAG(ifp, m,
   1331 			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
   1332 
   1333 #if NBPFILTER > 0
   1334 		/*
   1335 		 * Handle BPF listeners.
   1336 		 */
   1337 		if (ifp->if_bpf)
   1338 			bpf_mtap(ifp->if_bpf, m);
   1339 #endif
   1340 
   1341 		VGE_UNLOCK(sc);
   1342 		(*ifp->if_input)(ifp, m);
   1343 		VGE_LOCK(sc);
   1344 
   1345 		lim++;
   1346 		if (lim == VGE_RX_DESC_CNT)
   1347 			break;
   1348 
   1349 	}
   1350 
   1351 	/* Flush the RX DMA ring */
   1352 
   1353 	bus_dmamap_sync(sc->vge_dmat,
   1354 	    sc->vge_ldata.vge_rx_list_map,
   1355 	    0, sc->vge_ldata.vge_rx_list_map->dm_mapsize,
   1356 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1357 
   1358 	sc->vge_ldata.vge_rx_prodidx = i;
   1359 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1360 
   1361 
   1362 	return;
   1363 }
   1364 
   1365 static void
   1366 vge_txeof(sc)
   1367 	struct vge_softc		*sc;
   1368 {
   1369 	struct ifnet		*ifp;
   1370 	u_int32_t		txstat;
   1371 	int			idx;
   1372 
   1373 	ifp = &sc->sc_ethercom.ec_if;
   1374 	idx = sc->vge_ldata.vge_tx_considx;
   1375 
   1376 	/* Invalidate the TX descriptor list */
   1377 
   1378 	bus_dmamap_sync(sc->vge_dmat,
   1379 	    sc->vge_ldata.vge_tx_list_map,
   1380 	    0,  sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1381 	    BUS_DMASYNC_POSTREAD);
   1382 
   1383 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
   1384 
   1385 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
   1386 		if (txstat & VGE_TDSTS_OWN)
   1387 			break;
   1388 
   1389 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
   1390 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
   1391 		bus_dmamap_unload(sc->vge_dmat,
   1392 		    sc->vge_ldata.vge_tx_dmamap[idx]);
   1393 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1394 			ifp->if_collisions++;
   1395 		if (txstat & VGE_TDSTS_TXERR)
   1396 			ifp->if_oerrors++;
   1397 		else
   1398 			ifp->if_opackets++;
   1399 
   1400 		sc->vge_ldata.vge_tx_free++;
   1401 		VGE_TX_DESC_INC(idx);
   1402 	}
   1403 
   1404 	/* No changes made to the TX ring, so no flush needed */
   1405 
   1406 	if (idx != sc->vge_ldata.vge_tx_considx) {
   1407 		sc->vge_ldata.vge_tx_considx = idx;
   1408 		ifp->if_flags &= ~IFF_OACTIVE;
   1409 		ifp->if_timer = 0;
   1410 	}
   1411 
   1412 	/*
   1413 	 * If not all descriptors have been released reaped yet,
   1414 	 * reload the timer so that we will eventually get another
   1415 	 * interrupt that will cause us to re-enter this routine.
   1416 	 * This is done in case the transmitter has gone idle.
   1417 	 */
   1418 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
   1419 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1420 	}
   1421 
   1422 	return;
   1423 }
   1424 
   1425 static void
   1426 vge_tick(xsc)
   1427 	void			*xsc;
   1428 {
   1429 	struct vge_softc	*sc = xsc;
   1430 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1431 	struct mii_data		*mii = &sc->sc_mii;
   1432 	int s;
   1433 
   1434 	s = splnet();
   1435 
   1436 	VGE_LOCK(sc);
   1437 
   1438 	callout_schedule(&sc->vge_timeout, hz);
   1439 
   1440 	mii_tick(mii);
   1441 	if (sc->vge_link) {
   1442 		if (!(mii->mii_media_status & IFM_ACTIVE))
   1443 			sc->vge_link = 0;
   1444 	} else {
   1445 		if (mii->mii_media_status & IFM_ACTIVE &&
   1446 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1447 			sc->vge_link = 1;
   1448 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1449 				vge_start(ifp);
   1450 		}
   1451 	}
   1452 
   1453 	VGE_UNLOCK(sc);
   1454 
   1455 	splx(s);
   1456 }
   1457 
   1458 #ifdef DEVICE_POLLING
   1459 static void
   1460 vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
   1461 {
   1462 	struct vge_softc *sc = ifp->if_softc;
   1463 
   1464 	VGE_LOCK(sc);
   1465 #ifdef IFCAP_POLLING
   1466 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1467 		ether_poll_deregister(ifp);
   1468 		cmd = POLL_DEREGISTER;
   1469 	}
   1470 #endif
   1471 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1472 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1473 		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   1474 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1475 		goto done;
   1476 	}
   1477 
   1478 	sc->rxcycles = count;
   1479 	vge_rxeof(sc);
   1480 	vge_txeof(sc);
   1481 
   1482 #if __FreeBSD_version < 502114
   1483 	if (ifp->if_snd.ifq_head != NULL)
   1484 #else
   1485 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
   1486 #endif
   1487 		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
   1488 
   1489 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1490 		u_int32_t       status;
   1491 		status = CSR_READ_4(sc, VGE_ISR);
   1492 		if (status == 0xFFFFFFFF)
   1493 			goto done;
   1494 		if (status)
   1495 			CSR_WRITE_4(sc, VGE_ISR, status);
   1496 
   1497 		/*
   1498 		 * XXX check behaviour on receiver stalls.
   1499 		 */
   1500 
   1501 		if (status & VGE_ISR_TXDMA_STALL ||
   1502 		    status & VGE_ISR_RXDMA_STALL)
   1503 			vge_init(sc);
   1504 
   1505 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1506 			vge_rxeof(sc);
   1507 			ifp->if_ierrors++;
   1508 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1509 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1510 		}
   1511 	}
   1512 done:
   1513 	VGE_UNLOCK(sc);
   1514 }
   1515 #endif /* DEVICE_POLLING */
   1516 
   1517 static int
   1518 vge_intr(arg)
   1519 	void			*arg;
   1520 {
   1521 	struct vge_softc	*sc = arg;
   1522 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   1523 	u_int32_t		status;
   1524 	int claim = 0;
   1525 
   1526 	if (sc->suspended) {
   1527 		return claim;
   1528 	}
   1529 
   1530 	VGE_LOCK(sc);
   1531 
   1532 	if (!(ifp->if_flags & IFF_UP)) {
   1533 		VGE_UNLOCK(sc);
   1534 		return claim;
   1535 	}
   1536 
   1537 #ifdef DEVICE_POLLING
   1538 	if  (ifp->if_flags & IFF_POLLING)
   1539 		goto done;
   1540 	if (
   1541 #ifdef IFCAP_POLLING
   1542 	    (ifp->if_capenable & IFCAP_POLLING) &&
   1543 #endif
   1544 	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
   1545 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1546 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1547 		vge_poll(ifp, 0, 1);
   1548 		goto done;
   1549 	}
   1550 
   1551 #endif /* DEVICE_POLLING */
   1552 
   1553 	/* Disable interrupts */
   1554 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1555 
   1556 	for (;;) {
   1557 
   1558 		status = CSR_READ_4(sc, VGE_ISR);
   1559 		/* If the card has gone away the read returns 0xffff. */
   1560 		if (status == 0xFFFFFFFF)
   1561 			break;
   1562 
   1563 		if (status) {
   1564 			claim = 1;
   1565 			CSR_WRITE_4(sc, VGE_ISR, status);
   1566 		}
   1567 
   1568 		if ((status & VGE_INTRS) == 0)
   1569 			break;
   1570 
   1571 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1572 			vge_rxeof(sc);
   1573 
   1574 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1575 			vge_rxeof(sc);
   1576 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1577 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1578 		}
   1579 
   1580 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1581 			vge_txeof(sc);
   1582 
   1583 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1584 			vge_init(ifp);
   1585 
   1586 		if (status & VGE_ISR_LINKSTS)
   1587 			vge_tick(sc);
   1588 	}
   1589 
   1590 	/* Re-enable interrupts */
   1591 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1592 
   1593 #ifdef DEVICE_POLLING
   1594 done:
   1595 #endif
   1596 	VGE_UNLOCK(sc);
   1597 
   1598 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1599 		vge_start(ifp);
   1600 
   1601 	return claim;
   1602 }
   1603 
   1604 static int
   1605 vge_encap(sc, m_head, idx)
   1606 	struct vge_softc	*sc;
   1607 	struct mbuf		*m_head;
   1608 	int			idx;
   1609 {
   1610 	struct mbuf		*m_new = NULL;
   1611 	bus_dmamap_t		map;
   1612 	int			error, flags;
   1613 	struct m_tag		*mtag;
   1614 
   1615 	/* If this descriptor is still owned by the chip, bail. */
   1616 	if (sc->vge_ldata.vge_tx_free <= 2
   1617 	    || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN)
   1618 		return (ENOBUFS);
   1619 
   1620 	flags = 0;
   1621 
   1622 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1623 		flags |= VGE_TDCTL_IPCSUM;
   1624 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1625 		flags |= VGE_TDCTL_TCPCSUM;
   1626 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1627 		flags |= VGE_TDCTL_UDPCSUM;
   1628 
   1629 	map = sc->vge_ldata.vge_tx_dmamap[idx];
   1630 	error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1631 	    m_head, BUS_DMA_NOWAIT);
   1632 
   1633 	/* If too many segments to map, coalesce */
   1634 	if (error == EFBIG) {
   1635 		m_new = m_defrag(m_head, M_DONTWAIT);
   1636 		if (m_new == NULL)
   1637 			return (error);
   1638 
   1639 		error = bus_dmamap_load_mbuf(sc->vge_dmat, map,
   1640 		    m_new, BUS_DMA_NOWAIT);
   1641 		if (error) {
   1642 			m_freem(m_new);
   1643 			return (error);
   1644 		}
   1645 
   1646 		m_head = m_new;
   1647 	} else if (error)
   1648 		return (error);
   1649 
   1650 	vge_dma_map_tx_desc(sc, m_head, idx, flags);
   1651 
   1652 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
   1653 	sc->vge_ldata.vge_tx_free--;
   1654 
   1655 	/*
   1656 	 * Set up hardware VLAN tagging.
   1657 	 */
   1658 
   1659 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1660 	if (mtag != NULL)
   1661 		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
   1662 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
   1663 
   1664 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
   1665 
   1666 	return (0);
   1667 }
   1668 
   1669 /*
   1670  * Main transmit routine.
   1671  */
   1672 
   1673 static void
   1674 vge_start(ifp)
   1675 	struct ifnet		*ifp;
   1676 {
   1677 	struct vge_softc	*sc;
   1678 	struct mbuf		*m_head = NULL;
   1679 	int			idx, pidx = 0, error;
   1680 
   1681 	sc = ifp->if_softc;
   1682 	VGE_LOCK(sc);
   1683 
   1684 	if (!sc->vge_link
   1685 	    || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1686 		VGE_UNLOCK(sc);
   1687 		return;
   1688 	}
   1689 
   1690 	idx = sc->vge_ldata.vge_tx_prodidx;
   1691 
   1692 	pidx = idx - 1;
   1693 	if (pidx < 0)
   1694 		pidx = VGE_TX_DESC_CNT - 1;
   1695 
   1696 	/*
   1697 	 * Loop through the send queue, setting up transmit descriptors
   1698 	 * until we drain the queue, or use up all available transmit
   1699 	 * descriptors.
   1700 	 */
   1701 	for(;;) {
   1702 		/* Grab a packet off the queue. */
   1703 		IFQ_POLL(&ifp->if_snd, m_head);
   1704 		if (m_head == NULL)
   1705 			break;
   1706 
   1707 		if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) {
   1708 			/*
   1709 			 * Slot already used, stop for now.
   1710 			 */
   1711 			ifp->if_flags |= IFF_OACTIVE;
   1712 			break;
   1713 		}
   1714 
   1715 		if ((error = vge_encap(sc, m_head, idx))) {
   1716 			if (error == EFBIG) {
   1717 				printf("%s: Tx packet consumes too many "
   1718 				    "DMA segments, dropping...\n",
   1719 				    sc->sc_dev.dv_xname);
   1720 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1721 				m_freem(m_head);
   1722 				continue;
   1723 			}
   1724 
   1725 			/*
   1726 			 * Short on resources, just stop for now.
   1727 			 */
   1728 			if (error == ENOBUFS)
   1729 				ifp->if_flags |= IFF_OACTIVE;
   1730 			break;
   1731 		}
   1732 
   1733 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1734 
   1735 		/*
   1736 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1737 		 */
   1738 
   1739 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
   1740 		    htole16(VGE_TXDESC_Q);
   1741 
   1742 		if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) {
   1743 			m_freem(m_head);
   1744 			m_head = sc->vge_ldata.vge_tx_mbuf[idx];
   1745 		}
   1746 
   1747 		pidx = idx;
   1748 		VGE_TX_DESC_INC(idx);
   1749 
   1750 		/*
   1751 		 * If there's a BPF listener, bounce a copy of this frame
   1752 		 * to him.
   1753 		 */
   1754 #if NBPFILTER > 0
   1755 		if (ifp->if_bpf)
   1756 			bpf_mtap(ifp->if_bpf, m_head);
   1757 #endif
   1758 	}
   1759 
   1760 	if (idx == sc->vge_ldata.vge_tx_prodidx) {
   1761 		VGE_UNLOCK(sc);
   1762 		return;
   1763 	}
   1764 
   1765 	/* Flush the TX descriptors */
   1766 
   1767 	bus_dmamap_sync(sc->vge_dmat,
   1768 	    sc->vge_ldata.vge_tx_list_map,
   1769 	    0, sc->vge_ldata.vge_tx_list_map->dm_mapsize,
   1770 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1771 
   1772 	/* Issue a transmit command. */
   1773 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1774 
   1775 	sc->vge_ldata.vge_tx_prodidx = idx;
   1776 
   1777 	/*
   1778 	 * Use the countdown timer for interrupt moderation.
   1779 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1780 	 * countdown timer, which will begin counting until it hits
   1781 	 * the value in the SSTIMER register, and then trigger an
   1782 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1783 	 * the timer count is reloaded. Only when the transmitter
   1784 	 * is idle will the timer hit 0 and an interrupt fire.
   1785 	 */
   1786 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1787 
   1788 	VGE_UNLOCK(sc);
   1789 
   1790 	/*
   1791 	 * Set a timeout in case the chip goes out to lunch.
   1792 	 */
   1793 	ifp->if_timer = 5;
   1794 
   1795 	return;
   1796 }
   1797 
   1798 static int
   1799 vge_init(ifp)
   1800 	struct ifnet *ifp;
   1801 {
   1802 	struct vge_softc	*sc = ifp->if_softc;
   1803 	struct mii_data		*mii = &sc->sc_mii;
   1804 	int			i;
   1805 
   1806 	VGE_LOCK(sc);
   1807 
   1808 	/*
   1809 	 * Cancel pending I/O and free all RX/TX buffers.
   1810 	 */
   1811 	vge_stop(sc);
   1812 	vge_reset(sc);
   1813 
   1814 	/*
   1815 	 * Initialize the RX and TX descriptors and mbufs.
   1816 	 */
   1817 
   1818 	vge_rx_list_init(sc);
   1819 	vge_tx_list_init(sc);
   1820 
   1821 	/* Set our station address */
   1822 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1823 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]);
   1824 
   1825 	/*
   1826 	 * Set receive FIFO threshold. Also allow transmission and
   1827 	 * reception of VLAN tagged frames.
   1828 	 */
   1829 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1830 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1831 
   1832 	/* Set DMA burst length */
   1833 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1834 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1835 
   1836 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1837 
   1838 	/* Set collision backoff algorithm */
   1839 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1840 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1841 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1842 
   1843 	/* Disable LPSEL field in priority resolution */
   1844 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1845 
   1846 	/*
   1847 	 * Load the addresses of the DMA queues into the chip.
   1848 	 * Note that we only use one transmit queue.
   1849 	 */
   1850 
   1851 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
   1852 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
   1853 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
   1854 
   1855 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
   1856 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
   1857 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
   1858 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
   1859 
   1860 	/* Enable and wake up the RX descriptor queue */
   1861 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1862 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1863 
   1864 	/* Enable the TX descriptor queue */
   1865 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1866 
   1867 	/* Set up the receive filter -- allow large frames for VLANs. */
   1868 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1869 
   1870 	/* If we want promiscuous mode, set the allframes bit. */
   1871 	if (ifp->if_flags & IFF_PROMISC) {
   1872 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1873 	}
   1874 
   1875 	/* Set capture broadcast bit to capture broadcast frames. */
   1876 	if (ifp->if_flags & IFF_BROADCAST) {
   1877 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1878 	}
   1879 
   1880 	/* Set multicast bit to capture multicast frames. */
   1881 	if (ifp->if_flags & IFF_MULTICAST) {
   1882 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1883 	}
   1884 
   1885 	/* Init the cam filter. */
   1886 	vge_cam_clear(sc);
   1887 
   1888 	/* Init the multicast filter. */
   1889 	vge_setmulti(sc);
   1890 
   1891 	/* Enable flow control */
   1892 
   1893 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1894 
   1895 	/* Enable jumbo frame reception (if desired) */
   1896 
   1897 	/* Start the MAC. */
   1898 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1899 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1900 	CSR_WRITE_1(sc, VGE_CRS0,
   1901 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1902 
   1903 	/*
   1904 	 * Configure one-shot timer for microsecond
   1905 	 * resulution and load it for 500 usecs.
   1906 	 */
   1907 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1908 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1909 
   1910 	/*
   1911 	 * Configure interrupt moderation for receive. Enable
   1912 	 * the holdoff counter and load it, and set the RX
   1913 	 * suppression count to the number of descriptors we
   1914 	 * want to allow before triggering an interrupt.
   1915 	 * The holdoff timer is in units of 20 usecs.
   1916 	 */
   1917 
   1918 #ifdef notyet
   1919 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1920 	/* Select the interrupt holdoff timer page. */
   1921 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1922 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1923 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1924 
   1925 	/* Enable use of the holdoff timer. */
   1926 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1927 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1928 
   1929 	/* Select the RX suppression threshold page. */
   1930 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1931 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1932 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1933 
   1934 	/* Restore the page select bits. */
   1935 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1936 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1937 #endif
   1938 
   1939 #ifdef DEVICE_POLLING
   1940 	/*
   1941 	 * Disable interrupts if we are polling.
   1942 	 */
   1943 	if (ifp->if_flags & IFF_POLLING) {
   1944 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1945 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1946 	} else	/* otherwise ... */
   1947 #endif /* DEVICE_POLLING */
   1948 	{
   1949 	/*
   1950 	 * Enable interrupts.
   1951 	 */
   1952 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1953 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1954 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1955 	}
   1956 
   1957 	mii_mediachg(mii);
   1958 
   1959 	ifp->if_flags |= IFF_RUNNING;
   1960 	ifp->if_flags &= ~IFF_OACTIVE;
   1961 
   1962 	sc->vge_if_flags = 0;
   1963 	sc->vge_link = 0;
   1964 
   1965 	VGE_UNLOCK(sc);
   1966 
   1967 	callout_schedule(&sc->vge_timeout, hz);
   1968 
   1969 	return (0);
   1970 }
   1971 
   1972 /*
   1973  * Set media options.
   1974  */
   1975 static int
   1976 vge_ifmedia_upd(ifp)
   1977 	struct ifnet		*ifp;
   1978 {
   1979 	struct vge_softc	*sc = ifp->if_softc;
   1980 	struct mii_data		*mii = &sc->sc_mii;
   1981 
   1982 	mii_mediachg(mii);
   1983 
   1984 	return (0);
   1985 }
   1986 
   1987 /*
   1988  * Report current media status.
   1989  */
   1990 static void
   1991 vge_ifmedia_sts(ifp, ifmr)
   1992 	struct ifnet		*ifp;
   1993 	struct ifmediareq	*ifmr;
   1994 {
   1995 	struct vge_softc	*sc = ifp->if_softc;
   1996 	struct mii_data		*mii = &sc->sc_mii;
   1997 
   1998 	mii_pollstat(mii);
   1999 	ifmr->ifm_active = mii->mii_media_active;
   2000 	ifmr->ifm_status = mii->mii_media_status;
   2001 
   2002 	return;
   2003 }
   2004 
   2005 static void
   2006 vge_miibus_statchg(self)
   2007 	struct device	*self;
   2008 {
   2009 	struct vge_softc	*sc = (struct vge_softc *) self;
   2010 	struct mii_data		*mii = &sc->sc_mii;
   2011 	struct ifmedia_entry	*ife = mii->mii_media.ifm_cur;
   2012 
   2013 	/*
   2014 	 * If the user manually selects a media mode, we need to turn
   2015 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   2016 	 * user happens to choose a full duplex mode, we also need to
   2017 	 * set the 'force full duplex' bit. This applies only to
   2018 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   2019 	 * mode is disabled, and in 1000baseT mode, full duplex is
   2020 	 * always implied, so we turn on the forced mode bit but leave
   2021 	 * the FDX bit cleared.
   2022 	 */
   2023 
   2024 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   2025 	case IFM_AUTO:
   2026 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2027 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2028 		break;
   2029 	case IFM_1000_T:
   2030 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2031 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2032 		break;
   2033 	case IFM_100_TX:
   2034 	case IFM_10_T:
   2035 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2036 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   2037 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2038 		} else {
   2039 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2040 		}
   2041 		break;
   2042 	default:
   2043 		printf("%s: unknown media type: %x\n",
   2044 		    sc->sc_dev.dv_xname,
   2045 		    IFM_SUBTYPE(ife->ifm_media));
   2046 		break;
   2047 	}
   2048 
   2049 	return;
   2050 }
   2051 
   2052 static int
   2053 vge_ioctl(ifp, command, data)
   2054 	struct ifnet		*ifp;
   2055 	u_long			command;
   2056 	caddr_t			data;
   2057 {
   2058 	struct vge_softc	*sc = ifp->if_softc;
   2059 	struct ifreq		*ifr = (struct ifreq *) data;
   2060 	struct mii_data		*mii;
   2061 	int			error = 0;
   2062 
   2063 	switch (command) {
   2064 	case SIOCSIFMTU:
   2065 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   2066 			error = EINVAL;
   2067 		ifp->if_mtu = ifr->ifr_mtu;
   2068 		break;
   2069 	case SIOCSIFFLAGS:
   2070 		if (ifp->if_flags & IFF_UP) {
   2071 			if (ifp->if_flags & IFF_RUNNING &&
   2072 			    ifp->if_flags & IFF_PROMISC &&
   2073 			    !(sc->vge_if_flags & IFF_PROMISC)) {
   2074 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2075 				    VGE_RXCTL_RX_PROMISC);
   2076 				vge_setmulti(sc);
   2077 			} else if (ifp->if_flags & IFF_RUNNING &&
   2078 			    !(ifp->if_flags & IFF_PROMISC) &&
   2079 			    sc->vge_if_flags & IFF_PROMISC) {
   2080 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2081 				    VGE_RXCTL_RX_PROMISC);
   2082 				vge_setmulti(sc);
   2083                         } else
   2084 				vge_init(ifp);
   2085 		} else {
   2086 			if (ifp->if_flags & IFF_RUNNING)
   2087 				vge_stop(sc);
   2088 		}
   2089 		sc->vge_if_flags = ifp->if_flags;
   2090 		break;
   2091 	case SIOCADDMULTI:
   2092 	case SIOCDELMULTI:
   2093 		vge_setmulti(sc);
   2094 		break;
   2095 	case SIOCGIFMEDIA:
   2096 	case SIOCSIFMEDIA:
   2097 		mii = &sc->sc_mii;
   2098 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   2099 		break;
   2100 	default:
   2101 		error = ether_ioctl(ifp, command, data);
   2102 		break;
   2103 	}
   2104 
   2105 	return (error);
   2106 }
   2107 
   2108 static void
   2109 vge_watchdog(ifp)
   2110 	struct ifnet		*ifp;
   2111 {
   2112 	struct vge_softc		*sc;
   2113 
   2114 	sc = ifp->if_softc;
   2115 	VGE_LOCK(sc);
   2116 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   2117 	ifp->if_oerrors++;
   2118 
   2119 	vge_txeof(sc);
   2120 	vge_rxeof(sc);
   2121 
   2122 	vge_init(ifp);
   2123 
   2124 	VGE_UNLOCK(sc);
   2125 
   2126 	return;
   2127 }
   2128 
   2129 /*
   2130  * Stop the adapter and free any mbufs allocated to the
   2131  * RX and TX lists.
   2132  */
   2133 static void
   2134 vge_stop(sc)
   2135 	struct vge_softc		*sc;
   2136 {
   2137 	register int		i;
   2138 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2139 
   2140 	VGE_LOCK(sc);
   2141 	ifp->if_timer = 0;
   2142 
   2143 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2144 #ifdef DEVICE_POLLING
   2145 	ether_poll_deregister(ifp);
   2146 #endif /* DEVICE_POLLING */
   2147 
   2148 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2149 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2150 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2151 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2152 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2153 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2154 
   2155 	if (sc->vge_head != NULL) {
   2156 		m_freem(sc->vge_head);
   2157 		sc->vge_head = sc->vge_tail = NULL;
   2158 	}
   2159 
   2160 	/* Free the TX list buffers. */
   2161 
   2162 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
   2163 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
   2164 			bus_dmamap_unload(sc->vge_dmat,
   2165 			    sc->vge_ldata.vge_tx_dmamap[i]);
   2166 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
   2167 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
   2168 		}
   2169 	}
   2170 
   2171 	/* Free the RX list buffers. */
   2172 
   2173 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
   2174 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
   2175 			bus_dmamap_unload(sc->vge_dmat,
   2176 			    sc->vge_ldata.vge_rx_dmamap[i]);
   2177 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
   2178 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
   2179 		}
   2180 	}
   2181 
   2182 	VGE_UNLOCK(sc);
   2183 
   2184 	return;
   2185 }
   2186 
   2187 #if VGE_POWER_MANAGEMENT
   2188 /*
   2189  * Device suspend routine.  Stop the interface and save some PCI
   2190  * settings in case the BIOS doesn't restore them properly on
   2191  * resume.
   2192  */
   2193 static int
   2194 vge_suspend(dev)
   2195 	struct device *		dev;
   2196 {
   2197 	struct vge_softc	*sc;
   2198 	int			i;
   2199 
   2200 	sc = device_get_softc(dev);
   2201 
   2202 	vge_stop(sc);
   2203 
   2204         for (i = 0; i < 5; i++)
   2205 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2206 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2207 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2208 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2209 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2210 
   2211 	sc->suspended = 1;
   2212 
   2213 	return (0);
   2214 }
   2215 
   2216 /*
   2217  * Device resume routine.  Restore some PCI settings in case the BIOS
   2218  * doesn't, re-enable busmastering, and restart the interface if
   2219  * appropriate.
   2220  */
   2221 static int
   2222 vge_resume(dev)
   2223 	struct device *		dev;
   2224 {
   2225 	struct vge_softc	*sc = (struct vge_softc *)dev;
   2226 	struct ifnet		*ifp = &sc->sc_ethercom.ec_if;
   2227 	int			i;
   2228 
   2229         /* better way to do this? */
   2230 	for (i = 0; i < 5; i++)
   2231 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
   2232 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
   2233 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
   2234 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
   2235 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
   2236 
   2237 	/* reenable busmastering */
   2238 	pci_enable_busmaster(dev);
   2239 	pci_enable_io(dev, SYS_RES_MEMORY);
   2240 
   2241 	/* reinitialize interface if necessary */
   2242 	if (ifp->if_flags & IFF_UP)
   2243 		vge_init(sc);
   2244 
   2245 	sc->suspended = 0;
   2246 
   2247 	return (0);
   2248 }
   2249 #endif
   2250 
   2251 /*
   2252  * Stop all chip I/O so that the kernel's probe routines don't
   2253  * get confused by errant DMAs when rebooting.
   2254  */
   2255 static void
   2256 vge_shutdown(arg)
   2257 	void *arg;
   2258 {
   2259 	struct vge_softc *sc = (struct vge_softc *)arg;
   2260 
   2261 	vge_stop(sc);
   2262 }
   2263