Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.41.14.4
      1 /* $NetBSD: if_vge.c,v 1.41.14.4 2008/12/07 19:10:53 bouyer Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.41.14.4 2008/12/07 19:10:53 bouyer Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/device.h>
     93 #include <sys/sockio.h>
     94 #include <sys/mbuf.h>
     95 #include <sys/malloc.h>
     96 #include <sys/kernel.h>
     97 #include <sys/socket.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_arp.h>
    101 #include <net/if_ether.h>
    102 #include <net/if_dl.h>
    103 #include <net/if_media.h>
    104 
    105 #include <net/bpf.h>
    106 
    107 #include <sys/bus.h>
    108 
    109 #include <dev/mii/mii.h>
    110 #include <dev/mii/miivar.h>
    111 
    112 #include <dev/pci/pcireg.h>
    113 #include <dev/pci/pcivar.h>
    114 #include <dev/pci/pcidevs.h>
    115 
    116 #include <dev/pci/if_vgereg.h>
    117 
    118 #define VGE_JUMBO_MTU		9000
    119 
    120 #define VGE_IFQ_MAXLEN		64
    121 
    122 #define VGE_RING_ALIGN		256
    123 
    124 #define VGE_NTXDESC		256
    125 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    126 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    127 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    128 
    129 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    130 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    131 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    132 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    133 
    134 #define VGE_ADDR_LO(y)		((uint64_t)(y) & 0xFFFFFFFF)
    135 #define VGE_ADDR_HI(y)		((uint64_t)(y) >> 32)
    136 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    137 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    138 
    139 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    140 
    141 /*
    142  * Mbuf adjust factor to force 32-bit alignment of IP header.
    143  * Drivers should pad ETHER_ALIGN bytes when setting up a
    144  * RX mbuf so the upper layers get the IP header properly aligned
    145  * past the 14-byte Ethernet header.
    146  *
    147  * See also comment in vge_encap().
    148  */
    149 #define ETHER_ALIGN		2
    150 
    151 #ifdef __NO_STRICT_ALIGNMENT
    152 #define VGE_RX_BUFSIZE		MCLBYTES
    153 #else
    154 #define VGE_RX_PAD		sizeof(uint32_t)
    155 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    156 #endif
    157 
    158 /*
    159  * Control structures are DMA'd to the vge chip. We allocate them in
    160  * a single clump that maps to a single DMA segment to make several things
    161  * easier.
    162  */
    163 struct vge_control_data {
    164 	/* TX descriptors */
    165 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    166 	/* RX descriptors */
    167 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    168 	/* dummy data for TX padding */
    169 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    170 };
    171 
    172 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    173 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    174 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    175 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    176 
    177 /*
    178  * Software state for TX jobs.
    179  */
    180 struct vge_txsoft {
    181 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    182 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    183 };
    184 
    185 /*
    186  * Software state for RX jobs.
    187  */
    188 struct vge_rxsoft {
    189 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    190 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    191 };
    192 
    193 
    194 struct vge_softc {
    195 	struct device		sc_dev;
    196 
    197 	bus_space_tag_t		sc_bst;		/* bus space tag */
    198 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    199 	bus_dma_tag_t		sc_dmat;
    200 
    201 	struct ethercom		sc_ethercom;	/* interface info */
    202 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    203 
    204 	void			*sc_intrhand;
    205 	struct mii_data		sc_mii;
    206 	uint8_t			sc_type;
    207 	int			sc_if_flags;
    208 	int			sc_link;
    209 	int			sc_camidx;
    210 	callout_t		sc_timeout;
    211 
    212 	bus_dmamap_t		sc_cddmamap;
    213 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    214 
    215 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    216 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    217 	struct vge_control_data	*sc_control_data;
    218 #define sc_txdescs		sc_control_data->vcd_txdescs
    219 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    220 
    221 	int			sc_tx_prodidx;
    222 	int			sc_tx_considx;
    223 	int			sc_tx_free;
    224 
    225 	struct mbuf		*sc_rx_mhead;
    226 	struct mbuf		*sc_rx_mtail;
    227 	int			sc_rx_prodidx;
    228 	int			sc_rx_consumed;
    229 
    230 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    231 	uint32_t		sc_saved_maps[5];	/* pci data */
    232 	uint32_t		sc_saved_biosaddr;
    233 	uint8_t			sc_saved_intline;
    234 	uint8_t			sc_saved_cachelnsz;
    235 	uint8_t			sc_saved_lattimer;
    236 };
    237 
    238 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    239 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    240 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    241 
    242 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    243 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    244 	    VGE_CDTXOFF(idx),						\
    245 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    246 	    (ops))
    247 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    248 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    249 	    VGE_CDTXOFF(idx) +						\
    250 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    251 	    sizeof(struct vge_txfrag) * (nsegs),			\
    252 	    (ops))
    253 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    254 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    255 	    VGE_CDRXOFF(idx),						\
    256 	    sizeof(struct vge_rxdesc),					\
    257 	    (ops))
    258 
    259 /*
    260  * register space access macros
    261  */
    262 #define CSR_WRITE_4(sc, reg, val)	\
    263 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    264 #define CSR_WRITE_2(sc, reg, val)	\
    265 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    266 #define CSR_WRITE_1(sc, reg, val)	\
    267 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    268 
    269 #define CSR_READ_4(sc, reg)		\
    270 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    271 #define CSR_READ_2(sc, reg)		\
    272 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    273 #define CSR_READ_1(sc, reg)		\
    274 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    275 
    276 #define CSR_SETBIT_1(sc, reg, x)	\
    277 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    278 #define CSR_SETBIT_2(sc, reg, x)	\
    279 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    280 #define CSR_SETBIT_4(sc, reg, x)	\
    281 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    282 
    283 #define CSR_CLRBIT_1(sc, reg, x)	\
    284 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    285 #define CSR_CLRBIT_2(sc, reg, x)	\
    286 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    287 #define CSR_CLRBIT_4(sc, reg, x)	\
    288 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    289 
    290 #define VGE_TIMEOUT		10000
    291 
    292 #define VGE_PCI_LOIO             0x10
    293 #define VGE_PCI_LOMEM            0x14
    294 
    295 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    296 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    297 
    298 static int vge_match(struct device *, struct cfdata *, void *);
    299 static void vge_attach(struct device *, struct device *, void *);
    300 
    301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    302 
    303 static int vge_allocmem(struct vge_softc *);
    304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    305 #ifndef __NO_STRICT_ALIGNMENT
    306 static inline void vge_fixup_rx(struct mbuf *);
    307 #endif
    308 static void vge_rxeof(struct vge_softc *);
    309 static void vge_txeof(struct vge_softc *);
    310 static int vge_intr(void *);
    311 static void vge_tick(void *);
    312 static void vge_start(struct ifnet *);
    313 static int vge_ioctl(struct ifnet *, u_long, void *);
    314 static int vge_init(struct ifnet *);
    315 static void vge_stop(struct ifnet *, int);
    316 static void vge_watchdog(struct ifnet *);
    317 #if VGE_POWER_MANAGEMENT
    318 static int vge_suspend(struct device *);
    319 static int vge_resume(struct device *);
    320 #endif
    321 static void vge_shutdown(void *);
    322 
    323 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    324 
    325 static void vge_miipoll_start(struct vge_softc *);
    326 static void vge_miipoll_stop(struct vge_softc *);
    327 static int vge_miibus_readreg(struct device *, int, int);
    328 static void vge_miibus_writereg(struct device *, int, int, int);
    329 static void vge_miibus_statchg(struct device *);
    330 
    331 static void vge_cam_clear(struct vge_softc *);
    332 static int vge_cam_set(struct vge_softc *, uint8_t *);
    333 static void vge_setmulti(struct vge_softc *);
    334 static void vge_reset(struct vge_softc *);
    335 
    336 CFATTACH_DECL(vge, sizeof(struct vge_softc),
    337     vge_match, vge_attach, NULL, NULL);
    338 
    339 static inline void
    340 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    341 {
    342 
    343 	f->tf_addrlo = htole32((uint32_t)daddr);
    344 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    345 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    346 	else
    347 		f->tf_addrhi = 0;
    348 }
    349 
    350 static inline void
    351 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    352 {
    353 
    354 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    355 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    356 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    357 	else
    358 		rxd->rd_addrhi = 0;
    359 }
    360 
    361 /*
    362  * Defragment mbuf chain contents to be as linear as possible.
    363  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    364  * chain is always freed.
    365  * XXX temporary until there would be generic function doing this.
    366  */
    367 #define m_defrag	vge_m_defrag
    368 struct mbuf * vge_m_defrag(struct mbuf *, int);
    369 
    370 struct mbuf *
    371 vge_m_defrag(struct mbuf *mold, int flags)
    372 {
    373 	struct mbuf *m0, *mn, *n;
    374 	size_t sz = mold->m_pkthdr.len;
    375 
    376 #ifdef DIAGNOSTIC
    377 	if ((mold->m_flags & M_PKTHDR) == 0)
    378 		panic("m_defrag: not a mbuf chain header");
    379 #endif
    380 
    381 	MGETHDR(m0, flags, MT_DATA);
    382 	if (m0 == NULL)
    383 		return NULL;
    384 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    385 	mn = m0;
    386 
    387 	do {
    388 		if (sz > MHLEN) {
    389 			MCLGET(mn, M_DONTWAIT);
    390 			if ((mn->m_flags & M_EXT) == 0) {
    391 				m_freem(m0);
    392 				return NULL;
    393 			}
    394 		}
    395 
    396 		mn->m_len = MIN(sz, MCLBYTES);
    397 
    398 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    399 		     mtod(mn, void *));
    400 
    401 		sz -= mn->m_len;
    402 
    403 		if (sz > 0) {
    404 			/* need more mbufs */
    405 			MGET(n, M_NOWAIT, MT_DATA);
    406 			if (n == NULL) {
    407 				m_freem(m0);
    408 				return NULL;
    409 			}
    410 
    411 			mn->m_next = n;
    412 			mn = n;
    413 		}
    414 	} while (sz > 0);
    415 
    416 	return m0;
    417 }
    418 
    419 /*
    420  * Read a word of data stored in the EEPROM at address 'addr.'
    421  */
    422 static uint16_t
    423 vge_read_eeprom(struct vge_softc *sc, int addr)
    424 {
    425 	int i;
    426 	uint16_t word = 0;
    427 
    428 	/*
    429 	 * Enter EEPROM embedded programming mode. In order to
    430 	 * access the EEPROM at all, we first have to set the
    431 	 * EELOAD bit in the CHIPCFG2 register.
    432 	 */
    433 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    434 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    435 
    436 	/* Select the address of the word we want to read */
    437 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    438 
    439 	/* Issue read command */
    440 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    441 
    442 	/* Wait for the done bit to be set. */
    443 	for (i = 0; i < VGE_TIMEOUT; i++) {
    444 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    445 			break;
    446 	}
    447 
    448 	if (i == VGE_TIMEOUT) {
    449 		aprint_error_dev(&sc->sc_dev, "EEPROM read timed out\n");
    450 		return 0;
    451 	}
    452 
    453 	/* Read the result */
    454 	word = CSR_READ_2(sc, VGE_EERDDAT);
    455 
    456 	/* Turn off EEPROM access mode. */
    457 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    458 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    459 
    460 	return word;
    461 }
    462 
    463 static void
    464 vge_miipoll_stop(struct vge_softc *sc)
    465 {
    466 	int i;
    467 
    468 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    469 
    470 	for (i = 0; i < VGE_TIMEOUT; i++) {
    471 		DELAY(1);
    472 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    473 			break;
    474 	}
    475 
    476 	if (i == VGE_TIMEOUT) {
    477 		aprint_error_dev(&sc->sc_dev, "failed to idle MII autopoll\n");
    478 	}
    479 }
    480 
    481 static void
    482 vge_miipoll_start(struct vge_softc *sc)
    483 {
    484 	int i;
    485 
    486 	/* First, make sure we're idle. */
    487 
    488 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    489 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    490 
    491 	for (i = 0; i < VGE_TIMEOUT; i++) {
    492 		DELAY(1);
    493 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    494 			break;
    495 	}
    496 
    497 	if (i == VGE_TIMEOUT) {
    498 		aprint_error_dev(&sc->sc_dev, "failed to idle MII autopoll\n");
    499 		return;
    500 	}
    501 
    502 	/* Now enable auto poll mode. */
    503 
    504 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    505 
    506 	/* And make sure it started. */
    507 
    508 	for (i = 0; i < VGE_TIMEOUT; i++) {
    509 		DELAY(1);
    510 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    511 			break;
    512 	}
    513 
    514 	if (i == VGE_TIMEOUT) {
    515 		aprint_error_dev(&sc->sc_dev, "failed to start MII autopoll\n");
    516 	}
    517 }
    518 
    519 static int
    520 vge_miibus_readreg(struct device *dev, int phy, int reg)
    521 {
    522 	struct vge_softc *sc;
    523 	int i, s;
    524 	uint16_t rval;
    525 
    526 	sc = (void *)dev;
    527 	rval = 0;
    528 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    529 		return 0;
    530 
    531 	s = splnet();
    532 	vge_miipoll_stop(sc);
    533 
    534 	/* Specify the register we want to read. */
    535 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    536 
    537 	/* Issue read command. */
    538 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    539 
    540 	/* Wait for the read command bit to self-clear. */
    541 	for (i = 0; i < VGE_TIMEOUT; i++) {
    542 		DELAY(1);
    543 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    544 			break;
    545 	}
    546 
    547 	if (i == VGE_TIMEOUT)
    548 		aprint_error_dev(&sc->sc_dev, "MII read timed out\n");
    549 	else
    550 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    551 
    552 	vge_miipoll_start(sc);
    553 	splx(s);
    554 
    555 	return rval;
    556 }
    557 
    558 static void
    559 vge_miibus_writereg(struct device *dev, int phy, int reg, int data)
    560 {
    561 	struct vge_softc *sc;
    562 	int i, s;
    563 
    564 	sc = (void *)dev;
    565 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    566 		return;
    567 
    568 	s = splnet();
    569 	vge_miipoll_stop(sc);
    570 
    571 	/* Specify the register we want to write. */
    572 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    573 
    574 	/* Specify the data we want to write. */
    575 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    576 
    577 	/* Issue write command. */
    578 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    579 
    580 	/* Wait for the write command bit to self-clear. */
    581 	for (i = 0; i < VGE_TIMEOUT; i++) {
    582 		DELAY(1);
    583 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    584 			break;
    585 	}
    586 
    587 	if (i == VGE_TIMEOUT) {
    588 		aprint_error_dev(&sc->sc_dev, "MII write timed out\n");
    589 	}
    590 
    591 	vge_miipoll_start(sc);
    592 	splx(s);
    593 }
    594 
    595 static void
    596 vge_cam_clear(struct vge_softc *sc)
    597 {
    598 	int i;
    599 
    600 	/*
    601 	 * Turn off all the mask bits. This tells the chip
    602 	 * that none of the entries in the CAM filter are valid.
    603 	 * desired entries will be enabled as we fill the filter in.
    604 	 */
    605 
    606 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    607 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    608 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    609 	for (i = 0; i < 8; i++)
    610 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    611 
    612 	/* Clear the VLAN filter too. */
    613 
    614 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    615 	for (i = 0; i < 8; i++)
    616 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    617 
    618 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    619 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    620 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    621 
    622 	sc->sc_camidx = 0;
    623 }
    624 
    625 static int
    626 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    627 {
    628 	int i, error;
    629 
    630 	error = 0;
    631 
    632 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    633 		return ENOSPC;
    634 
    635 	/* Select the CAM data page. */
    636 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    637 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    638 
    639 	/* Set the filter entry we want to update and enable writing. */
    640 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    641 
    642 	/* Write the address to the CAM registers */
    643 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    644 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    645 
    646 	/* Issue a write command. */
    647 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    648 
    649 	/* Wake for it to clear. */
    650 	for (i = 0; i < VGE_TIMEOUT; i++) {
    651 		DELAY(1);
    652 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    653 			break;
    654 	}
    655 
    656 	if (i == VGE_TIMEOUT) {
    657 		aprint_error_dev(&sc->sc_dev, "setting CAM filter failed\n");
    658 		error = EIO;
    659 		goto fail;
    660 	}
    661 
    662 	/* Select the CAM mask page. */
    663 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    664 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    665 
    666 	/* Set the mask bit that enables this filter. */
    667 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    668 	    1 << (sc->sc_camidx & 7));
    669 
    670 	sc->sc_camidx++;
    671 
    672  fail:
    673 	/* Turn off access to CAM. */
    674 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    675 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    676 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    677 
    678 	return error;
    679 }
    680 
    681 /*
    682  * Program the multicast filter. We use the 64-entry CAM filter
    683  * for perfect filtering. If there's more than 64 multicast addresses,
    684  * we use the hash filter instead.
    685  */
    686 static void
    687 vge_setmulti(struct vge_softc *sc)
    688 {
    689 	struct ifnet *ifp;
    690 	int error;
    691 	uint32_t h, hashes[2] = { 0, 0 };
    692 	struct ether_multi *enm;
    693 	struct ether_multistep step;
    694 
    695 	error = 0;
    696 	ifp = &sc->sc_ethercom.ec_if;
    697 
    698 	/* First, zot all the multicast entries. */
    699 	vge_cam_clear(sc);
    700 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    701 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    702 	ifp->if_flags &= ~IFF_ALLMULTI;
    703 
    704 	/*
    705 	 * If the user wants allmulti or promisc mode, enable reception
    706 	 * of all multicast frames.
    707 	 */
    708 	if (ifp->if_flags & IFF_PROMISC) {
    709  allmulti:
    710 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    711 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    712 		ifp->if_flags |= IFF_ALLMULTI;
    713 		return;
    714 	}
    715 
    716 	/* Now program new ones */
    717 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    718 	while (enm != NULL) {
    719 		/*
    720 		 * If multicast range, fall back to ALLMULTI.
    721 		 */
    722 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    723 				ETHER_ADDR_LEN) != 0)
    724 			goto allmulti;
    725 
    726 		error = vge_cam_set(sc, enm->enm_addrlo);
    727 		if (error)
    728 			break;
    729 
    730 		ETHER_NEXT_MULTI(step, enm);
    731 	}
    732 
    733 	/* If there were too many addresses, use the hash filter. */
    734 	if (error) {
    735 		vge_cam_clear(sc);
    736 
    737 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    738 		while (enm != NULL) {
    739 			/*
    740 			 * If multicast range, fall back to ALLMULTI.
    741 			 */
    742 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    743 					ETHER_ADDR_LEN) != 0)
    744 				goto allmulti;
    745 
    746 			h = ether_crc32_be(enm->enm_addrlo,
    747 			    ETHER_ADDR_LEN) >> 26;
    748 			hashes[h >> 5] |= 1 << (h & 0x1f);
    749 
    750 			ETHER_NEXT_MULTI(step, enm);
    751 		}
    752 
    753 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    754 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    755 	}
    756 }
    757 
    758 static void
    759 vge_reset(struct vge_softc *sc)
    760 {
    761 	int i;
    762 
    763 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    764 
    765 	for (i = 0; i < VGE_TIMEOUT; i++) {
    766 		DELAY(5);
    767 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    768 			break;
    769 	}
    770 
    771 	if (i == VGE_TIMEOUT) {
    772 		aprint_error_dev(&sc->sc_dev, "soft reset timed out");
    773 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    774 		DELAY(2000);
    775 	}
    776 
    777 	DELAY(5000);
    778 
    779 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    780 
    781 	for (i = 0; i < VGE_TIMEOUT; i++) {
    782 		DELAY(5);
    783 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    784 			break;
    785 	}
    786 
    787 	if (i == VGE_TIMEOUT) {
    788 		aprint_error_dev(&sc->sc_dev, "EEPROM reload timed out\n");
    789 		return;
    790 	}
    791 
    792 	/*
    793 	 * On some machine, the first read data from EEPROM could be
    794 	 * messed up, so read one dummy data here to avoid the mess.
    795 	 */
    796 	(void)vge_read_eeprom(sc, 0);
    797 
    798 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    799 }
    800 
    801 /*
    802  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    803  * IDs against our list and return a device name if we find a match.
    804  */
    805 static int
    806 vge_match(struct device *parent, struct cfdata *match, void *aux)
    807 {
    808 	struct pci_attach_args *pa = aux;
    809 
    810 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    811 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    812 		return 1;
    813 
    814 	return 0;
    815 }
    816 
    817 static int
    818 vge_allocmem(struct vge_softc *sc)
    819 {
    820 	int error;
    821 	int nseg;
    822 	int i;
    823 	bus_dma_segment_t seg;
    824 
    825 	/*
    826 	 * Allocate memory for control data.
    827 	 */
    828 
    829 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    830 	     VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    831 	if (error) {
    832 		aprint_error_dev(&sc->sc_dev, "could not allocate control data dma memory\n");
    833 		goto fail_1;
    834 	}
    835 
    836 	/* Map the memory to kernel VA space */
    837 
    838 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    839 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
    840 	    BUS_DMA_NOWAIT);
    841 	if (error) {
    842 		aprint_error_dev(&sc->sc_dev, "could not map control data dma memory\n");
    843 		goto fail_2;
    844 	}
    845 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    846 
    847 	/*
    848 	 * Create map for control data.
    849 	 */
    850 	error = bus_dmamap_create(sc->sc_dmat,
    851 	    sizeof(struct vge_control_data), 1,
    852 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    853 	    &sc->sc_cddmamap);
    854 	if (error) {
    855 		aprint_error_dev(&sc->sc_dev, "could not create control data dmamap\n");
    856 		goto fail_3;
    857 	}
    858 
    859 	/* Load the map for the control data. */
    860 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    861 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    862 	    BUS_DMA_NOWAIT);
    863 	if (error) {
    864 		aprint_error_dev(&sc->sc_dev, "could not load control data dma memory\n");
    865 		goto fail_4;
    866 	}
    867 
    868 	/* Create DMA maps for TX buffers */
    869 
    870 	for (i = 0; i < VGE_NTXDESC; i++) {
    871 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    872 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    873 		    &sc->sc_txsoft[i].txs_dmamap);
    874 		if (error) {
    875 			aprint_error_dev(&sc->sc_dev, "can't create DMA map for TX descs\n");
    876 			goto fail_5;
    877 		}
    878 	}
    879 
    880 	/* Create DMA maps for RX buffers */
    881 
    882 	for (i = 0; i < VGE_NRXDESC; i++) {
    883 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    884 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    885 		    &sc->sc_rxsoft[i].rxs_dmamap);
    886 		if (error) {
    887 			aprint_error_dev(&sc->sc_dev, "can't create DMA map for RX descs\n");
    888 			goto fail_6;
    889 		}
    890 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    891 	}
    892 
    893 	return 0;
    894 
    895  fail_6:
    896 	for (i = 0; i < VGE_NRXDESC; i++) {
    897 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    898 			bus_dmamap_destroy(sc->sc_dmat,
    899 			    sc->sc_rxsoft[i].rxs_dmamap);
    900 	}
    901  fail_5:
    902 	for (i = 0; i < VGE_NTXDESC; i++) {
    903 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    904 			bus_dmamap_destroy(sc->sc_dmat,
    905 			    sc->sc_txsoft[i].txs_dmamap);
    906 	}
    907 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    908  fail_4:
    909 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    910  fail_3:
    911 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    912 	    sizeof(struct vge_control_data));
    913  fail_2:
    914 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    915  fail_1:
    916 	return ENOMEM;
    917 }
    918 
    919 /*
    920  * Attach the interface. Allocate softc structures, do ifmedia
    921  * setup and ethernet/BPF attach.
    922  */
    923 static void
    924 vge_attach(struct device *parent, struct device *self, void *aux)
    925 {
    926 	uint8_t	*eaddr;
    927 	struct vge_softc *sc = (void *)self;
    928 	struct ifnet *ifp;
    929 	struct pci_attach_args *pa = aux;
    930 	pci_chipset_tag_t pc = pa->pa_pc;
    931 	const char *intrstr;
    932 	pci_intr_handle_t ih;
    933 	uint16_t val;
    934 
    935 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    936 	    PCI_REVISION(pa->pa_class));
    937 
    938 	/* Make sure bus-mastering is enabled */
    939         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    940 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    941 	    PCI_COMMAND_MASTER_ENABLE);
    942 
    943 	/*
    944 	 * Map control/status registers.
    945 	 */
    946 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    947 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    948 		aprint_error_dev(&sc->sc_dev, "couldn't map memory\n");
    949 		return;
    950 	}
    951 
    952         /*
    953          * Map and establish our interrupt.
    954          */
    955 	if (pci_intr_map(pa, &ih)) {
    956 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    957 		return;
    958 	}
    959 	intrstr = pci_intr_string(pc, ih);
    960 	sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    961 	if (sc->sc_intrhand == NULL) {
    962 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    963 		if (intrstr != NULL)
    964 			aprint_error(" at %s", intrstr);
    965 		aprint_error("\n");
    966 		return;
    967 	}
    968 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    969 
    970 	/* Reset the adapter. */
    971 	vge_reset(sc);
    972 
    973 	/*
    974 	 * Get station address from the EEPROM.
    975 	 */
    976 	eaddr = sc->sc_eaddr;
    977 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    978 	eaddr[0] = val & 0xff;
    979 	eaddr[1] = val >> 8;
    980 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    981 	eaddr[2] = val & 0xff;
    982 	eaddr[3] = val >> 8;
    983 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    984 	eaddr[4] = val & 0xff;
    985 	eaddr[5] = val >> 8;
    986 
    987 	aprint_normal_dev(&sc->sc_dev, "Ethernet address: %s\n",
    988 	    ether_sprintf(eaddr));
    989 
    990 	/*
    991 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    992 	 * but we don't use that for now.
    993 	 */
    994 	sc->sc_dmat = pa->pa_dmat;
    995 
    996 	if (vge_allocmem(sc) != 0)
    997 		return;
    998 
    999 	ifp = &sc->sc_ethercom.ec_if;
   1000 	ifp->if_softc = sc;
   1001 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
   1002 	ifp->if_mtu = ETHERMTU;
   1003 	ifp->if_baudrate = IF_Gbps(1);
   1004 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1005 	ifp->if_ioctl = vge_ioctl;
   1006 	ifp->if_start = vge_start;
   1007 	ifp->if_init = vge_init;
   1008 	ifp->if_stop = vge_stop;
   1009 
   1010 	/*
   1011 	 * We can support 802.1Q VLAN-sized frames and jumbo
   1012 	 * Ethernet frames.
   1013 	 */
   1014 	sc->sc_ethercom.ec_capabilities |=
   1015 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
   1016 	    ETHERCAP_VLAN_HWTAGGING;
   1017 
   1018 	/*
   1019 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
   1020 	 */
   1021 	ifp->if_capabilities |=
   1022 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1023 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1024 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1025 
   1026 #ifdef DEVICE_POLLING
   1027 #ifdef IFCAP_POLLING
   1028 	ifp->if_capabilities |= IFCAP_POLLING;
   1029 #endif
   1030 #endif
   1031 	ifp->if_watchdog = vge_watchdog;
   1032 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
   1033 	IFQ_SET_READY(&ifp->if_snd);
   1034 
   1035 	/*
   1036 	 * Initialize our media structures and probe the MII.
   1037 	 */
   1038 	sc->sc_mii.mii_ifp = ifp;
   1039 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
   1040 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
   1041 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
   1042 
   1043 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1044 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   1045 	    ether_mediastatus);
   1046 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1047 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1048 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1049 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1050 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1051 	} else
   1052 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1053 
   1054 	/*
   1055 	 * Attach the interface.
   1056 	 */
   1057 	if_attach(ifp);
   1058 	ether_ifattach(ifp, eaddr);
   1059 
   1060 	callout_init(&sc->sc_timeout, 0);
   1061 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1062 
   1063 	/*
   1064 	 * Make sure the interface is shutdown during reboot.
   1065 	 */
   1066 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
   1067 		aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish shutdown hook\n");
   1068 	}
   1069 }
   1070 
   1071 static int
   1072 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1073 {
   1074 	struct mbuf *m_new;
   1075 	struct vge_rxdesc *rxd;
   1076 	struct vge_rxsoft *rxs;
   1077 	bus_dmamap_t map;
   1078 	int i;
   1079 #ifdef DIAGNOSTIC
   1080 	uint32_t rd_sts;
   1081 #endif
   1082 
   1083 	m_new = NULL;
   1084 	if (m == NULL) {
   1085 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1086 		if (m_new == NULL)
   1087 			return ENOBUFS;
   1088 
   1089 		MCLGET(m_new, M_DONTWAIT);
   1090 		if ((m_new->m_flags & M_EXT) == 0) {
   1091 			m_freem(m_new);
   1092 			return ENOBUFS;
   1093 		}
   1094 
   1095 		m = m_new;
   1096 	} else
   1097 		m->m_data = m->m_ext.ext_buf;
   1098 
   1099 
   1100 	/*
   1101 	 * This is part of an evil trick to deal with non-x86 platforms.
   1102 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1103 	 * boundaries, but that will hose non-x86 machines. To get around
   1104 	 * this, we leave some empty space at the start of each buffer
   1105 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1106 	 * to achieve word alignment. This is slightly more efficient
   1107 	 * than allocating a new buffer, copying the contents, and
   1108 	 * discarding the old buffer.
   1109 	 */
   1110 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1111 #ifndef __NO_STRICT_ALIGNMENT
   1112 	m->m_data += VGE_RX_PAD;
   1113 #endif
   1114 	rxs = &sc->sc_rxsoft[idx];
   1115 	map = rxs->rxs_dmamap;
   1116 
   1117 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1118 		goto out;
   1119 
   1120 	rxd = &sc->sc_rxdescs[idx];
   1121 
   1122 #ifdef DIAGNOSTIC
   1123 	/* If this descriptor is still owned by the chip, bail. */
   1124 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1125 	rd_sts = le32toh(rxd->rd_sts);
   1126 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1127 	if (rd_sts & VGE_RDSTS_OWN) {
   1128 		panic("%s: tried to map busy RX descriptor",
   1129 		    device_xname(&sc->sc_dev));
   1130 	}
   1131 #endif
   1132 
   1133 	rxs->rxs_mbuf = m;
   1134 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1135 	    BUS_DMASYNC_PREREAD);
   1136 
   1137 	rxd->rd_buflen =
   1138 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1139 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1140 	rxd->rd_sts = 0;
   1141 	rxd->rd_ctl = 0;
   1142 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1143 
   1144 	/*
   1145 	 * Note: the manual fails to document the fact that for
   1146 	 * proper opration, the driver needs to replentish the RX
   1147 	 * DMA ring 4 descriptors at a time (rather than one at a
   1148 	 * time, like most chips). We can allocate the new buffers
   1149 	 * but we should not set the OWN bits until we're ready
   1150 	 * to hand back 4 of them in one shot.
   1151 	 */
   1152 
   1153 #define VGE_RXCHUNK 4
   1154 	sc->sc_rx_consumed++;
   1155 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1156 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1157 			KASSERT(i >= 0);
   1158 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1159 			VGE_RXDESCSYNC(sc, i,
   1160 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1161 		}
   1162 		sc->sc_rx_consumed = 0;
   1163 	}
   1164 
   1165 	return 0;
   1166  out:
   1167 	if (m_new != NULL)
   1168 		m_freem(m_new);
   1169 	return ENOMEM;
   1170 }
   1171 
   1172 #ifndef __NO_STRICT_ALIGNMENT
   1173 static inline void
   1174 vge_fixup_rx(struct mbuf *m)
   1175 {
   1176 	int i;
   1177 	uint16_t *src, *dst;
   1178 
   1179 	src = mtod(m, uint16_t *);
   1180 	dst = src - 1;
   1181 
   1182 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1183 		*dst++ = *src++;
   1184 
   1185 	m->m_data -= ETHER_ALIGN;
   1186 }
   1187 #endif
   1188 
   1189 /*
   1190  * RX handler. We support the reception of jumbo frames that have
   1191  * been fragmented across multiple 2K mbuf cluster buffers.
   1192  */
   1193 static void
   1194 vge_rxeof(struct vge_softc *sc)
   1195 {
   1196 	struct mbuf *m;
   1197 	struct ifnet *ifp;
   1198 	int idx, total_len, lim;
   1199 	struct vge_rxdesc *cur_rxd;
   1200 	struct vge_rxsoft *rxs;
   1201 	uint32_t rxstat, rxctl;
   1202 
   1203 	ifp = &sc->sc_ethercom.ec_if;
   1204 	lim = 0;
   1205 
   1206 	/* Invalidate the descriptor memory */
   1207 
   1208 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1209 		cur_rxd = &sc->sc_rxdescs[idx];
   1210 
   1211 		VGE_RXDESCSYNC(sc, idx,
   1212 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1213 		rxstat = le32toh(cur_rxd->rd_sts);
   1214 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1215 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1216 			break;
   1217 		}
   1218 
   1219 		rxctl = le32toh(cur_rxd->rd_ctl);
   1220 		rxs = &sc->sc_rxsoft[idx];
   1221 		m = rxs->rxs_mbuf;
   1222 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1223 
   1224 		/* Invalidate the RX mbuf and unload its map */
   1225 
   1226 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1227 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1228 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1229 
   1230 		/*
   1231 		 * If the 'start of frame' bit is set, this indicates
   1232 		 * either the first fragment in a multi-fragment receive,
   1233 		 * or an intermediate fragment. Either way, we want to
   1234 		 * accumulate the buffers.
   1235 		 */
   1236 		if (rxstat & VGE_RXPKT_SOF) {
   1237 			m->m_len = VGE_RX_BUFSIZE;
   1238 			if (sc->sc_rx_mhead == NULL)
   1239 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1240 			else {
   1241 				m->m_flags &= ~M_PKTHDR;
   1242 				sc->sc_rx_mtail->m_next = m;
   1243 				sc->sc_rx_mtail = m;
   1244 			}
   1245 			vge_newbuf(sc, idx, NULL);
   1246 			continue;
   1247 		}
   1248 
   1249 		/*
   1250 		 * Bad/error frames will have the RXOK bit cleared.
   1251 		 * However, there's one error case we want to allow:
   1252 		 * if a VLAN tagged frame arrives and the chip can't
   1253 		 * match it against the CAM filter, it considers this
   1254 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1255 		 * We don't want to drop the frame though: our VLAN
   1256 		 * filtering is done in software.
   1257 		 */
   1258 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
   1259 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
   1260 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
   1261 			ifp->if_ierrors++;
   1262 			/*
   1263 			 * If this is part of a multi-fragment packet,
   1264 			 * discard all the pieces.
   1265 			 */
   1266 			if (sc->sc_rx_mhead != NULL) {
   1267 				m_freem(sc->sc_rx_mhead);
   1268 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1269 			}
   1270 			vge_newbuf(sc, idx, m);
   1271 			continue;
   1272 		}
   1273 
   1274 		/*
   1275 		 * If allocating a replacement mbuf fails,
   1276 		 * reload the current one.
   1277 		 */
   1278 
   1279 		if (vge_newbuf(sc, idx, NULL)) {
   1280 			ifp->if_ierrors++;
   1281 			if (sc->sc_rx_mhead != NULL) {
   1282 				m_freem(sc->sc_rx_mhead);
   1283 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1284 			}
   1285 			vge_newbuf(sc, idx, m);
   1286 			continue;
   1287 		}
   1288 
   1289 		if (sc->sc_rx_mhead != NULL) {
   1290 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1291 			/*
   1292 			 * Special case: if there's 4 bytes or less
   1293 			 * in this buffer, the mbuf can be discarded:
   1294 			 * the last 4 bytes is the CRC, which we don't
   1295 			 * care about anyway.
   1296 			 */
   1297 			if (m->m_len <= ETHER_CRC_LEN) {
   1298 				sc->sc_rx_mtail->m_len -=
   1299 				    (ETHER_CRC_LEN - m->m_len);
   1300 				m_freem(m);
   1301 			} else {
   1302 				m->m_len -= ETHER_CRC_LEN;
   1303 				m->m_flags &= ~M_PKTHDR;
   1304 				sc->sc_rx_mtail->m_next = m;
   1305 			}
   1306 			m = sc->sc_rx_mhead;
   1307 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1308 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1309 		} else
   1310 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1311 
   1312 #ifndef __NO_STRICT_ALIGNMENT
   1313 		vge_fixup_rx(m);
   1314 #endif
   1315 		ifp->if_ipackets++;
   1316 		m->m_pkthdr.rcvif = ifp;
   1317 
   1318 		/* Do RX checksumming if enabled */
   1319 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1320 
   1321 			/* Check IP header checksum */
   1322 			if (rxctl & VGE_RDCTL_IPPKT)
   1323 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1324 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1325 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1326 		}
   1327 
   1328 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1329 			/* Check UDP checksum */
   1330 			if (rxctl & VGE_RDCTL_TCPPKT)
   1331 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1332 
   1333 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1334 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1335 		}
   1336 
   1337 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1338 			/* Check UDP checksum */
   1339 			if (rxctl & VGE_RDCTL_UDPPKT)
   1340 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1341 
   1342 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1343 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1344 		}
   1345 
   1346 		if (rxstat & VGE_RDSTS_VTAG) {
   1347 			/*
   1348 			 * We use bswap16() here because:
   1349 			 * On LE machines, tag is stored in BE as stream data.
   1350 			 * On BE machines, tag is stored in BE as stream data
   1351 			 *  but it was already swapped by le32toh() above.
   1352 			 */
   1353 			VLAN_INPUT_TAG(ifp, m,
   1354 			    bswap16(rxctl & VGE_RDCTL_VLANID), continue);
   1355 		}
   1356 
   1357 #if NBPFILTER > 0
   1358 		/*
   1359 		 * Handle BPF listeners.
   1360 		 */
   1361 		if (ifp->if_bpf)
   1362 			bpf_mtap(ifp->if_bpf, m);
   1363 #endif
   1364 
   1365 		(*ifp->if_input)(ifp, m);
   1366 
   1367 		lim++;
   1368 		if (lim == VGE_NRXDESC)
   1369 			break;
   1370 	}
   1371 
   1372 	sc->sc_rx_prodidx = idx;
   1373 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1374 }
   1375 
   1376 static void
   1377 vge_txeof(struct vge_softc *sc)
   1378 {
   1379 	struct ifnet *ifp;
   1380 	struct vge_txsoft *txs;
   1381 	uint32_t txstat;
   1382 	int idx;
   1383 
   1384 	ifp = &sc->sc_ethercom.ec_if;
   1385 
   1386 	for (idx = sc->sc_tx_considx;
   1387 	    sc->sc_tx_free < VGE_NTXDESC;
   1388 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1389 		VGE_TXDESCSYNC(sc, idx,
   1390 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1391 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1392 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1393 		if (txstat & VGE_TDSTS_OWN) {
   1394 			break;
   1395 		}
   1396 
   1397 		txs = &sc->sc_txsoft[idx];
   1398 		m_freem(txs->txs_mbuf);
   1399 		txs->txs_mbuf = NULL;
   1400 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1401 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1402 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1403 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1404 			ifp->if_collisions++;
   1405 		if (txstat & VGE_TDSTS_TXERR)
   1406 			ifp->if_oerrors++;
   1407 		else
   1408 			ifp->if_opackets++;
   1409 	}
   1410 
   1411 	sc->sc_tx_considx = idx;
   1412 
   1413 	if (sc->sc_tx_free > 0) {
   1414 		ifp->if_flags &= ~IFF_OACTIVE;
   1415 	}
   1416 
   1417 	/*
   1418 	 * If not all descriptors have been released reaped yet,
   1419 	 * reload the timer so that we will eventually get another
   1420 	 * interrupt that will cause us to re-enter this routine.
   1421 	 * This is done in case the transmitter has gone idle.
   1422 	 */
   1423 	if (sc->sc_tx_free < VGE_NTXDESC)
   1424 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1425 	else
   1426 		ifp->if_timer = 0;
   1427 }
   1428 
   1429 static void
   1430 vge_tick(void *xsc)
   1431 {
   1432 	struct vge_softc *sc;
   1433 	struct ifnet *ifp;
   1434 	struct mii_data *mii;
   1435 	int s;
   1436 
   1437 	sc = xsc;
   1438 	ifp = &sc->sc_ethercom.ec_if;
   1439 	mii = &sc->sc_mii;
   1440 
   1441 	s = splnet();
   1442 
   1443 	callout_schedule(&sc->sc_timeout, hz);
   1444 
   1445 	mii_tick(mii);
   1446 	if (sc->sc_link) {
   1447 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
   1448 			sc->sc_link = 0;
   1449 	} else {
   1450 		if (mii->mii_media_status & IFM_ACTIVE &&
   1451 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1452 			sc->sc_link = 1;
   1453 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1454 				vge_start(ifp);
   1455 		}
   1456 	}
   1457 
   1458 	splx(s);
   1459 }
   1460 
   1461 static int
   1462 vge_intr(void *arg)
   1463 {
   1464 	struct vge_softc *sc;
   1465 	struct ifnet *ifp;
   1466 	uint32_t status;
   1467 	int claim;
   1468 
   1469 	sc = arg;
   1470 	claim = 0;
   1471 	if (sc->sc_suspended) {
   1472 		return claim;
   1473 	}
   1474 
   1475 	ifp = &sc->sc_ethercom.ec_if;
   1476 
   1477 	if ((ifp->if_flags & IFF_UP) == 0) {
   1478 		return claim;
   1479 	}
   1480 
   1481 	/* Disable interrupts */
   1482 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1483 
   1484 	for (;;) {
   1485 
   1486 		status = CSR_READ_4(sc, VGE_ISR);
   1487 		/* If the card has gone away the read returns 0xffff. */
   1488 		if (status == 0xFFFFFFFF)
   1489 			break;
   1490 
   1491 		if (status) {
   1492 			claim = 1;
   1493 			CSR_WRITE_4(sc, VGE_ISR, status);
   1494 		}
   1495 
   1496 		if ((status & VGE_INTRS) == 0)
   1497 			break;
   1498 
   1499 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1500 			vge_rxeof(sc);
   1501 
   1502 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1503 			vge_rxeof(sc);
   1504 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1505 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1506 		}
   1507 
   1508 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1509 			vge_txeof(sc);
   1510 
   1511 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1512 			vge_init(ifp);
   1513 
   1514 		if (status & VGE_ISR_LINKSTS)
   1515 			vge_tick(sc);
   1516 	}
   1517 
   1518 	/* Re-enable interrupts */
   1519 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1520 
   1521 	if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
   1522 		vge_start(ifp);
   1523 
   1524 	return claim;
   1525 }
   1526 
   1527 static int
   1528 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1529 {
   1530 	struct vge_txsoft *txs;
   1531 	struct vge_txdesc *txd;
   1532 	struct vge_txfrag *f;
   1533 	struct mbuf *m_new;
   1534 	bus_dmamap_t map;
   1535 	int m_csumflags, seg, error, flags;
   1536 	struct m_tag *mtag;
   1537 	size_t sz;
   1538 	uint32_t td_sts, td_ctl;
   1539 
   1540 	KASSERT(sc->sc_tx_free > 0);
   1541 
   1542 	txd = &sc->sc_txdescs[idx];
   1543 
   1544 #ifdef DIAGNOSTIC
   1545 	/* If this descriptor is still owned by the chip, bail. */
   1546 	VGE_TXDESCSYNC(sc, idx,
   1547 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1548 	td_sts = le32toh(txd->td_sts);
   1549 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1550 	if (td_sts & VGE_TDSTS_OWN) {
   1551 		return ENOBUFS;
   1552 	}
   1553 #endif
   1554 
   1555 	/*
   1556 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1557 	 * updated by m_defrag()
   1558 	 */
   1559 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1560 
   1561 	txs = &sc->sc_txsoft[idx];
   1562 	map = txs->txs_dmamap;
   1563 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1564 
   1565 	/* If too many segments to map, coalesce */
   1566 	if (error == EFBIG ||
   1567 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1568 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1569 		m_new = m_defrag(m_head, M_DONTWAIT);
   1570 		if (m_new == NULL)
   1571 			return EFBIG;
   1572 
   1573 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1574 		    m_new, BUS_DMA_NOWAIT);
   1575 		if (error) {
   1576 			m_freem(m_new);
   1577 			return error;
   1578 		}
   1579 
   1580 		m_head = m_new;
   1581 	} else if (error)
   1582 		return error;
   1583 
   1584 	txs->txs_mbuf = m_head;
   1585 
   1586 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1587 	    BUS_DMASYNC_PREWRITE);
   1588 
   1589 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1590 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1591 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1592 	}
   1593 
   1594 	/* Argh. This chip does not autopad short frames */
   1595 	sz = m_head->m_pkthdr.len;
   1596 	if (sz < ETHER_PAD_LEN) {
   1597 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1598 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1599 		sz = ETHER_PAD_LEN;
   1600 		seg++;
   1601 	}
   1602 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1603 
   1604 	/*
   1605 	 * When telling the chip how many segments there are, we
   1606 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1607 	 * know why.
   1608 	 */
   1609 	seg++;
   1610 
   1611 	flags = 0;
   1612 	if (m_csumflags & M_CSUM_IPv4)
   1613 		flags |= VGE_TDCTL_IPCSUM;
   1614 	if (m_csumflags & M_CSUM_TCPv4)
   1615 		flags |= VGE_TDCTL_TCPCSUM;
   1616 	if (m_csumflags & M_CSUM_UDPv4)
   1617 		flags |= VGE_TDCTL_UDPCSUM;
   1618 	td_sts = sz << 16;
   1619 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1620 
   1621 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1622 		td_ctl |= VGE_TDCTL_JUMBO;
   1623 
   1624 	/*
   1625 	 * Set up hardware VLAN tagging.
   1626 	 */
   1627 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1628 	if (mtag != NULL) {
   1629 		/*
   1630 		 * No need htons() here since vge(4) chip assumes
   1631 		 * that tags are written in little endian and
   1632 		 * we already use htole32() here.
   1633 		 */
   1634 		td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
   1635 	}
   1636 	txd->td_ctl = htole32(td_ctl);
   1637 	txd->td_sts = htole32(td_sts);
   1638 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1639 
   1640 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1641 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1642 
   1643 	sc->sc_tx_free--;
   1644 
   1645 	return 0;
   1646 }
   1647 
   1648 /*
   1649  * Main transmit routine.
   1650  */
   1651 
   1652 static void
   1653 vge_start(struct ifnet *ifp)
   1654 {
   1655 	struct vge_softc *sc;
   1656 	struct vge_txsoft *txs;
   1657 	struct mbuf *m_head;
   1658 	int idx, pidx, ofree, error;
   1659 
   1660 	sc = ifp->if_softc;
   1661 
   1662 	if (!sc->sc_link ||
   1663 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1664 		return;
   1665 	}
   1666 
   1667 	m_head = NULL;
   1668 	idx = sc->sc_tx_prodidx;
   1669 	pidx = VGE_PREV_TXDESC(idx);
   1670 	ofree = sc->sc_tx_free;
   1671 
   1672 	/*
   1673 	 * Loop through the send queue, setting up transmit descriptors
   1674 	 * until we drain the queue, or use up all available transmit
   1675 	 * descriptors.
   1676 	 */
   1677 	for (;;) {
   1678 		/* Grab a packet off the queue. */
   1679 		IFQ_POLL(&ifp->if_snd, m_head);
   1680 		if (m_head == NULL)
   1681 			break;
   1682 
   1683 		if (sc->sc_tx_free == 0) {
   1684 			/*
   1685 			 * All slots used, stop for now.
   1686 			 */
   1687 			ifp->if_flags |= IFF_OACTIVE;
   1688 			break;
   1689 		}
   1690 
   1691 		txs = &sc->sc_txsoft[idx];
   1692 		KASSERT(txs->txs_mbuf == NULL);
   1693 
   1694 		if ((error = vge_encap(sc, m_head, idx))) {
   1695 			if (error == EFBIG) {
   1696 				aprint_error_dev(&sc->sc_dev, "Tx packet consumes too many "
   1697 				    "DMA segments, dropping...\n");
   1698 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1699 				m_freem(m_head);
   1700 				continue;
   1701 			}
   1702 
   1703 			/*
   1704 			 * Short on resources, just stop for now.
   1705 			 */
   1706 			if (error == ENOBUFS)
   1707 				ifp->if_flags |= IFF_OACTIVE;
   1708 			break;
   1709 		}
   1710 
   1711 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1712 
   1713 		/*
   1714 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1715 		 */
   1716 
   1717 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1718 		    htole16(VGE_TXDESC_Q);
   1719 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1720 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1721 
   1722 		if (txs->txs_mbuf != m_head) {
   1723 			m_freem(m_head);
   1724 			m_head = txs->txs_mbuf;
   1725 		}
   1726 
   1727 		pidx = idx;
   1728 		idx = VGE_NEXT_TXDESC(idx);
   1729 
   1730 		/*
   1731 		 * If there's a BPF listener, bounce a copy of this frame
   1732 		 * to him.
   1733 		 */
   1734 #if NBPFILTER > 0
   1735 		if (ifp->if_bpf)
   1736 			bpf_mtap(ifp->if_bpf, m_head);
   1737 #endif
   1738 	}
   1739 
   1740 	if (sc->sc_tx_free < ofree) {
   1741 		/* TX packet queued */
   1742 
   1743 		sc->sc_tx_prodidx = idx;
   1744 
   1745 		/* Issue a transmit command. */
   1746 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1747 
   1748 		/*
   1749 		 * Use the countdown timer for interrupt moderation.
   1750 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1751 		 * countdown timer, which will begin counting until it hits
   1752 		 * the value in the SSTIMER register, and then trigger an
   1753 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1754 		 * the timer count is reloaded. Only when the transmitter
   1755 		 * is idle will the timer hit 0 and an interrupt fire.
   1756 		 */
   1757 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1758 
   1759 		/*
   1760 		 * Set a timeout in case the chip goes out to lunch.
   1761 		 */
   1762 		ifp->if_timer = 5;
   1763 	}
   1764 }
   1765 
   1766 static int
   1767 vge_init(struct ifnet *ifp)
   1768 {
   1769 	struct vge_softc *sc;
   1770 	int i, rc = 0;
   1771 
   1772 	sc = ifp->if_softc;
   1773 
   1774 	/*
   1775 	 * Cancel pending I/O and free all RX/TX buffers.
   1776 	 */
   1777 	vge_stop(ifp, 0);
   1778 	vge_reset(sc);
   1779 
   1780 	/* Initialize the RX descriptors and mbufs. */
   1781 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1782 	sc->sc_rx_consumed = 0;
   1783 	for (i = 0; i < VGE_NRXDESC; i++) {
   1784 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1785 			aprint_error_dev(&sc->sc_dev, "unable to allocate or map "
   1786 			    "rx buffer\n");
   1787 			return 1; /* XXX */
   1788 		}
   1789 	}
   1790 	sc->sc_rx_prodidx = 0;
   1791 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1792 
   1793 	/* Initialize the  TX descriptors and mbufs. */
   1794 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1795 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1796 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1797 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1798 	for (i = 0; i < VGE_NTXDESC; i++)
   1799 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1800 
   1801 	sc->sc_tx_prodidx = 0;
   1802 	sc->sc_tx_considx = 0;
   1803 	sc->sc_tx_free = VGE_NTXDESC;
   1804 
   1805 	/* Set our station address */
   1806 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1807 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1808 
   1809 	/*
   1810 	 * Set receive FIFO threshold. Also allow transmission and
   1811 	 * reception of VLAN tagged frames.
   1812 	 */
   1813 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1814 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1815 
   1816 	/* Set DMA burst length */
   1817 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1818 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1819 
   1820 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1821 
   1822 	/* Set collision backoff algorithm */
   1823 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1824 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1825 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1826 
   1827 	/* Disable LPSEL field in priority resolution */
   1828 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1829 
   1830 	/*
   1831 	 * Load the addresses of the DMA queues into the chip.
   1832 	 * Note that we only use one transmit queue.
   1833 	 */
   1834 
   1835 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1836 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1837 
   1838 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1839 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1840 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1841 
   1842 	/* Enable and wake up the RX descriptor queue */
   1843 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1844 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1845 
   1846 	/* Enable the TX descriptor queue */
   1847 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1848 
   1849 	/* Set up the receive filter -- allow large frames for VLANs. */
   1850 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1851 
   1852 	/* If we want promiscuous mode, set the allframes bit. */
   1853 	if (ifp->if_flags & IFF_PROMISC) {
   1854 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1855 	}
   1856 
   1857 	/* Set capture broadcast bit to capture broadcast frames. */
   1858 	if (ifp->if_flags & IFF_BROADCAST) {
   1859 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1860 	}
   1861 
   1862 	/* Set multicast bit to capture multicast frames. */
   1863 	if (ifp->if_flags & IFF_MULTICAST) {
   1864 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1865 	}
   1866 
   1867 	/* Init the cam filter. */
   1868 	vge_cam_clear(sc);
   1869 
   1870 	/* Init the multicast filter. */
   1871 	vge_setmulti(sc);
   1872 
   1873 	/* Enable flow control */
   1874 
   1875 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1876 
   1877 	/* Enable jumbo frame reception (if desired) */
   1878 
   1879 	/* Start the MAC. */
   1880 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1881 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1882 	CSR_WRITE_1(sc, VGE_CRS0,
   1883 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1884 
   1885 	/*
   1886 	 * Configure one-shot timer for microsecond
   1887 	 * resulution and load it for 500 usecs.
   1888 	 */
   1889 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1890 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1891 
   1892 	/*
   1893 	 * Configure interrupt moderation for receive. Enable
   1894 	 * the holdoff counter and load it, and set the RX
   1895 	 * suppression count to the number of descriptors we
   1896 	 * want to allow before triggering an interrupt.
   1897 	 * The holdoff timer is in units of 20 usecs.
   1898 	 */
   1899 
   1900 #ifdef notyet
   1901 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1902 	/* Select the interrupt holdoff timer page. */
   1903 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1904 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1905 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1906 
   1907 	/* Enable use of the holdoff timer. */
   1908 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1909 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1910 
   1911 	/* Select the RX suppression threshold page. */
   1912 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1913 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1914 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1915 
   1916 	/* Restore the page select bits. */
   1917 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1918 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1919 #endif
   1920 
   1921 #ifdef DEVICE_POLLING
   1922 	/*
   1923 	 * Disable interrupts if we are polling.
   1924 	 */
   1925 	if (ifp->if_flags & IFF_POLLING) {
   1926 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1927 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1928 	} else	/* otherwise ... */
   1929 #endif /* DEVICE_POLLING */
   1930 	{
   1931 	/*
   1932 	 * Enable interrupts.
   1933 	 */
   1934 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1935 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1936 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1937 	}
   1938 
   1939 	if ((rc = ether_mediachange(ifp)) != 0)
   1940 		goto out;
   1941 
   1942 	ifp->if_flags |= IFF_RUNNING;
   1943 	ifp->if_flags &= ~IFF_OACTIVE;
   1944 
   1945 	sc->sc_if_flags = 0;
   1946 	sc->sc_link = 0;
   1947 
   1948 	callout_schedule(&sc->sc_timeout, hz);
   1949 
   1950 out:
   1951 	return rc;
   1952 }
   1953 
   1954 static void
   1955 vge_miibus_statchg(struct device *self)
   1956 {
   1957 	struct vge_softc *sc;
   1958 	struct mii_data *mii;
   1959 	struct ifmedia_entry *ife;
   1960 
   1961 	sc = (void *)self;
   1962 	mii = &sc->sc_mii;
   1963 	ife = mii->mii_media.ifm_cur;
   1964 	/*
   1965 	 * If the user manually selects a media mode, we need to turn
   1966 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1967 	 * user happens to choose a full duplex mode, we also need to
   1968 	 * set the 'force full duplex' bit. This applies only to
   1969 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1970 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1971 	 * always implied, so we turn on the forced mode bit but leave
   1972 	 * the FDX bit cleared.
   1973 	 */
   1974 
   1975 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1976 	case IFM_AUTO:
   1977 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1978 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1979 		break;
   1980 	case IFM_1000_T:
   1981 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1982 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1983 		break;
   1984 	case IFM_100_TX:
   1985 	case IFM_10_T:
   1986 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1987 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   1988 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1989 		} else {
   1990 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1991 		}
   1992 		break;
   1993 	default:
   1994 		aprint_error_dev(&sc->sc_dev, "unknown media type: %x\n",
   1995 		    IFM_SUBTYPE(ife->ifm_media));
   1996 		break;
   1997 	}
   1998 }
   1999 
   2000 static int
   2001 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
   2002 {
   2003 	struct vge_softc *sc;
   2004 	struct ifreq *ifr;
   2005 	int s, error;
   2006 
   2007 	sc = ifp->if_softc;
   2008 	ifr = (struct ifreq *)data;
   2009 	error = 0;
   2010 
   2011 	s = splnet();
   2012 
   2013 	switch (command) {
   2014 	case SIOCSIFMTU:
   2015 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
   2016 			error = EINVAL;
   2017 		else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
   2018 			error = 0;
   2019 		break;
   2020 	case SIOCSIFFLAGS:
   2021 		if (ifp->if_flags & IFF_UP) {
   2022 			if (ifp->if_flags & IFF_RUNNING &&
   2023 			    ifp->if_flags & IFF_PROMISC &&
   2024 			    (sc->sc_if_flags & IFF_PROMISC) == 0) {
   2025 				CSR_SETBIT_1(sc, VGE_RXCTL,
   2026 				    VGE_RXCTL_RX_PROMISC);
   2027 				vge_setmulti(sc);
   2028 			} else if (ifp->if_flags & IFF_RUNNING &&
   2029 			    (ifp->if_flags & IFF_PROMISC) == 0 &&
   2030 			    sc->sc_if_flags & IFF_PROMISC) {
   2031 				CSR_CLRBIT_1(sc, VGE_RXCTL,
   2032 				    VGE_RXCTL_RX_PROMISC);
   2033 				vge_setmulti(sc);
   2034                         } else
   2035 				vge_init(ifp);
   2036 		} else {
   2037 			if (ifp->if_flags & IFF_RUNNING)
   2038 				vge_stop(ifp, 1);
   2039 		}
   2040 		sc->sc_if_flags = ifp->if_flags;
   2041 		break;
   2042 	default:
   2043 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2044 			break;
   2045 
   2046 		error = 0;
   2047 
   2048 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2049 			;
   2050 		else if (ifp->if_flags & IFF_RUNNING) {
   2051 			/*
   2052 			 * Multicast list has changed; set the hardware filter
   2053 			 * accordingly.
   2054 			 */
   2055 			vge_setmulti(sc);
   2056 		}
   2057 		break;
   2058 	}
   2059 
   2060 	splx(s);
   2061 	return error;
   2062 }
   2063 
   2064 static void
   2065 vge_watchdog(struct ifnet *ifp)
   2066 {
   2067 	struct vge_softc *sc;
   2068 	int s;
   2069 
   2070 	sc = ifp->if_softc;
   2071 	s = splnet();
   2072 	aprint_error_dev(&sc->sc_dev, "watchdog timeout\n");
   2073 	ifp->if_oerrors++;
   2074 
   2075 	vge_txeof(sc);
   2076 	vge_rxeof(sc);
   2077 
   2078 	vge_init(ifp);
   2079 
   2080 	splx(s);
   2081 }
   2082 
   2083 /*
   2084  * Stop the adapter and free any mbufs allocated to the
   2085  * RX and TX lists.
   2086  */
   2087 static void
   2088 vge_stop(struct ifnet *ifp, int disable)
   2089 {
   2090 	struct vge_softc *sc = ifp->if_softc;
   2091 	struct vge_txsoft *txs;
   2092 	struct vge_rxsoft *rxs;
   2093 	int i, s;
   2094 
   2095 	s = splnet();
   2096 	ifp->if_timer = 0;
   2097 
   2098 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2099 #ifdef DEVICE_POLLING
   2100 	ether_poll_deregister(ifp);
   2101 #endif /* DEVICE_POLLING */
   2102 
   2103 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2104 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2105 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2106 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2107 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2108 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2109 
   2110 	if (sc->sc_rx_mhead != NULL) {
   2111 		m_freem(sc->sc_rx_mhead);
   2112 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2113 	}
   2114 
   2115 	/* Free the TX list buffers. */
   2116 
   2117 	for (i = 0; i < VGE_NTXDESC; i++) {
   2118 		txs = &sc->sc_txsoft[i];
   2119 		if (txs->txs_mbuf != NULL) {
   2120 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2121 			m_freem(txs->txs_mbuf);
   2122 			txs->txs_mbuf = NULL;
   2123 		}
   2124 	}
   2125 
   2126 	/* Free the RX list buffers. */
   2127 
   2128 	for (i = 0; i < VGE_NRXDESC; i++) {
   2129 		rxs = &sc->sc_rxsoft[i];
   2130 		if (rxs->rxs_mbuf != NULL) {
   2131 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2132 			m_freem(rxs->rxs_mbuf);
   2133 			rxs->rxs_mbuf = NULL;
   2134 		}
   2135 	}
   2136 
   2137 	splx(s);
   2138 }
   2139 
   2140 #if VGE_POWER_MANAGEMENT
   2141 /*
   2142  * Device suspend routine.  Stop the interface and save some PCI
   2143  * settings in case the BIOS doesn't restore them properly on
   2144  * resume.
   2145  */
   2146 static int
   2147 vge_suspend(struct device *dev)
   2148 {
   2149 	struct vge_softc *sc;
   2150 	int i;
   2151 
   2152 	sc = device_get_softc(dev);
   2153 
   2154 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2155 
   2156         for (i = 0; i < 5; i++)
   2157 		sc->sc_saved_maps[i] =
   2158 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2159 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2160 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2161 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2162 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2163 
   2164 	sc->suspended = 1;
   2165 
   2166 	return 0;
   2167 }
   2168 
   2169 /*
   2170  * Device resume routine.  Restore some PCI settings in case the BIOS
   2171  * doesn't, re-enable busmastering, and restart the interface if
   2172  * appropriate.
   2173  */
   2174 static int
   2175 vge_resume(struct device *dev)
   2176 {
   2177 	struct vge_softc *sc;
   2178 	struct ifnet *ifp;
   2179 	int i;
   2180 
   2181 	sc = (void *)dev;
   2182 	ifp = &sc->sc_ethercom.ec_if;
   2183 
   2184         /* better way to do this? */
   2185 	for (i = 0; i < 5; i++)
   2186 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2187 		    sc->sc_saved_maps[i], 4);
   2188 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2189 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2190 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2191 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2192 
   2193 	/* reenable busmastering */
   2194 	pci_enable_busmaster(dev);
   2195 	pci_enable_io(dev, SYS_RES_MEMORY);
   2196 
   2197 	/* reinitialize interface if necessary */
   2198 	if (ifp->if_flags & IFF_UP)
   2199 		vge_init(sc);
   2200 
   2201 	sc->suspended = 0;
   2202 
   2203 	return 0;
   2204 }
   2205 #endif
   2206 
   2207 /*
   2208  * Stop all chip I/O so that the kernel's probe routines don't
   2209  * get confused by errant DMAs when rebooting.
   2210  */
   2211 static void
   2212 vge_shutdown(void *arg)
   2213 {
   2214 	struct vge_softc *sc;
   2215 
   2216 	sc = arg;
   2217 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2218 }
   2219