Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.48
      1 /* $NetBSD: if_vge.c,v 1.48 2009/05/16 07:34:05 tsutsui Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.48 2009/05/16 07:34:05 tsutsui Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/endian.h>
     91 #include <sys/systm.h>
     92 #include <sys/device.h>
     93 #include <sys/sockio.h>
     94 #include <sys/mbuf.h>
     95 #include <sys/malloc.h>
     96 #include <sys/kernel.h>
     97 #include <sys/socket.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_arp.h>
    101 #include <net/if_ether.h>
    102 #include <net/if_dl.h>
    103 #include <net/if_media.h>
    104 
    105 #include <net/bpf.h>
    106 
    107 #include <sys/bus.h>
    108 
    109 #include <dev/mii/mii.h>
    110 #include <dev/mii/miivar.h>
    111 
    112 #include <dev/pci/pcireg.h>
    113 #include <dev/pci/pcivar.h>
    114 #include <dev/pci/pcidevs.h>
    115 
    116 #include <dev/pci/if_vgereg.h>
    117 
    118 #define VGE_IFQ_MAXLEN		64
    119 
    120 #define VGE_RING_ALIGN		256
    121 
    122 #define VGE_NTXDESC		256
    123 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    124 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    125 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    126 
    127 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    128 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    129 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    130 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    131 
    132 #define VGE_ADDR_LO(y)		((uint64_t)(y) & 0xFFFFFFFF)
    133 #define VGE_ADDR_HI(y)		((uint64_t)(y) >> 32)
    134 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    135 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    136 
    137 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    138 
    139 /*
    140  * Mbuf adjust factor to force 32-bit alignment of IP header.
    141  * Drivers should pad ETHER_ALIGN bytes when setting up a
    142  * RX mbuf so the upper layers get the IP header properly aligned
    143  * past the 14-byte Ethernet header.
    144  *
    145  * See also comment in vge_encap().
    146  */
    147 #define ETHER_ALIGN		2
    148 
    149 #ifdef __NO_STRICT_ALIGNMENT
    150 #define VGE_RX_BUFSIZE		MCLBYTES
    151 #else
    152 #define VGE_RX_PAD		sizeof(uint32_t)
    153 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    154 #endif
    155 
    156 /*
    157  * Control structures are DMA'd to the vge chip. We allocate them in
    158  * a single clump that maps to a single DMA segment to make several things
    159  * easier.
    160  */
    161 struct vge_control_data {
    162 	/* TX descriptors */
    163 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    164 	/* RX descriptors */
    165 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    166 	/* dummy data for TX padding */
    167 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    168 };
    169 
    170 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    171 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    172 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    173 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    174 
    175 /*
    176  * Software state for TX jobs.
    177  */
    178 struct vge_txsoft {
    179 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    180 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    181 };
    182 
    183 /*
    184  * Software state for RX jobs.
    185  */
    186 struct vge_rxsoft {
    187 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    188 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    189 };
    190 
    191 
    192 struct vge_softc {
    193 	device_t		sc_dev;
    194 
    195 	bus_space_tag_t		sc_bst;		/* bus space tag */
    196 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    197 	bus_dma_tag_t		sc_dmat;
    198 
    199 	struct ethercom		sc_ethercom;	/* interface info */
    200 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    201 
    202 	void			*sc_intrhand;
    203 	struct mii_data		sc_mii;
    204 	uint8_t			sc_type;
    205 	int			sc_if_flags;
    206 	int			sc_link;
    207 	int			sc_camidx;
    208 	callout_t		sc_timeout;
    209 
    210 	bus_dmamap_t		sc_cddmamap;
    211 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    212 
    213 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    214 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    215 	struct vge_control_data	*sc_control_data;
    216 #define sc_txdescs		sc_control_data->vcd_txdescs
    217 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    218 
    219 	int			sc_tx_prodidx;
    220 	int			sc_tx_considx;
    221 	int			sc_tx_free;
    222 
    223 	struct mbuf		*sc_rx_mhead;
    224 	struct mbuf		*sc_rx_mtail;
    225 	int			sc_rx_prodidx;
    226 	int			sc_rx_consumed;
    227 
    228 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    229 	uint32_t		sc_saved_maps[5];	/* pci data */
    230 	uint32_t		sc_saved_biosaddr;
    231 	uint8_t			sc_saved_intline;
    232 	uint8_t			sc_saved_cachelnsz;
    233 	uint8_t			sc_saved_lattimer;
    234 };
    235 
    236 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    237 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    238 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    239 
    240 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    241 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    242 	    VGE_CDTXOFF(idx),						\
    243 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    244 	    (ops))
    245 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    VGE_CDTXOFF(idx) +						\
    248 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    249 	    sizeof(struct vge_txfrag) * (nsegs),			\
    250 	    (ops))
    251 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    252 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    253 	    VGE_CDRXOFF(idx),						\
    254 	    sizeof(struct vge_rxdesc),					\
    255 	    (ops))
    256 
    257 /*
    258  * register space access macros
    259  */
    260 #define CSR_WRITE_4(sc, reg, val)	\
    261 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    262 #define CSR_WRITE_2(sc, reg, val)	\
    263 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    264 #define CSR_WRITE_1(sc, reg, val)	\
    265 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    266 
    267 #define CSR_READ_4(sc, reg)		\
    268 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    269 #define CSR_READ_2(sc, reg)		\
    270 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    271 #define CSR_READ_1(sc, reg)		\
    272 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    273 
    274 #define CSR_SETBIT_1(sc, reg, x)	\
    275 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    276 #define CSR_SETBIT_2(sc, reg, x)	\
    277 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    278 #define CSR_SETBIT_4(sc, reg, x)	\
    279 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    280 
    281 #define CSR_CLRBIT_1(sc, reg, x)	\
    282 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    283 #define CSR_CLRBIT_2(sc, reg, x)	\
    284 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    285 #define CSR_CLRBIT_4(sc, reg, x)	\
    286 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    287 
    288 #define VGE_TIMEOUT		10000
    289 
    290 #define VGE_PCI_LOIO             0x10
    291 #define VGE_PCI_LOMEM            0x14
    292 
    293 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    294 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    295 
    296 static int vge_ifflags_cb(struct ethercom *);
    297 
    298 static int vge_match(device_t, cfdata_t, void *);
    299 static void vge_attach(device_t, device_t, void *);
    300 
    301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    302 
    303 static int vge_allocmem(struct vge_softc *);
    304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    305 #ifndef __NO_STRICT_ALIGNMENT
    306 static inline void vge_fixup_rx(struct mbuf *);
    307 #endif
    308 static void vge_rxeof(struct vge_softc *);
    309 static void vge_txeof(struct vge_softc *);
    310 static int vge_intr(void *);
    311 static void vge_tick(void *);
    312 static void vge_start(struct ifnet *);
    313 static int vge_ioctl(struct ifnet *, u_long, void *);
    314 static int vge_init(struct ifnet *);
    315 static void vge_stop(struct ifnet *, int);
    316 static void vge_watchdog(struct ifnet *);
    317 #if VGE_POWER_MANAGEMENT
    318 static int vge_suspend(device_t);
    319 static int vge_resume(device_t);
    320 #endif
    321 static void vge_shutdown(void *);
    322 
    323 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    324 
    325 static void vge_miipoll_start(struct vge_softc *);
    326 static void vge_miipoll_stop(struct vge_softc *);
    327 static int vge_miibus_readreg(device_t, int, int);
    328 static void vge_miibus_writereg(device_t, int, int, int);
    329 static void vge_miibus_statchg(device_t);
    330 
    331 static void vge_cam_clear(struct vge_softc *);
    332 static int vge_cam_set(struct vge_softc *, uint8_t *);
    333 static void vge_setmulti(struct vge_softc *);
    334 static void vge_reset(struct vge_softc *);
    335 
    336 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
    337     vge_match, vge_attach, NULL, NULL);
    338 
    339 static inline void
    340 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    341 {
    342 
    343 	f->tf_addrlo = htole32((uint32_t)daddr);
    344 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    345 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    346 	else
    347 		f->tf_addrhi = 0;
    348 }
    349 
    350 static inline void
    351 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    352 {
    353 
    354 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    355 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    356 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    357 	else
    358 		rxd->rd_addrhi = 0;
    359 }
    360 
    361 /*
    362  * Defragment mbuf chain contents to be as linear as possible.
    363  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    364  * chain is always freed.
    365  * XXX temporary until there would be generic function doing this.
    366  */
    367 #define m_defrag	vge_m_defrag
    368 struct mbuf * vge_m_defrag(struct mbuf *, int);
    369 
    370 struct mbuf *
    371 vge_m_defrag(struct mbuf *mold, int flags)
    372 {
    373 	struct mbuf *m0, *mn, *n;
    374 	size_t sz = mold->m_pkthdr.len;
    375 
    376 #ifdef DIAGNOSTIC
    377 	if ((mold->m_flags & M_PKTHDR) == 0)
    378 		panic("m_defrag: not a mbuf chain header");
    379 #endif
    380 
    381 	MGETHDR(m0, flags, MT_DATA);
    382 	if (m0 == NULL)
    383 		return NULL;
    384 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    385 	mn = m0;
    386 
    387 	do {
    388 		if (sz > MHLEN) {
    389 			MCLGET(mn, M_DONTWAIT);
    390 			if ((mn->m_flags & M_EXT) == 0) {
    391 				m_freem(m0);
    392 				return NULL;
    393 			}
    394 		}
    395 
    396 		mn->m_len = MIN(sz, MCLBYTES);
    397 
    398 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    399 		     mtod(mn, void *));
    400 
    401 		sz -= mn->m_len;
    402 
    403 		if (sz > 0) {
    404 			/* need more mbufs */
    405 			MGET(n, M_NOWAIT, MT_DATA);
    406 			if (n == NULL) {
    407 				m_freem(m0);
    408 				return NULL;
    409 			}
    410 
    411 			mn->m_next = n;
    412 			mn = n;
    413 		}
    414 	} while (sz > 0);
    415 
    416 	return m0;
    417 }
    418 
    419 /*
    420  * Read a word of data stored in the EEPROM at address 'addr.'
    421  */
    422 static uint16_t
    423 vge_read_eeprom(struct vge_softc *sc, int addr)
    424 {
    425 	int i;
    426 	uint16_t word = 0;
    427 
    428 	/*
    429 	 * Enter EEPROM embedded programming mode. In order to
    430 	 * access the EEPROM at all, we first have to set the
    431 	 * EELOAD bit in the CHIPCFG2 register.
    432 	 */
    433 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    434 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    435 
    436 	/* Select the address of the word we want to read */
    437 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    438 
    439 	/* Issue read command */
    440 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    441 
    442 	/* Wait for the done bit to be set. */
    443 	for (i = 0; i < VGE_TIMEOUT; i++) {
    444 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    445 			break;
    446 	}
    447 
    448 	if (i == VGE_TIMEOUT) {
    449 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
    450 		return 0;
    451 	}
    452 
    453 	/* Read the result */
    454 	word = CSR_READ_2(sc, VGE_EERDDAT);
    455 
    456 	/* Turn off EEPROM access mode. */
    457 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    458 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    459 
    460 	return word;
    461 }
    462 
    463 static void
    464 vge_miipoll_stop(struct vge_softc *sc)
    465 {
    466 	int i;
    467 
    468 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    469 
    470 	for (i = 0; i < VGE_TIMEOUT; i++) {
    471 		DELAY(1);
    472 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    473 			break;
    474 	}
    475 
    476 	if (i == VGE_TIMEOUT) {
    477 		printf("%s: failed to idle MII autopoll\n",
    478 		    device_xname(sc->sc_dev));
    479 	}
    480 }
    481 
    482 static void
    483 vge_miipoll_start(struct vge_softc *sc)
    484 {
    485 	int i;
    486 
    487 	/* First, make sure we're idle. */
    488 
    489 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    490 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    491 
    492 	for (i = 0; i < VGE_TIMEOUT; i++) {
    493 		DELAY(1);
    494 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    495 			break;
    496 	}
    497 
    498 	if (i == VGE_TIMEOUT) {
    499 		printf("%s: failed to idle MII autopoll\n",
    500 		    device_xname(sc->sc_dev));
    501 		return;
    502 	}
    503 
    504 	/* Now enable auto poll mode. */
    505 
    506 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    507 
    508 	/* And make sure it started. */
    509 
    510 	for (i = 0; i < VGE_TIMEOUT; i++) {
    511 		DELAY(1);
    512 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    513 			break;
    514 	}
    515 
    516 	if (i == VGE_TIMEOUT) {
    517 		printf("%s: failed to start MII autopoll\n",
    518 		    device_xname(sc->sc_dev));
    519 	}
    520 }
    521 
    522 static int
    523 vge_miibus_readreg(device_t dev, int phy, int reg)
    524 {
    525 	struct vge_softc *sc;
    526 	int i, s;
    527 	uint16_t rval;
    528 
    529 	sc = device_private(dev);
    530 	rval = 0;
    531 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    532 		return 0;
    533 
    534 	s = splnet();
    535 	vge_miipoll_stop(sc);
    536 
    537 	/* Specify the register we want to read. */
    538 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    539 
    540 	/* Issue read command. */
    541 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    542 
    543 	/* Wait for the read command bit to self-clear. */
    544 	for (i = 0; i < VGE_TIMEOUT; i++) {
    545 		DELAY(1);
    546 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    547 			break;
    548 	}
    549 
    550 	if (i == VGE_TIMEOUT)
    551 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
    552 	else
    553 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    554 
    555 	vge_miipoll_start(sc);
    556 	splx(s);
    557 
    558 	return rval;
    559 }
    560 
    561 static void
    562 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
    563 {
    564 	struct vge_softc *sc;
    565 	int i, s;
    566 
    567 	sc = device_private(dev);
    568 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    569 		return;
    570 
    571 	s = splnet();
    572 	vge_miipoll_stop(sc);
    573 
    574 	/* Specify the register we want to write. */
    575 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    576 
    577 	/* Specify the data we want to write. */
    578 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    579 
    580 	/* Issue write command. */
    581 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    582 
    583 	/* Wait for the write command bit to self-clear. */
    584 	for (i = 0; i < VGE_TIMEOUT; i++) {
    585 		DELAY(1);
    586 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    587 			break;
    588 	}
    589 
    590 	if (i == VGE_TIMEOUT) {
    591 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
    592 	}
    593 
    594 	vge_miipoll_start(sc);
    595 	splx(s);
    596 }
    597 
    598 static void
    599 vge_cam_clear(struct vge_softc *sc)
    600 {
    601 	int i;
    602 
    603 	/*
    604 	 * Turn off all the mask bits. This tells the chip
    605 	 * that none of the entries in the CAM filter are valid.
    606 	 * desired entries will be enabled as we fill the filter in.
    607 	 */
    608 
    609 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    610 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    611 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    612 	for (i = 0; i < 8; i++)
    613 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    614 
    615 	/* Clear the VLAN filter too. */
    616 
    617 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    618 	for (i = 0; i < 8; i++)
    619 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    620 
    621 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    622 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    623 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    624 
    625 	sc->sc_camidx = 0;
    626 }
    627 
    628 static int
    629 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    630 {
    631 	int i, error;
    632 
    633 	error = 0;
    634 
    635 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    636 		return ENOSPC;
    637 
    638 	/* Select the CAM data page. */
    639 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    640 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    641 
    642 	/* Set the filter entry we want to update and enable writing. */
    643 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    644 
    645 	/* Write the address to the CAM registers */
    646 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    647 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    648 
    649 	/* Issue a write command. */
    650 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    651 
    652 	/* Wake for it to clear. */
    653 	for (i = 0; i < VGE_TIMEOUT; i++) {
    654 		DELAY(1);
    655 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    656 			break;
    657 	}
    658 
    659 	if (i == VGE_TIMEOUT) {
    660 		printf("%s: setting CAM filter failed\n",
    661 		    device_xname(sc->sc_dev));
    662 		error = EIO;
    663 		goto fail;
    664 	}
    665 
    666 	/* Select the CAM mask page. */
    667 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    668 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    669 
    670 	/* Set the mask bit that enables this filter. */
    671 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    672 	    1 << (sc->sc_camidx & 7));
    673 
    674 	sc->sc_camidx++;
    675 
    676  fail:
    677 	/* Turn off access to CAM. */
    678 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    679 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    680 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    681 
    682 	return error;
    683 }
    684 
    685 /*
    686  * Program the multicast filter. We use the 64-entry CAM filter
    687  * for perfect filtering. If there's more than 64 multicast addresses,
    688  * we use the hash filter instead.
    689  */
    690 static void
    691 vge_setmulti(struct vge_softc *sc)
    692 {
    693 	struct ifnet *ifp;
    694 	int error;
    695 	uint32_t h, hashes[2] = { 0, 0 };
    696 	struct ether_multi *enm;
    697 	struct ether_multistep step;
    698 
    699 	error = 0;
    700 	ifp = &sc->sc_ethercom.ec_if;
    701 
    702 	/* First, zot all the multicast entries. */
    703 	vge_cam_clear(sc);
    704 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    705 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    706 	ifp->if_flags &= ~IFF_ALLMULTI;
    707 
    708 	/*
    709 	 * If the user wants allmulti or promisc mode, enable reception
    710 	 * of all multicast frames.
    711 	 */
    712 	if (ifp->if_flags & IFF_PROMISC) {
    713  allmulti:
    714 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    715 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    716 		ifp->if_flags |= IFF_ALLMULTI;
    717 		return;
    718 	}
    719 
    720 	/* Now program new ones */
    721 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    722 	while (enm != NULL) {
    723 		/*
    724 		 * If multicast range, fall back to ALLMULTI.
    725 		 */
    726 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    727 				ETHER_ADDR_LEN) != 0)
    728 			goto allmulti;
    729 
    730 		error = vge_cam_set(sc, enm->enm_addrlo);
    731 		if (error)
    732 			break;
    733 
    734 		ETHER_NEXT_MULTI(step, enm);
    735 	}
    736 
    737 	/* If there were too many addresses, use the hash filter. */
    738 	if (error) {
    739 		vge_cam_clear(sc);
    740 
    741 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    742 		while (enm != NULL) {
    743 			/*
    744 			 * If multicast range, fall back to ALLMULTI.
    745 			 */
    746 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    747 					ETHER_ADDR_LEN) != 0)
    748 				goto allmulti;
    749 
    750 			h = ether_crc32_be(enm->enm_addrlo,
    751 			    ETHER_ADDR_LEN) >> 26;
    752 			hashes[h >> 5] |= 1 << (h & 0x1f);
    753 
    754 			ETHER_NEXT_MULTI(step, enm);
    755 		}
    756 
    757 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    758 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    759 	}
    760 }
    761 
    762 static void
    763 vge_reset(struct vge_softc *sc)
    764 {
    765 	int i;
    766 
    767 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    768 
    769 	for (i = 0; i < VGE_TIMEOUT; i++) {
    770 		DELAY(5);
    771 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    772 			break;
    773 	}
    774 
    775 	if (i == VGE_TIMEOUT) {
    776 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
    777 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    778 		DELAY(2000);
    779 	}
    780 
    781 	DELAY(5000);
    782 
    783 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    784 
    785 	for (i = 0; i < VGE_TIMEOUT; i++) {
    786 		DELAY(5);
    787 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    788 			break;
    789 	}
    790 
    791 	if (i == VGE_TIMEOUT) {
    792 		printf("%s: EEPROM reload timed out\n",
    793 		    device_xname(sc->sc_dev));
    794 		return;
    795 	}
    796 
    797 	/*
    798 	 * On some machine, the first read data from EEPROM could be
    799 	 * messed up, so read one dummy data here to avoid the mess.
    800 	 */
    801 	(void)vge_read_eeprom(sc, 0);
    802 
    803 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    804 }
    805 
    806 /*
    807  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    808  * IDs against our list and return a device name if we find a match.
    809  */
    810 static int
    811 vge_match(device_t parent, cfdata_t match, void *aux)
    812 {
    813 	struct pci_attach_args *pa = aux;
    814 
    815 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    816 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    817 		return 1;
    818 
    819 	return 0;
    820 }
    821 
    822 static int
    823 vge_allocmem(struct vge_softc *sc)
    824 {
    825 	int error;
    826 	int nseg;
    827 	int i;
    828 	bus_dma_segment_t seg;
    829 
    830 	/*
    831 	 * Allocate memory for control data.
    832 	 */
    833 
    834 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    835 	     VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    836 	if (error) {
    837 		aprint_error_dev(sc->sc_dev,
    838 		    "could not allocate control data dma memory\n");
    839 		goto fail_1;
    840 	}
    841 
    842 	/* Map the memory to kernel VA space */
    843 
    844 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    845 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
    846 	    BUS_DMA_NOWAIT);
    847 	if (error) {
    848 		aprint_error_dev(sc->sc_dev,
    849 		    "could not map control data dma memory\n");
    850 		goto fail_2;
    851 	}
    852 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    853 
    854 	/*
    855 	 * Create map for control data.
    856 	 */
    857 	error = bus_dmamap_create(sc->sc_dmat,
    858 	    sizeof(struct vge_control_data), 1,
    859 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    860 	    &sc->sc_cddmamap);
    861 	if (error) {
    862 		aprint_error_dev(sc->sc_dev,
    863 		    "could not create control data dmamap\n");
    864 		goto fail_3;
    865 	}
    866 
    867 	/* Load the map for the control data. */
    868 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    869 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    870 	    BUS_DMA_NOWAIT);
    871 	if (error) {
    872 		aprint_error_dev(sc->sc_dev,
    873 		    "could not load control data dma memory\n");
    874 		goto fail_4;
    875 	}
    876 
    877 	/* Create DMA maps for TX buffers */
    878 
    879 	for (i = 0; i < VGE_NTXDESC; i++) {
    880 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    881 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    882 		    &sc->sc_txsoft[i].txs_dmamap);
    883 		if (error) {
    884 			aprint_error_dev(sc->sc_dev,
    885 			    "can't create DMA map for TX descs\n");
    886 			goto fail_5;
    887 		}
    888 	}
    889 
    890 	/* Create DMA maps for RX buffers */
    891 
    892 	for (i = 0; i < VGE_NRXDESC; i++) {
    893 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    894 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    895 		    &sc->sc_rxsoft[i].rxs_dmamap);
    896 		if (error) {
    897 			aprint_error_dev(sc->sc_dev,
    898 			    "can't create DMA map for RX descs\n");
    899 			goto fail_6;
    900 		}
    901 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    902 	}
    903 
    904 	return 0;
    905 
    906  fail_6:
    907 	for (i = 0; i < VGE_NRXDESC; i++) {
    908 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    909 			bus_dmamap_destroy(sc->sc_dmat,
    910 			    sc->sc_rxsoft[i].rxs_dmamap);
    911 	}
    912  fail_5:
    913 	for (i = 0; i < VGE_NTXDESC; i++) {
    914 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    915 			bus_dmamap_destroy(sc->sc_dmat,
    916 			    sc->sc_txsoft[i].txs_dmamap);
    917 	}
    918 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    919  fail_4:
    920 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    921  fail_3:
    922 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    923 	    sizeof(struct vge_control_data));
    924  fail_2:
    925 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    926  fail_1:
    927 	return ENOMEM;
    928 }
    929 
    930 /*
    931  * Attach the interface. Allocate softc structures, do ifmedia
    932  * setup and ethernet/BPF attach.
    933  */
    934 static void
    935 vge_attach(device_t parent, device_t self, void *aux)
    936 {
    937 	uint8_t	*eaddr;
    938 	struct vge_softc *sc = device_private(self);
    939 	struct ifnet *ifp;
    940 	struct pci_attach_args *pa = aux;
    941 	pci_chipset_tag_t pc = pa->pa_pc;
    942 	const char *intrstr;
    943 	pci_intr_handle_t ih;
    944 	uint16_t val;
    945 
    946 	sc->sc_dev = self;
    947 
    948 	aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
    949 	    PCI_REVISION(pa->pa_class));
    950 
    951 	/* Make sure bus-mastering is enabled */
    952         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    953 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    954 	    PCI_COMMAND_MASTER_ENABLE);
    955 
    956 	/*
    957 	 * Map control/status registers.
    958 	 */
    959 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    960 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    961 		aprint_error_dev(self, "couldn't map memory\n");
    962 		return;
    963 	}
    964 
    965         /*
    966          * Map and establish our interrupt.
    967          */
    968 	if (pci_intr_map(pa, &ih)) {
    969 		aprint_error_dev(self, "unable to map interrupt\n");
    970 		return;
    971 	}
    972 	intrstr = pci_intr_string(pc, ih);
    973 	sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    974 	if (sc->sc_intrhand == NULL) {
    975 		aprint_error_dev(self, "unable to establish interrupt");
    976 		if (intrstr != NULL)
    977 			aprint_error(" at %s", intrstr);
    978 		aprint_error("\n");
    979 		return;
    980 	}
    981 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    982 
    983 	/* Reset the adapter. */
    984 	vge_reset(sc);
    985 
    986 	/*
    987 	 * Get station address from the EEPROM.
    988 	 */
    989 	eaddr = sc->sc_eaddr;
    990 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    991 	eaddr[0] = val & 0xff;
    992 	eaddr[1] = val >> 8;
    993 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    994 	eaddr[2] = val & 0xff;
    995 	eaddr[3] = val >> 8;
    996 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    997 	eaddr[4] = val & 0xff;
    998 	eaddr[5] = val >> 8;
    999 
   1000 	aprint_normal_dev(self, "Ethernet address: %s\n",
   1001 	    ether_sprintf(eaddr));
   1002 
   1003 	/*
   1004 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
   1005 	 * but we don't use that for now.
   1006 	 */
   1007 	sc->sc_dmat = pa->pa_dmat;
   1008 
   1009 	if (vge_allocmem(sc) != 0)
   1010 		return;
   1011 
   1012 	ifp = &sc->sc_ethercom.ec_if;
   1013 	ifp->if_softc = sc;
   1014 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1015 	ifp->if_mtu = ETHERMTU;
   1016 	ifp->if_baudrate = IF_Gbps(1);
   1017 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1018 	ifp->if_ioctl = vge_ioctl;
   1019 	ifp->if_start = vge_start;
   1020 	ifp->if_init = vge_init;
   1021 	ifp->if_stop = vge_stop;
   1022 
   1023 	/*
   1024 	 * We can support 802.1Q VLAN-sized frames and jumbo
   1025 	 * Ethernet frames.
   1026 	 */
   1027 	sc->sc_ethercom.ec_capabilities |=
   1028 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
   1029 	    ETHERCAP_VLAN_HWTAGGING;
   1030 
   1031 	/*
   1032 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
   1033 	 */
   1034 	ifp->if_capabilities |=
   1035 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1036 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1037 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1038 
   1039 #ifdef DEVICE_POLLING
   1040 #ifdef IFCAP_POLLING
   1041 	ifp->if_capabilities |= IFCAP_POLLING;
   1042 #endif
   1043 #endif
   1044 	ifp->if_watchdog = vge_watchdog;
   1045 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
   1046 	IFQ_SET_READY(&ifp->if_snd);
   1047 
   1048 	/*
   1049 	 * Initialize our media structures and probe the MII.
   1050 	 */
   1051 	sc->sc_mii.mii_ifp = ifp;
   1052 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
   1053 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
   1054 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
   1055 
   1056 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1057 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   1058 	    ether_mediastatus);
   1059 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1060 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1061 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1062 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1063 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1064 	} else
   1065 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1066 
   1067 	/*
   1068 	 * Attach the interface.
   1069 	 */
   1070 	if_attach(ifp);
   1071 	ether_ifattach(ifp, eaddr);
   1072 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
   1073 
   1074 	callout_init(&sc->sc_timeout, 0);
   1075 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1076 
   1077 	/*
   1078 	 * Make sure the interface is shutdown during reboot.
   1079 	 */
   1080 	if (shutdownhook_establish(vge_shutdown, sc) == NULL) {
   1081 		aprint_error_dev(self,
   1082 		    "WARNING: unable to establish shutdown hook\n");
   1083 	}
   1084 }
   1085 
   1086 static int
   1087 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1088 {
   1089 	struct mbuf *m_new;
   1090 	struct vge_rxdesc *rxd;
   1091 	struct vge_rxsoft *rxs;
   1092 	bus_dmamap_t map;
   1093 	int i;
   1094 #ifdef DIAGNOSTIC
   1095 	uint32_t rd_sts;
   1096 #endif
   1097 
   1098 	m_new = NULL;
   1099 	if (m == NULL) {
   1100 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1101 		if (m_new == NULL)
   1102 			return ENOBUFS;
   1103 
   1104 		MCLGET(m_new, M_DONTWAIT);
   1105 		if ((m_new->m_flags & M_EXT) == 0) {
   1106 			m_freem(m_new);
   1107 			return ENOBUFS;
   1108 		}
   1109 
   1110 		m = m_new;
   1111 	} else
   1112 		m->m_data = m->m_ext.ext_buf;
   1113 
   1114 
   1115 	/*
   1116 	 * This is part of an evil trick to deal with non-x86 platforms.
   1117 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1118 	 * boundaries, but that will hose non-x86 machines. To get around
   1119 	 * this, we leave some empty space at the start of each buffer
   1120 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1121 	 * to achieve word alignment. This is slightly more efficient
   1122 	 * than allocating a new buffer, copying the contents, and
   1123 	 * discarding the old buffer.
   1124 	 */
   1125 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1126 #ifndef __NO_STRICT_ALIGNMENT
   1127 	m->m_data += VGE_RX_PAD;
   1128 #endif
   1129 	rxs = &sc->sc_rxsoft[idx];
   1130 	map = rxs->rxs_dmamap;
   1131 
   1132 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1133 		goto out;
   1134 
   1135 	rxd = &sc->sc_rxdescs[idx];
   1136 
   1137 #ifdef DIAGNOSTIC
   1138 	/* If this descriptor is still owned by the chip, bail. */
   1139 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1140 	rd_sts = le32toh(rxd->rd_sts);
   1141 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1142 	if (rd_sts & VGE_RDSTS_OWN) {
   1143 		panic("%s: tried to map busy RX descriptor",
   1144 		    device_xname(sc->sc_dev));
   1145 	}
   1146 #endif
   1147 
   1148 	rxs->rxs_mbuf = m;
   1149 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1150 	    BUS_DMASYNC_PREREAD);
   1151 
   1152 	rxd->rd_buflen =
   1153 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1154 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1155 	rxd->rd_sts = 0;
   1156 	rxd->rd_ctl = 0;
   1157 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1158 
   1159 	/*
   1160 	 * Note: the manual fails to document the fact that for
   1161 	 * proper opration, the driver needs to replentish the RX
   1162 	 * DMA ring 4 descriptors at a time (rather than one at a
   1163 	 * time, like most chips). We can allocate the new buffers
   1164 	 * but we should not set the OWN bits until we're ready
   1165 	 * to hand back 4 of them in one shot.
   1166 	 */
   1167 
   1168 #define VGE_RXCHUNK 4
   1169 	sc->sc_rx_consumed++;
   1170 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1171 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1172 			KASSERT(i >= 0);
   1173 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1174 			VGE_RXDESCSYNC(sc, i,
   1175 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1176 		}
   1177 		sc->sc_rx_consumed = 0;
   1178 	}
   1179 
   1180 	return 0;
   1181  out:
   1182 	if (m_new != NULL)
   1183 		m_freem(m_new);
   1184 	return ENOMEM;
   1185 }
   1186 
   1187 #ifndef __NO_STRICT_ALIGNMENT
   1188 static inline void
   1189 vge_fixup_rx(struct mbuf *m)
   1190 {
   1191 	int i;
   1192 	uint16_t *src, *dst;
   1193 
   1194 	src = mtod(m, uint16_t *);
   1195 	dst = src - 1;
   1196 
   1197 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1198 		*dst++ = *src++;
   1199 
   1200 	m->m_data -= ETHER_ALIGN;
   1201 }
   1202 #endif
   1203 
   1204 /*
   1205  * RX handler. We support the reception of jumbo frames that have
   1206  * been fragmented across multiple 2K mbuf cluster buffers.
   1207  */
   1208 static void
   1209 vge_rxeof(struct vge_softc *sc)
   1210 {
   1211 	struct mbuf *m;
   1212 	struct ifnet *ifp;
   1213 	int idx, total_len, lim;
   1214 	struct vge_rxdesc *cur_rxd;
   1215 	struct vge_rxsoft *rxs;
   1216 	uint32_t rxstat, rxctl;
   1217 
   1218 	ifp = &sc->sc_ethercom.ec_if;
   1219 	lim = 0;
   1220 
   1221 	/* Invalidate the descriptor memory */
   1222 
   1223 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1224 		cur_rxd = &sc->sc_rxdescs[idx];
   1225 
   1226 		VGE_RXDESCSYNC(sc, idx,
   1227 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1228 		rxstat = le32toh(cur_rxd->rd_sts);
   1229 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1230 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1231 			break;
   1232 		}
   1233 
   1234 		rxctl = le32toh(cur_rxd->rd_ctl);
   1235 		rxs = &sc->sc_rxsoft[idx];
   1236 		m = rxs->rxs_mbuf;
   1237 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1238 
   1239 		/* Invalidate the RX mbuf and unload its map */
   1240 
   1241 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1242 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1243 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1244 
   1245 		/*
   1246 		 * If the 'start of frame' bit is set, this indicates
   1247 		 * either the first fragment in a multi-fragment receive,
   1248 		 * or an intermediate fragment. Either way, we want to
   1249 		 * accumulate the buffers.
   1250 		 */
   1251 		if (rxstat & VGE_RXPKT_SOF) {
   1252 			m->m_len = VGE_RX_BUFSIZE;
   1253 			if (sc->sc_rx_mhead == NULL)
   1254 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1255 			else {
   1256 				m->m_flags &= ~M_PKTHDR;
   1257 				sc->sc_rx_mtail->m_next = m;
   1258 				sc->sc_rx_mtail = m;
   1259 			}
   1260 			vge_newbuf(sc, idx, NULL);
   1261 			continue;
   1262 		}
   1263 
   1264 		/*
   1265 		 * Bad/error frames will have the RXOK bit cleared.
   1266 		 * However, there's one error case we want to allow:
   1267 		 * if a VLAN tagged frame arrives and the chip can't
   1268 		 * match it against the CAM filter, it considers this
   1269 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1270 		 * We don't want to drop the frame though: our VLAN
   1271 		 * filtering is done in software.
   1272 		 */
   1273 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
   1274 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
   1275 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
   1276 			ifp->if_ierrors++;
   1277 			/*
   1278 			 * If this is part of a multi-fragment packet,
   1279 			 * discard all the pieces.
   1280 			 */
   1281 			if (sc->sc_rx_mhead != NULL) {
   1282 				m_freem(sc->sc_rx_mhead);
   1283 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1284 			}
   1285 			vge_newbuf(sc, idx, m);
   1286 			continue;
   1287 		}
   1288 
   1289 		/*
   1290 		 * If allocating a replacement mbuf fails,
   1291 		 * reload the current one.
   1292 		 */
   1293 
   1294 		if (vge_newbuf(sc, idx, NULL)) {
   1295 			ifp->if_ierrors++;
   1296 			if (sc->sc_rx_mhead != NULL) {
   1297 				m_freem(sc->sc_rx_mhead);
   1298 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1299 			}
   1300 			vge_newbuf(sc, idx, m);
   1301 			continue;
   1302 		}
   1303 
   1304 		if (sc->sc_rx_mhead != NULL) {
   1305 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1306 			/*
   1307 			 * Special case: if there's 4 bytes or less
   1308 			 * in this buffer, the mbuf can be discarded:
   1309 			 * the last 4 bytes is the CRC, which we don't
   1310 			 * care about anyway.
   1311 			 */
   1312 			if (m->m_len <= ETHER_CRC_LEN) {
   1313 				sc->sc_rx_mtail->m_len -=
   1314 				    (ETHER_CRC_LEN - m->m_len);
   1315 				m_freem(m);
   1316 			} else {
   1317 				m->m_len -= ETHER_CRC_LEN;
   1318 				m->m_flags &= ~M_PKTHDR;
   1319 				sc->sc_rx_mtail->m_next = m;
   1320 			}
   1321 			m = sc->sc_rx_mhead;
   1322 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1323 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1324 		} else
   1325 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1326 
   1327 #ifndef __NO_STRICT_ALIGNMENT
   1328 		vge_fixup_rx(m);
   1329 #endif
   1330 		ifp->if_ipackets++;
   1331 		m->m_pkthdr.rcvif = ifp;
   1332 
   1333 		/* Do RX checksumming if enabled */
   1334 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1335 
   1336 			/* Check IP header checksum */
   1337 			if (rxctl & VGE_RDCTL_IPPKT)
   1338 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1339 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1340 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1341 		}
   1342 
   1343 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1344 			/* Check UDP checksum */
   1345 			if (rxctl & VGE_RDCTL_TCPPKT)
   1346 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1347 
   1348 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1349 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1350 		}
   1351 
   1352 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1353 			/* Check UDP checksum */
   1354 			if (rxctl & VGE_RDCTL_UDPPKT)
   1355 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1356 
   1357 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1358 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1359 		}
   1360 
   1361 		if (rxstat & VGE_RDSTS_VTAG) {
   1362 			/*
   1363 			 * We use bswap16() here because:
   1364 			 * On LE machines, tag is stored in BE as stream data.
   1365 			 * On BE machines, tag is stored in BE as stream data
   1366 			 *  but it was already swapped by le32toh() above.
   1367 			 */
   1368 			VLAN_INPUT_TAG(ifp, m,
   1369 			    bswap16(rxctl & VGE_RDCTL_VLANID), continue);
   1370 		}
   1371 
   1372 #if NBPFILTER > 0
   1373 		/*
   1374 		 * Handle BPF listeners.
   1375 		 */
   1376 		if (ifp->if_bpf)
   1377 			bpf_mtap(ifp->if_bpf, m);
   1378 #endif
   1379 
   1380 		(*ifp->if_input)(ifp, m);
   1381 
   1382 		lim++;
   1383 		if (lim == VGE_NRXDESC)
   1384 			break;
   1385 	}
   1386 
   1387 	sc->sc_rx_prodidx = idx;
   1388 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1389 }
   1390 
   1391 static void
   1392 vge_txeof(struct vge_softc *sc)
   1393 {
   1394 	struct ifnet *ifp;
   1395 	struct vge_txsoft *txs;
   1396 	uint32_t txstat;
   1397 	int idx;
   1398 
   1399 	ifp = &sc->sc_ethercom.ec_if;
   1400 
   1401 	for (idx = sc->sc_tx_considx;
   1402 	    sc->sc_tx_free < VGE_NTXDESC;
   1403 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1404 		VGE_TXDESCSYNC(sc, idx,
   1405 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1406 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1407 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1408 		if (txstat & VGE_TDSTS_OWN) {
   1409 			break;
   1410 		}
   1411 
   1412 		txs = &sc->sc_txsoft[idx];
   1413 		m_freem(txs->txs_mbuf);
   1414 		txs->txs_mbuf = NULL;
   1415 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1416 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1417 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1418 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1419 			ifp->if_collisions++;
   1420 		if (txstat & VGE_TDSTS_TXERR)
   1421 			ifp->if_oerrors++;
   1422 		else
   1423 			ifp->if_opackets++;
   1424 	}
   1425 
   1426 	sc->sc_tx_considx = idx;
   1427 
   1428 	if (sc->sc_tx_free > 0) {
   1429 		ifp->if_flags &= ~IFF_OACTIVE;
   1430 	}
   1431 
   1432 	/*
   1433 	 * If not all descriptors have been released reaped yet,
   1434 	 * reload the timer so that we will eventually get another
   1435 	 * interrupt that will cause us to re-enter this routine.
   1436 	 * This is done in case the transmitter has gone idle.
   1437 	 */
   1438 	if (sc->sc_tx_free < VGE_NTXDESC)
   1439 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1440 	else
   1441 		ifp->if_timer = 0;
   1442 }
   1443 
   1444 static void
   1445 vge_tick(void *arg)
   1446 {
   1447 	struct vge_softc *sc;
   1448 	struct ifnet *ifp;
   1449 	struct mii_data *mii;
   1450 	int s;
   1451 
   1452 	sc = arg;
   1453 	ifp = &sc->sc_ethercom.ec_if;
   1454 	mii = &sc->sc_mii;
   1455 
   1456 	s = splnet();
   1457 
   1458 	callout_schedule(&sc->sc_timeout, hz);
   1459 
   1460 	mii_tick(mii);
   1461 	if (sc->sc_link) {
   1462 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
   1463 			sc->sc_link = 0;
   1464 	} else {
   1465 		if (mii->mii_media_status & IFM_ACTIVE &&
   1466 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1467 			sc->sc_link = 1;
   1468 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1469 				vge_start(ifp);
   1470 		}
   1471 	}
   1472 
   1473 	splx(s);
   1474 }
   1475 
   1476 static int
   1477 vge_intr(void *arg)
   1478 {
   1479 	struct vge_softc *sc;
   1480 	struct ifnet *ifp;
   1481 	uint32_t status;
   1482 	int claim;
   1483 
   1484 	sc = arg;
   1485 	claim = 0;
   1486 	if (sc->sc_suspended) {
   1487 		return claim;
   1488 	}
   1489 
   1490 	ifp = &sc->sc_ethercom.ec_if;
   1491 
   1492 	if ((ifp->if_flags & IFF_UP) == 0) {
   1493 		return claim;
   1494 	}
   1495 
   1496 	/* Disable interrupts */
   1497 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1498 
   1499 	for (;;) {
   1500 
   1501 		status = CSR_READ_4(sc, VGE_ISR);
   1502 		/* If the card has gone away the read returns 0xffffffff. */
   1503 		if (status == 0xFFFFFFFF)
   1504 			break;
   1505 
   1506 		if (status) {
   1507 			claim = 1;
   1508 			CSR_WRITE_4(sc, VGE_ISR, status);
   1509 		}
   1510 
   1511 		if ((status & VGE_INTRS) == 0)
   1512 			break;
   1513 
   1514 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1515 			vge_rxeof(sc);
   1516 
   1517 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1518 			vge_rxeof(sc);
   1519 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1520 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1521 		}
   1522 
   1523 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1524 			vge_txeof(sc);
   1525 
   1526 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1527 			vge_init(ifp);
   1528 
   1529 		if (status & VGE_ISR_LINKSTS)
   1530 			vge_tick(sc);
   1531 	}
   1532 
   1533 	/* Re-enable interrupts */
   1534 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1535 
   1536 	if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
   1537 		vge_start(ifp);
   1538 
   1539 	return claim;
   1540 }
   1541 
   1542 static int
   1543 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1544 {
   1545 	struct vge_txsoft *txs;
   1546 	struct vge_txdesc *txd;
   1547 	struct vge_txfrag *f;
   1548 	struct mbuf *m_new;
   1549 	bus_dmamap_t map;
   1550 	int m_csumflags, seg, error, flags;
   1551 	struct m_tag *mtag;
   1552 	size_t sz;
   1553 	uint32_t td_sts, td_ctl;
   1554 
   1555 	KASSERT(sc->sc_tx_free > 0);
   1556 
   1557 	txd = &sc->sc_txdescs[idx];
   1558 
   1559 #ifdef DIAGNOSTIC
   1560 	/* If this descriptor is still owned by the chip, bail. */
   1561 	VGE_TXDESCSYNC(sc, idx,
   1562 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1563 	td_sts = le32toh(txd->td_sts);
   1564 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1565 	if (td_sts & VGE_TDSTS_OWN) {
   1566 		return ENOBUFS;
   1567 	}
   1568 #endif
   1569 
   1570 	/*
   1571 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1572 	 * updated by m_defrag()
   1573 	 */
   1574 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1575 
   1576 	txs = &sc->sc_txsoft[idx];
   1577 	map = txs->txs_dmamap;
   1578 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1579 
   1580 	/* If too many segments to map, coalesce */
   1581 	if (error == EFBIG ||
   1582 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1583 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1584 		m_new = m_defrag(m_head, M_DONTWAIT);
   1585 		if (m_new == NULL)
   1586 			return EFBIG;
   1587 
   1588 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1589 		    m_new, BUS_DMA_NOWAIT);
   1590 		if (error) {
   1591 			m_freem(m_new);
   1592 			return error;
   1593 		}
   1594 
   1595 		m_head = m_new;
   1596 	} else if (error)
   1597 		return error;
   1598 
   1599 	txs->txs_mbuf = m_head;
   1600 
   1601 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1602 	    BUS_DMASYNC_PREWRITE);
   1603 
   1604 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1605 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1606 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1607 	}
   1608 
   1609 	/* Argh. This chip does not autopad short frames */
   1610 	sz = m_head->m_pkthdr.len;
   1611 	if (sz < ETHER_PAD_LEN) {
   1612 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1613 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1614 		sz = ETHER_PAD_LEN;
   1615 		seg++;
   1616 	}
   1617 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1618 
   1619 	/*
   1620 	 * When telling the chip how many segments there are, we
   1621 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1622 	 * know why.
   1623 	 */
   1624 	seg++;
   1625 
   1626 	flags = 0;
   1627 	if (m_csumflags & M_CSUM_IPv4)
   1628 		flags |= VGE_TDCTL_IPCSUM;
   1629 	if (m_csumflags & M_CSUM_TCPv4)
   1630 		flags |= VGE_TDCTL_TCPCSUM;
   1631 	if (m_csumflags & M_CSUM_UDPv4)
   1632 		flags |= VGE_TDCTL_UDPCSUM;
   1633 	td_sts = sz << 16;
   1634 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1635 
   1636 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1637 		td_ctl |= VGE_TDCTL_JUMBO;
   1638 
   1639 	/*
   1640 	 * Set up hardware VLAN tagging.
   1641 	 */
   1642 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1643 	if (mtag != NULL) {
   1644 		/*
   1645 		 * No need htons() here since vge(4) chip assumes
   1646 		 * that tags are written in little endian and
   1647 		 * we already use htole32() here.
   1648 		 */
   1649 		td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
   1650 	}
   1651 	txd->td_ctl = htole32(td_ctl);
   1652 	txd->td_sts = htole32(td_sts);
   1653 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1654 
   1655 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1656 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1657 
   1658 	sc->sc_tx_free--;
   1659 
   1660 	return 0;
   1661 }
   1662 
   1663 /*
   1664  * Main transmit routine.
   1665  */
   1666 
   1667 static void
   1668 vge_start(struct ifnet *ifp)
   1669 {
   1670 	struct vge_softc *sc;
   1671 	struct vge_txsoft *txs;
   1672 	struct mbuf *m_head;
   1673 	int idx, pidx, ofree, error;
   1674 
   1675 	sc = ifp->if_softc;
   1676 
   1677 	if (!sc->sc_link ||
   1678 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1679 		return;
   1680 	}
   1681 
   1682 	m_head = NULL;
   1683 	idx = sc->sc_tx_prodidx;
   1684 	pidx = VGE_PREV_TXDESC(idx);
   1685 	ofree = sc->sc_tx_free;
   1686 
   1687 	/*
   1688 	 * Loop through the send queue, setting up transmit descriptors
   1689 	 * until we drain the queue, or use up all available transmit
   1690 	 * descriptors.
   1691 	 */
   1692 	for (;;) {
   1693 		/* Grab a packet off the queue. */
   1694 		IFQ_POLL(&ifp->if_snd, m_head);
   1695 		if (m_head == NULL)
   1696 			break;
   1697 
   1698 		if (sc->sc_tx_free == 0) {
   1699 			/*
   1700 			 * All slots used, stop for now.
   1701 			 */
   1702 			ifp->if_flags |= IFF_OACTIVE;
   1703 			break;
   1704 		}
   1705 
   1706 		txs = &sc->sc_txsoft[idx];
   1707 		KASSERT(txs->txs_mbuf == NULL);
   1708 
   1709 		if ((error = vge_encap(sc, m_head, idx))) {
   1710 			if (error == EFBIG) {
   1711 				printf("%s: Tx packet consumes too many "
   1712 				    "DMA segments, dropping...\n",
   1713 				    device_xname(sc->sc_dev));
   1714 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1715 				m_freem(m_head);
   1716 				continue;
   1717 			}
   1718 
   1719 			/*
   1720 			 * Short on resources, just stop for now.
   1721 			 */
   1722 			if (error == ENOBUFS)
   1723 				ifp->if_flags |= IFF_OACTIVE;
   1724 			break;
   1725 		}
   1726 
   1727 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1728 
   1729 		/*
   1730 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1731 		 */
   1732 
   1733 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1734 		    htole16(VGE_TXDESC_Q);
   1735 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1736 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1737 
   1738 		if (txs->txs_mbuf != m_head) {
   1739 			m_freem(m_head);
   1740 			m_head = txs->txs_mbuf;
   1741 		}
   1742 
   1743 		pidx = idx;
   1744 		idx = VGE_NEXT_TXDESC(idx);
   1745 
   1746 		/*
   1747 		 * If there's a BPF listener, bounce a copy of this frame
   1748 		 * to him.
   1749 		 */
   1750 #if NBPFILTER > 0
   1751 		if (ifp->if_bpf)
   1752 			bpf_mtap(ifp->if_bpf, m_head);
   1753 #endif
   1754 	}
   1755 
   1756 	if (sc->sc_tx_free < ofree) {
   1757 		/* TX packet queued */
   1758 
   1759 		sc->sc_tx_prodidx = idx;
   1760 
   1761 		/* Issue a transmit command. */
   1762 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1763 
   1764 		/*
   1765 		 * Use the countdown timer for interrupt moderation.
   1766 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1767 		 * countdown timer, which will begin counting until it hits
   1768 		 * the value in the SSTIMER register, and then trigger an
   1769 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1770 		 * the timer count is reloaded. Only when the transmitter
   1771 		 * is idle will the timer hit 0 and an interrupt fire.
   1772 		 */
   1773 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1774 
   1775 		/*
   1776 		 * Set a timeout in case the chip goes out to lunch.
   1777 		 */
   1778 		ifp->if_timer = 5;
   1779 	}
   1780 }
   1781 
   1782 static int
   1783 vge_init(struct ifnet *ifp)
   1784 {
   1785 	struct vge_softc *sc;
   1786 	int i, rc = 0;
   1787 
   1788 	sc = ifp->if_softc;
   1789 
   1790 	/*
   1791 	 * Cancel pending I/O and free all RX/TX buffers.
   1792 	 */
   1793 	vge_stop(ifp, 0);
   1794 	vge_reset(sc);
   1795 
   1796 	/* Initialize the RX descriptors and mbufs. */
   1797 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1798 	sc->sc_rx_consumed = 0;
   1799 	for (i = 0; i < VGE_NRXDESC; i++) {
   1800 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1801 			printf("%s: unable to allocate or map rx buffer\n",
   1802 			    device_xname(sc->sc_dev));
   1803 			return 1; /* XXX */
   1804 		}
   1805 	}
   1806 	sc->sc_rx_prodidx = 0;
   1807 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1808 
   1809 	/* Initialize the  TX descriptors and mbufs. */
   1810 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1811 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1812 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1813 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1814 	for (i = 0; i < VGE_NTXDESC; i++)
   1815 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1816 
   1817 	sc->sc_tx_prodidx = 0;
   1818 	sc->sc_tx_considx = 0;
   1819 	sc->sc_tx_free = VGE_NTXDESC;
   1820 
   1821 	/* Set our station address */
   1822 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1823 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1824 
   1825 	/*
   1826 	 * Set receive FIFO threshold. Also allow transmission and
   1827 	 * reception of VLAN tagged frames.
   1828 	 */
   1829 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1830 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1831 
   1832 	/* Set DMA burst length */
   1833 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1834 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1835 
   1836 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1837 
   1838 	/* Set collision backoff algorithm */
   1839 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1840 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1841 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1842 
   1843 	/* Disable LPSEL field in priority resolution */
   1844 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1845 
   1846 	/*
   1847 	 * Load the addresses of the DMA queues into the chip.
   1848 	 * Note that we only use one transmit queue.
   1849 	 */
   1850 
   1851 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1852 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1853 
   1854 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1855 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1856 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1857 
   1858 	/* Enable and wake up the RX descriptor queue */
   1859 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1860 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1861 
   1862 	/* Enable the TX descriptor queue */
   1863 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1864 
   1865 	/* Set up the receive filter -- allow large frames for VLANs. */
   1866 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1867 
   1868 	/* If we want promiscuous mode, set the allframes bit. */
   1869 	if (ifp->if_flags & IFF_PROMISC) {
   1870 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1871 	}
   1872 
   1873 	/* Set capture broadcast bit to capture broadcast frames. */
   1874 	if (ifp->if_flags & IFF_BROADCAST) {
   1875 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1876 	}
   1877 
   1878 	/* Set multicast bit to capture multicast frames. */
   1879 	if (ifp->if_flags & IFF_MULTICAST) {
   1880 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1881 	}
   1882 
   1883 	/* Init the cam filter. */
   1884 	vge_cam_clear(sc);
   1885 
   1886 	/* Init the multicast filter. */
   1887 	vge_setmulti(sc);
   1888 
   1889 	/* Enable flow control */
   1890 
   1891 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1892 
   1893 	/* Enable jumbo frame reception (if desired) */
   1894 
   1895 	/* Start the MAC. */
   1896 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1897 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1898 	CSR_WRITE_1(sc, VGE_CRS0,
   1899 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1900 
   1901 	/*
   1902 	 * Configure one-shot timer for microsecond
   1903 	 * resulution and load it for 500 usecs.
   1904 	 */
   1905 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1906 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1907 
   1908 	/*
   1909 	 * Configure interrupt moderation for receive. Enable
   1910 	 * the holdoff counter and load it, and set the RX
   1911 	 * suppression count to the number of descriptors we
   1912 	 * want to allow before triggering an interrupt.
   1913 	 * The holdoff timer is in units of 20 usecs.
   1914 	 */
   1915 
   1916 #ifdef notyet
   1917 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1918 	/* Select the interrupt holdoff timer page. */
   1919 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1920 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1921 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1922 
   1923 	/* Enable use of the holdoff timer. */
   1924 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1925 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1926 
   1927 	/* Select the RX suppression threshold page. */
   1928 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1929 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1930 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1931 
   1932 	/* Restore the page select bits. */
   1933 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1934 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1935 #endif
   1936 
   1937 #ifdef DEVICE_POLLING
   1938 	/*
   1939 	 * Disable interrupts if we are polling.
   1940 	 */
   1941 	if (ifp->if_flags & IFF_POLLING) {
   1942 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1943 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1944 	} else	/* otherwise ... */
   1945 #endif /* DEVICE_POLLING */
   1946 	{
   1947 	/*
   1948 	 * Enable interrupts.
   1949 	 */
   1950 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1951 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1952 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1953 	}
   1954 
   1955 	if ((rc = ether_mediachange(ifp)) != 0)
   1956 		goto out;
   1957 
   1958 	ifp->if_flags |= IFF_RUNNING;
   1959 	ifp->if_flags &= ~IFF_OACTIVE;
   1960 
   1961 	sc->sc_if_flags = 0;
   1962 	sc->sc_link = 0;
   1963 
   1964 	callout_schedule(&sc->sc_timeout, hz);
   1965 
   1966 out:
   1967 	return rc;
   1968 }
   1969 
   1970 static void
   1971 vge_miibus_statchg(device_t self)
   1972 {
   1973 	struct vge_softc *sc;
   1974 	struct mii_data *mii;
   1975 	struct ifmedia_entry *ife;
   1976 
   1977 	sc = device_private(self);
   1978 	mii = &sc->sc_mii;
   1979 	ife = mii->mii_media.ifm_cur;
   1980 	/*
   1981 	 * If the user manually selects a media mode, we need to turn
   1982 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1983 	 * user happens to choose a full duplex mode, we also need to
   1984 	 * set the 'force full duplex' bit. This applies only to
   1985 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1986 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1987 	 * always implied, so we turn on the forced mode bit but leave
   1988 	 * the FDX bit cleared.
   1989 	 */
   1990 
   1991 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1992 	case IFM_AUTO:
   1993 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1994 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1995 		break;
   1996 	case IFM_1000_T:
   1997 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1998 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1999 		break;
   2000 	case IFM_100_TX:
   2001 	case IFM_10_T:
   2002 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2003 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   2004 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2005 		} else {
   2006 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   2007 		}
   2008 		break;
   2009 	default:
   2010 		printf("%s: unknown media type: %x\n",
   2011 		    device_xname(sc->sc_dev),
   2012 		    IFM_SUBTYPE(ife->ifm_media));
   2013 		break;
   2014 	}
   2015 }
   2016 
   2017 static int
   2018 vge_ifflags_cb(struct ethercom *ec)
   2019 {
   2020 	struct ifnet *ifp = &ec->ec_if;
   2021 	struct vge_softc *sc = ifp->if_softc;
   2022 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2023 
   2024 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2025 		return ENETRESET;
   2026 	else if ((change & IFF_PROMISC) == 0)
   2027 		return 0;
   2028 
   2029 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   2030 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   2031 	else
   2032 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   2033 	vge_setmulti(sc);
   2034 	return 0;
   2035 }
   2036 
   2037 static int
   2038 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
   2039 {
   2040 	struct vge_softc *sc;
   2041 	struct ifreq *ifr;
   2042 	int s, error;
   2043 
   2044 	sc = ifp->if_softc;
   2045 	ifr = (struct ifreq *)data;
   2046 	error = 0;
   2047 
   2048 	s = splnet();
   2049 
   2050 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
   2051 		error = 0;
   2052 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2053 			;
   2054 		else if (ifp->if_flags & IFF_RUNNING) {
   2055 			/*
   2056 			 * Multicast list has changed; set the hardware filter
   2057 			 * accordingly.
   2058 			 */
   2059 			vge_setmulti(sc);
   2060 		}
   2061 	}
   2062 	sc->sc_if_flags = ifp->if_flags;
   2063 
   2064 	splx(s);
   2065 	return error;
   2066 }
   2067 
   2068 static void
   2069 vge_watchdog(struct ifnet *ifp)
   2070 {
   2071 	struct vge_softc *sc;
   2072 	int s;
   2073 
   2074 	sc = ifp->if_softc;
   2075 	s = splnet();
   2076 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2077 	ifp->if_oerrors++;
   2078 
   2079 	vge_txeof(sc);
   2080 	vge_rxeof(sc);
   2081 
   2082 	vge_init(ifp);
   2083 
   2084 	splx(s);
   2085 }
   2086 
   2087 /*
   2088  * Stop the adapter and free any mbufs allocated to the
   2089  * RX and TX lists.
   2090  */
   2091 static void
   2092 vge_stop(struct ifnet *ifp, int disable)
   2093 {
   2094 	struct vge_softc *sc = ifp->if_softc;
   2095 	struct vge_txsoft *txs;
   2096 	struct vge_rxsoft *rxs;
   2097 	int i, s;
   2098 
   2099 	s = splnet();
   2100 	ifp->if_timer = 0;
   2101 
   2102 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2103 #ifdef DEVICE_POLLING
   2104 	ether_poll_deregister(ifp);
   2105 #endif /* DEVICE_POLLING */
   2106 
   2107 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2108 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2109 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2110 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2111 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2112 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2113 
   2114 	if (sc->sc_rx_mhead != NULL) {
   2115 		m_freem(sc->sc_rx_mhead);
   2116 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2117 	}
   2118 
   2119 	/* Free the TX list buffers. */
   2120 
   2121 	for (i = 0; i < VGE_NTXDESC; i++) {
   2122 		txs = &sc->sc_txsoft[i];
   2123 		if (txs->txs_mbuf != NULL) {
   2124 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2125 			m_freem(txs->txs_mbuf);
   2126 			txs->txs_mbuf = NULL;
   2127 		}
   2128 	}
   2129 
   2130 	/* Free the RX list buffers. */
   2131 
   2132 	for (i = 0; i < VGE_NRXDESC; i++) {
   2133 		rxs = &sc->sc_rxsoft[i];
   2134 		if (rxs->rxs_mbuf != NULL) {
   2135 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2136 			m_freem(rxs->rxs_mbuf);
   2137 			rxs->rxs_mbuf = NULL;
   2138 		}
   2139 	}
   2140 
   2141 	splx(s);
   2142 }
   2143 
   2144 #if VGE_POWER_MANAGEMENT
   2145 /*
   2146  * Device suspend routine.  Stop the interface and save some PCI
   2147  * settings in case the BIOS doesn't restore them properly on
   2148  * resume.
   2149  */
   2150 static int
   2151 vge_suspend(device_t dev)
   2152 {
   2153 	struct vge_softc *sc;
   2154 	int i;
   2155 
   2156 	sc = device_get_softc(dev);
   2157 
   2158 	vge_stop(sc);
   2159 
   2160         for (i = 0; i < 5; i++)
   2161 		sc->sc_saved_maps[i] =
   2162 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2163 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2164 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2165 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2166 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2167 
   2168 	sc->suspended = 1;
   2169 
   2170 	return 0;
   2171 }
   2172 
   2173 /*
   2174  * Device resume routine.  Restore some PCI settings in case the BIOS
   2175  * doesn't, re-enable busmastering, and restart the interface if
   2176  * appropriate.
   2177  */
   2178 static int
   2179 vge_resume(device_t dev)
   2180 {
   2181 	struct vge_softc *sc;
   2182 	struct ifnet *ifp;
   2183 	int i;
   2184 
   2185 	sc = device_private(dev);
   2186 	ifp = &sc->sc_ethercom.ec_if;
   2187 
   2188         /* better way to do this? */
   2189 	for (i = 0; i < 5; i++)
   2190 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2191 		    sc->sc_saved_maps[i], 4);
   2192 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2193 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2194 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2195 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2196 
   2197 	/* reenable busmastering */
   2198 	pci_enable_busmaster(dev);
   2199 	pci_enable_io(dev, SYS_RES_MEMORY);
   2200 
   2201 	/* reinitialize interface if necessary */
   2202 	if (ifp->if_flags & IFF_UP)
   2203 		vge_init(sc);
   2204 
   2205 	sc->suspended = 0;
   2206 
   2207 	return 0;
   2208 }
   2209 #endif
   2210 
   2211 /*
   2212  * Stop all chip I/O so that the kernel's probe routines don't
   2213  * get confused by errant DMAs when rebooting.
   2214  */
   2215 static void
   2216 vge_shutdown(void *arg)
   2217 {
   2218 	struct vge_softc *sc;
   2219 
   2220 	sc = arg;
   2221 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2222 }
   2223