if_vge.c revision 1.54 1 /* $NetBSD: if_vge.c,v 1.54 2013/03/30 03:21:08 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.54 2013/03/30 03:21:08 christos Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87
88 #include <sys/param.h>
89 #include <sys/endian.h>
90 #include <sys/systm.h>
91 #include <sys/device.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <sys/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116
117 #define VGE_IFQ_MAXLEN 64
118
119 #define VGE_RING_ALIGN 256
120
121 #define VGE_NTXDESC 256
122 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
123 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
124 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
125
126 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
127 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
128 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
129 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
130
131 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
132 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
133 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
134 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
135
136 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
137
138 /*
139 * Mbuf adjust factor to force 32-bit alignment of IP header.
140 * Drivers should pad ETHER_ALIGN bytes when setting up a
141 * RX mbuf so the upper layers get the IP header properly aligned
142 * past the 14-byte Ethernet header.
143 *
144 * See also comment in vge_encap().
145 */
146 #define ETHER_ALIGN 2
147
148 #ifdef __NO_STRICT_ALIGNMENT
149 #define VGE_RX_BUFSIZE MCLBYTES
150 #else
151 #define VGE_RX_PAD sizeof(uint32_t)
152 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
153 #endif
154
155 /*
156 * Control structures are DMA'd to the vge chip. We allocate them in
157 * a single clump that maps to a single DMA segment to make several things
158 * easier.
159 */
160 struct vge_control_data {
161 /* TX descriptors */
162 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
163 /* RX descriptors */
164 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
165 /* dummy data for TX padding */
166 uint8_t vcd_pad[ETHER_PAD_LEN];
167 };
168
169 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
170 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
171 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
172 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
173
174 /*
175 * Software state for TX jobs.
176 */
177 struct vge_txsoft {
178 struct mbuf *txs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t txs_dmamap; /* our DMA map */
180 };
181
182 /*
183 * Software state for RX jobs.
184 */
185 struct vge_rxsoft {
186 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
187 bus_dmamap_t rxs_dmamap; /* our DMA map */
188 };
189
190
191 struct vge_softc {
192 device_t sc_dev;
193
194 bus_space_tag_t sc_bst; /* bus space tag */
195 bus_space_handle_t sc_bsh; /* bus space handle */
196 bus_dma_tag_t sc_dmat;
197
198 struct ethercom sc_ethercom; /* interface info */
199 uint8_t sc_eaddr[ETHER_ADDR_LEN];
200
201 void *sc_intrhand;
202 struct mii_data sc_mii;
203 uint8_t sc_type;
204 int sc_if_flags;
205 int sc_link;
206 int sc_camidx;
207 callout_t sc_timeout;
208
209 bus_dmamap_t sc_cddmamap;
210 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
211
212 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
213 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
214 struct vge_control_data *sc_control_data;
215 #define sc_txdescs sc_control_data->vcd_txdescs
216 #define sc_rxdescs sc_control_data->vcd_rxdescs
217
218 int sc_tx_prodidx;
219 int sc_tx_considx;
220 int sc_tx_free;
221
222 struct mbuf *sc_rx_mhead;
223 struct mbuf *sc_rx_mtail;
224 int sc_rx_prodidx;
225 int sc_rx_consumed;
226
227 int sc_suspended; /* 0 = normal 1 = suspended */
228 uint32_t sc_saved_maps[5]; /* pci data */
229 uint32_t sc_saved_biosaddr;
230 uint8_t sc_saved_intline;
231 uint8_t sc_saved_cachelnsz;
232 uint8_t sc_saved_lattimer;
233 };
234
235 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
236 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
237 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
238
239 #define VGE_TXDESCSYNC(sc, idx, ops) \
240 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
241 VGE_CDTXOFF(idx), \
242 offsetof(struct vge_txdesc, td_frag[0]), \
243 (ops))
244 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
246 VGE_CDTXOFF(idx) + \
247 offsetof(struct vge_txdesc, td_frag[0]), \
248 sizeof(struct vge_txfrag) * (nsegs), \
249 (ops))
250 #define VGE_RXDESCSYNC(sc, idx, ops) \
251 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
252 VGE_CDRXOFF(idx), \
253 sizeof(struct vge_rxdesc), \
254 (ops))
255
256 /*
257 * register space access macros
258 */
259 #define CSR_WRITE_4(sc, reg, val) \
260 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
261 #define CSR_WRITE_2(sc, reg, val) \
262 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
263 #define CSR_WRITE_1(sc, reg, val) \
264 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
265
266 #define CSR_READ_4(sc, reg) \
267 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
268 #define CSR_READ_2(sc, reg) \
269 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
270 #define CSR_READ_1(sc, reg) \
271 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
272
273 #define CSR_SETBIT_1(sc, reg, x) \
274 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
275 #define CSR_SETBIT_2(sc, reg, x) \
276 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
277 #define CSR_SETBIT_4(sc, reg, x) \
278 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
279
280 #define CSR_CLRBIT_1(sc, reg, x) \
281 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
282 #define CSR_CLRBIT_2(sc, reg, x) \
283 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
284 #define CSR_CLRBIT_4(sc, reg, x) \
285 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
286
287 #define VGE_TIMEOUT 10000
288
289 #define VGE_PCI_LOIO 0x10
290 #define VGE_PCI_LOMEM 0x14
291
292 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
293 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
294
295 static int vge_ifflags_cb(struct ethercom *);
296
297 static int vge_match(device_t, cfdata_t, void *);
298 static void vge_attach(device_t, device_t, void *);
299
300 static int vge_encap(struct vge_softc *, struct mbuf *, int);
301
302 static int vge_allocmem(struct vge_softc *);
303 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
304 #ifndef __NO_STRICT_ALIGNMENT
305 static inline void vge_fixup_rx(struct mbuf *);
306 #endif
307 static void vge_rxeof(struct vge_softc *);
308 static void vge_txeof(struct vge_softc *);
309 static int vge_intr(void *);
310 static void vge_tick(void *);
311 static void vge_start(struct ifnet *);
312 static int vge_ioctl(struct ifnet *, u_long, void *);
313 static int vge_init(struct ifnet *);
314 static void vge_stop(struct ifnet *, int);
315 static void vge_watchdog(struct ifnet *);
316 #if VGE_POWER_MANAGEMENT
317 static int vge_suspend(device_t);
318 static int vge_resume(device_t);
319 #endif
320 static bool vge_shutdown(device_t, int);
321
322 static uint16_t vge_read_eeprom(struct vge_softc *, int);
323
324 static void vge_miipoll_start(struct vge_softc *);
325 static void vge_miipoll_stop(struct vge_softc *);
326 static int vge_miibus_readreg(device_t, int, int);
327 static void vge_miibus_writereg(device_t, int, int, int);
328 static void vge_miibus_statchg(struct ifnet *);
329
330 static void vge_cam_clear(struct vge_softc *);
331 static int vge_cam_set(struct vge_softc *, uint8_t *);
332 static void vge_setmulti(struct vge_softc *);
333 static void vge_reset(struct vge_softc *);
334
335 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
336 vge_match, vge_attach, NULL, NULL);
337
338 static inline void
339 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
340 {
341
342 f->tf_addrlo = htole32((uint32_t)daddr);
343 if (sizeof(bus_addr_t) == sizeof(uint64_t))
344 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
345 else
346 f->tf_addrhi = 0;
347 }
348
349 static inline void
350 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
351 {
352
353 rxd->rd_addrlo = htole32((uint32_t)daddr);
354 if (sizeof(bus_addr_t) == sizeof(uint64_t))
355 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
356 else
357 rxd->rd_addrhi = 0;
358 }
359
360 /*
361 * Defragment mbuf chain contents to be as linear as possible.
362 * Returns new mbuf chain on success, NULL on failure. Old mbuf
363 * chain is always freed.
364 * XXX temporary until there would be generic function doing this.
365 */
366 #define m_defrag vge_m_defrag
367 struct mbuf * vge_m_defrag(struct mbuf *, int);
368
369 struct mbuf *
370 vge_m_defrag(struct mbuf *mold, int flags)
371 {
372 struct mbuf *m0, *mn, *n;
373 size_t sz = mold->m_pkthdr.len;
374
375 #ifdef DIAGNOSTIC
376 if ((mold->m_flags & M_PKTHDR) == 0)
377 panic("m_defrag: not a mbuf chain header");
378 #endif
379
380 MGETHDR(m0, flags, MT_DATA);
381 if (m0 == NULL)
382 return NULL;
383 m0->m_pkthdr.len = mold->m_pkthdr.len;
384 mn = m0;
385
386 do {
387 if (sz > MHLEN) {
388 MCLGET(mn, M_DONTWAIT);
389 if ((mn->m_flags & M_EXT) == 0) {
390 m_freem(m0);
391 return NULL;
392 }
393 }
394
395 mn->m_len = MIN(sz, MCLBYTES);
396
397 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
398 mtod(mn, void *));
399
400 sz -= mn->m_len;
401
402 if (sz > 0) {
403 /* need more mbufs */
404 MGET(n, M_NOWAIT, MT_DATA);
405 if (n == NULL) {
406 m_freem(m0);
407 return NULL;
408 }
409
410 mn->m_next = n;
411 mn = n;
412 }
413 } while (sz > 0);
414
415 return m0;
416 }
417
418 /*
419 * Read a word of data stored in the EEPROM at address 'addr.'
420 */
421 static uint16_t
422 vge_read_eeprom(struct vge_softc *sc, int addr)
423 {
424 int i;
425 uint16_t word = 0;
426
427 /*
428 * Enter EEPROM embedded programming mode. In order to
429 * access the EEPROM at all, we first have to set the
430 * EELOAD bit in the CHIPCFG2 register.
431 */
432 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
433 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
434
435 /* Select the address of the word we want to read */
436 CSR_WRITE_1(sc, VGE_EEADDR, addr);
437
438 /* Issue read command */
439 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
440
441 /* Wait for the done bit to be set. */
442 for (i = 0; i < VGE_TIMEOUT; i++) {
443 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
444 break;
445 }
446
447 if (i == VGE_TIMEOUT) {
448 printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
449 return 0;
450 }
451
452 /* Read the result */
453 word = CSR_READ_2(sc, VGE_EERDDAT);
454
455 /* Turn off EEPROM access mode. */
456 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
457 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
458
459 return word;
460 }
461
462 static void
463 vge_miipoll_stop(struct vge_softc *sc)
464 {
465 int i;
466
467 CSR_WRITE_1(sc, VGE_MIICMD, 0);
468
469 for (i = 0; i < VGE_TIMEOUT; i++) {
470 DELAY(1);
471 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
472 break;
473 }
474
475 if (i == VGE_TIMEOUT) {
476 printf("%s: failed to idle MII autopoll\n",
477 device_xname(sc->sc_dev));
478 }
479 }
480
481 static void
482 vge_miipoll_start(struct vge_softc *sc)
483 {
484 int i;
485
486 /* First, make sure we're idle. */
487
488 CSR_WRITE_1(sc, VGE_MIICMD, 0);
489 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
490
491 for (i = 0; i < VGE_TIMEOUT; i++) {
492 DELAY(1);
493 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
494 break;
495 }
496
497 if (i == VGE_TIMEOUT) {
498 printf("%s: failed to idle MII autopoll\n",
499 device_xname(sc->sc_dev));
500 return;
501 }
502
503 /* Now enable auto poll mode. */
504
505 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
506
507 /* And make sure it started. */
508
509 for (i = 0; i < VGE_TIMEOUT; i++) {
510 DELAY(1);
511 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
512 break;
513 }
514
515 if (i == VGE_TIMEOUT) {
516 printf("%s: failed to start MII autopoll\n",
517 device_xname(sc->sc_dev));
518 }
519 }
520
521 static int
522 vge_miibus_readreg(device_t dev, int phy, int reg)
523 {
524 struct vge_softc *sc;
525 int i, s;
526 uint16_t rval;
527
528 sc = device_private(dev);
529 rval = 0;
530 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
531 return 0;
532
533 s = splnet();
534 vge_miipoll_stop(sc);
535
536 /* Specify the register we want to read. */
537 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
538
539 /* Issue read command. */
540 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
541
542 /* Wait for the read command bit to self-clear. */
543 for (i = 0; i < VGE_TIMEOUT; i++) {
544 DELAY(1);
545 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
546 break;
547 }
548
549 if (i == VGE_TIMEOUT)
550 printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
551 else
552 rval = CSR_READ_2(sc, VGE_MIIDATA);
553
554 vge_miipoll_start(sc);
555 splx(s);
556
557 return rval;
558 }
559
560 static void
561 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
562 {
563 struct vge_softc *sc;
564 int i, s;
565
566 sc = device_private(dev);
567 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
568 return;
569
570 s = splnet();
571 vge_miipoll_stop(sc);
572
573 /* Specify the register we want to write. */
574 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
575
576 /* Specify the data we want to write. */
577 CSR_WRITE_2(sc, VGE_MIIDATA, data);
578
579 /* Issue write command. */
580 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
581
582 /* Wait for the write command bit to self-clear. */
583 for (i = 0; i < VGE_TIMEOUT; i++) {
584 DELAY(1);
585 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
586 break;
587 }
588
589 if (i == VGE_TIMEOUT) {
590 printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
591 }
592
593 vge_miipoll_start(sc);
594 splx(s);
595 }
596
597 static void
598 vge_cam_clear(struct vge_softc *sc)
599 {
600 int i;
601
602 /*
603 * Turn off all the mask bits. This tells the chip
604 * that none of the entries in the CAM filter are valid.
605 * desired entries will be enabled as we fill the filter in.
606 */
607
608 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
609 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
610 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
611 for (i = 0; i < 8; i++)
612 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
613
614 /* Clear the VLAN filter too. */
615
616 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
617 for (i = 0; i < 8; i++)
618 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
619
620 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
621 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
622 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
623
624 sc->sc_camidx = 0;
625 }
626
627 static int
628 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
629 {
630 int i, error;
631
632 error = 0;
633
634 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
635 return ENOSPC;
636
637 /* Select the CAM data page. */
638 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
639 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
640
641 /* Set the filter entry we want to update and enable writing. */
642 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
643
644 /* Write the address to the CAM registers */
645 for (i = 0; i < ETHER_ADDR_LEN; i++)
646 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
647
648 /* Issue a write command. */
649 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
650
651 /* Wake for it to clear. */
652 for (i = 0; i < VGE_TIMEOUT; i++) {
653 DELAY(1);
654 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
655 break;
656 }
657
658 if (i == VGE_TIMEOUT) {
659 printf("%s: setting CAM filter failed\n",
660 device_xname(sc->sc_dev));
661 error = EIO;
662 goto fail;
663 }
664
665 /* Select the CAM mask page. */
666 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
667 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
668
669 /* Set the mask bit that enables this filter. */
670 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
671 1 << (sc->sc_camidx & 7));
672
673 sc->sc_camidx++;
674
675 fail:
676 /* Turn off access to CAM. */
677 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
678 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
679 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
680
681 return error;
682 }
683
684 /*
685 * Program the multicast filter. We use the 64-entry CAM filter
686 * for perfect filtering. If there's more than 64 multicast addresses,
687 * we use the hash filter instead.
688 */
689 static void
690 vge_setmulti(struct vge_softc *sc)
691 {
692 struct ifnet *ifp;
693 int error;
694 uint32_t h, hashes[2] = { 0, 0 };
695 struct ether_multi *enm;
696 struct ether_multistep step;
697
698 error = 0;
699 ifp = &sc->sc_ethercom.ec_if;
700
701 /* First, zot all the multicast entries. */
702 vge_cam_clear(sc);
703 CSR_WRITE_4(sc, VGE_MAR0, 0);
704 CSR_WRITE_4(sc, VGE_MAR1, 0);
705 ifp->if_flags &= ~IFF_ALLMULTI;
706
707 /*
708 * If the user wants allmulti or promisc mode, enable reception
709 * of all multicast frames.
710 */
711 if (ifp->if_flags & IFF_PROMISC) {
712 allmulti:
713 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
714 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
715 ifp->if_flags |= IFF_ALLMULTI;
716 return;
717 }
718
719 /* Now program new ones */
720 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
721 while (enm != NULL) {
722 /*
723 * If multicast range, fall back to ALLMULTI.
724 */
725 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
726 ETHER_ADDR_LEN) != 0)
727 goto allmulti;
728
729 error = vge_cam_set(sc, enm->enm_addrlo);
730 if (error)
731 break;
732
733 ETHER_NEXT_MULTI(step, enm);
734 }
735
736 /* If there were too many addresses, use the hash filter. */
737 if (error) {
738 vge_cam_clear(sc);
739
740 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
741 while (enm != NULL) {
742 /*
743 * If multicast range, fall back to ALLMULTI.
744 */
745 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
746 ETHER_ADDR_LEN) != 0)
747 goto allmulti;
748
749 h = ether_crc32_be(enm->enm_addrlo,
750 ETHER_ADDR_LEN) >> 26;
751 hashes[h >> 5] |= 1 << (h & 0x1f);
752
753 ETHER_NEXT_MULTI(step, enm);
754 }
755
756 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
757 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
758 }
759 }
760
761 static void
762 vge_reset(struct vge_softc *sc)
763 {
764 int i;
765
766 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
767
768 for (i = 0; i < VGE_TIMEOUT; i++) {
769 DELAY(5);
770 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
771 break;
772 }
773
774 if (i == VGE_TIMEOUT) {
775 printf("%s: soft reset timed out", device_xname(sc->sc_dev));
776 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
777 DELAY(2000);
778 }
779
780 DELAY(5000);
781
782 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
783
784 for (i = 0; i < VGE_TIMEOUT; i++) {
785 DELAY(5);
786 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
787 break;
788 }
789
790 if (i == VGE_TIMEOUT) {
791 printf("%s: EEPROM reload timed out\n",
792 device_xname(sc->sc_dev));
793 return;
794 }
795
796 /*
797 * On some machine, the first read data from EEPROM could be
798 * messed up, so read one dummy data here to avoid the mess.
799 */
800 (void)vge_read_eeprom(sc, 0);
801
802 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
803 }
804
805 /*
806 * Probe for a VIA gigabit chip. Check the PCI vendor and device
807 * IDs against our list and return a device name if we find a match.
808 */
809 static int
810 vge_match(device_t parent, cfdata_t match, void *aux)
811 {
812 struct pci_attach_args *pa = aux;
813
814 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
815 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
816 return 1;
817
818 return 0;
819 }
820
821 static int
822 vge_allocmem(struct vge_softc *sc)
823 {
824 int error;
825 int nseg;
826 int i;
827 bus_dma_segment_t seg;
828
829 /*
830 * Allocate memory for control data.
831 */
832
833 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
834 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
835 if (error) {
836 aprint_error_dev(sc->sc_dev,
837 "could not allocate control data dma memory\n");
838 goto fail_1;
839 }
840
841 /* Map the memory to kernel VA space */
842
843 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
844 sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
845 BUS_DMA_NOWAIT);
846 if (error) {
847 aprint_error_dev(sc->sc_dev,
848 "could not map control data dma memory\n");
849 goto fail_2;
850 }
851 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
852
853 /*
854 * Create map for control data.
855 */
856 error = bus_dmamap_create(sc->sc_dmat,
857 sizeof(struct vge_control_data), 1,
858 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
859 &sc->sc_cddmamap);
860 if (error) {
861 aprint_error_dev(sc->sc_dev,
862 "could not create control data dmamap\n");
863 goto fail_3;
864 }
865
866 /* Load the map for the control data. */
867 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
868 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
869 BUS_DMA_NOWAIT);
870 if (error) {
871 aprint_error_dev(sc->sc_dev,
872 "could not load control data dma memory\n");
873 goto fail_4;
874 }
875
876 /* Create DMA maps for TX buffers */
877
878 for (i = 0; i < VGE_NTXDESC; i++) {
879 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
880 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
881 &sc->sc_txsoft[i].txs_dmamap);
882 if (error) {
883 aprint_error_dev(sc->sc_dev,
884 "can't create DMA map for TX descs\n");
885 goto fail_5;
886 }
887 }
888
889 /* Create DMA maps for RX buffers */
890
891 for (i = 0; i < VGE_NRXDESC; i++) {
892 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
893 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
894 &sc->sc_rxsoft[i].rxs_dmamap);
895 if (error) {
896 aprint_error_dev(sc->sc_dev,
897 "can't create DMA map for RX descs\n");
898 goto fail_6;
899 }
900 sc->sc_rxsoft[i].rxs_mbuf = NULL;
901 }
902
903 return 0;
904
905 fail_6:
906 for (i = 0; i < VGE_NRXDESC; i++) {
907 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
908 bus_dmamap_destroy(sc->sc_dmat,
909 sc->sc_rxsoft[i].rxs_dmamap);
910 }
911 fail_5:
912 for (i = 0; i < VGE_NTXDESC; i++) {
913 if (sc->sc_txsoft[i].txs_dmamap != NULL)
914 bus_dmamap_destroy(sc->sc_dmat,
915 sc->sc_txsoft[i].txs_dmamap);
916 }
917 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
918 fail_4:
919 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
920 fail_3:
921 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
922 sizeof(struct vge_control_data));
923 fail_2:
924 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
925 fail_1:
926 return ENOMEM;
927 }
928
929 /*
930 * Attach the interface. Allocate softc structures, do ifmedia
931 * setup and ethernet/BPF attach.
932 */
933 static void
934 vge_attach(device_t parent, device_t self, void *aux)
935 {
936 uint8_t *eaddr;
937 struct vge_softc *sc = device_private(self);
938 struct ifnet *ifp;
939 struct pci_attach_args *pa = aux;
940 pci_chipset_tag_t pc = pa->pa_pc;
941 const char *intrstr;
942 pci_intr_handle_t ih;
943 uint16_t val;
944
945 sc->sc_dev = self;
946
947 pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
948
949 /* Make sure bus-mastering is enabled */
950 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
951 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
952 PCI_COMMAND_MASTER_ENABLE);
953
954 /*
955 * Map control/status registers.
956 */
957 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
958 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
959 aprint_error_dev(self, "couldn't map memory\n");
960 return;
961 }
962
963 /*
964 * Map and establish our interrupt.
965 */
966 if (pci_intr_map(pa, &ih)) {
967 aprint_error_dev(self, "unable to map interrupt\n");
968 return;
969 }
970 intrstr = pci_intr_string(pc, ih);
971 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
972 if (sc->sc_intrhand == NULL) {
973 aprint_error_dev(self, "unable to establish interrupt");
974 if (intrstr != NULL)
975 aprint_error(" at %s", intrstr);
976 aprint_error("\n");
977 return;
978 }
979 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
980
981 /* Reset the adapter. */
982 vge_reset(sc);
983
984 /*
985 * Get station address from the EEPROM.
986 */
987 eaddr = sc->sc_eaddr;
988 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
989 eaddr[0] = val & 0xff;
990 eaddr[1] = val >> 8;
991 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
992 eaddr[2] = val & 0xff;
993 eaddr[3] = val >> 8;
994 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
995 eaddr[4] = val & 0xff;
996 eaddr[5] = val >> 8;
997
998 aprint_normal_dev(self, "Ethernet address: %s\n",
999 ether_sprintf(eaddr));
1000
1001 /*
1002 * Use the 32bit tag. Hardware supports 48bit physical addresses,
1003 * but we don't use that for now.
1004 */
1005 sc->sc_dmat = pa->pa_dmat;
1006
1007 if (vge_allocmem(sc) != 0)
1008 return;
1009
1010 ifp = &sc->sc_ethercom.ec_if;
1011 ifp->if_softc = sc;
1012 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1013 ifp->if_mtu = ETHERMTU;
1014 ifp->if_baudrate = IF_Gbps(1);
1015 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1016 ifp->if_ioctl = vge_ioctl;
1017 ifp->if_start = vge_start;
1018 ifp->if_init = vge_init;
1019 ifp->if_stop = vge_stop;
1020
1021 /*
1022 * We can support 802.1Q VLAN-sized frames and jumbo
1023 * Ethernet frames.
1024 */
1025 sc->sc_ethercom.ec_capabilities |=
1026 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1027 ETHERCAP_VLAN_HWTAGGING;
1028
1029 /*
1030 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1031 */
1032 ifp->if_capabilities |=
1033 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1034 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1035 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1036
1037 #ifdef DEVICE_POLLING
1038 #ifdef IFCAP_POLLING
1039 ifp->if_capabilities |= IFCAP_POLLING;
1040 #endif
1041 #endif
1042 ifp->if_watchdog = vge_watchdog;
1043 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1044 IFQ_SET_READY(&ifp->if_snd);
1045
1046 /*
1047 * Initialize our media structures and probe the MII.
1048 */
1049 sc->sc_mii.mii_ifp = ifp;
1050 sc->sc_mii.mii_readreg = vge_miibus_readreg;
1051 sc->sc_mii.mii_writereg = vge_miibus_writereg;
1052 sc->sc_mii.mii_statchg = vge_miibus_statchg;
1053
1054 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1055 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
1056 ether_mediastatus);
1057 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1058 MII_OFFSET_ANY, MIIF_DOPAUSE);
1059 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1060 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1061 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1062 } else
1063 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1064
1065 /*
1066 * Attach the interface.
1067 */
1068 if_attach(ifp);
1069 ether_ifattach(ifp, eaddr);
1070 ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1071
1072 callout_init(&sc->sc_timeout, 0);
1073 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1074
1075 /*
1076 * Make sure the interface is shutdown during reboot.
1077 */
1078 if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1079 pmf_class_network_register(self, ifp);
1080 else
1081 aprint_error_dev(self, "couldn't establish power handler\n");
1082 }
1083
1084 static int
1085 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1086 {
1087 struct mbuf *m_new;
1088 struct vge_rxdesc *rxd;
1089 struct vge_rxsoft *rxs;
1090 bus_dmamap_t map;
1091 int i;
1092 #ifdef DIAGNOSTIC
1093 uint32_t rd_sts;
1094 #endif
1095
1096 m_new = NULL;
1097 if (m == NULL) {
1098 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1099 if (m_new == NULL)
1100 return ENOBUFS;
1101
1102 MCLGET(m_new, M_DONTWAIT);
1103 if ((m_new->m_flags & M_EXT) == 0) {
1104 m_freem(m_new);
1105 return ENOBUFS;
1106 }
1107
1108 m = m_new;
1109 } else
1110 m->m_data = m->m_ext.ext_buf;
1111
1112
1113 /*
1114 * This is part of an evil trick to deal with non-x86 platforms.
1115 * The VIA chip requires RX buffers to be aligned on 32-bit
1116 * boundaries, but that will hose non-x86 machines. To get around
1117 * this, we leave some empty space at the start of each buffer
1118 * and for non-x86 hosts, we copy the buffer back two bytes
1119 * to achieve word alignment. This is slightly more efficient
1120 * than allocating a new buffer, copying the contents, and
1121 * discarding the old buffer.
1122 */
1123 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1124 #ifndef __NO_STRICT_ALIGNMENT
1125 m->m_data += VGE_RX_PAD;
1126 #endif
1127 rxs = &sc->sc_rxsoft[idx];
1128 map = rxs->rxs_dmamap;
1129
1130 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1131 goto out;
1132
1133 rxd = &sc->sc_rxdescs[idx];
1134
1135 #ifdef DIAGNOSTIC
1136 /* If this descriptor is still owned by the chip, bail. */
1137 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1138 rd_sts = le32toh(rxd->rd_sts);
1139 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1140 if (rd_sts & VGE_RDSTS_OWN) {
1141 panic("%s: tried to map busy RX descriptor",
1142 device_xname(sc->sc_dev));
1143 }
1144 #endif
1145
1146 rxs->rxs_mbuf = m;
1147 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1148 BUS_DMASYNC_PREREAD);
1149
1150 rxd->rd_buflen =
1151 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1152 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1153 rxd->rd_sts = 0;
1154 rxd->rd_ctl = 0;
1155 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1156
1157 /*
1158 * Note: the manual fails to document the fact that for
1159 * proper opration, the driver needs to replentish the RX
1160 * DMA ring 4 descriptors at a time (rather than one at a
1161 * time, like most chips). We can allocate the new buffers
1162 * but we should not set the OWN bits until we're ready
1163 * to hand back 4 of them in one shot.
1164 */
1165
1166 #define VGE_RXCHUNK 4
1167 sc->sc_rx_consumed++;
1168 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1169 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1170 KASSERT(i >= 0);
1171 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1172 VGE_RXDESCSYNC(sc, i,
1173 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1174 }
1175 sc->sc_rx_consumed = 0;
1176 }
1177
1178 return 0;
1179 out:
1180 if (m_new != NULL)
1181 m_freem(m_new);
1182 return ENOMEM;
1183 }
1184
1185 #ifndef __NO_STRICT_ALIGNMENT
1186 static inline void
1187 vge_fixup_rx(struct mbuf *m)
1188 {
1189 int i;
1190 uint16_t *src, *dst;
1191
1192 src = mtod(m, uint16_t *);
1193 dst = src - 1;
1194
1195 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1196 *dst++ = *src++;
1197
1198 m->m_data -= ETHER_ALIGN;
1199 }
1200 #endif
1201
1202 /*
1203 * RX handler. We support the reception of jumbo frames that have
1204 * been fragmented across multiple 2K mbuf cluster buffers.
1205 */
1206 static void
1207 vge_rxeof(struct vge_softc *sc)
1208 {
1209 struct mbuf *m;
1210 struct ifnet *ifp;
1211 int idx, total_len, lim;
1212 struct vge_rxdesc *cur_rxd;
1213 struct vge_rxsoft *rxs;
1214 uint32_t rxstat, rxctl;
1215
1216 ifp = &sc->sc_ethercom.ec_if;
1217 lim = 0;
1218
1219 /* Invalidate the descriptor memory */
1220
1221 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1222 cur_rxd = &sc->sc_rxdescs[idx];
1223
1224 VGE_RXDESCSYNC(sc, idx,
1225 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1226 rxstat = le32toh(cur_rxd->rd_sts);
1227 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1228 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1229 break;
1230 }
1231
1232 rxctl = le32toh(cur_rxd->rd_ctl);
1233 rxs = &sc->sc_rxsoft[idx];
1234 m = rxs->rxs_mbuf;
1235 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1236
1237 /* Invalidate the RX mbuf and unload its map */
1238
1239 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1240 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1241 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1242
1243 /*
1244 * If the 'start of frame' bit is set, this indicates
1245 * either the first fragment in a multi-fragment receive,
1246 * or an intermediate fragment. Either way, we want to
1247 * accumulate the buffers.
1248 */
1249 if (rxstat & VGE_RXPKT_SOF) {
1250 m->m_len = VGE_RX_BUFSIZE;
1251 if (sc->sc_rx_mhead == NULL)
1252 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1253 else {
1254 m->m_flags &= ~M_PKTHDR;
1255 sc->sc_rx_mtail->m_next = m;
1256 sc->sc_rx_mtail = m;
1257 }
1258 vge_newbuf(sc, idx, NULL);
1259 continue;
1260 }
1261
1262 /*
1263 * Bad/error frames will have the RXOK bit cleared.
1264 * However, there's one error case we want to allow:
1265 * if a VLAN tagged frame arrives and the chip can't
1266 * match it against the CAM filter, it considers this
1267 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1268 * We don't want to drop the frame though: our VLAN
1269 * filtering is done in software.
1270 */
1271 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1272 (rxstat & VGE_RDSTS_VIDM) == 0 &&
1273 (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1274 ifp->if_ierrors++;
1275 /*
1276 * If this is part of a multi-fragment packet,
1277 * discard all the pieces.
1278 */
1279 if (sc->sc_rx_mhead != NULL) {
1280 m_freem(sc->sc_rx_mhead);
1281 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1282 }
1283 vge_newbuf(sc, idx, m);
1284 continue;
1285 }
1286
1287 /*
1288 * If allocating a replacement mbuf fails,
1289 * reload the current one.
1290 */
1291
1292 if (vge_newbuf(sc, idx, NULL)) {
1293 ifp->if_ierrors++;
1294 if (sc->sc_rx_mhead != NULL) {
1295 m_freem(sc->sc_rx_mhead);
1296 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1297 }
1298 vge_newbuf(sc, idx, m);
1299 continue;
1300 }
1301
1302 if (sc->sc_rx_mhead != NULL) {
1303 m->m_len = total_len % VGE_RX_BUFSIZE;
1304 /*
1305 * Special case: if there's 4 bytes or less
1306 * in this buffer, the mbuf can be discarded:
1307 * the last 4 bytes is the CRC, which we don't
1308 * care about anyway.
1309 */
1310 if (m->m_len <= ETHER_CRC_LEN) {
1311 sc->sc_rx_mtail->m_len -=
1312 (ETHER_CRC_LEN - m->m_len);
1313 m_freem(m);
1314 } else {
1315 m->m_len -= ETHER_CRC_LEN;
1316 m->m_flags &= ~M_PKTHDR;
1317 sc->sc_rx_mtail->m_next = m;
1318 }
1319 m = sc->sc_rx_mhead;
1320 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1321 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1322 } else
1323 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1324
1325 #ifndef __NO_STRICT_ALIGNMENT
1326 vge_fixup_rx(m);
1327 #endif
1328 ifp->if_ipackets++;
1329 m->m_pkthdr.rcvif = ifp;
1330
1331 /* Do RX checksumming if enabled */
1332 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1333
1334 /* Check IP header checksum */
1335 if (rxctl & VGE_RDCTL_IPPKT)
1336 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1337 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1338 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1339 }
1340
1341 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1342 /* Check UDP checksum */
1343 if (rxctl & VGE_RDCTL_TCPPKT)
1344 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1345
1346 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1347 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1348 }
1349
1350 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1351 /* Check UDP checksum */
1352 if (rxctl & VGE_RDCTL_UDPPKT)
1353 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1354
1355 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1356 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1357 }
1358
1359 if (rxstat & VGE_RDSTS_VTAG) {
1360 /*
1361 * We use bswap16() here because:
1362 * On LE machines, tag is stored in BE as stream data.
1363 * On BE machines, tag is stored in BE as stream data
1364 * but it was already swapped by le32toh() above.
1365 */
1366 VLAN_INPUT_TAG(ifp, m,
1367 bswap16(rxctl & VGE_RDCTL_VLANID), continue);
1368 }
1369
1370 /*
1371 * Handle BPF listeners.
1372 */
1373 bpf_mtap(ifp, m);
1374
1375 (*ifp->if_input)(ifp, m);
1376
1377 lim++;
1378 if (lim == VGE_NRXDESC)
1379 break;
1380 }
1381
1382 sc->sc_rx_prodidx = idx;
1383 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1384 }
1385
1386 static void
1387 vge_txeof(struct vge_softc *sc)
1388 {
1389 struct ifnet *ifp;
1390 struct vge_txsoft *txs;
1391 uint32_t txstat;
1392 int idx;
1393
1394 ifp = &sc->sc_ethercom.ec_if;
1395
1396 for (idx = sc->sc_tx_considx;
1397 sc->sc_tx_free < VGE_NTXDESC;
1398 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1399 VGE_TXDESCSYNC(sc, idx,
1400 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1401 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1402 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1403 if (txstat & VGE_TDSTS_OWN) {
1404 break;
1405 }
1406
1407 txs = &sc->sc_txsoft[idx];
1408 m_freem(txs->txs_mbuf);
1409 txs->txs_mbuf = NULL;
1410 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1411 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1412 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1413 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1414 ifp->if_collisions++;
1415 if (txstat & VGE_TDSTS_TXERR)
1416 ifp->if_oerrors++;
1417 else
1418 ifp->if_opackets++;
1419 }
1420
1421 sc->sc_tx_considx = idx;
1422
1423 if (sc->sc_tx_free > 0) {
1424 ifp->if_flags &= ~IFF_OACTIVE;
1425 }
1426
1427 /*
1428 * If not all descriptors have been released reaped yet,
1429 * reload the timer so that we will eventually get another
1430 * interrupt that will cause us to re-enter this routine.
1431 * This is done in case the transmitter has gone idle.
1432 */
1433 if (sc->sc_tx_free < VGE_NTXDESC)
1434 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1435 else
1436 ifp->if_timer = 0;
1437 }
1438
1439 static void
1440 vge_tick(void *arg)
1441 {
1442 struct vge_softc *sc;
1443 struct ifnet *ifp;
1444 struct mii_data *mii;
1445 int s;
1446
1447 sc = arg;
1448 ifp = &sc->sc_ethercom.ec_if;
1449 mii = &sc->sc_mii;
1450
1451 s = splnet();
1452
1453 callout_schedule(&sc->sc_timeout, hz);
1454
1455 mii_tick(mii);
1456 if (sc->sc_link) {
1457 if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1458 sc->sc_link = 0;
1459 } else {
1460 if (mii->mii_media_status & IFM_ACTIVE &&
1461 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1462 sc->sc_link = 1;
1463 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1464 vge_start(ifp);
1465 }
1466 }
1467
1468 splx(s);
1469 }
1470
1471 static int
1472 vge_intr(void *arg)
1473 {
1474 struct vge_softc *sc;
1475 struct ifnet *ifp;
1476 uint32_t status;
1477 int claim;
1478
1479 sc = arg;
1480 claim = 0;
1481 if (sc->sc_suspended) {
1482 return claim;
1483 }
1484
1485 ifp = &sc->sc_ethercom.ec_if;
1486
1487 if ((ifp->if_flags & IFF_UP) == 0) {
1488 return claim;
1489 }
1490
1491 /* Disable interrupts */
1492 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1493
1494 for (;;) {
1495
1496 status = CSR_READ_4(sc, VGE_ISR);
1497 /* If the card has gone away the read returns 0xffffffff. */
1498 if (status == 0xFFFFFFFF)
1499 break;
1500
1501 if (status) {
1502 claim = 1;
1503 CSR_WRITE_4(sc, VGE_ISR, status);
1504 }
1505
1506 if ((status & VGE_INTRS) == 0)
1507 break;
1508
1509 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1510 vge_rxeof(sc);
1511
1512 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1513 vge_rxeof(sc);
1514 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1515 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1516 }
1517
1518 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1519 vge_txeof(sc);
1520
1521 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1522 vge_init(ifp);
1523
1524 if (status & VGE_ISR_LINKSTS)
1525 vge_tick(sc);
1526 }
1527
1528 /* Re-enable interrupts */
1529 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1530
1531 if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
1532 vge_start(ifp);
1533
1534 return claim;
1535 }
1536
1537 static int
1538 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1539 {
1540 struct vge_txsoft *txs;
1541 struct vge_txdesc *txd;
1542 struct vge_txfrag *f;
1543 struct mbuf *m_new;
1544 bus_dmamap_t map;
1545 int m_csumflags, seg, error, flags;
1546 struct m_tag *mtag;
1547 size_t sz;
1548 uint32_t td_sts, td_ctl;
1549
1550 KASSERT(sc->sc_tx_free > 0);
1551
1552 txd = &sc->sc_txdescs[idx];
1553
1554 #ifdef DIAGNOSTIC
1555 /* If this descriptor is still owned by the chip, bail. */
1556 VGE_TXDESCSYNC(sc, idx,
1557 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1558 td_sts = le32toh(txd->td_sts);
1559 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1560 if (td_sts & VGE_TDSTS_OWN) {
1561 return ENOBUFS;
1562 }
1563 #endif
1564
1565 /*
1566 * Preserve m_pkthdr.csum_flags here since m_head might be
1567 * updated by m_defrag()
1568 */
1569 m_csumflags = m_head->m_pkthdr.csum_flags;
1570
1571 txs = &sc->sc_txsoft[idx];
1572 map = txs->txs_dmamap;
1573 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1574
1575 /* If too many segments to map, coalesce */
1576 if (error == EFBIG ||
1577 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1578 map->dm_nsegs == VGE_TX_FRAGS)) {
1579 m_new = m_defrag(m_head, M_DONTWAIT);
1580 if (m_new == NULL)
1581 return EFBIG;
1582
1583 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1584 m_new, BUS_DMA_NOWAIT);
1585 if (error) {
1586 m_freem(m_new);
1587 return error;
1588 }
1589
1590 m_head = m_new;
1591 } else if (error)
1592 return error;
1593
1594 txs->txs_mbuf = m_head;
1595
1596 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1597 BUS_DMASYNC_PREWRITE);
1598
1599 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1600 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1601 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1602 }
1603
1604 /* Argh. This chip does not autopad short frames */
1605 sz = m_head->m_pkthdr.len;
1606 if (sz < ETHER_PAD_LEN) {
1607 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1608 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1609 sz = ETHER_PAD_LEN;
1610 seg++;
1611 }
1612 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1613
1614 /*
1615 * When telling the chip how many segments there are, we
1616 * must use nsegs + 1 instead of just nsegs. Darned if I
1617 * know why.
1618 */
1619 seg++;
1620
1621 flags = 0;
1622 if (m_csumflags & M_CSUM_IPv4)
1623 flags |= VGE_TDCTL_IPCSUM;
1624 if (m_csumflags & M_CSUM_TCPv4)
1625 flags |= VGE_TDCTL_TCPCSUM;
1626 if (m_csumflags & M_CSUM_UDPv4)
1627 flags |= VGE_TDCTL_UDPCSUM;
1628 td_sts = sz << 16;
1629 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1630
1631 if (sz > ETHERMTU + ETHER_HDR_LEN)
1632 td_ctl |= VGE_TDCTL_JUMBO;
1633
1634 /*
1635 * Set up hardware VLAN tagging.
1636 */
1637 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1638 if (mtag != NULL) {
1639 /*
1640 * No need htons() here since vge(4) chip assumes
1641 * that tags are written in little endian and
1642 * we already use htole32() here.
1643 */
1644 td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
1645 }
1646 txd->td_ctl = htole32(td_ctl);
1647 txd->td_sts = htole32(td_sts);
1648 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1649
1650 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1651 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1652
1653 sc->sc_tx_free--;
1654
1655 return 0;
1656 }
1657
1658 /*
1659 * Main transmit routine.
1660 */
1661
1662 static void
1663 vge_start(struct ifnet *ifp)
1664 {
1665 struct vge_softc *sc;
1666 struct vge_txsoft *txs;
1667 struct mbuf *m_head;
1668 int idx, pidx, ofree, error;
1669
1670 sc = ifp->if_softc;
1671
1672 if (!sc->sc_link ||
1673 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1674 return;
1675 }
1676
1677 m_head = NULL;
1678 idx = sc->sc_tx_prodidx;
1679 pidx = VGE_PREV_TXDESC(idx);
1680 ofree = sc->sc_tx_free;
1681
1682 /*
1683 * Loop through the send queue, setting up transmit descriptors
1684 * until we drain the queue, or use up all available transmit
1685 * descriptors.
1686 */
1687 for (;;) {
1688 /* Grab a packet off the queue. */
1689 IFQ_POLL(&ifp->if_snd, m_head);
1690 if (m_head == NULL)
1691 break;
1692
1693 if (sc->sc_tx_free == 0) {
1694 /*
1695 * All slots used, stop for now.
1696 */
1697 ifp->if_flags |= IFF_OACTIVE;
1698 break;
1699 }
1700
1701 txs = &sc->sc_txsoft[idx];
1702 KASSERT(txs->txs_mbuf == NULL);
1703
1704 if ((error = vge_encap(sc, m_head, idx))) {
1705 if (error == EFBIG) {
1706 printf("%s: Tx packet consumes too many "
1707 "DMA segments, dropping...\n",
1708 device_xname(sc->sc_dev));
1709 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1710 m_freem(m_head);
1711 continue;
1712 }
1713
1714 /*
1715 * Short on resources, just stop for now.
1716 */
1717 if (error == ENOBUFS)
1718 ifp->if_flags |= IFF_OACTIVE;
1719 break;
1720 }
1721
1722 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1723
1724 /*
1725 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1726 */
1727
1728 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1729 htole16(VGE_TXDESC_Q);
1730 VGE_TXFRAGSYNC(sc, pidx, 1,
1731 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1732
1733 if (txs->txs_mbuf != m_head) {
1734 m_freem(m_head);
1735 m_head = txs->txs_mbuf;
1736 }
1737
1738 pidx = idx;
1739 idx = VGE_NEXT_TXDESC(idx);
1740
1741 /*
1742 * If there's a BPF listener, bounce a copy of this frame
1743 * to him.
1744 */
1745 bpf_mtap(ifp, m_head);
1746 }
1747
1748 if (sc->sc_tx_free < ofree) {
1749 /* TX packet queued */
1750
1751 sc->sc_tx_prodidx = idx;
1752
1753 /* Issue a transmit command. */
1754 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1755
1756 /*
1757 * Use the countdown timer for interrupt moderation.
1758 * 'TX done' interrupts are disabled. Instead, we reset the
1759 * countdown timer, which will begin counting until it hits
1760 * the value in the SSTIMER register, and then trigger an
1761 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1762 * the timer count is reloaded. Only when the transmitter
1763 * is idle will the timer hit 0 and an interrupt fire.
1764 */
1765 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1766
1767 /*
1768 * Set a timeout in case the chip goes out to lunch.
1769 */
1770 ifp->if_timer = 5;
1771 }
1772 }
1773
1774 static int
1775 vge_init(struct ifnet *ifp)
1776 {
1777 struct vge_softc *sc;
1778 int i, rc = 0;
1779
1780 sc = ifp->if_softc;
1781
1782 /*
1783 * Cancel pending I/O and free all RX/TX buffers.
1784 */
1785 vge_stop(ifp, 0);
1786 vge_reset(sc);
1787
1788 /* Initialize the RX descriptors and mbufs. */
1789 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1790 sc->sc_rx_consumed = 0;
1791 for (i = 0; i < VGE_NRXDESC; i++) {
1792 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1793 printf("%s: unable to allocate or map rx buffer\n",
1794 device_xname(sc->sc_dev));
1795 return 1; /* XXX */
1796 }
1797 }
1798 sc->sc_rx_prodidx = 0;
1799 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1800
1801 /* Initialize the TX descriptors and mbufs. */
1802 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1803 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1804 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1805 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1806 for (i = 0; i < VGE_NTXDESC; i++)
1807 sc->sc_txsoft[i].txs_mbuf = NULL;
1808
1809 sc->sc_tx_prodidx = 0;
1810 sc->sc_tx_considx = 0;
1811 sc->sc_tx_free = VGE_NTXDESC;
1812
1813 /* Set our station address */
1814 for (i = 0; i < ETHER_ADDR_LEN; i++)
1815 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1816
1817 /*
1818 * Set receive FIFO threshold. Also allow transmission and
1819 * reception of VLAN tagged frames.
1820 */
1821 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1822 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1823
1824 /* Set DMA burst length */
1825 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1826 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1827
1828 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1829
1830 /* Set collision backoff algorithm */
1831 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1832 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1833 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1834
1835 /* Disable LPSEL field in priority resolution */
1836 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1837
1838 /*
1839 * Load the addresses of the DMA queues into the chip.
1840 * Note that we only use one transmit queue.
1841 */
1842
1843 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1844 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1845
1846 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1847 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1848 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1849
1850 /* Enable and wake up the RX descriptor queue */
1851 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1852 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1853
1854 /* Enable the TX descriptor queue */
1855 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1856
1857 /* Set up the receive filter -- allow large frames for VLANs. */
1858 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1859
1860 /* If we want promiscuous mode, set the allframes bit. */
1861 if (ifp->if_flags & IFF_PROMISC) {
1862 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1863 }
1864
1865 /* Set capture broadcast bit to capture broadcast frames. */
1866 if (ifp->if_flags & IFF_BROADCAST) {
1867 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1868 }
1869
1870 /* Set multicast bit to capture multicast frames. */
1871 if (ifp->if_flags & IFF_MULTICAST) {
1872 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1873 }
1874
1875 /* Init the cam filter. */
1876 vge_cam_clear(sc);
1877
1878 /* Init the multicast filter. */
1879 vge_setmulti(sc);
1880
1881 /* Enable flow control */
1882
1883 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1884
1885 /* Enable jumbo frame reception (if desired) */
1886
1887 /* Start the MAC. */
1888 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1889 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1890 CSR_WRITE_1(sc, VGE_CRS0,
1891 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1892
1893 /*
1894 * Configure one-shot timer for microsecond
1895 * resulution and load it for 500 usecs.
1896 */
1897 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1898 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1899
1900 /*
1901 * Configure interrupt moderation for receive. Enable
1902 * the holdoff counter and load it, and set the RX
1903 * suppression count to the number of descriptors we
1904 * want to allow before triggering an interrupt.
1905 * The holdoff timer is in units of 20 usecs.
1906 */
1907
1908 #ifdef notyet
1909 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1910 /* Select the interrupt holdoff timer page. */
1911 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1912 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1913 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1914
1915 /* Enable use of the holdoff timer. */
1916 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1917 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1918
1919 /* Select the RX suppression threshold page. */
1920 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1921 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1922 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1923
1924 /* Restore the page select bits. */
1925 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1926 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1927 #endif
1928
1929 #ifdef DEVICE_POLLING
1930 /*
1931 * Disable interrupts if we are polling.
1932 */
1933 if (ifp->if_flags & IFF_POLLING) {
1934 CSR_WRITE_4(sc, VGE_IMR, 0);
1935 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1936 } else /* otherwise ... */
1937 #endif /* DEVICE_POLLING */
1938 {
1939 /*
1940 * Enable interrupts.
1941 */
1942 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1943 CSR_WRITE_4(sc, VGE_ISR, 0);
1944 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1945 }
1946
1947 if ((rc = ether_mediachange(ifp)) != 0)
1948 goto out;
1949
1950 ifp->if_flags |= IFF_RUNNING;
1951 ifp->if_flags &= ~IFF_OACTIVE;
1952
1953 sc->sc_if_flags = 0;
1954 sc->sc_link = 0;
1955
1956 callout_schedule(&sc->sc_timeout, hz);
1957
1958 out:
1959 return rc;
1960 }
1961
1962 static void
1963 vge_miibus_statchg(struct ifnet *ifp)
1964 {
1965 struct vge_softc *sc = ifp->if_softc;
1966 struct mii_data *mii = &sc->sc_mii;
1967 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1968
1969 /*
1970 * If the user manually selects a media mode, we need to turn
1971 * on the forced MAC mode bit in the DIAGCTL register. If the
1972 * user happens to choose a full duplex mode, we also need to
1973 * set the 'force full duplex' bit. This applies only to
1974 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1975 * mode is disabled, and in 1000baseT mode, full duplex is
1976 * always implied, so we turn on the forced mode bit but leave
1977 * the FDX bit cleared.
1978 */
1979
1980 switch (IFM_SUBTYPE(ife->ifm_media)) {
1981 case IFM_AUTO:
1982 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1983 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1984 break;
1985 case IFM_1000_T:
1986 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1987 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1988 break;
1989 case IFM_100_TX:
1990 case IFM_10_T:
1991 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1992 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1993 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1994 } else {
1995 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1996 }
1997 break;
1998 default:
1999 printf("%s: unknown media type: %x\n",
2000 device_xname(sc->sc_dev),
2001 IFM_SUBTYPE(ife->ifm_media));
2002 break;
2003 }
2004 }
2005
2006 static int
2007 vge_ifflags_cb(struct ethercom *ec)
2008 {
2009 struct ifnet *ifp = &ec->ec_if;
2010 struct vge_softc *sc = ifp->if_softc;
2011 int change = ifp->if_flags ^ sc->sc_if_flags;
2012
2013 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2014 return ENETRESET;
2015 else if ((change & IFF_PROMISC) == 0)
2016 return 0;
2017
2018 if ((ifp->if_flags & IFF_PROMISC) == 0)
2019 CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2020 else
2021 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2022 vge_setmulti(sc);
2023 return 0;
2024 }
2025
2026 static int
2027 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
2028 {
2029 struct vge_softc *sc;
2030 struct ifreq *ifr;
2031 int s, error;
2032
2033 sc = ifp->if_softc;
2034 ifr = (struct ifreq *)data;
2035 error = 0;
2036
2037 s = splnet();
2038
2039 if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
2040 error = 0;
2041 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2042 ;
2043 else if (ifp->if_flags & IFF_RUNNING) {
2044 /*
2045 * Multicast list has changed; set the hardware filter
2046 * accordingly.
2047 */
2048 vge_setmulti(sc);
2049 }
2050 }
2051 sc->sc_if_flags = ifp->if_flags;
2052
2053 splx(s);
2054 return error;
2055 }
2056
2057 static void
2058 vge_watchdog(struct ifnet *ifp)
2059 {
2060 struct vge_softc *sc;
2061 int s;
2062
2063 sc = ifp->if_softc;
2064 s = splnet();
2065 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2066 ifp->if_oerrors++;
2067
2068 vge_txeof(sc);
2069 vge_rxeof(sc);
2070
2071 vge_init(ifp);
2072
2073 splx(s);
2074 }
2075
2076 /*
2077 * Stop the adapter and free any mbufs allocated to the
2078 * RX and TX lists.
2079 */
2080 static void
2081 vge_stop(struct ifnet *ifp, int disable)
2082 {
2083 struct vge_softc *sc = ifp->if_softc;
2084 struct vge_txsoft *txs;
2085 struct vge_rxsoft *rxs;
2086 int i, s;
2087
2088 s = splnet();
2089 ifp->if_timer = 0;
2090
2091 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2092 #ifdef DEVICE_POLLING
2093 ether_poll_deregister(ifp);
2094 #endif /* DEVICE_POLLING */
2095
2096 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2097 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2098 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2099 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2100 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2101 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2102
2103 if (sc->sc_rx_mhead != NULL) {
2104 m_freem(sc->sc_rx_mhead);
2105 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2106 }
2107
2108 /* Free the TX list buffers. */
2109
2110 for (i = 0; i < VGE_NTXDESC; i++) {
2111 txs = &sc->sc_txsoft[i];
2112 if (txs->txs_mbuf != NULL) {
2113 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2114 m_freem(txs->txs_mbuf);
2115 txs->txs_mbuf = NULL;
2116 }
2117 }
2118
2119 /* Free the RX list buffers. */
2120
2121 for (i = 0; i < VGE_NRXDESC; i++) {
2122 rxs = &sc->sc_rxsoft[i];
2123 if (rxs->rxs_mbuf != NULL) {
2124 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2125 m_freem(rxs->rxs_mbuf);
2126 rxs->rxs_mbuf = NULL;
2127 }
2128 }
2129
2130 splx(s);
2131 }
2132
2133 #if VGE_POWER_MANAGEMENT
2134 /*
2135 * Device suspend routine. Stop the interface and save some PCI
2136 * settings in case the BIOS doesn't restore them properly on
2137 * resume.
2138 */
2139 static int
2140 vge_suspend(device_t dev)
2141 {
2142 struct vge_softc *sc;
2143 int i;
2144
2145 sc = device_get_softc(dev);
2146
2147 vge_stop(sc);
2148
2149 for (i = 0; i < 5; i++)
2150 sc->sc_saved_maps[i] =
2151 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2152 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2153 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2154 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2155 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2156
2157 sc->suspended = 1;
2158
2159 return 0;
2160 }
2161
2162 /*
2163 * Device resume routine. Restore some PCI settings in case the BIOS
2164 * doesn't, re-enable busmastering, and restart the interface if
2165 * appropriate.
2166 */
2167 static int
2168 vge_resume(device_t dev)
2169 {
2170 struct vge_softc *sc;
2171 struct ifnet *ifp;
2172 int i;
2173
2174 sc = device_private(dev);
2175 ifp = &sc->sc_ethercom.ec_if;
2176
2177 /* better way to do this? */
2178 for (i = 0; i < 5; i++)
2179 pci_write_config(dev, PCIR_MAPS + i * 4,
2180 sc->sc_saved_maps[i], 4);
2181 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2182 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2183 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2184 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2185
2186 /* reenable busmastering */
2187 pci_enable_busmaster(dev);
2188 pci_enable_io(dev, SYS_RES_MEMORY);
2189
2190 /* reinitialize interface if necessary */
2191 if (ifp->if_flags & IFF_UP)
2192 vge_init(sc);
2193
2194 sc->suspended = 0;
2195
2196 return 0;
2197 }
2198 #endif
2199
2200 /*
2201 * Stop all chip I/O so that the kernel's probe routines don't
2202 * get confused by errant DMAs when rebooting.
2203 */
2204 static bool
2205 vge_shutdown(device_t self, int howto)
2206 {
2207 struct vge_softc *sc;
2208
2209 sc = device_private(self);
2210 vge_stop(&sc->sc_ethercom.ec_if, 1);
2211
2212 return true;
2213 }
2214