Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.59
      1 /* $NetBSD: if_vge.c,v 1.59 2016/12/08 01:12:01 ozaki-r Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.59 2016/12/08 01:12:01 ozaki-r Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 
     88 #include <sys/param.h>
     89 #include <sys/endian.h>
     90 #include <sys/systm.h>
     91 #include <sys/device.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <sys/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 
    117 #define VGE_IFQ_MAXLEN		64
    118 
    119 #define VGE_RING_ALIGN		256
    120 
    121 #define VGE_NTXDESC		256
    122 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    123 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    124 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    125 
    126 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    127 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    128 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    129 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    130 
    131 #define VGE_ADDR_LO(y)		((uint64_t)(y) & 0xFFFFFFFF)
    132 #define VGE_ADDR_HI(y)		((uint64_t)(y) >> 32)
    133 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    134 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    135 
    136 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    137 
    138 /*
    139  * Mbuf adjust factor to force 32-bit alignment of IP header.
    140  * Drivers should pad ETHER_ALIGN bytes when setting up a
    141  * RX mbuf so the upper layers get the IP header properly aligned
    142  * past the 14-byte Ethernet header.
    143  *
    144  * See also comment in vge_encap().
    145  */
    146 #define ETHER_ALIGN		2
    147 
    148 #ifdef __NO_STRICT_ALIGNMENT
    149 #define VGE_RX_BUFSIZE		MCLBYTES
    150 #else
    151 #define VGE_RX_PAD		sizeof(uint32_t)
    152 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    153 #endif
    154 
    155 /*
    156  * Control structures are DMA'd to the vge chip. We allocate them in
    157  * a single clump that maps to a single DMA segment to make several things
    158  * easier.
    159  */
    160 struct vge_control_data {
    161 	/* TX descriptors */
    162 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    163 	/* RX descriptors */
    164 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    165 	/* dummy data for TX padding */
    166 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    167 };
    168 
    169 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    170 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    171 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    172 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    173 
    174 /*
    175  * Software state for TX jobs.
    176  */
    177 struct vge_txsoft {
    178 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    179 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    180 };
    181 
    182 /*
    183  * Software state for RX jobs.
    184  */
    185 struct vge_rxsoft {
    186 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    187 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    188 };
    189 
    190 
    191 struct vge_softc {
    192 	device_t		sc_dev;
    193 
    194 	bus_space_tag_t		sc_bst;		/* bus space tag */
    195 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    196 	bus_dma_tag_t		sc_dmat;
    197 
    198 	struct ethercom		sc_ethercom;	/* interface info */
    199 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    200 
    201 	void			*sc_intrhand;
    202 	struct mii_data		sc_mii;
    203 	uint8_t			sc_type;
    204 	int			sc_if_flags;
    205 	int			sc_link;
    206 	int			sc_camidx;
    207 	callout_t		sc_timeout;
    208 
    209 	bus_dmamap_t		sc_cddmamap;
    210 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    211 
    212 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    213 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    214 	struct vge_control_data	*sc_control_data;
    215 #define sc_txdescs		sc_control_data->vcd_txdescs
    216 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    217 
    218 	int			sc_tx_prodidx;
    219 	int			sc_tx_considx;
    220 	int			sc_tx_free;
    221 
    222 	struct mbuf		*sc_rx_mhead;
    223 	struct mbuf		*sc_rx_mtail;
    224 	int			sc_rx_prodidx;
    225 	int			sc_rx_consumed;
    226 
    227 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    228 	uint32_t		sc_saved_maps[5];	/* pci data */
    229 	uint32_t		sc_saved_biosaddr;
    230 	uint8_t			sc_saved_intline;
    231 	uint8_t			sc_saved_cachelnsz;
    232 	uint8_t			sc_saved_lattimer;
    233 };
    234 
    235 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    236 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    237 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    238 
    239 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    240 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    241 	    VGE_CDTXOFF(idx),						\
    242 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    243 	    (ops))
    244 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    246 	    VGE_CDTXOFF(idx) +						\
    247 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    248 	    sizeof(struct vge_txfrag) * (nsegs),			\
    249 	    (ops))
    250 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    251 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    252 	    VGE_CDRXOFF(idx),						\
    253 	    sizeof(struct vge_rxdesc),					\
    254 	    (ops))
    255 
    256 /*
    257  * register space access macros
    258  */
    259 #define CSR_WRITE_4(sc, reg, val)	\
    260 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    261 #define CSR_WRITE_2(sc, reg, val)	\
    262 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    263 #define CSR_WRITE_1(sc, reg, val)	\
    264 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    265 
    266 #define CSR_READ_4(sc, reg)		\
    267 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    268 #define CSR_READ_2(sc, reg)		\
    269 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    270 #define CSR_READ_1(sc, reg)		\
    271 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    272 
    273 #define CSR_SETBIT_1(sc, reg, x)	\
    274 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    275 #define CSR_SETBIT_2(sc, reg, x)	\
    276 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    277 #define CSR_SETBIT_4(sc, reg, x)	\
    278 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    279 
    280 #define CSR_CLRBIT_1(sc, reg, x)	\
    281 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    282 #define CSR_CLRBIT_2(sc, reg, x)	\
    283 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    284 #define CSR_CLRBIT_4(sc, reg, x)	\
    285 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    286 
    287 #define VGE_TIMEOUT		10000
    288 
    289 #define VGE_PCI_LOIO             0x10
    290 #define VGE_PCI_LOMEM            0x14
    291 
    292 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    293 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    294 
    295 static int vge_ifflags_cb(struct ethercom *);
    296 
    297 static int vge_match(device_t, cfdata_t, void *);
    298 static void vge_attach(device_t, device_t, void *);
    299 
    300 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    301 
    302 static int vge_allocmem(struct vge_softc *);
    303 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    304 #ifndef __NO_STRICT_ALIGNMENT
    305 static inline void vge_fixup_rx(struct mbuf *);
    306 #endif
    307 static void vge_rxeof(struct vge_softc *);
    308 static void vge_txeof(struct vge_softc *);
    309 static int vge_intr(void *);
    310 static void vge_tick(void *);
    311 static void vge_start(struct ifnet *);
    312 static int vge_ioctl(struct ifnet *, u_long, void *);
    313 static int vge_init(struct ifnet *);
    314 static void vge_stop(struct ifnet *, int);
    315 static void vge_watchdog(struct ifnet *);
    316 #if VGE_POWER_MANAGEMENT
    317 static int vge_suspend(device_t);
    318 static int vge_resume(device_t);
    319 #endif
    320 static bool vge_shutdown(device_t, int);
    321 
    322 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    323 
    324 static void vge_miipoll_start(struct vge_softc *);
    325 static void vge_miipoll_stop(struct vge_softc *);
    326 static int vge_miibus_readreg(device_t, int, int);
    327 static void vge_miibus_writereg(device_t, int, int, int);
    328 static void vge_miibus_statchg(struct ifnet *);
    329 
    330 static void vge_cam_clear(struct vge_softc *);
    331 static int vge_cam_set(struct vge_softc *, uint8_t *);
    332 static void vge_setmulti(struct vge_softc *);
    333 static void vge_reset(struct vge_softc *);
    334 
    335 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
    336     vge_match, vge_attach, NULL, NULL);
    337 
    338 static inline void
    339 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    340 {
    341 
    342 	f->tf_addrlo = htole32((uint32_t)daddr);
    343 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    344 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    345 	else
    346 		f->tf_addrhi = 0;
    347 }
    348 
    349 static inline void
    350 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    351 {
    352 
    353 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    354 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    355 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    356 	else
    357 		rxd->rd_addrhi = 0;
    358 }
    359 
    360 /*
    361  * Defragment mbuf chain contents to be as linear as possible.
    362  * Returns new mbuf chain on success, NULL on failure. Old mbuf
    363  * chain is always freed.
    364  * XXX temporary until there would be generic function doing this.
    365  */
    366 #define m_defrag	vge_m_defrag
    367 struct mbuf * vge_m_defrag(struct mbuf *, int);
    368 
    369 struct mbuf *
    370 vge_m_defrag(struct mbuf *mold, int flags)
    371 {
    372 	struct mbuf *m0, *mn, *n;
    373 	size_t sz = mold->m_pkthdr.len;
    374 
    375 #ifdef DIAGNOSTIC
    376 	if ((mold->m_flags & M_PKTHDR) == 0)
    377 		panic("m_defrag: not a mbuf chain header");
    378 #endif
    379 
    380 	MGETHDR(m0, flags, MT_DATA);
    381 	if (m0 == NULL)
    382 		return NULL;
    383 	m0->m_pkthdr.len = mold->m_pkthdr.len;
    384 	mn = m0;
    385 
    386 	do {
    387 		if (sz > MHLEN) {
    388 			MCLGET(mn, M_DONTWAIT);
    389 			if ((mn->m_flags & M_EXT) == 0) {
    390 				m_freem(m0);
    391 				return NULL;
    392 			}
    393 		}
    394 
    395 		mn->m_len = MIN(sz, MCLBYTES);
    396 
    397 		m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
    398 		     mtod(mn, void *));
    399 
    400 		sz -= mn->m_len;
    401 
    402 		if (sz > 0) {
    403 			/* need more mbufs */
    404 			MGET(n, M_NOWAIT, MT_DATA);
    405 			if (n == NULL) {
    406 				m_freem(m0);
    407 				return NULL;
    408 			}
    409 
    410 			mn->m_next = n;
    411 			mn = n;
    412 		}
    413 	} while (sz > 0);
    414 
    415 	return m0;
    416 }
    417 
    418 /*
    419  * Read a word of data stored in the EEPROM at address 'addr.'
    420  */
    421 static uint16_t
    422 vge_read_eeprom(struct vge_softc *sc, int addr)
    423 {
    424 	int i;
    425 	uint16_t word = 0;
    426 
    427 	/*
    428 	 * Enter EEPROM embedded programming mode. In order to
    429 	 * access the EEPROM at all, we first have to set the
    430 	 * EELOAD bit in the CHIPCFG2 register.
    431 	 */
    432 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    433 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    434 
    435 	/* Select the address of the word we want to read */
    436 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    437 
    438 	/* Issue read command */
    439 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    440 
    441 	/* Wait for the done bit to be set. */
    442 	for (i = 0; i < VGE_TIMEOUT; i++) {
    443 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    444 			break;
    445 	}
    446 
    447 	if (i == VGE_TIMEOUT) {
    448 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
    449 		return 0;
    450 	}
    451 
    452 	/* Read the result */
    453 	word = CSR_READ_2(sc, VGE_EERDDAT);
    454 
    455 	/* Turn off EEPROM access mode. */
    456 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    457 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    458 
    459 	return word;
    460 }
    461 
    462 static void
    463 vge_miipoll_stop(struct vge_softc *sc)
    464 {
    465 	int i;
    466 
    467 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    468 
    469 	for (i = 0; i < VGE_TIMEOUT; i++) {
    470 		DELAY(1);
    471 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    472 			break;
    473 	}
    474 
    475 	if (i == VGE_TIMEOUT) {
    476 		printf("%s: failed to idle MII autopoll\n",
    477 		    device_xname(sc->sc_dev));
    478 	}
    479 }
    480 
    481 static void
    482 vge_miipoll_start(struct vge_softc *sc)
    483 {
    484 	int i;
    485 
    486 	/* First, make sure we're idle. */
    487 
    488 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    489 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    490 
    491 	for (i = 0; i < VGE_TIMEOUT; i++) {
    492 		DELAY(1);
    493 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    494 			break;
    495 	}
    496 
    497 	if (i == VGE_TIMEOUT) {
    498 		printf("%s: failed to idle MII autopoll\n",
    499 		    device_xname(sc->sc_dev));
    500 		return;
    501 	}
    502 
    503 	/* Now enable auto poll mode. */
    504 
    505 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    506 
    507 	/* And make sure it started. */
    508 
    509 	for (i = 0; i < VGE_TIMEOUT; i++) {
    510 		DELAY(1);
    511 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    512 			break;
    513 	}
    514 
    515 	if (i == VGE_TIMEOUT) {
    516 		printf("%s: failed to start MII autopoll\n",
    517 		    device_xname(sc->sc_dev));
    518 	}
    519 }
    520 
    521 static int
    522 vge_miibus_readreg(device_t dev, int phy, int reg)
    523 {
    524 	struct vge_softc *sc;
    525 	int i, s;
    526 	uint16_t rval;
    527 
    528 	sc = device_private(dev);
    529 	rval = 0;
    530 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    531 		return 0;
    532 
    533 	s = splnet();
    534 	vge_miipoll_stop(sc);
    535 
    536 	/* Specify the register we want to read. */
    537 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    538 
    539 	/* Issue read command. */
    540 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    541 
    542 	/* Wait for the read command bit to self-clear. */
    543 	for (i = 0; i < VGE_TIMEOUT; i++) {
    544 		DELAY(1);
    545 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    546 			break;
    547 	}
    548 
    549 	if (i == VGE_TIMEOUT)
    550 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
    551 	else
    552 		rval = CSR_READ_2(sc, VGE_MIIDATA);
    553 
    554 	vge_miipoll_start(sc);
    555 	splx(s);
    556 
    557 	return rval;
    558 }
    559 
    560 static void
    561 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
    562 {
    563 	struct vge_softc *sc;
    564 	int i, s;
    565 
    566 	sc = device_private(dev);
    567 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    568 		return;
    569 
    570 	s = splnet();
    571 	vge_miipoll_stop(sc);
    572 
    573 	/* Specify the register we want to write. */
    574 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    575 
    576 	/* Specify the data we want to write. */
    577 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
    578 
    579 	/* Issue write command. */
    580 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    581 
    582 	/* Wait for the write command bit to self-clear. */
    583 	for (i = 0; i < VGE_TIMEOUT; i++) {
    584 		DELAY(1);
    585 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    586 			break;
    587 	}
    588 
    589 	if (i == VGE_TIMEOUT) {
    590 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
    591 	}
    592 
    593 	vge_miipoll_start(sc);
    594 	splx(s);
    595 }
    596 
    597 static void
    598 vge_cam_clear(struct vge_softc *sc)
    599 {
    600 	int i;
    601 
    602 	/*
    603 	 * Turn off all the mask bits. This tells the chip
    604 	 * that none of the entries in the CAM filter are valid.
    605 	 * desired entries will be enabled as we fill the filter in.
    606 	 */
    607 
    608 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    609 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    610 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    611 	for (i = 0; i < 8; i++)
    612 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    613 
    614 	/* Clear the VLAN filter too. */
    615 
    616 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    617 	for (i = 0; i < 8; i++)
    618 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    619 
    620 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    621 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    622 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    623 
    624 	sc->sc_camidx = 0;
    625 }
    626 
    627 static int
    628 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    629 {
    630 	int i, error;
    631 
    632 	error = 0;
    633 
    634 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    635 		return ENOSPC;
    636 
    637 	/* Select the CAM data page. */
    638 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    639 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    640 
    641 	/* Set the filter entry we want to update and enable writing. */
    642 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    643 
    644 	/* Write the address to the CAM registers */
    645 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    646 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    647 
    648 	/* Issue a write command. */
    649 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    650 
    651 	/* Wake for it to clear. */
    652 	for (i = 0; i < VGE_TIMEOUT; i++) {
    653 		DELAY(1);
    654 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    655 			break;
    656 	}
    657 
    658 	if (i == VGE_TIMEOUT) {
    659 		printf("%s: setting CAM filter failed\n",
    660 		    device_xname(sc->sc_dev));
    661 		error = EIO;
    662 		goto fail;
    663 	}
    664 
    665 	/* Select the CAM mask page. */
    666 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    667 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    668 
    669 	/* Set the mask bit that enables this filter. */
    670 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    671 	    1 << (sc->sc_camidx & 7));
    672 
    673 	sc->sc_camidx++;
    674 
    675  fail:
    676 	/* Turn off access to CAM. */
    677 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    678 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    679 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    680 
    681 	return error;
    682 }
    683 
    684 /*
    685  * Program the multicast filter. We use the 64-entry CAM filter
    686  * for perfect filtering. If there's more than 64 multicast addresses,
    687  * we use the hash filter instead.
    688  */
    689 static void
    690 vge_setmulti(struct vge_softc *sc)
    691 {
    692 	struct ifnet *ifp;
    693 	int error;
    694 	uint32_t h, hashes[2] = { 0, 0 };
    695 	struct ether_multi *enm;
    696 	struct ether_multistep step;
    697 
    698 	error = 0;
    699 	ifp = &sc->sc_ethercom.ec_if;
    700 
    701 	/* First, zot all the multicast entries. */
    702 	vge_cam_clear(sc);
    703 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    704 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    705 	ifp->if_flags &= ~IFF_ALLMULTI;
    706 
    707 	/*
    708 	 * If the user wants allmulti or promisc mode, enable reception
    709 	 * of all multicast frames.
    710 	 */
    711 	if (ifp->if_flags & IFF_PROMISC) {
    712  allmulti:
    713 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    714 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    715 		ifp->if_flags |= IFF_ALLMULTI;
    716 		return;
    717 	}
    718 
    719 	/* Now program new ones */
    720 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    721 	while (enm != NULL) {
    722 		/*
    723 		 * If multicast range, fall back to ALLMULTI.
    724 		 */
    725 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    726 				ETHER_ADDR_LEN) != 0)
    727 			goto allmulti;
    728 
    729 		error = vge_cam_set(sc, enm->enm_addrlo);
    730 		if (error)
    731 			break;
    732 
    733 		ETHER_NEXT_MULTI(step, enm);
    734 	}
    735 
    736 	/* If there were too many addresses, use the hash filter. */
    737 	if (error) {
    738 		vge_cam_clear(sc);
    739 
    740 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    741 		while (enm != NULL) {
    742 			/*
    743 			 * If multicast range, fall back to ALLMULTI.
    744 			 */
    745 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    746 					ETHER_ADDR_LEN) != 0)
    747 				goto allmulti;
    748 
    749 			h = ether_crc32_be(enm->enm_addrlo,
    750 			    ETHER_ADDR_LEN) >> 26;
    751 			hashes[h >> 5] |= 1 << (h & 0x1f);
    752 
    753 			ETHER_NEXT_MULTI(step, enm);
    754 		}
    755 
    756 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    757 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    758 	}
    759 }
    760 
    761 static void
    762 vge_reset(struct vge_softc *sc)
    763 {
    764 	int i;
    765 
    766 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    767 
    768 	for (i = 0; i < VGE_TIMEOUT; i++) {
    769 		DELAY(5);
    770 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    771 			break;
    772 	}
    773 
    774 	if (i == VGE_TIMEOUT) {
    775 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
    776 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    777 		DELAY(2000);
    778 	}
    779 
    780 	DELAY(5000);
    781 
    782 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    783 
    784 	for (i = 0; i < VGE_TIMEOUT; i++) {
    785 		DELAY(5);
    786 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    787 			break;
    788 	}
    789 
    790 	if (i == VGE_TIMEOUT) {
    791 		printf("%s: EEPROM reload timed out\n",
    792 		    device_xname(sc->sc_dev));
    793 		return;
    794 	}
    795 
    796 	/*
    797 	 * On some machine, the first read data from EEPROM could be
    798 	 * messed up, so read one dummy data here to avoid the mess.
    799 	 */
    800 	(void)vge_read_eeprom(sc, 0);
    801 
    802 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    803 }
    804 
    805 /*
    806  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    807  * IDs against our list and return a device name if we find a match.
    808  */
    809 static int
    810 vge_match(device_t parent, cfdata_t match, void *aux)
    811 {
    812 	struct pci_attach_args *pa = aux;
    813 
    814 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    815 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    816 		return 1;
    817 
    818 	return 0;
    819 }
    820 
    821 static int
    822 vge_allocmem(struct vge_softc *sc)
    823 {
    824 	int error;
    825 	int nseg;
    826 	int i;
    827 	bus_dma_segment_t seg;
    828 
    829 	/*
    830 	 * Allocate memory for control data.
    831 	 */
    832 
    833 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    834 	     VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    835 	if (error) {
    836 		aprint_error_dev(sc->sc_dev,
    837 		    "could not allocate control data dma memory\n");
    838 		goto fail_1;
    839 	}
    840 
    841 	/* Map the memory to kernel VA space */
    842 
    843 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    844 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
    845 	    BUS_DMA_NOWAIT);
    846 	if (error) {
    847 		aprint_error_dev(sc->sc_dev,
    848 		    "could not map control data dma memory\n");
    849 		goto fail_2;
    850 	}
    851 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    852 
    853 	/*
    854 	 * Create map for control data.
    855 	 */
    856 	error = bus_dmamap_create(sc->sc_dmat,
    857 	    sizeof(struct vge_control_data), 1,
    858 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    859 	    &sc->sc_cddmamap);
    860 	if (error) {
    861 		aprint_error_dev(sc->sc_dev,
    862 		    "could not create control data dmamap\n");
    863 		goto fail_3;
    864 	}
    865 
    866 	/* Load the map for the control data. */
    867 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    868 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    869 	    BUS_DMA_NOWAIT);
    870 	if (error) {
    871 		aprint_error_dev(sc->sc_dev,
    872 		    "could not load control data dma memory\n");
    873 		goto fail_4;
    874 	}
    875 
    876 	/* Create DMA maps for TX buffers */
    877 
    878 	for (i = 0; i < VGE_NTXDESC; i++) {
    879 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    880 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    881 		    &sc->sc_txsoft[i].txs_dmamap);
    882 		if (error) {
    883 			aprint_error_dev(sc->sc_dev,
    884 			    "can't create DMA map for TX descs\n");
    885 			goto fail_5;
    886 		}
    887 	}
    888 
    889 	/* Create DMA maps for RX buffers */
    890 
    891 	for (i = 0; i < VGE_NRXDESC; i++) {
    892 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    893 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    894 		    &sc->sc_rxsoft[i].rxs_dmamap);
    895 		if (error) {
    896 			aprint_error_dev(sc->sc_dev,
    897 			    "can't create DMA map for RX descs\n");
    898 			goto fail_6;
    899 		}
    900 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    901 	}
    902 
    903 	return 0;
    904 
    905  fail_6:
    906 	for (i = 0; i < VGE_NRXDESC; i++) {
    907 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    908 			bus_dmamap_destroy(sc->sc_dmat,
    909 			    sc->sc_rxsoft[i].rxs_dmamap);
    910 	}
    911  fail_5:
    912 	for (i = 0; i < VGE_NTXDESC; i++) {
    913 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    914 			bus_dmamap_destroy(sc->sc_dmat,
    915 			    sc->sc_txsoft[i].txs_dmamap);
    916 	}
    917 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    918  fail_4:
    919 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    920  fail_3:
    921 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    922 	    sizeof(struct vge_control_data));
    923  fail_2:
    924 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    925  fail_1:
    926 	return ENOMEM;
    927 }
    928 
    929 /*
    930  * Attach the interface. Allocate softc structures, do ifmedia
    931  * setup and ethernet/BPF attach.
    932  */
    933 static void
    934 vge_attach(device_t parent, device_t self, void *aux)
    935 {
    936 	uint8_t	*eaddr;
    937 	struct vge_softc *sc = device_private(self);
    938 	struct ifnet *ifp;
    939 	struct pci_attach_args *pa = aux;
    940 	pci_chipset_tag_t pc = pa->pa_pc;
    941 	const char *intrstr;
    942 	pci_intr_handle_t ih;
    943 	uint16_t val;
    944 	char intrbuf[PCI_INTRSTR_LEN];
    945 
    946 	sc->sc_dev = self;
    947 
    948 	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
    949 
    950 	/* Make sure bus-mastering is enabled */
    951         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    952 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    953 	    PCI_COMMAND_MASTER_ENABLE);
    954 
    955 	/*
    956 	 * Map control/status registers.
    957 	 */
    958 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    959 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    960 		aprint_error_dev(self, "couldn't map memory\n");
    961 		return;
    962 	}
    963 
    964         /*
    965          * Map and establish our interrupt.
    966          */
    967 	if (pci_intr_map(pa, &ih)) {
    968 		aprint_error_dev(self, "unable to map interrupt\n");
    969 		return;
    970 	}
    971 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    972 	sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
    973 	if (sc->sc_intrhand == NULL) {
    974 		aprint_error_dev(self, "unable to establish interrupt");
    975 		if (intrstr != NULL)
    976 			aprint_error(" at %s", intrstr);
    977 		aprint_error("\n");
    978 		return;
    979 	}
    980 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    981 
    982 	/* Reset the adapter. */
    983 	vge_reset(sc);
    984 
    985 	/*
    986 	 * Get station address from the EEPROM.
    987 	 */
    988 	eaddr = sc->sc_eaddr;
    989 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    990 	eaddr[0] = val & 0xff;
    991 	eaddr[1] = val >> 8;
    992 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    993 	eaddr[2] = val & 0xff;
    994 	eaddr[3] = val >> 8;
    995 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    996 	eaddr[4] = val & 0xff;
    997 	eaddr[5] = val >> 8;
    998 
    999 	aprint_normal_dev(self, "Ethernet address: %s\n",
   1000 	    ether_sprintf(eaddr));
   1001 
   1002 	/*
   1003 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
   1004 	 * but we don't use that for now.
   1005 	 */
   1006 	sc->sc_dmat = pa->pa_dmat;
   1007 
   1008 	if (vge_allocmem(sc) != 0)
   1009 		return;
   1010 
   1011 	ifp = &sc->sc_ethercom.ec_if;
   1012 	ifp->if_softc = sc;
   1013 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1014 	ifp->if_mtu = ETHERMTU;
   1015 	ifp->if_baudrate = IF_Gbps(1);
   1016 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1017 	ifp->if_ioctl = vge_ioctl;
   1018 	ifp->if_start = vge_start;
   1019 	ifp->if_init = vge_init;
   1020 	ifp->if_stop = vge_stop;
   1021 
   1022 	/*
   1023 	 * We can support 802.1Q VLAN-sized frames and jumbo
   1024 	 * Ethernet frames.
   1025 	 */
   1026 	sc->sc_ethercom.ec_capabilities |=
   1027 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
   1028 	    ETHERCAP_VLAN_HWTAGGING;
   1029 
   1030 	/*
   1031 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
   1032 	 */
   1033 	ifp->if_capabilities |=
   1034 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1035 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1036 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1037 
   1038 #ifdef DEVICE_POLLING
   1039 #ifdef IFCAP_POLLING
   1040 	ifp->if_capabilities |= IFCAP_POLLING;
   1041 #endif
   1042 #endif
   1043 	ifp->if_watchdog = vge_watchdog;
   1044 	IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
   1045 	IFQ_SET_READY(&ifp->if_snd);
   1046 
   1047 	/*
   1048 	 * Initialize our media structures and probe the MII.
   1049 	 */
   1050 	sc->sc_mii.mii_ifp = ifp;
   1051 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
   1052 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
   1053 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
   1054 
   1055 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1056 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   1057 	    ether_mediastatus);
   1058 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1059 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1060 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1061 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1062 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1063 	} else
   1064 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1065 
   1066 	/*
   1067 	 * Attach the interface.
   1068 	 */
   1069 	if_attach(ifp);
   1070 	if_deferred_start_init(ifp, NULL);
   1071 	ether_ifattach(ifp, eaddr);
   1072 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
   1073 
   1074 	callout_init(&sc->sc_timeout, 0);
   1075 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1076 
   1077 	/*
   1078 	 * Make sure the interface is shutdown during reboot.
   1079 	 */
   1080 	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
   1081 		pmf_class_network_register(self, ifp);
   1082 	else
   1083 		aprint_error_dev(self, "couldn't establish power handler\n");
   1084 }
   1085 
   1086 static int
   1087 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1088 {
   1089 	struct mbuf *m_new;
   1090 	struct vge_rxdesc *rxd;
   1091 	struct vge_rxsoft *rxs;
   1092 	bus_dmamap_t map;
   1093 	int i;
   1094 #ifdef DIAGNOSTIC
   1095 	uint32_t rd_sts;
   1096 #endif
   1097 
   1098 	m_new = NULL;
   1099 	if (m == NULL) {
   1100 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1101 		if (m_new == NULL)
   1102 			return ENOBUFS;
   1103 
   1104 		MCLGET(m_new, M_DONTWAIT);
   1105 		if ((m_new->m_flags & M_EXT) == 0) {
   1106 			m_freem(m_new);
   1107 			return ENOBUFS;
   1108 		}
   1109 
   1110 		m = m_new;
   1111 	} else
   1112 		m->m_data = m->m_ext.ext_buf;
   1113 
   1114 
   1115 	/*
   1116 	 * This is part of an evil trick to deal with non-x86 platforms.
   1117 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1118 	 * boundaries, but that will hose non-x86 machines. To get around
   1119 	 * this, we leave some empty space at the start of each buffer
   1120 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1121 	 * to achieve word alignment. This is slightly more efficient
   1122 	 * than allocating a new buffer, copying the contents, and
   1123 	 * discarding the old buffer.
   1124 	 */
   1125 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1126 #ifndef __NO_STRICT_ALIGNMENT
   1127 	m->m_data += VGE_RX_PAD;
   1128 #endif
   1129 	rxs = &sc->sc_rxsoft[idx];
   1130 	map = rxs->rxs_dmamap;
   1131 
   1132 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1133 		goto out;
   1134 
   1135 	rxd = &sc->sc_rxdescs[idx];
   1136 
   1137 #ifdef DIAGNOSTIC
   1138 	/* If this descriptor is still owned by the chip, bail. */
   1139 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1140 	rd_sts = le32toh(rxd->rd_sts);
   1141 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1142 	if (rd_sts & VGE_RDSTS_OWN) {
   1143 		panic("%s: tried to map busy RX descriptor",
   1144 		    device_xname(sc->sc_dev));
   1145 	}
   1146 #endif
   1147 
   1148 	rxs->rxs_mbuf = m;
   1149 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1150 	    BUS_DMASYNC_PREREAD);
   1151 
   1152 	rxd->rd_buflen =
   1153 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1154 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1155 	rxd->rd_sts = 0;
   1156 	rxd->rd_ctl = 0;
   1157 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1158 
   1159 	/*
   1160 	 * Note: the manual fails to document the fact that for
   1161 	 * proper opration, the driver needs to replentish the RX
   1162 	 * DMA ring 4 descriptors at a time (rather than one at a
   1163 	 * time, like most chips). We can allocate the new buffers
   1164 	 * but we should not set the OWN bits until we're ready
   1165 	 * to hand back 4 of them in one shot.
   1166 	 */
   1167 
   1168 #define VGE_RXCHUNK 4
   1169 	sc->sc_rx_consumed++;
   1170 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1171 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1172 			KASSERT(i >= 0);
   1173 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1174 			VGE_RXDESCSYNC(sc, i,
   1175 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1176 		}
   1177 		sc->sc_rx_consumed = 0;
   1178 	}
   1179 
   1180 	return 0;
   1181  out:
   1182 	if (m_new != NULL)
   1183 		m_freem(m_new);
   1184 	return ENOMEM;
   1185 }
   1186 
   1187 #ifndef __NO_STRICT_ALIGNMENT
   1188 static inline void
   1189 vge_fixup_rx(struct mbuf *m)
   1190 {
   1191 	int i;
   1192 	uint16_t *src, *dst;
   1193 
   1194 	src = mtod(m, uint16_t *);
   1195 	dst = src - 1;
   1196 
   1197 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1198 		*dst++ = *src++;
   1199 
   1200 	m->m_data -= ETHER_ALIGN;
   1201 }
   1202 #endif
   1203 
   1204 /*
   1205  * RX handler. We support the reception of jumbo frames that have
   1206  * been fragmented across multiple 2K mbuf cluster buffers.
   1207  */
   1208 static void
   1209 vge_rxeof(struct vge_softc *sc)
   1210 {
   1211 	struct mbuf *m;
   1212 	struct ifnet *ifp;
   1213 	int idx, total_len, lim;
   1214 	struct vge_rxdesc *cur_rxd;
   1215 	struct vge_rxsoft *rxs;
   1216 	uint32_t rxstat, rxctl;
   1217 
   1218 	ifp = &sc->sc_ethercom.ec_if;
   1219 	lim = 0;
   1220 
   1221 	/* Invalidate the descriptor memory */
   1222 
   1223 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1224 		cur_rxd = &sc->sc_rxdescs[idx];
   1225 
   1226 		VGE_RXDESCSYNC(sc, idx,
   1227 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1228 		rxstat = le32toh(cur_rxd->rd_sts);
   1229 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1230 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1231 			break;
   1232 		}
   1233 
   1234 		rxctl = le32toh(cur_rxd->rd_ctl);
   1235 		rxs = &sc->sc_rxsoft[idx];
   1236 		m = rxs->rxs_mbuf;
   1237 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1238 
   1239 		/* Invalidate the RX mbuf and unload its map */
   1240 
   1241 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1242 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1243 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1244 
   1245 		/*
   1246 		 * If the 'start of frame' bit is set, this indicates
   1247 		 * either the first fragment in a multi-fragment receive,
   1248 		 * or an intermediate fragment. Either way, we want to
   1249 		 * accumulate the buffers.
   1250 		 */
   1251 		if (rxstat & VGE_RXPKT_SOF) {
   1252 			m->m_len = VGE_RX_BUFSIZE;
   1253 			if (sc->sc_rx_mhead == NULL)
   1254 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1255 			else {
   1256 				m->m_flags &= ~M_PKTHDR;
   1257 				sc->sc_rx_mtail->m_next = m;
   1258 				sc->sc_rx_mtail = m;
   1259 			}
   1260 			vge_newbuf(sc, idx, NULL);
   1261 			continue;
   1262 		}
   1263 
   1264 		/*
   1265 		 * Bad/error frames will have the RXOK bit cleared.
   1266 		 * However, there's one error case we want to allow:
   1267 		 * if a VLAN tagged frame arrives and the chip can't
   1268 		 * match it against the CAM filter, it considers this
   1269 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1270 		 * We don't want to drop the frame though: our VLAN
   1271 		 * filtering is done in software.
   1272 		 */
   1273 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
   1274 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
   1275 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
   1276 			ifp->if_ierrors++;
   1277 			/*
   1278 			 * If this is part of a multi-fragment packet,
   1279 			 * discard all the pieces.
   1280 			 */
   1281 			if (sc->sc_rx_mhead != NULL) {
   1282 				m_freem(sc->sc_rx_mhead);
   1283 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1284 			}
   1285 			vge_newbuf(sc, idx, m);
   1286 			continue;
   1287 		}
   1288 
   1289 		/*
   1290 		 * If allocating a replacement mbuf fails,
   1291 		 * reload the current one.
   1292 		 */
   1293 
   1294 		if (vge_newbuf(sc, idx, NULL)) {
   1295 			ifp->if_ierrors++;
   1296 			if (sc->sc_rx_mhead != NULL) {
   1297 				m_freem(sc->sc_rx_mhead);
   1298 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1299 			}
   1300 			vge_newbuf(sc, idx, m);
   1301 			continue;
   1302 		}
   1303 
   1304 		if (sc->sc_rx_mhead != NULL) {
   1305 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1306 			/*
   1307 			 * Special case: if there's 4 bytes or less
   1308 			 * in this buffer, the mbuf can be discarded:
   1309 			 * the last 4 bytes is the CRC, which we don't
   1310 			 * care about anyway.
   1311 			 */
   1312 			if (m->m_len <= ETHER_CRC_LEN) {
   1313 				sc->sc_rx_mtail->m_len -=
   1314 				    (ETHER_CRC_LEN - m->m_len);
   1315 				m_freem(m);
   1316 			} else {
   1317 				m->m_len -= ETHER_CRC_LEN;
   1318 				m->m_flags &= ~M_PKTHDR;
   1319 				sc->sc_rx_mtail->m_next = m;
   1320 			}
   1321 			m = sc->sc_rx_mhead;
   1322 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1323 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1324 		} else
   1325 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1326 
   1327 #ifndef __NO_STRICT_ALIGNMENT
   1328 		vge_fixup_rx(m);
   1329 #endif
   1330 		ifp->if_ipackets++;
   1331 		m_set_rcvif(m, ifp);
   1332 
   1333 		/* Do RX checksumming if enabled */
   1334 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1335 
   1336 			/* Check IP header checksum */
   1337 			if (rxctl & VGE_RDCTL_IPPKT)
   1338 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1339 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1340 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1341 		}
   1342 
   1343 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1344 			/* Check UDP checksum */
   1345 			if (rxctl & VGE_RDCTL_TCPPKT)
   1346 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1347 
   1348 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1349 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1350 		}
   1351 
   1352 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1353 			/* Check UDP checksum */
   1354 			if (rxctl & VGE_RDCTL_UDPPKT)
   1355 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1356 
   1357 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1358 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1359 		}
   1360 
   1361 		if (rxstat & VGE_RDSTS_VTAG) {
   1362 			/*
   1363 			 * We use bswap16() here because:
   1364 			 * On LE machines, tag is stored in BE as stream data.
   1365 			 * On BE machines, tag is stored in BE as stream data
   1366 			 *  but it was already swapped by le32toh() above.
   1367 			 */
   1368 			VLAN_INPUT_TAG(ifp, m,
   1369 			    bswap16(rxctl & VGE_RDCTL_VLANID), continue);
   1370 		}
   1371 
   1372 		/*
   1373 		 * Handle BPF listeners.
   1374 		 */
   1375 		bpf_mtap(ifp, m);
   1376 
   1377 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1378 
   1379 		lim++;
   1380 		if (lim == VGE_NRXDESC)
   1381 			break;
   1382 	}
   1383 
   1384 	sc->sc_rx_prodidx = idx;
   1385 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1386 }
   1387 
   1388 static void
   1389 vge_txeof(struct vge_softc *sc)
   1390 {
   1391 	struct ifnet *ifp;
   1392 	struct vge_txsoft *txs;
   1393 	uint32_t txstat;
   1394 	int idx;
   1395 
   1396 	ifp = &sc->sc_ethercom.ec_if;
   1397 
   1398 	for (idx = sc->sc_tx_considx;
   1399 	    sc->sc_tx_free < VGE_NTXDESC;
   1400 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1401 		VGE_TXDESCSYNC(sc, idx,
   1402 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1403 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1404 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1405 		if (txstat & VGE_TDSTS_OWN) {
   1406 			break;
   1407 		}
   1408 
   1409 		txs = &sc->sc_txsoft[idx];
   1410 		m_freem(txs->txs_mbuf);
   1411 		txs->txs_mbuf = NULL;
   1412 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1413 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1414 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1415 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1416 			ifp->if_collisions++;
   1417 		if (txstat & VGE_TDSTS_TXERR)
   1418 			ifp->if_oerrors++;
   1419 		else
   1420 			ifp->if_opackets++;
   1421 	}
   1422 
   1423 	sc->sc_tx_considx = idx;
   1424 
   1425 	if (sc->sc_tx_free > 0) {
   1426 		ifp->if_flags &= ~IFF_OACTIVE;
   1427 	}
   1428 
   1429 	/*
   1430 	 * If not all descriptors have been released reaped yet,
   1431 	 * reload the timer so that we will eventually get another
   1432 	 * interrupt that will cause us to re-enter this routine.
   1433 	 * This is done in case the transmitter has gone idle.
   1434 	 */
   1435 	if (sc->sc_tx_free < VGE_NTXDESC)
   1436 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1437 	else
   1438 		ifp->if_timer = 0;
   1439 }
   1440 
   1441 static void
   1442 vge_tick(void *arg)
   1443 {
   1444 	struct vge_softc *sc;
   1445 	struct ifnet *ifp;
   1446 	struct mii_data *mii;
   1447 	int s;
   1448 
   1449 	sc = arg;
   1450 	ifp = &sc->sc_ethercom.ec_if;
   1451 	mii = &sc->sc_mii;
   1452 
   1453 	s = splnet();
   1454 
   1455 	callout_schedule(&sc->sc_timeout, hz);
   1456 
   1457 	mii_tick(mii);
   1458 	if (sc->sc_link) {
   1459 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
   1460 			sc->sc_link = 0;
   1461 	} else {
   1462 		if (mii->mii_media_status & IFM_ACTIVE &&
   1463 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1464 			sc->sc_link = 1;
   1465 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1466 				vge_start(ifp);
   1467 		}
   1468 	}
   1469 
   1470 	splx(s);
   1471 }
   1472 
   1473 static int
   1474 vge_intr(void *arg)
   1475 {
   1476 	struct vge_softc *sc;
   1477 	struct ifnet *ifp;
   1478 	uint32_t status;
   1479 	int claim;
   1480 
   1481 	sc = arg;
   1482 	claim = 0;
   1483 	if (sc->sc_suspended) {
   1484 		return claim;
   1485 	}
   1486 
   1487 	ifp = &sc->sc_ethercom.ec_if;
   1488 
   1489 	if ((ifp->if_flags & IFF_UP) == 0) {
   1490 		return claim;
   1491 	}
   1492 
   1493 	/* Disable interrupts */
   1494 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1495 
   1496 	for (;;) {
   1497 
   1498 		status = CSR_READ_4(sc, VGE_ISR);
   1499 		/* If the card has gone away the read returns 0xffffffff. */
   1500 		if (status == 0xFFFFFFFF)
   1501 			break;
   1502 
   1503 		if (status) {
   1504 			claim = 1;
   1505 			CSR_WRITE_4(sc, VGE_ISR, status);
   1506 		}
   1507 
   1508 		if ((status & VGE_INTRS) == 0)
   1509 			break;
   1510 
   1511 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1512 			vge_rxeof(sc);
   1513 
   1514 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1515 			vge_rxeof(sc);
   1516 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1517 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1518 		}
   1519 
   1520 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1521 			vge_txeof(sc);
   1522 
   1523 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1524 			vge_init(ifp);
   1525 
   1526 		if (status & VGE_ISR_LINKSTS)
   1527 			vge_tick(sc);
   1528 	}
   1529 
   1530 	/* Re-enable interrupts */
   1531 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1532 
   1533 	if (claim)
   1534 		if_schedule_deferred_start(ifp);
   1535 
   1536 	return claim;
   1537 }
   1538 
   1539 static int
   1540 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1541 {
   1542 	struct vge_txsoft *txs;
   1543 	struct vge_txdesc *txd;
   1544 	struct vge_txfrag *f;
   1545 	struct mbuf *m_new;
   1546 	bus_dmamap_t map;
   1547 	int m_csumflags, seg, error, flags;
   1548 	struct m_tag *mtag;
   1549 	size_t sz;
   1550 	uint32_t td_sts, td_ctl;
   1551 
   1552 	KASSERT(sc->sc_tx_free > 0);
   1553 
   1554 	txd = &sc->sc_txdescs[idx];
   1555 
   1556 #ifdef DIAGNOSTIC
   1557 	/* If this descriptor is still owned by the chip, bail. */
   1558 	VGE_TXDESCSYNC(sc, idx,
   1559 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1560 	td_sts = le32toh(txd->td_sts);
   1561 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1562 	if (td_sts & VGE_TDSTS_OWN) {
   1563 		return ENOBUFS;
   1564 	}
   1565 #endif
   1566 
   1567 	/*
   1568 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1569 	 * updated by m_defrag()
   1570 	 */
   1571 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1572 
   1573 	txs = &sc->sc_txsoft[idx];
   1574 	map = txs->txs_dmamap;
   1575 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1576 
   1577 	/* If too many segments to map, coalesce */
   1578 	if (error == EFBIG ||
   1579 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1580 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1581 		m_new = m_defrag(m_head, M_DONTWAIT);
   1582 		if (m_new == NULL)
   1583 			return EFBIG;
   1584 
   1585 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1586 		    m_new, BUS_DMA_NOWAIT);
   1587 		if (error) {
   1588 			m_freem(m_new);
   1589 			return error;
   1590 		}
   1591 
   1592 		m_head = m_new;
   1593 	} else if (error)
   1594 		return error;
   1595 
   1596 	txs->txs_mbuf = m_head;
   1597 
   1598 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1599 	    BUS_DMASYNC_PREWRITE);
   1600 
   1601 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1602 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1603 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1604 	}
   1605 
   1606 	/* Argh. This chip does not autopad short frames */
   1607 	sz = m_head->m_pkthdr.len;
   1608 	if (sz < ETHER_PAD_LEN) {
   1609 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1610 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1611 		sz = ETHER_PAD_LEN;
   1612 		seg++;
   1613 	}
   1614 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1615 
   1616 	/*
   1617 	 * When telling the chip how many segments there are, we
   1618 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1619 	 * know why.
   1620 	 */
   1621 	seg++;
   1622 
   1623 	flags = 0;
   1624 	if (m_csumflags & M_CSUM_IPv4)
   1625 		flags |= VGE_TDCTL_IPCSUM;
   1626 	if (m_csumflags & M_CSUM_TCPv4)
   1627 		flags |= VGE_TDCTL_TCPCSUM;
   1628 	if (m_csumflags & M_CSUM_UDPv4)
   1629 		flags |= VGE_TDCTL_UDPCSUM;
   1630 	td_sts = sz << 16;
   1631 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1632 
   1633 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1634 		td_ctl |= VGE_TDCTL_JUMBO;
   1635 
   1636 	/*
   1637 	 * Set up hardware VLAN tagging.
   1638 	 */
   1639 	mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
   1640 	if (mtag != NULL) {
   1641 		/*
   1642 		 * No need htons() here since vge(4) chip assumes
   1643 		 * that tags are written in little endian and
   1644 		 * we already use htole32() here.
   1645 		 */
   1646 		td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
   1647 	}
   1648 	txd->td_ctl = htole32(td_ctl);
   1649 	txd->td_sts = htole32(td_sts);
   1650 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1651 
   1652 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1653 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1654 
   1655 	sc->sc_tx_free--;
   1656 
   1657 	return 0;
   1658 }
   1659 
   1660 /*
   1661  * Main transmit routine.
   1662  */
   1663 
   1664 static void
   1665 vge_start(struct ifnet *ifp)
   1666 {
   1667 	struct vge_softc *sc;
   1668 	struct vge_txsoft *txs;
   1669 	struct mbuf *m_head;
   1670 	int idx, pidx, ofree, error;
   1671 
   1672 	sc = ifp->if_softc;
   1673 
   1674 	if (!sc->sc_link ||
   1675 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1676 		return;
   1677 	}
   1678 
   1679 	m_head = NULL;
   1680 	idx = sc->sc_tx_prodidx;
   1681 	pidx = VGE_PREV_TXDESC(idx);
   1682 	ofree = sc->sc_tx_free;
   1683 
   1684 	/*
   1685 	 * Loop through the send queue, setting up transmit descriptors
   1686 	 * until we drain the queue, or use up all available transmit
   1687 	 * descriptors.
   1688 	 */
   1689 	for (;;) {
   1690 		/* Grab a packet off the queue. */
   1691 		IFQ_POLL(&ifp->if_snd, m_head);
   1692 		if (m_head == NULL)
   1693 			break;
   1694 
   1695 		if (sc->sc_tx_free == 0) {
   1696 			/*
   1697 			 * All slots used, stop for now.
   1698 			 */
   1699 			ifp->if_flags |= IFF_OACTIVE;
   1700 			break;
   1701 		}
   1702 
   1703 		txs = &sc->sc_txsoft[idx];
   1704 		KASSERT(txs->txs_mbuf == NULL);
   1705 
   1706 		if ((error = vge_encap(sc, m_head, idx))) {
   1707 			if (error == EFBIG) {
   1708 				printf("%s: Tx packet consumes too many "
   1709 				    "DMA segments, dropping...\n",
   1710 				    device_xname(sc->sc_dev));
   1711 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1712 				m_freem(m_head);
   1713 				continue;
   1714 			}
   1715 
   1716 			/*
   1717 			 * Short on resources, just stop for now.
   1718 			 */
   1719 			if (error == ENOBUFS)
   1720 				ifp->if_flags |= IFF_OACTIVE;
   1721 			break;
   1722 		}
   1723 
   1724 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1725 
   1726 		/*
   1727 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1728 		 */
   1729 
   1730 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1731 		    htole16(VGE_TXDESC_Q);
   1732 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1733 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1734 
   1735 		if (txs->txs_mbuf != m_head) {
   1736 			m_freem(m_head);
   1737 			m_head = txs->txs_mbuf;
   1738 		}
   1739 
   1740 		pidx = idx;
   1741 		idx = VGE_NEXT_TXDESC(idx);
   1742 
   1743 		/*
   1744 		 * If there's a BPF listener, bounce a copy of this frame
   1745 		 * to him.
   1746 		 */
   1747 		bpf_mtap(ifp, m_head);
   1748 	}
   1749 
   1750 	if (sc->sc_tx_free < ofree) {
   1751 		/* TX packet queued */
   1752 
   1753 		sc->sc_tx_prodidx = idx;
   1754 
   1755 		/* Issue a transmit command. */
   1756 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1757 
   1758 		/*
   1759 		 * Use the countdown timer for interrupt moderation.
   1760 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1761 		 * countdown timer, which will begin counting until it hits
   1762 		 * the value in the SSTIMER register, and then trigger an
   1763 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1764 		 * the timer count is reloaded. Only when the transmitter
   1765 		 * is idle will the timer hit 0 and an interrupt fire.
   1766 		 */
   1767 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1768 
   1769 		/*
   1770 		 * Set a timeout in case the chip goes out to lunch.
   1771 		 */
   1772 		ifp->if_timer = 5;
   1773 	}
   1774 }
   1775 
   1776 static int
   1777 vge_init(struct ifnet *ifp)
   1778 {
   1779 	struct vge_softc *sc;
   1780 	int i, rc = 0;
   1781 
   1782 	sc = ifp->if_softc;
   1783 
   1784 	/*
   1785 	 * Cancel pending I/O and free all RX/TX buffers.
   1786 	 */
   1787 	vge_stop(ifp, 0);
   1788 	vge_reset(sc);
   1789 
   1790 	/* Initialize the RX descriptors and mbufs. */
   1791 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1792 	sc->sc_rx_consumed = 0;
   1793 	for (i = 0; i < VGE_NRXDESC; i++) {
   1794 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1795 			printf("%s: unable to allocate or map rx buffer\n",
   1796 			    device_xname(sc->sc_dev));
   1797 			return 1; /* XXX */
   1798 		}
   1799 	}
   1800 	sc->sc_rx_prodidx = 0;
   1801 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1802 
   1803 	/* Initialize the  TX descriptors and mbufs. */
   1804 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1805 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1806 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1807 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1808 	for (i = 0; i < VGE_NTXDESC; i++)
   1809 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1810 
   1811 	sc->sc_tx_prodidx = 0;
   1812 	sc->sc_tx_considx = 0;
   1813 	sc->sc_tx_free = VGE_NTXDESC;
   1814 
   1815 	/* Set our station address */
   1816 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1817 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1818 
   1819 	/*
   1820 	 * Set receive FIFO threshold. Also allow transmission and
   1821 	 * reception of VLAN tagged frames.
   1822 	 */
   1823 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1824 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1825 
   1826 	/* Set DMA burst length */
   1827 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1828 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1829 
   1830 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1831 
   1832 	/* Set collision backoff algorithm */
   1833 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1834 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1835 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1836 
   1837 	/* Disable LPSEL field in priority resolution */
   1838 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1839 
   1840 	/*
   1841 	 * Load the addresses of the DMA queues into the chip.
   1842 	 * Note that we only use one transmit queue.
   1843 	 */
   1844 
   1845 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1846 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1847 
   1848 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1849 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1850 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1851 
   1852 	/* Enable and wake up the RX descriptor queue */
   1853 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1854 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1855 
   1856 	/* Enable the TX descriptor queue */
   1857 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1858 
   1859 	/* Set up the receive filter -- allow large frames for VLANs. */
   1860 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1861 
   1862 	/* If we want promiscuous mode, set the allframes bit. */
   1863 	if (ifp->if_flags & IFF_PROMISC) {
   1864 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1865 	}
   1866 
   1867 	/* Set capture broadcast bit to capture broadcast frames. */
   1868 	if (ifp->if_flags & IFF_BROADCAST) {
   1869 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1870 	}
   1871 
   1872 	/* Set multicast bit to capture multicast frames. */
   1873 	if (ifp->if_flags & IFF_MULTICAST) {
   1874 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1875 	}
   1876 
   1877 	/* Init the cam filter. */
   1878 	vge_cam_clear(sc);
   1879 
   1880 	/* Init the multicast filter. */
   1881 	vge_setmulti(sc);
   1882 
   1883 	/* Enable flow control */
   1884 
   1885 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1886 
   1887 	/* Enable jumbo frame reception (if desired) */
   1888 
   1889 	/* Start the MAC. */
   1890 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1891 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1892 	CSR_WRITE_1(sc, VGE_CRS0,
   1893 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1894 
   1895 	/*
   1896 	 * Configure one-shot timer for microsecond
   1897 	 * resulution and load it for 500 usecs.
   1898 	 */
   1899 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1900 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1901 
   1902 	/*
   1903 	 * Configure interrupt moderation for receive. Enable
   1904 	 * the holdoff counter and load it, and set the RX
   1905 	 * suppression count to the number of descriptors we
   1906 	 * want to allow before triggering an interrupt.
   1907 	 * The holdoff timer is in units of 20 usecs.
   1908 	 */
   1909 
   1910 #ifdef notyet
   1911 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1912 	/* Select the interrupt holdoff timer page. */
   1913 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1914 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1915 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1916 
   1917 	/* Enable use of the holdoff timer. */
   1918 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1919 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1920 
   1921 	/* Select the RX suppression threshold page. */
   1922 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1923 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1924 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1925 
   1926 	/* Restore the page select bits. */
   1927 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1928 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1929 #endif
   1930 
   1931 #ifdef DEVICE_POLLING
   1932 	/*
   1933 	 * Disable interrupts if we are polling.
   1934 	 */
   1935 	if (ifp->if_flags & IFF_POLLING) {
   1936 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1937 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1938 	} else	/* otherwise ... */
   1939 #endif /* DEVICE_POLLING */
   1940 	{
   1941 	/*
   1942 	 * Enable interrupts.
   1943 	 */
   1944 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1945 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1946 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1947 	}
   1948 
   1949 	if ((rc = ether_mediachange(ifp)) != 0)
   1950 		goto out;
   1951 
   1952 	ifp->if_flags |= IFF_RUNNING;
   1953 	ifp->if_flags &= ~IFF_OACTIVE;
   1954 
   1955 	sc->sc_if_flags = 0;
   1956 	sc->sc_link = 0;
   1957 
   1958 	callout_schedule(&sc->sc_timeout, hz);
   1959 
   1960 out:
   1961 	return rc;
   1962 }
   1963 
   1964 static void
   1965 vge_miibus_statchg(struct ifnet *ifp)
   1966 {
   1967 	struct vge_softc *sc = ifp->if_softc;
   1968 	struct mii_data *mii = &sc->sc_mii;
   1969 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
   1970 
   1971 	/*
   1972 	 * If the user manually selects a media mode, we need to turn
   1973 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1974 	 * user happens to choose a full duplex mode, we also need to
   1975 	 * set the 'force full duplex' bit. This applies only to
   1976 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1977 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1978 	 * always implied, so we turn on the forced mode bit but leave
   1979 	 * the FDX bit cleared.
   1980 	 */
   1981 
   1982 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1983 	case IFM_AUTO:
   1984 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1985 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1986 		break;
   1987 	case IFM_1000_T:
   1988 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1989 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1990 		break;
   1991 	case IFM_100_TX:
   1992 	case IFM_10_T:
   1993 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1994 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   1995 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1996 		} else {
   1997 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1998 		}
   1999 		break;
   2000 	default:
   2001 		printf("%s: unknown media type: %x\n",
   2002 		    device_xname(sc->sc_dev),
   2003 		    IFM_SUBTYPE(ife->ifm_media));
   2004 		break;
   2005 	}
   2006 }
   2007 
   2008 static int
   2009 vge_ifflags_cb(struct ethercom *ec)
   2010 {
   2011 	struct ifnet *ifp = &ec->ec_if;
   2012 	struct vge_softc *sc = ifp->if_softc;
   2013 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2014 
   2015 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2016 		return ENETRESET;
   2017 	else if ((change & IFF_PROMISC) == 0)
   2018 		return 0;
   2019 
   2020 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   2021 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   2022 	else
   2023 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   2024 	vge_setmulti(sc);
   2025 	return 0;
   2026 }
   2027 
   2028 static int
   2029 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
   2030 {
   2031 	struct vge_softc *sc;
   2032 	int s, error;
   2033 
   2034 	sc = ifp->if_softc;
   2035 	error = 0;
   2036 
   2037 	s = splnet();
   2038 
   2039 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
   2040 		error = 0;
   2041 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2042 			;
   2043 		else if (ifp->if_flags & IFF_RUNNING) {
   2044 			/*
   2045 			 * Multicast list has changed; set the hardware filter
   2046 			 * accordingly.
   2047 			 */
   2048 			vge_setmulti(sc);
   2049 		}
   2050 	}
   2051 	sc->sc_if_flags = ifp->if_flags;
   2052 
   2053 	splx(s);
   2054 	return error;
   2055 }
   2056 
   2057 static void
   2058 vge_watchdog(struct ifnet *ifp)
   2059 {
   2060 	struct vge_softc *sc;
   2061 	int s;
   2062 
   2063 	sc = ifp->if_softc;
   2064 	s = splnet();
   2065 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2066 	ifp->if_oerrors++;
   2067 
   2068 	vge_txeof(sc);
   2069 	vge_rxeof(sc);
   2070 
   2071 	vge_init(ifp);
   2072 
   2073 	splx(s);
   2074 }
   2075 
   2076 /*
   2077  * Stop the adapter and free any mbufs allocated to the
   2078  * RX and TX lists.
   2079  */
   2080 static void
   2081 vge_stop(struct ifnet *ifp, int disable)
   2082 {
   2083 	struct vge_softc *sc = ifp->if_softc;
   2084 	struct vge_txsoft *txs;
   2085 	struct vge_rxsoft *rxs;
   2086 	int i, s;
   2087 
   2088 	s = splnet();
   2089 	ifp->if_timer = 0;
   2090 
   2091 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2092 #ifdef DEVICE_POLLING
   2093 	ether_poll_deregister(ifp);
   2094 #endif /* DEVICE_POLLING */
   2095 
   2096 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2097 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2098 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2099 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2100 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2101 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2102 
   2103 	if (sc->sc_rx_mhead != NULL) {
   2104 		m_freem(sc->sc_rx_mhead);
   2105 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2106 	}
   2107 
   2108 	/* Free the TX list buffers. */
   2109 
   2110 	for (i = 0; i < VGE_NTXDESC; i++) {
   2111 		txs = &sc->sc_txsoft[i];
   2112 		if (txs->txs_mbuf != NULL) {
   2113 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2114 			m_freem(txs->txs_mbuf);
   2115 			txs->txs_mbuf = NULL;
   2116 		}
   2117 	}
   2118 
   2119 	/* Free the RX list buffers. */
   2120 
   2121 	for (i = 0; i < VGE_NRXDESC; i++) {
   2122 		rxs = &sc->sc_rxsoft[i];
   2123 		if (rxs->rxs_mbuf != NULL) {
   2124 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2125 			m_freem(rxs->rxs_mbuf);
   2126 			rxs->rxs_mbuf = NULL;
   2127 		}
   2128 	}
   2129 
   2130 	splx(s);
   2131 }
   2132 
   2133 #if VGE_POWER_MANAGEMENT
   2134 /*
   2135  * Device suspend routine.  Stop the interface and save some PCI
   2136  * settings in case the BIOS doesn't restore them properly on
   2137  * resume.
   2138  */
   2139 static int
   2140 vge_suspend(device_t dev)
   2141 {
   2142 	struct vge_softc *sc;
   2143 	int i;
   2144 
   2145 	sc = device_get_softc(dev);
   2146 
   2147 	vge_stop(sc);
   2148 
   2149         for (i = 0; i < 5; i++)
   2150 		sc->sc_saved_maps[i] =
   2151 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2152 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2153 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2154 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2155 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2156 
   2157 	sc->suspended = 1;
   2158 
   2159 	return 0;
   2160 }
   2161 
   2162 /*
   2163  * Device resume routine.  Restore some PCI settings in case the BIOS
   2164  * doesn't, re-enable busmastering, and restart the interface if
   2165  * appropriate.
   2166  */
   2167 static int
   2168 vge_resume(device_t dev)
   2169 {
   2170 	struct vge_softc *sc;
   2171 	struct ifnet *ifp;
   2172 	int i;
   2173 
   2174 	sc = device_private(dev);
   2175 	ifp = &sc->sc_ethercom.ec_if;
   2176 
   2177         /* better way to do this? */
   2178 	for (i = 0; i < 5; i++)
   2179 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2180 		    sc->sc_saved_maps[i], 4);
   2181 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2182 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2183 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2184 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2185 
   2186 	/* reenable busmastering */
   2187 	pci_enable_busmaster(dev);
   2188 	pci_enable_io(dev, SYS_RES_MEMORY);
   2189 
   2190 	/* reinitialize interface if necessary */
   2191 	if (ifp->if_flags & IFF_UP)
   2192 		vge_init(sc);
   2193 
   2194 	sc->suspended = 0;
   2195 
   2196 	return 0;
   2197 }
   2198 #endif
   2199 
   2200 /*
   2201  * Stop all chip I/O so that the kernel's probe routines don't
   2202  * get confused by errant DMAs when rebooting.
   2203  */
   2204 static bool
   2205 vge_shutdown(device_t self, int howto)
   2206 {
   2207 	struct vge_softc *sc;
   2208 
   2209 	sc = device_private(self);
   2210 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2211 
   2212 	return true;
   2213 }
   2214