if_vge.c revision 1.60 1 /* $NetBSD: if_vge.c,v 1.60 2016/12/15 09:28:05 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.60 2016/12/15 09:28:05 ozaki-r Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87
88 #include <sys/param.h>
89 #include <sys/endian.h>
90 #include <sys/systm.h>
91 #include <sys/device.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <sys/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116
117 #define VGE_IFQ_MAXLEN 64
118
119 #define VGE_RING_ALIGN 256
120
121 #define VGE_NTXDESC 256
122 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
123 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
124 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
125
126 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
127 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
128 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
129 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
130
131 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
132 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
133 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
134 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
135
136 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
137
138 /*
139 * Mbuf adjust factor to force 32-bit alignment of IP header.
140 * Drivers should pad ETHER_ALIGN bytes when setting up a
141 * RX mbuf so the upper layers get the IP header properly aligned
142 * past the 14-byte Ethernet header.
143 *
144 * See also comment in vge_encap().
145 */
146 #define ETHER_ALIGN 2
147
148 #ifdef __NO_STRICT_ALIGNMENT
149 #define VGE_RX_BUFSIZE MCLBYTES
150 #else
151 #define VGE_RX_PAD sizeof(uint32_t)
152 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
153 #endif
154
155 /*
156 * Control structures are DMA'd to the vge chip. We allocate them in
157 * a single clump that maps to a single DMA segment to make several things
158 * easier.
159 */
160 struct vge_control_data {
161 /* TX descriptors */
162 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
163 /* RX descriptors */
164 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
165 /* dummy data for TX padding */
166 uint8_t vcd_pad[ETHER_PAD_LEN];
167 };
168
169 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
170 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
171 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
172 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
173
174 /*
175 * Software state for TX jobs.
176 */
177 struct vge_txsoft {
178 struct mbuf *txs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t txs_dmamap; /* our DMA map */
180 };
181
182 /*
183 * Software state for RX jobs.
184 */
185 struct vge_rxsoft {
186 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
187 bus_dmamap_t rxs_dmamap; /* our DMA map */
188 };
189
190
191 struct vge_softc {
192 device_t sc_dev;
193
194 bus_space_tag_t sc_bst; /* bus space tag */
195 bus_space_handle_t sc_bsh; /* bus space handle */
196 bus_dma_tag_t sc_dmat;
197
198 struct ethercom sc_ethercom; /* interface info */
199 uint8_t sc_eaddr[ETHER_ADDR_LEN];
200
201 void *sc_intrhand;
202 struct mii_data sc_mii;
203 uint8_t sc_type;
204 int sc_if_flags;
205 int sc_link;
206 int sc_camidx;
207 callout_t sc_timeout;
208
209 bus_dmamap_t sc_cddmamap;
210 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
211
212 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
213 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
214 struct vge_control_data *sc_control_data;
215 #define sc_txdescs sc_control_data->vcd_txdescs
216 #define sc_rxdescs sc_control_data->vcd_rxdescs
217
218 int sc_tx_prodidx;
219 int sc_tx_considx;
220 int sc_tx_free;
221
222 struct mbuf *sc_rx_mhead;
223 struct mbuf *sc_rx_mtail;
224 int sc_rx_prodidx;
225 int sc_rx_consumed;
226
227 int sc_suspended; /* 0 = normal 1 = suspended */
228 uint32_t sc_saved_maps[5]; /* pci data */
229 uint32_t sc_saved_biosaddr;
230 uint8_t sc_saved_intline;
231 uint8_t sc_saved_cachelnsz;
232 uint8_t sc_saved_lattimer;
233 };
234
235 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
236 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
237 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
238
239 #define VGE_TXDESCSYNC(sc, idx, ops) \
240 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
241 VGE_CDTXOFF(idx), \
242 offsetof(struct vge_txdesc, td_frag[0]), \
243 (ops))
244 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
246 VGE_CDTXOFF(idx) + \
247 offsetof(struct vge_txdesc, td_frag[0]), \
248 sizeof(struct vge_txfrag) * (nsegs), \
249 (ops))
250 #define VGE_RXDESCSYNC(sc, idx, ops) \
251 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
252 VGE_CDRXOFF(idx), \
253 sizeof(struct vge_rxdesc), \
254 (ops))
255
256 /*
257 * register space access macros
258 */
259 #define CSR_WRITE_4(sc, reg, val) \
260 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
261 #define CSR_WRITE_2(sc, reg, val) \
262 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
263 #define CSR_WRITE_1(sc, reg, val) \
264 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
265
266 #define CSR_READ_4(sc, reg) \
267 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
268 #define CSR_READ_2(sc, reg) \
269 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
270 #define CSR_READ_1(sc, reg) \
271 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
272
273 #define CSR_SETBIT_1(sc, reg, x) \
274 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
275 #define CSR_SETBIT_2(sc, reg, x) \
276 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
277 #define CSR_SETBIT_4(sc, reg, x) \
278 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
279
280 #define CSR_CLRBIT_1(sc, reg, x) \
281 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
282 #define CSR_CLRBIT_2(sc, reg, x) \
283 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
284 #define CSR_CLRBIT_4(sc, reg, x) \
285 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
286
287 #define VGE_TIMEOUT 10000
288
289 #define VGE_PCI_LOIO 0x10
290 #define VGE_PCI_LOMEM 0x14
291
292 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
293 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
294
295 static int vge_ifflags_cb(struct ethercom *);
296
297 static int vge_match(device_t, cfdata_t, void *);
298 static void vge_attach(device_t, device_t, void *);
299
300 static int vge_encap(struct vge_softc *, struct mbuf *, int);
301
302 static int vge_allocmem(struct vge_softc *);
303 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
304 #ifndef __NO_STRICT_ALIGNMENT
305 static inline void vge_fixup_rx(struct mbuf *);
306 #endif
307 static void vge_rxeof(struct vge_softc *);
308 static void vge_txeof(struct vge_softc *);
309 static int vge_intr(void *);
310 static void vge_tick(void *);
311 static void vge_start(struct ifnet *);
312 static int vge_ioctl(struct ifnet *, u_long, void *);
313 static int vge_init(struct ifnet *);
314 static void vge_stop(struct ifnet *, int);
315 static void vge_watchdog(struct ifnet *);
316 #if VGE_POWER_MANAGEMENT
317 static int vge_suspend(device_t);
318 static int vge_resume(device_t);
319 #endif
320 static bool vge_shutdown(device_t, int);
321
322 static uint16_t vge_read_eeprom(struct vge_softc *, int);
323
324 static void vge_miipoll_start(struct vge_softc *);
325 static void vge_miipoll_stop(struct vge_softc *);
326 static int vge_miibus_readreg(device_t, int, int);
327 static void vge_miibus_writereg(device_t, int, int, int);
328 static void vge_miibus_statchg(struct ifnet *);
329
330 static void vge_cam_clear(struct vge_softc *);
331 static int vge_cam_set(struct vge_softc *, uint8_t *);
332 static void vge_setmulti(struct vge_softc *);
333 static void vge_reset(struct vge_softc *);
334
335 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
336 vge_match, vge_attach, NULL, NULL);
337
338 static inline void
339 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
340 {
341
342 f->tf_addrlo = htole32((uint32_t)daddr);
343 if (sizeof(bus_addr_t) == sizeof(uint64_t))
344 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
345 else
346 f->tf_addrhi = 0;
347 }
348
349 static inline void
350 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
351 {
352
353 rxd->rd_addrlo = htole32((uint32_t)daddr);
354 if (sizeof(bus_addr_t) == sizeof(uint64_t))
355 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
356 else
357 rxd->rd_addrhi = 0;
358 }
359
360 /*
361 * Defragment mbuf chain contents to be as linear as possible.
362 * Returns new mbuf chain on success, NULL on failure. Old mbuf
363 * chain is always freed.
364 * XXX temporary until there would be generic function doing this.
365 */
366 #define m_defrag vge_m_defrag
367 struct mbuf * vge_m_defrag(struct mbuf *, int);
368
369 struct mbuf *
370 vge_m_defrag(struct mbuf *mold, int flags)
371 {
372 struct mbuf *m0, *mn, *n;
373 size_t sz = mold->m_pkthdr.len;
374
375 #ifdef DIAGNOSTIC
376 if ((mold->m_flags & M_PKTHDR) == 0)
377 panic("m_defrag: not a mbuf chain header");
378 #endif
379
380 MGETHDR(m0, flags, MT_DATA);
381 if (m0 == NULL)
382 return NULL;
383 m0->m_pkthdr.len = mold->m_pkthdr.len;
384 mn = m0;
385
386 do {
387 if (sz > MHLEN) {
388 MCLGET(mn, M_DONTWAIT);
389 if ((mn->m_flags & M_EXT) == 0) {
390 m_freem(m0);
391 return NULL;
392 }
393 }
394
395 mn->m_len = MIN(sz, MCLBYTES);
396
397 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
398 mtod(mn, void *));
399
400 sz -= mn->m_len;
401
402 if (sz > 0) {
403 /* need more mbufs */
404 MGET(n, M_NOWAIT, MT_DATA);
405 if (n == NULL) {
406 m_freem(m0);
407 return NULL;
408 }
409
410 mn->m_next = n;
411 mn = n;
412 }
413 } while (sz > 0);
414
415 return m0;
416 }
417
418 /*
419 * Read a word of data stored in the EEPROM at address 'addr.'
420 */
421 static uint16_t
422 vge_read_eeprom(struct vge_softc *sc, int addr)
423 {
424 int i;
425 uint16_t word = 0;
426
427 /*
428 * Enter EEPROM embedded programming mode. In order to
429 * access the EEPROM at all, we first have to set the
430 * EELOAD bit in the CHIPCFG2 register.
431 */
432 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
433 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
434
435 /* Select the address of the word we want to read */
436 CSR_WRITE_1(sc, VGE_EEADDR, addr);
437
438 /* Issue read command */
439 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
440
441 /* Wait for the done bit to be set. */
442 for (i = 0; i < VGE_TIMEOUT; i++) {
443 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
444 break;
445 }
446
447 if (i == VGE_TIMEOUT) {
448 printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
449 return 0;
450 }
451
452 /* Read the result */
453 word = CSR_READ_2(sc, VGE_EERDDAT);
454
455 /* Turn off EEPROM access mode. */
456 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
457 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
458
459 return word;
460 }
461
462 static void
463 vge_miipoll_stop(struct vge_softc *sc)
464 {
465 int i;
466
467 CSR_WRITE_1(sc, VGE_MIICMD, 0);
468
469 for (i = 0; i < VGE_TIMEOUT; i++) {
470 DELAY(1);
471 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
472 break;
473 }
474
475 if (i == VGE_TIMEOUT) {
476 printf("%s: failed to idle MII autopoll\n",
477 device_xname(sc->sc_dev));
478 }
479 }
480
481 static void
482 vge_miipoll_start(struct vge_softc *sc)
483 {
484 int i;
485
486 /* First, make sure we're idle. */
487
488 CSR_WRITE_1(sc, VGE_MIICMD, 0);
489 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
490
491 for (i = 0; i < VGE_TIMEOUT; i++) {
492 DELAY(1);
493 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
494 break;
495 }
496
497 if (i == VGE_TIMEOUT) {
498 printf("%s: failed to idle MII autopoll\n",
499 device_xname(sc->sc_dev));
500 return;
501 }
502
503 /* Now enable auto poll mode. */
504
505 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
506
507 /* And make sure it started. */
508
509 for (i = 0; i < VGE_TIMEOUT; i++) {
510 DELAY(1);
511 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
512 break;
513 }
514
515 if (i == VGE_TIMEOUT) {
516 printf("%s: failed to start MII autopoll\n",
517 device_xname(sc->sc_dev));
518 }
519 }
520
521 static int
522 vge_miibus_readreg(device_t dev, int phy, int reg)
523 {
524 struct vge_softc *sc;
525 int i, s;
526 uint16_t rval;
527
528 sc = device_private(dev);
529 rval = 0;
530 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
531 return 0;
532
533 s = splnet();
534 vge_miipoll_stop(sc);
535
536 /* Specify the register we want to read. */
537 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
538
539 /* Issue read command. */
540 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
541
542 /* Wait for the read command bit to self-clear. */
543 for (i = 0; i < VGE_TIMEOUT; i++) {
544 DELAY(1);
545 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
546 break;
547 }
548
549 if (i == VGE_TIMEOUT)
550 printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
551 else
552 rval = CSR_READ_2(sc, VGE_MIIDATA);
553
554 vge_miipoll_start(sc);
555 splx(s);
556
557 return rval;
558 }
559
560 static void
561 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
562 {
563 struct vge_softc *sc;
564 int i, s;
565
566 sc = device_private(dev);
567 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
568 return;
569
570 s = splnet();
571 vge_miipoll_stop(sc);
572
573 /* Specify the register we want to write. */
574 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
575
576 /* Specify the data we want to write. */
577 CSR_WRITE_2(sc, VGE_MIIDATA, data);
578
579 /* Issue write command. */
580 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
581
582 /* Wait for the write command bit to self-clear. */
583 for (i = 0; i < VGE_TIMEOUT; i++) {
584 DELAY(1);
585 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
586 break;
587 }
588
589 if (i == VGE_TIMEOUT) {
590 printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
591 }
592
593 vge_miipoll_start(sc);
594 splx(s);
595 }
596
597 static void
598 vge_cam_clear(struct vge_softc *sc)
599 {
600 int i;
601
602 /*
603 * Turn off all the mask bits. This tells the chip
604 * that none of the entries in the CAM filter are valid.
605 * desired entries will be enabled as we fill the filter in.
606 */
607
608 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
609 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
610 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
611 for (i = 0; i < 8; i++)
612 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
613
614 /* Clear the VLAN filter too. */
615
616 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
617 for (i = 0; i < 8; i++)
618 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
619
620 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
621 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
622 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
623
624 sc->sc_camidx = 0;
625 }
626
627 static int
628 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
629 {
630 int i, error;
631
632 error = 0;
633
634 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
635 return ENOSPC;
636
637 /* Select the CAM data page. */
638 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
639 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
640
641 /* Set the filter entry we want to update and enable writing. */
642 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
643
644 /* Write the address to the CAM registers */
645 for (i = 0; i < ETHER_ADDR_LEN; i++)
646 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
647
648 /* Issue a write command. */
649 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
650
651 /* Wake for it to clear. */
652 for (i = 0; i < VGE_TIMEOUT; i++) {
653 DELAY(1);
654 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
655 break;
656 }
657
658 if (i == VGE_TIMEOUT) {
659 printf("%s: setting CAM filter failed\n",
660 device_xname(sc->sc_dev));
661 error = EIO;
662 goto fail;
663 }
664
665 /* Select the CAM mask page. */
666 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
667 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
668
669 /* Set the mask bit that enables this filter. */
670 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
671 1 << (sc->sc_camidx & 7));
672
673 sc->sc_camidx++;
674
675 fail:
676 /* Turn off access to CAM. */
677 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
678 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
679 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
680
681 return error;
682 }
683
684 /*
685 * Program the multicast filter. We use the 64-entry CAM filter
686 * for perfect filtering. If there's more than 64 multicast addresses,
687 * we use the hash filter instead.
688 */
689 static void
690 vge_setmulti(struct vge_softc *sc)
691 {
692 struct ifnet *ifp;
693 int error;
694 uint32_t h, hashes[2] = { 0, 0 };
695 struct ether_multi *enm;
696 struct ether_multistep step;
697
698 error = 0;
699 ifp = &sc->sc_ethercom.ec_if;
700
701 /* First, zot all the multicast entries. */
702 vge_cam_clear(sc);
703 CSR_WRITE_4(sc, VGE_MAR0, 0);
704 CSR_WRITE_4(sc, VGE_MAR1, 0);
705 ifp->if_flags &= ~IFF_ALLMULTI;
706
707 /*
708 * If the user wants allmulti or promisc mode, enable reception
709 * of all multicast frames.
710 */
711 if (ifp->if_flags & IFF_PROMISC) {
712 allmulti:
713 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
714 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
715 ifp->if_flags |= IFF_ALLMULTI;
716 return;
717 }
718
719 /* Now program new ones */
720 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
721 while (enm != NULL) {
722 /*
723 * If multicast range, fall back to ALLMULTI.
724 */
725 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
726 ETHER_ADDR_LEN) != 0)
727 goto allmulti;
728
729 error = vge_cam_set(sc, enm->enm_addrlo);
730 if (error)
731 break;
732
733 ETHER_NEXT_MULTI(step, enm);
734 }
735
736 /* If there were too many addresses, use the hash filter. */
737 if (error) {
738 vge_cam_clear(sc);
739
740 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
741 while (enm != NULL) {
742 /*
743 * If multicast range, fall back to ALLMULTI.
744 */
745 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
746 ETHER_ADDR_LEN) != 0)
747 goto allmulti;
748
749 h = ether_crc32_be(enm->enm_addrlo,
750 ETHER_ADDR_LEN) >> 26;
751 hashes[h >> 5] |= 1 << (h & 0x1f);
752
753 ETHER_NEXT_MULTI(step, enm);
754 }
755
756 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
757 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
758 }
759 }
760
761 static void
762 vge_reset(struct vge_softc *sc)
763 {
764 int i;
765
766 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
767
768 for (i = 0; i < VGE_TIMEOUT; i++) {
769 DELAY(5);
770 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
771 break;
772 }
773
774 if (i == VGE_TIMEOUT) {
775 printf("%s: soft reset timed out", device_xname(sc->sc_dev));
776 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
777 DELAY(2000);
778 }
779
780 DELAY(5000);
781
782 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
783
784 for (i = 0; i < VGE_TIMEOUT; i++) {
785 DELAY(5);
786 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
787 break;
788 }
789
790 if (i == VGE_TIMEOUT) {
791 printf("%s: EEPROM reload timed out\n",
792 device_xname(sc->sc_dev));
793 return;
794 }
795
796 /*
797 * On some machine, the first read data from EEPROM could be
798 * messed up, so read one dummy data here to avoid the mess.
799 */
800 (void)vge_read_eeprom(sc, 0);
801
802 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
803 }
804
805 /*
806 * Probe for a VIA gigabit chip. Check the PCI vendor and device
807 * IDs against our list and return a device name if we find a match.
808 */
809 static int
810 vge_match(device_t parent, cfdata_t match, void *aux)
811 {
812 struct pci_attach_args *pa = aux;
813
814 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
815 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
816 return 1;
817
818 return 0;
819 }
820
821 static int
822 vge_allocmem(struct vge_softc *sc)
823 {
824 int error;
825 int nseg;
826 int i;
827 bus_dma_segment_t seg;
828
829 /*
830 * Allocate memory for control data.
831 */
832
833 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
834 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
835 if (error) {
836 aprint_error_dev(sc->sc_dev,
837 "could not allocate control data dma memory\n");
838 goto fail_1;
839 }
840
841 /* Map the memory to kernel VA space */
842
843 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
844 sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
845 BUS_DMA_NOWAIT);
846 if (error) {
847 aprint_error_dev(sc->sc_dev,
848 "could not map control data dma memory\n");
849 goto fail_2;
850 }
851 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
852
853 /*
854 * Create map for control data.
855 */
856 error = bus_dmamap_create(sc->sc_dmat,
857 sizeof(struct vge_control_data), 1,
858 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
859 &sc->sc_cddmamap);
860 if (error) {
861 aprint_error_dev(sc->sc_dev,
862 "could not create control data dmamap\n");
863 goto fail_3;
864 }
865
866 /* Load the map for the control data. */
867 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
868 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
869 BUS_DMA_NOWAIT);
870 if (error) {
871 aprint_error_dev(sc->sc_dev,
872 "could not load control data dma memory\n");
873 goto fail_4;
874 }
875
876 /* Create DMA maps for TX buffers */
877
878 for (i = 0; i < VGE_NTXDESC; i++) {
879 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
880 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
881 &sc->sc_txsoft[i].txs_dmamap);
882 if (error) {
883 aprint_error_dev(sc->sc_dev,
884 "can't create DMA map for TX descs\n");
885 goto fail_5;
886 }
887 }
888
889 /* Create DMA maps for RX buffers */
890
891 for (i = 0; i < VGE_NRXDESC; i++) {
892 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
893 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
894 &sc->sc_rxsoft[i].rxs_dmamap);
895 if (error) {
896 aprint_error_dev(sc->sc_dev,
897 "can't create DMA map for RX descs\n");
898 goto fail_6;
899 }
900 sc->sc_rxsoft[i].rxs_mbuf = NULL;
901 }
902
903 return 0;
904
905 fail_6:
906 for (i = 0; i < VGE_NRXDESC; i++) {
907 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
908 bus_dmamap_destroy(sc->sc_dmat,
909 sc->sc_rxsoft[i].rxs_dmamap);
910 }
911 fail_5:
912 for (i = 0; i < VGE_NTXDESC; i++) {
913 if (sc->sc_txsoft[i].txs_dmamap != NULL)
914 bus_dmamap_destroy(sc->sc_dmat,
915 sc->sc_txsoft[i].txs_dmamap);
916 }
917 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
918 fail_4:
919 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
920 fail_3:
921 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
922 sizeof(struct vge_control_data));
923 fail_2:
924 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
925 fail_1:
926 return ENOMEM;
927 }
928
929 /*
930 * Attach the interface. Allocate softc structures, do ifmedia
931 * setup and ethernet/BPF attach.
932 */
933 static void
934 vge_attach(device_t parent, device_t self, void *aux)
935 {
936 uint8_t *eaddr;
937 struct vge_softc *sc = device_private(self);
938 struct ifnet *ifp;
939 struct pci_attach_args *pa = aux;
940 pci_chipset_tag_t pc = pa->pa_pc;
941 const char *intrstr;
942 pci_intr_handle_t ih;
943 uint16_t val;
944 char intrbuf[PCI_INTRSTR_LEN];
945
946 sc->sc_dev = self;
947
948 pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
949
950 /* Make sure bus-mastering is enabled */
951 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
952 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
953 PCI_COMMAND_MASTER_ENABLE);
954
955 /*
956 * Map control/status registers.
957 */
958 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
959 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
960 aprint_error_dev(self, "couldn't map memory\n");
961 return;
962 }
963
964 /*
965 * Map and establish our interrupt.
966 */
967 if (pci_intr_map(pa, &ih)) {
968 aprint_error_dev(self, "unable to map interrupt\n");
969 return;
970 }
971 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
972 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
973 if (sc->sc_intrhand == NULL) {
974 aprint_error_dev(self, "unable to establish interrupt");
975 if (intrstr != NULL)
976 aprint_error(" at %s", intrstr);
977 aprint_error("\n");
978 return;
979 }
980 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
981
982 /* Reset the adapter. */
983 vge_reset(sc);
984
985 /*
986 * Get station address from the EEPROM.
987 */
988 eaddr = sc->sc_eaddr;
989 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
990 eaddr[0] = val & 0xff;
991 eaddr[1] = val >> 8;
992 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
993 eaddr[2] = val & 0xff;
994 eaddr[3] = val >> 8;
995 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
996 eaddr[4] = val & 0xff;
997 eaddr[5] = val >> 8;
998
999 aprint_normal_dev(self, "Ethernet address: %s\n",
1000 ether_sprintf(eaddr));
1001
1002 /*
1003 * Use the 32bit tag. Hardware supports 48bit physical addresses,
1004 * but we don't use that for now.
1005 */
1006 sc->sc_dmat = pa->pa_dmat;
1007
1008 if (vge_allocmem(sc) != 0)
1009 return;
1010
1011 ifp = &sc->sc_ethercom.ec_if;
1012 ifp->if_softc = sc;
1013 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1014 ifp->if_mtu = ETHERMTU;
1015 ifp->if_baudrate = IF_Gbps(1);
1016 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1017 ifp->if_ioctl = vge_ioctl;
1018 ifp->if_start = vge_start;
1019 ifp->if_init = vge_init;
1020 ifp->if_stop = vge_stop;
1021
1022 /*
1023 * We can support 802.1Q VLAN-sized frames and jumbo
1024 * Ethernet frames.
1025 */
1026 sc->sc_ethercom.ec_capabilities |=
1027 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1028 ETHERCAP_VLAN_HWTAGGING;
1029
1030 /*
1031 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1032 */
1033 ifp->if_capabilities |=
1034 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1035 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1036 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1037
1038 #ifdef DEVICE_POLLING
1039 #ifdef IFCAP_POLLING
1040 ifp->if_capabilities |= IFCAP_POLLING;
1041 #endif
1042 #endif
1043 ifp->if_watchdog = vge_watchdog;
1044 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1045 IFQ_SET_READY(&ifp->if_snd);
1046
1047 /*
1048 * Initialize our media structures and probe the MII.
1049 */
1050 sc->sc_mii.mii_ifp = ifp;
1051 sc->sc_mii.mii_readreg = vge_miibus_readreg;
1052 sc->sc_mii.mii_writereg = vge_miibus_writereg;
1053 sc->sc_mii.mii_statchg = vge_miibus_statchg;
1054
1055 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1056 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
1057 ether_mediastatus);
1058 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1059 MII_OFFSET_ANY, MIIF_DOPAUSE);
1060 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1061 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1062 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1063 } else
1064 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1065
1066 /*
1067 * Attach the interface.
1068 */
1069 if_attach(ifp);
1070 if_deferred_start_init(ifp, NULL);
1071 ether_ifattach(ifp, eaddr);
1072 ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1073
1074 callout_init(&sc->sc_timeout, 0);
1075 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1076
1077 /*
1078 * Make sure the interface is shutdown during reboot.
1079 */
1080 if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1081 pmf_class_network_register(self, ifp);
1082 else
1083 aprint_error_dev(self, "couldn't establish power handler\n");
1084 }
1085
1086 static int
1087 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1088 {
1089 struct mbuf *m_new;
1090 struct vge_rxdesc *rxd;
1091 struct vge_rxsoft *rxs;
1092 bus_dmamap_t map;
1093 int i;
1094 #ifdef DIAGNOSTIC
1095 uint32_t rd_sts;
1096 #endif
1097
1098 m_new = NULL;
1099 if (m == NULL) {
1100 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1101 if (m_new == NULL)
1102 return ENOBUFS;
1103
1104 MCLGET(m_new, M_DONTWAIT);
1105 if ((m_new->m_flags & M_EXT) == 0) {
1106 m_freem(m_new);
1107 return ENOBUFS;
1108 }
1109
1110 m = m_new;
1111 } else
1112 m->m_data = m->m_ext.ext_buf;
1113
1114
1115 /*
1116 * This is part of an evil trick to deal with non-x86 platforms.
1117 * The VIA chip requires RX buffers to be aligned on 32-bit
1118 * boundaries, but that will hose non-x86 machines. To get around
1119 * this, we leave some empty space at the start of each buffer
1120 * and for non-x86 hosts, we copy the buffer back two bytes
1121 * to achieve word alignment. This is slightly more efficient
1122 * than allocating a new buffer, copying the contents, and
1123 * discarding the old buffer.
1124 */
1125 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1126 #ifndef __NO_STRICT_ALIGNMENT
1127 m->m_data += VGE_RX_PAD;
1128 #endif
1129 rxs = &sc->sc_rxsoft[idx];
1130 map = rxs->rxs_dmamap;
1131
1132 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1133 goto out;
1134
1135 rxd = &sc->sc_rxdescs[idx];
1136
1137 #ifdef DIAGNOSTIC
1138 /* If this descriptor is still owned by the chip, bail. */
1139 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140 rd_sts = le32toh(rxd->rd_sts);
1141 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1142 if (rd_sts & VGE_RDSTS_OWN) {
1143 panic("%s: tried to map busy RX descriptor",
1144 device_xname(sc->sc_dev));
1145 }
1146 #endif
1147
1148 rxs->rxs_mbuf = m;
1149 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1150 BUS_DMASYNC_PREREAD);
1151
1152 rxd->rd_buflen =
1153 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1154 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1155 rxd->rd_sts = 0;
1156 rxd->rd_ctl = 0;
1157 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158
1159 /*
1160 * Note: the manual fails to document the fact that for
1161 * proper opration, the driver needs to replentish the RX
1162 * DMA ring 4 descriptors at a time (rather than one at a
1163 * time, like most chips). We can allocate the new buffers
1164 * but we should not set the OWN bits until we're ready
1165 * to hand back 4 of them in one shot.
1166 */
1167
1168 #define VGE_RXCHUNK 4
1169 sc->sc_rx_consumed++;
1170 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1171 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1172 KASSERT(i >= 0);
1173 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1174 VGE_RXDESCSYNC(sc, i,
1175 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1176 }
1177 sc->sc_rx_consumed = 0;
1178 }
1179
1180 return 0;
1181 out:
1182 if (m_new != NULL)
1183 m_freem(m_new);
1184 return ENOMEM;
1185 }
1186
1187 #ifndef __NO_STRICT_ALIGNMENT
1188 static inline void
1189 vge_fixup_rx(struct mbuf *m)
1190 {
1191 int i;
1192 uint16_t *src, *dst;
1193
1194 src = mtod(m, uint16_t *);
1195 dst = src - 1;
1196
1197 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1198 *dst++ = *src++;
1199
1200 m->m_data -= ETHER_ALIGN;
1201 }
1202 #endif
1203
1204 /*
1205 * RX handler. We support the reception of jumbo frames that have
1206 * been fragmented across multiple 2K mbuf cluster buffers.
1207 */
1208 static void
1209 vge_rxeof(struct vge_softc *sc)
1210 {
1211 struct mbuf *m;
1212 struct ifnet *ifp;
1213 int idx, total_len, lim;
1214 struct vge_rxdesc *cur_rxd;
1215 struct vge_rxsoft *rxs;
1216 uint32_t rxstat, rxctl;
1217
1218 ifp = &sc->sc_ethercom.ec_if;
1219 lim = 0;
1220
1221 /* Invalidate the descriptor memory */
1222
1223 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1224 cur_rxd = &sc->sc_rxdescs[idx];
1225
1226 VGE_RXDESCSYNC(sc, idx,
1227 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1228 rxstat = le32toh(cur_rxd->rd_sts);
1229 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1230 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1231 break;
1232 }
1233
1234 rxctl = le32toh(cur_rxd->rd_ctl);
1235 rxs = &sc->sc_rxsoft[idx];
1236 m = rxs->rxs_mbuf;
1237 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1238
1239 /* Invalidate the RX mbuf and unload its map */
1240
1241 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1242 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1243 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1244
1245 /*
1246 * If the 'start of frame' bit is set, this indicates
1247 * either the first fragment in a multi-fragment receive,
1248 * or an intermediate fragment. Either way, we want to
1249 * accumulate the buffers.
1250 */
1251 if (rxstat & VGE_RXPKT_SOF) {
1252 m->m_len = VGE_RX_BUFSIZE;
1253 if (sc->sc_rx_mhead == NULL)
1254 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1255 else {
1256 m->m_flags &= ~M_PKTHDR;
1257 sc->sc_rx_mtail->m_next = m;
1258 sc->sc_rx_mtail = m;
1259 }
1260 vge_newbuf(sc, idx, NULL);
1261 continue;
1262 }
1263
1264 /*
1265 * Bad/error frames will have the RXOK bit cleared.
1266 * However, there's one error case we want to allow:
1267 * if a VLAN tagged frame arrives and the chip can't
1268 * match it against the CAM filter, it considers this
1269 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1270 * We don't want to drop the frame though: our VLAN
1271 * filtering is done in software.
1272 */
1273 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1274 (rxstat & VGE_RDSTS_VIDM) == 0 &&
1275 (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1276 ifp->if_ierrors++;
1277 /*
1278 * If this is part of a multi-fragment packet,
1279 * discard all the pieces.
1280 */
1281 if (sc->sc_rx_mhead != NULL) {
1282 m_freem(sc->sc_rx_mhead);
1283 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1284 }
1285 vge_newbuf(sc, idx, m);
1286 continue;
1287 }
1288
1289 /*
1290 * If allocating a replacement mbuf fails,
1291 * reload the current one.
1292 */
1293
1294 if (vge_newbuf(sc, idx, NULL)) {
1295 ifp->if_ierrors++;
1296 if (sc->sc_rx_mhead != NULL) {
1297 m_freem(sc->sc_rx_mhead);
1298 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1299 }
1300 vge_newbuf(sc, idx, m);
1301 continue;
1302 }
1303
1304 if (sc->sc_rx_mhead != NULL) {
1305 m->m_len = total_len % VGE_RX_BUFSIZE;
1306 /*
1307 * Special case: if there's 4 bytes or less
1308 * in this buffer, the mbuf can be discarded:
1309 * the last 4 bytes is the CRC, which we don't
1310 * care about anyway.
1311 */
1312 if (m->m_len <= ETHER_CRC_LEN) {
1313 sc->sc_rx_mtail->m_len -=
1314 (ETHER_CRC_LEN - m->m_len);
1315 m_freem(m);
1316 } else {
1317 m->m_len -= ETHER_CRC_LEN;
1318 m->m_flags &= ~M_PKTHDR;
1319 sc->sc_rx_mtail->m_next = m;
1320 }
1321 m = sc->sc_rx_mhead;
1322 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1323 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1324 } else
1325 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1326
1327 #ifndef __NO_STRICT_ALIGNMENT
1328 vge_fixup_rx(m);
1329 #endif
1330 m_set_rcvif(m, ifp);
1331
1332 /* Do RX checksumming if enabled */
1333 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1334
1335 /* Check IP header checksum */
1336 if (rxctl & VGE_RDCTL_IPPKT)
1337 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1338 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1339 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1340 }
1341
1342 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1343 /* Check UDP checksum */
1344 if (rxctl & VGE_RDCTL_TCPPKT)
1345 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1346
1347 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1348 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1349 }
1350
1351 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1352 /* Check UDP checksum */
1353 if (rxctl & VGE_RDCTL_UDPPKT)
1354 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1355
1356 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1357 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1358 }
1359
1360 if (rxstat & VGE_RDSTS_VTAG) {
1361 /*
1362 * We use bswap16() here because:
1363 * On LE machines, tag is stored in BE as stream data.
1364 * On BE machines, tag is stored in BE as stream data
1365 * but it was already swapped by le32toh() above.
1366 */
1367 VLAN_INPUT_TAG(ifp, m,
1368 bswap16(rxctl & VGE_RDCTL_VLANID), continue);
1369 }
1370
1371 if_percpuq_enqueue(ifp->if_percpuq, m);
1372
1373 lim++;
1374 if (lim == VGE_NRXDESC)
1375 break;
1376 }
1377
1378 sc->sc_rx_prodidx = idx;
1379 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1380 }
1381
1382 static void
1383 vge_txeof(struct vge_softc *sc)
1384 {
1385 struct ifnet *ifp;
1386 struct vge_txsoft *txs;
1387 uint32_t txstat;
1388 int idx;
1389
1390 ifp = &sc->sc_ethercom.ec_if;
1391
1392 for (idx = sc->sc_tx_considx;
1393 sc->sc_tx_free < VGE_NTXDESC;
1394 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1395 VGE_TXDESCSYNC(sc, idx,
1396 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1397 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1398 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1399 if (txstat & VGE_TDSTS_OWN) {
1400 break;
1401 }
1402
1403 txs = &sc->sc_txsoft[idx];
1404 m_freem(txs->txs_mbuf);
1405 txs->txs_mbuf = NULL;
1406 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1407 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1408 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1409 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1410 ifp->if_collisions++;
1411 if (txstat & VGE_TDSTS_TXERR)
1412 ifp->if_oerrors++;
1413 else
1414 ifp->if_opackets++;
1415 }
1416
1417 sc->sc_tx_considx = idx;
1418
1419 if (sc->sc_tx_free > 0) {
1420 ifp->if_flags &= ~IFF_OACTIVE;
1421 }
1422
1423 /*
1424 * If not all descriptors have been released reaped yet,
1425 * reload the timer so that we will eventually get another
1426 * interrupt that will cause us to re-enter this routine.
1427 * This is done in case the transmitter has gone idle.
1428 */
1429 if (sc->sc_tx_free < VGE_NTXDESC)
1430 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1431 else
1432 ifp->if_timer = 0;
1433 }
1434
1435 static void
1436 vge_tick(void *arg)
1437 {
1438 struct vge_softc *sc;
1439 struct ifnet *ifp;
1440 struct mii_data *mii;
1441 int s;
1442
1443 sc = arg;
1444 ifp = &sc->sc_ethercom.ec_if;
1445 mii = &sc->sc_mii;
1446
1447 s = splnet();
1448
1449 callout_schedule(&sc->sc_timeout, hz);
1450
1451 mii_tick(mii);
1452 if (sc->sc_link) {
1453 if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1454 sc->sc_link = 0;
1455 } else {
1456 if (mii->mii_media_status & IFM_ACTIVE &&
1457 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1458 sc->sc_link = 1;
1459 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1460 vge_start(ifp);
1461 }
1462 }
1463
1464 splx(s);
1465 }
1466
1467 static int
1468 vge_intr(void *arg)
1469 {
1470 struct vge_softc *sc;
1471 struct ifnet *ifp;
1472 uint32_t status;
1473 int claim;
1474
1475 sc = arg;
1476 claim = 0;
1477 if (sc->sc_suspended) {
1478 return claim;
1479 }
1480
1481 ifp = &sc->sc_ethercom.ec_if;
1482
1483 if ((ifp->if_flags & IFF_UP) == 0) {
1484 return claim;
1485 }
1486
1487 /* Disable interrupts */
1488 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1489
1490 for (;;) {
1491
1492 status = CSR_READ_4(sc, VGE_ISR);
1493 /* If the card has gone away the read returns 0xffffffff. */
1494 if (status == 0xFFFFFFFF)
1495 break;
1496
1497 if (status) {
1498 claim = 1;
1499 CSR_WRITE_4(sc, VGE_ISR, status);
1500 }
1501
1502 if ((status & VGE_INTRS) == 0)
1503 break;
1504
1505 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1506 vge_rxeof(sc);
1507
1508 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1509 vge_rxeof(sc);
1510 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1511 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1512 }
1513
1514 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1515 vge_txeof(sc);
1516
1517 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1518 vge_init(ifp);
1519
1520 if (status & VGE_ISR_LINKSTS)
1521 vge_tick(sc);
1522 }
1523
1524 /* Re-enable interrupts */
1525 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1526
1527 if (claim)
1528 if_schedule_deferred_start(ifp);
1529
1530 return claim;
1531 }
1532
1533 static int
1534 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1535 {
1536 struct vge_txsoft *txs;
1537 struct vge_txdesc *txd;
1538 struct vge_txfrag *f;
1539 struct mbuf *m_new;
1540 bus_dmamap_t map;
1541 int m_csumflags, seg, error, flags;
1542 struct m_tag *mtag;
1543 size_t sz;
1544 uint32_t td_sts, td_ctl;
1545
1546 KASSERT(sc->sc_tx_free > 0);
1547
1548 txd = &sc->sc_txdescs[idx];
1549
1550 #ifdef DIAGNOSTIC
1551 /* If this descriptor is still owned by the chip, bail. */
1552 VGE_TXDESCSYNC(sc, idx,
1553 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1554 td_sts = le32toh(txd->td_sts);
1555 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1556 if (td_sts & VGE_TDSTS_OWN) {
1557 return ENOBUFS;
1558 }
1559 #endif
1560
1561 /*
1562 * Preserve m_pkthdr.csum_flags here since m_head might be
1563 * updated by m_defrag()
1564 */
1565 m_csumflags = m_head->m_pkthdr.csum_flags;
1566
1567 txs = &sc->sc_txsoft[idx];
1568 map = txs->txs_dmamap;
1569 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1570
1571 /* If too many segments to map, coalesce */
1572 if (error == EFBIG ||
1573 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1574 map->dm_nsegs == VGE_TX_FRAGS)) {
1575 m_new = m_defrag(m_head, M_DONTWAIT);
1576 if (m_new == NULL)
1577 return EFBIG;
1578
1579 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1580 m_new, BUS_DMA_NOWAIT);
1581 if (error) {
1582 m_freem(m_new);
1583 return error;
1584 }
1585
1586 m_head = m_new;
1587 } else if (error)
1588 return error;
1589
1590 txs->txs_mbuf = m_head;
1591
1592 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1593 BUS_DMASYNC_PREWRITE);
1594
1595 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1596 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1597 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1598 }
1599
1600 /* Argh. This chip does not autopad short frames */
1601 sz = m_head->m_pkthdr.len;
1602 if (sz < ETHER_PAD_LEN) {
1603 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1604 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1605 sz = ETHER_PAD_LEN;
1606 seg++;
1607 }
1608 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1609
1610 /*
1611 * When telling the chip how many segments there are, we
1612 * must use nsegs + 1 instead of just nsegs. Darned if I
1613 * know why.
1614 */
1615 seg++;
1616
1617 flags = 0;
1618 if (m_csumflags & M_CSUM_IPv4)
1619 flags |= VGE_TDCTL_IPCSUM;
1620 if (m_csumflags & M_CSUM_TCPv4)
1621 flags |= VGE_TDCTL_TCPCSUM;
1622 if (m_csumflags & M_CSUM_UDPv4)
1623 flags |= VGE_TDCTL_UDPCSUM;
1624 td_sts = sz << 16;
1625 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1626
1627 if (sz > ETHERMTU + ETHER_HDR_LEN)
1628 td_ctl |= VGE_TDCTL_JUMBO;
1629
1630 /*
1631 * Set up hardware VLAN tagging.
1632 */
1633 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1634 if (mtag != NULL) {
1635 /*
1636 * No need htons() here since vge(4) chip assumes
1637 * that tags are written in little endian and
1638 * we already use htole32() here.
1639 */
1640 td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
1641 }
1642 txd->td_ctl = htole32(td_ctl);
1643 txd->td_sts = htole32(td_sts);
1644 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1645
1646 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1647 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1648
1649 sc->sc_tx_free--;
1650
1651 return 0;
1652 }
1653
1654 /*
1655 * Main transmit routine.
1656 */
1657
1658 static void
1659 vge_start(struct ifnet *ifp)
1660 {
1661 struct vge_softc *sc;
1662 struct vge_txsoft *txs;
1663 struct mbuf *m_head;
1664 int idx, pidx, ofree, error;
1665
1666 sc = ifp->if_softc;
1667
1668 if (!sc->sc_link ||
1669 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1670 return;
1671 }
1672
1673 m_head = NULL;
1674 idx = sc->sc_tx_prodidx;
1675 pidx = VGE_PREV_TXDESC(idx);
1676 ofree = sc->sc_tx_free;
1677
1678 /*
1679 * Loop through the send queue, setting up transmit descriptors
1680 * until we drain the queue, or use up all available transmit
1681 * descriptors.
1682 */
1683 for (;;) {
1684 /* Grab a packet off the queue. */
1685 IFQ_POLL(&ifp->if_snd, m_head);
1686 if (m_head == NULL)
1687 break;
1688
1689 if (sc->sc_tx_free == 0) {
1690 /*
1691 * All slots used, stop for now.
1692 */
1693 ifp->if_flags |= IFF_OACTIVE;
1694 break;
1695 }
1696
1697 txs = &sc->sc_txsoft[idx];
1698 KASSERT(txs->txs_mbuf == NULL);
1699
1700 if ((error = vge_encap(sc, m_head, idx))) {
1701 if (error == EFBIG) {
1702 printf("%s: Tx packet consumes too many "
1703 "DMA segments, dropping...\n",
1704 device_xname(sc->sc_dev));
1705 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1706 m_freem(m_head);
1707 continue;
1708 }
1709
1710 /*
1711 * Short on resources, just stop for now.
1712 */
1713 if (error == ENOBUFS)
1714 ifp->if_flags |= IFF_OACTIVE;
1715 break;
1716 }
1717
1718 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1719
1720 /*
1721 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1722 */
1723
1724 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1725 htole16(VGE_TXDESC_Q);
1726 VGE_TXFRAGSYNC(sc, pidx, 1,
1727 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1728
1729 if (txs->txs_mbuf != m_head) {
1730 m_freem(m_head);
1731 m_head = txs->txs_mbuf;
1732 }
1733
1734 pidx = idx;
1735 idx = VGE_NEXT_TXDESC(idx);
1736
1737 /*
1738 * If there's a BPF listener, bounce a copy of this frame
1739 * to him.
1740 */
1741 bpf_mtap(ifp, m_head);
1742 }
1743
1744 if (sc->sc_tx_free < ofree) {
1745 /* TX packet queued */
1746
1747 sc->sc_tx_prodidx = idx;
1748
1749 /* Issue a transmit command. */
1750 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1751
1752 /*
1753 * Use the countdown timer for interrupt moderation.
1754 * 'TX done' interrupts are disabled. Instead, we reset the
1755 * countdown timer, which will begin counting until it hits
1756 * the value in the SSTIMER register, and then trigger an
1757 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1758 * the timer count is reloaded. Only when the transmitter
1759 * is idle will the timer hit 0 and an interrupt fire.
1760 */
1761 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1762
1763 /*
1764 * Set a timeout in case the chip goes out to lunch.
1765 */
1766 ifp->if_timer = 5;
1767 }
1768 }
1769
1770 static int
1771 vge_init(struct ifnet *ifp)
1772 {
1773 struct vge_softc *sc;
1774 int i, rc = 0;
1775
1776 sc = ifp->if_softc;
1777
1778 /*
1779 * Cancel pending I/O and free all RX/TX buffers.
1780 */
1781 vge_stop(ifp, 0);
1782 vge_reset(sc);
1783
1784 /* Initialize the RX descriptors and mbufs. */
1785 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1786 sc->sc_rx_consumed = 0;
1787 for (i = 0; i < VGE_NRXDESC; i++) {
1788 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1789 printf("%s: unable to allocate or map rx buffer\n",
1790 device_xname(sc->sc_dev));
1791 return 1; /* XXX */
1792 }
1793 }
1794 sc->sc_rx_prodidx = 0;
1795 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1796
1797 /* Initialize the TX descriptors and mbufs. */
1798 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1799 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1800 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1801 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1802 for (i = 0; i < VGE_NTXDESC; i++)
1803 sc->sc_txsoft[i].txs_mbuf = NULL;
1804
1805 sc->sc_tx_prodidx = 0;
1806 sc->sc_tx_considx = 0;
1807 sc->sc_tx_free = VGE_NTXDESC;
1808
1809 /* Set our station address */
1810 for (i = 0; i < ETHER_ADDR_LEN; i++)
1811 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1812
1813 /*
1814 * Set receive FIFO threshold. Also allow transmission and
1815 * reception of VLAN tagged frames.
1816 */
1817 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1818 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1819
1820 /* Set DMA burst length */
1821 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1822 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1823
1824 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1825
1826 /* Set collision backoff algorithm */
1827 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1828 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1829 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1830
1831 /* Disable LPSEL field in priority resolution */
1832 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1833
1834 /*
1835 * Load the addresses of the DMA queues into the chip.
1836 * Note that we only use one transmit queue.
1837 */
1838
1839 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1840 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1841
1842 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1843 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1844 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1845
1846 /* Enable and wake up the RX descriptor queue */
1847 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1848 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1849
1850 /* Enable the TX descriptor queue */
1851 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1852
1853 /* Set up the receive filter -- allow large frames for VLANs. */
1854 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1855
1856 /* If we want promiscuous mode, set the allframes bit. */
1857 if (ifp->if_flags & IFF_PROMISC) {
1858 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1859 }
1860
1861 /* Set capture broadcast bit to capture broadcast frames. */
1862 if (ifp->if_flags & IFF_BROADCAST) {
1863 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1864 }
1865
1866 /* Set multicast bit to capture multicast frames. */
1867 if (ifp->if_flags & IFF_MULTICAST) {
1868 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1869 }
1870
1871 /* Init the cam filter. */
1872 vge_cam_clear(sc);
1873
1874 /* Init the multicast filter. */
1875 vge_setmulti(sc);
1876
1877 /* Enable flow control */
1878
1879 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1880
1881 /* Enable jumbo frame reception (if desired) */
1882
1883 /* Start the MAC. */
1884 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1885 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1886 CSR_WRITE_1(sc, VGE_CRS0,
1887 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1888
1889 /*
1890 * Configure one-shot timer for microsecond
1891 * resulution and load it for 500 usecs.
1892 */
1893 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1894 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1895
1896 /*
1897 * Configure interrupt moderation for receive. Enable
1898 * the holdoff counter and load it, and set the RX
1899 * suppression count to the number of descriptors we
1900 * want to allow before triggering an interrupt.
1901 * The holdoff timer is in units of 20 usecs.
1902 */
1903
1904 #ifdef notyet
1905 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1906 /* Select the interrupt holdoff timer page. */
1907 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1908 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1909 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1910
1911 /* Enable use of the holdoff timer. */
1912 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1913 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1914
1915 /* Select the RX suppression threshold page. */
1916 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1917 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1918 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1919
1920 /* Restore the page select bits. */
1921 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1922 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1923 #endif
1924
1925 #ifdef DEVICE_POLLING
1926 /*
1927 * Disable interrupts if we are polling.
1928 */
1929 if (ifp->if_flags & IFF_POLLING) {
1930 CSR_WRITE_4(sc, VGE_IMR, 0);
1931 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1932 } else /* otherwise ... */
1933 #endif /* DEVICE_POLLING */
1934 {
1935 /*
1936 * Enable interrupts.
1937 */
1938 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1939 CSR_WRITE_4(sc, VGE_ISR, 0);
1940 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1941 }
1942
1943 if ((rc = ether_mediachange(ifp)) != 0)
1944 goto out;
1945
1946 ifp->if_flags |= IFF_RUNNING;
1947 ifp->if_flags &= ~IFF_OACTIVE;
1948
1949 sc->sc_if_flags = 0;
1950 sc->sc_link = 0;
1951
1952 callout_schedule(&sc->sc_timeout, hz);
1953
1954 out:
1955 return rc;
1956 }
1957
1958 static void
1959 vge_miibus_statchg(struct ifnet *ifp)
1960 {
1961 struct vge_softc *sc = ifp->if_softc;
1962 struct mii_data *mii = &sc->sc_mii;
1963 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1964
1965 /*
1966 * If the user manually selects a media mode, we need to turn
1967 * on the forced MAC mode bit in the DIAGCTL register. If the
1968 * user happens to choose a full duplex mode, we also need to
1969 * set the 'force full duplex' bit. This applies only to
1970 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1971 * mode is disabled, and in 1000baseT mode, full duplex is
1972 * always implied, so we turn on the forced mode bit but leave
1973 * the FDX bit cleared.
1974 */
1975
1976 switch (IFM_SUBTYPE(ife->ifm_media)) {
1977 case IFM_AUTO:
1978 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1979 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1980 break;
1981 case IFM_1000_T:
1982 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1983 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1984 break;
1985 case IFM_100_TX:
1986 case IFM_10_T:
1987 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1988 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1989 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1990 } else {
1991 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1992 }
1993 break;
1994 default:
1995 printf("%s: unknown media type: %x\n",
1996 device_xname(sc->sc_dev),
1997 IFM_SUBTYPE(ife->ifm_media));
1998 break;
1999 }
2000 }
2001
2002 static int
2003 vge_ifflags_cb(struct ethercom *ec)
2004 {
2005 struct ifnet *ifp = &ec->ec_if;
2006 struct vge_softc *sc = ifp->if_softc;
2007 int change = ifp->if_flags ^ sc->sc_if_flags;
2008
2009 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2010 return ENETRESET;
2011 else if ((change & IFF_PROMISC) == 0)
2012 return 0;
2013
2014 if ((ifp->if_flags & IFF_PROMISC) == 0)
2015 CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2016 else
2017 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2018 vge_setmulti(sc);
2019 return 0;
2020 }
2021
2022 static int
2023 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
2024 {
2025 struct vge_softc *sc;
2026 int s, error;
2027
2028 sc = ifp->if_softc;
2029 error = 0;
2030
2031 s = splnet();
2032
2033 if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
2034 error = 0;
2035 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2036 ;
2037 else if (ifp->if_flags & IFF_RUNNING) {
2038 /*
2039 * Multicast list has changed; set the hardware filter
2040 * accordingly.
2041 */
2042 vge_setmulti(sc);
2043 }
2044 }
2045 sc->sc_if_flags = ifp->if_flags;
2046
2047 splx(s);
2048 return error;
2049 }
2050
2051 static void
2052 vge_watchdog(struct ifnet *ifp)
2053 {
2054 struct vge_softc *sc;
2055 int s;
2056
2057 sc = ifp->if_softc;
2058 s = splnet();
2059 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2060 ifp->if_oerrors++;
2061
2062 vge_txeof(sc);
2063 vge_rxeof(sc);
2064
2065 vge_init(ifp);
2066
2067 splx(s);
2068 }
2069
2070 /*
2071 * Stop the adapter and free any mbufs allocated to the
2072 * RX and TX lists.
2073 */
2074 static void
2075 vge_stop(struct ifnet *ifp, int disable)
2076 {
2077 struct vge_softc *sc = ifp->if_softc;
2078 struct vge_txsoft *txs;
2079 struct vge_rxsoft *rxs;
2080 int i, s;
2081
2082 s = splnet();
2083 ifp->if_timer = 0;
2084
2085 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2086 #ifdef DEVICE_POLLING
2087 ether_poll_deregister(ifp);
2088 #endif /* DEVICE_POLLING */
2089
2090 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2091 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2092 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2093 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2094 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2095 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2096
2097 if (sc->sc_rx_mhead != NULL) {
2098 m_freem(sc->sc_rx_mhead);
2099 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2100 }
2101
2102 /* Free the TX list buffers. */
2103
2104 for (i = 0; i < VGE_NTXDESC; i++) {
2105 txs = &sc->sc_txsoft[i];
2106 if (txs->txs_mbuf != NULL) {
2107 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2108 m_freem(txs->txs_mbuf);
2109 txs->txs_mbuf = NULL;
2110 }
2111 }
2112
2113 /* Free the RX list buffers. */
2114
2115 for (i = 0; i < VGE_NRXDESC; i++) {
2116 rxs = &sc->sc_rxsoft[i];
2117 if (rxs->rxs_mbuf != NULL) {
2118 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2119 m_freem(rxs->rxs_mbuf);
2120 rxs->rxs_mbuf = NULL;
2121 }
2122 }
2123
2124 splx(s);
2125 }
2126
2127 #if VGE_POWER_MANAGEMENT
2128 /*
2129 * Device suspend routine. Stop the interface and save some PCI
2130 * settings in case the BIOS doesn't restore them properly on
2131 * resume.
2132 */
2133 static int
2134 vge_suspend(device_t dev)
2135 {
2136 struct vge_softc *sc;
2137 int i;
2138
2139 sc = device_get_softc(dev);
2140
2141 vge_stop(sc);
2142
2143 for (i = 0; i < 5; i++)
2144 sc->sc_saved_maps[i] =
2145 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2146 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2147 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2148 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2149 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2150
2151 sc->suspended = 1;
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * Device resume routine. Restore some PCI settings in case the BIOS
2158 * doesn't, re-enable busmastering, and restart the interface if
2159 * appropriate.
2160 */
2161 static int
2162 vge_resume(device_t dev)
2163 {
2164 struct vge_softc *sc;
2165 struct ifnet *ifp;
2166 int i;
2167
2168 sc = device_private(dev);
2169 ifp = &sc->sc_ethercom.ec_if;
2170
2171 /* better way to do this? */
2172 for (i = 0; i < 5; i++)
2173 pci_write_config(dev, PCIR_MAPS + i * 4,
2174 sc->sc_saved_maps[i], 4);
2175 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2176 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2177 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2178 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2179
2180 /* reenable busmastering */
2181 pci_enable_busmaster(dev);
2182 pci_enable_io(dev, SYS_RES_MEMORY);
2183
2184 /* reinitialize interface if necessary */
2185 if (ifp->if_flags & IFF_UP)
2186 vge_init(sc);
2187
2188 sc->suspended = 0;
2189
2190 return 0;
2191 }
2192 #endif
2193
2194 /*
2195 * Stop all chip I/O so that the kernel's probe routines don't
2196 * get confused by errant DMAs when rebooting.
2197 */
2198 static bool
2199 vge_shutdown(device_t self, int howto)
2200 {
2201 struct vge_softc *sc;
2202
2203 sc = device_private(self);
2204 vge_stop(&sc->sc_ethercom.ec_if, 1);
2205
2206 return true;
2207 }
2208