if_vge.c revision 1.64 1 /* $NetBSD: if_vge.c,v 1.64 2018/07/18 23:10:28 sevan Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.64 2018/07/18 23:10:28 sevan Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87
88 #include <sys/param.h>
89 #include <sys/endian.h>
90 #include <sys/systm.h>
91 #include <sys/device.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <sys/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116
117 #define VGE_IFQ_MAXLEN 64
118
119 #define VGE_RING_ALIGN 256
120
121 #define VGE_NTXDESC 256
122 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
123 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
124 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
125
126 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
127 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
128 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
129 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
130
131 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
132 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
133 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
134 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
135
136 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
137
138 /*
139 * Mbuf adjust factor to force 32-bit alignment of IP header.
140 * Drivers should pad ETHER_ALIGN bytes when setting up a
141 * RX mbuf so the upper layers get the IP header properly aligned
142 * past the 14-byte Ethernet header.
143 *
144 * See also comment in vge_encap().
145 */
146 #define ETHER_ALIGN 2
147
148 #ifdef __NO_STRICT_ALIGNMENT
149 #define VGE_RX_BUFSIZE MCLBYTES
150 #else
151 #define VGE_RX_PAD sizeof(uint32_t)
152 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
153 #endif
154
155 /*
156 * Control structures are DMA'd to the vge chip. We allocate them in
157 * a single clump that maps to a single DMA segment to make several things
158 * easier.
159 */
160 struct vge_control_data {
161 /* TX descriptors */
162 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
163 /* RX descriptors */
164 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
165 /* dummy data for TX padding */
166 uint8_t vcd_pad[ETHER_PAD_LEN];
167 };
168
169 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
170 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
171 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
172 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
173
174 /*
175 * Software state for TX jobs.
176 */
177 struct vge_txsoft {
178 struct mbuf *txs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t txs_dmamap; /* our DMA map */
180 };
181
182 /*
183 * Software state for RX jobs.
184 */
185 struct vge_rxsoft {
186 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
187 bus_dmamap_t rxs_dmamap; /* our DMA map */
188 };
189
190
191 struct vge_softc {
192 device_t sc_dev;
193
194 bus_space_tag_t sc_bst; /* bus space tag */
195 bus_space_handle_t sc_bsh; /* bus space handle */
196 bus_dma_tag_t sc_dmat;
197
198 struct ethercom sc_ethercom; /* interface info */
199 uint8_t sc_eaddr[ETHER_ADDR_LEN];
200
201 void *sc_intrhand;
202 struct mii_data sc_mii;
203 uint8_t sc_type;
204 int sc_if_flags;
205 int sc_link;
206 int sc_camidx;
207 callout_t sc_timeout;
208
209 bus_dmamap_t sc_cddmamap;
210 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
211
212 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
213 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
214 struct vge_control_data *sc_control_data;
215 #define sc_txdescs sc_control_data->vcd_txdescs
216 #define sc_rxdescs sc_control_data->vcd_rxdescs
217
218 int sc_tx_prodidx;
219 int sc_tx_considx;
220 int sc_tx_free;
221
222 struct mbuf *sc_rx_mhead;
223 struct mbuf *sc_rx_mtail;
224 int sc_rx_prodidx;
225 int sc_rx_consumed;
226
227 int sc_suspended; /* 0 = normal 1 = suspended */
228 uint32_t sc_saved_maps[5]; /* pci data */
229 uint32_t sc_saved_biosaddr;
230 uint8_t sc_saved_intline;
231 uint8_t sc_saved_cachelnsz;
232 uint8_t sc_saved_lattimer;
233 };
234
235 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
236 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
237 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
238
239 #define VGE_TXDESCSYNC(sc, idx, ops) \
240 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
241 VGE_CDTXOFF(idx), \
242 offsetof(struct vge_txdesc, td_frag[0]), \
243 (ops))
244 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
245 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
246 VGE_CDTXOFF(idx) + \
247 offsetof(struct vge_txdesc, td_frag[0]), \
248 sizeof(struct vge_txfrag) * (nsegs), \
249 (ops))
250 #define VGE_RXDESCSYNC(sc, idx, ops) \
251 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
252 VGE_CDRXOFF(idx), \
253 sizeof(struct vge_rxdesc), \
254 (ops))
255
256 /*
257 * register space access macros
258 */
259 #define CSR_WRITE_4(sc, reg, val) \
260 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
261 #define CSR_WRITE_2(sc, reg, val) \
262 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
263 #define CSR_WRITE_1(sc, reg, val) \
264 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
265
266 #define CSR_READ_4(sc, reg) \
267 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
268 #define CSR_READ_2(sc, reg) \
269 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
270 #define CSR_READ_1(sc, reg) \
271 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
272
273 #define CSR_SETBIT_1(sc, reg, x) \
274 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
275 #define CSR_SETBIT_2(sc, reg, x) \
276 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
277 #define CSR_SETBIT_4(sc, reg, x) \
278 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
279
280 #define CSR_CLRBIT_1(sc, reg, x) \
281 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
282 #define CSR_CLRBIT_2(sc, reg, x) \
283 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
284 #define CSR_CLRBIT_4(sc, reg, x) \
285 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
286
287 #define VGE_TIMEOUT 10000
288
289 #define VGE_PCI_LOIO 0x10
290 #define VGE_PCI_LOMEM 0x14
291
292 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
293 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
294
295 static int vge_ifflags_cb(struct ethercom *);
296
297 static int vge_match(device_t, cfdata_t, void *);
298 static void vge_attach(device_t, device_t, void *);
299
300 static int vge_encap(struct vge_softc *, struct mbuf *, int);
301
302 static int vge_allocmem(struct vge_softc *);
303 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
304 #ifndef __NO_STRICT_ALIGNMENT
305 static inline void vge_fixup_rx(struct mbuf *);
306 #endif
307 static void vge_rxeof(struct vge_softc *);
308 static void vge_txeof(struct vge_softc *);
309 static int vge_intr(void *);
310 static void vge_tick(void *);
311 static void vge_start(struct ifnet *);
312 static int vge_ioctl(struct ifnet *, u_long, void *);
313 static int vge_init(struct ifnet *);
314 static void vge_stop(struct ifnet *, int);
315 static void vge_watchdog(struct ifnet *);
316 #if VGE_POWER_MANAGEMENT
317 static int vge_suspend(device_t);
318 static int vge_resume(device_t);
319 #endif
320 static bool vge_shutdown(device_t, int);
321
322 static uint16_t vge_read_eeprom(struct vge_softc *, int);
323
324 static void vge_miipoll_start(struct vge_softc *);
325 static void vge_miipoll_stop(struct vge_softc *);
326 static int vge_miibus_readreg(device_t, int, int);
327 static void vge_miibus_writereg(device_t, int, int, int);
328 static void vge_miibus_statchg(struct ifnet *);
329
330 static void vge_cam_clear(struct vge_softc *);
331 static int vge_cam_set(struct vge_softc *, uint8_t *);
332 static void vge_setmulti(struct vge_softc *);
333 static void vge_reset(struct vge_softc *);
334
335 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
336 vge_match, vge_attach, NULL, NULL);
337
338 static inline void
339 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
340 {
341
342 f->tf_addrlo = htole32((uint32_t)daddr);
343 if (sizeof(bus_addr_t) == sizeof(uint64_t))
344 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
345 else
346 f->tf_addrhi = 0;
347 }
348
349 static inline void
350 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
351 {
352
353 rxd->rd_addrlo = htole32((uint32_t)daddr);
354 if (sizeof(bus_addr_t) == sizeof(uint64_t))
355 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
356 else
357 rxd->rd_addrhi = 0;
358 }
359
360 /*
361 * Read a word of data stored in the EEPROM at address 'addr.'
362 */
363 static uint16_t
364 vge_read_eeprom(struct vge_softc *sc, int addr)
365 {
366 int i;
367 uint16_t word = 0;
368
369 /*
370 * Enter EEPROM embedded programming mode. In order to
371 * access the EEPROM at all, we first have to set the
372 * EELOAD bit in the CHIPCFG2 register.
373 */
374 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
375 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
376
377 /* Select the address of the word we want to read */
378 CSR_WRITE_1(sc, VGE_EEADDR, addr);
379
380 /* Issue read command */
381 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
382
383 /* Wait for the done bit to be set. */
384 for (i = 0; i < VGE_TIMEOUT; i++) {
385 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
386 break;
387 }
388
389 if (i == VGE_TIMEOUT) {
390 printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
391 return 0;
392 }
393
394 /* Read the result */
395 word = CSR_READ_2(sc, VGE_EERDDAT);
396
397 /* Turn off EEPROM access mode. */
398 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
399 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
400
401 return word;
402 }
403
404 static void
405 vge_miipoll_stop(struct vge_softc *sc)
406 {
407 int i;
408
409 CSR_WRITE_1(sc, VGE_MIICMD, 0);
410
411 for (i = 0; i < VGE_TIMEOUT; i++) {
412 DELAY(1);
413 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
414 break;
415 }
416
417 if (i == VGE_TIMEOUT) {
418 printf("%s: failed to idle MII autopoll\n",
419 device_xname(sc->sc_dev));
420 }
421 }
422
423 static void
424 vge_miipoll_start(struct vge_softc *sc)
425 {
426 int i;
427
428 /* First, make sure we're idle. */
429
430 CSR_WRITE_1(sc, VGE_MIICMD, 0);
431 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
432
433 for (i = 0; i < VGE_TIMEOUT; i++) {
434 DELAY(1);
435 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
436 break;
437 }
438
439 if (i == VGE_TIMEOUT) {
440 printf("%s: failed to idle MII autopoll\n",
441 device_xname(sc->sc_dev));
442 return;
443 }
444
445 /* Now enable auto poll mode. */
446
447 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
448
449 /* And make sure it started. */
450
451 for (i = 0; i < VGE_TIMEOUT; i++) {
452 DELAY(1);
453 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
454 break;
455 }
456
457 if (i == VGE_TIMEOUT) {
458 printf("%s: failed to start MII autopoll\n",
459 device_xname(sc->sc_dev));
460 }
461 }
462
463 static int
464 vge_miibus_readreg(device_t dev, int phy, int reg)
465 {
466 struct vge_softc *sc;
467 int i, s;
468 uint16_t rval;
469
470 sc = device_private(dev);
471 rval = 0;
472 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
473 return 0;
474
475 s = splnet();
476 vge_miipoll_stop(sc);
477
478 /* Specify the register we want to read. */
479 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
480
481 /* Issue read command. */
482 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
483
484 /* Wait for the read command bit to self-clear. */
485 for (i = 0; i < VGE_TIMEOUT; i++) {
486 DELAY(1);
487 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
488 break;
489 }
490
491 if (i == VGE_TIMEOUT)
492 printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
493 else
494 rval = CSR_READ_2(sc, VGE_MIIDATA);
495
496 vge_miipoll_start(sc);
497 splx(s);
498
499 return rval;
500 }
501
502 static void
503 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
504 {
505 struct vge_softc *sc;
506 int i, s;
507
508 sc = device_private(dev);
509 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
510 return;
511
512 s = splnet();
513 vge_miipoll_stop(sc);
514
515 /* Specify the register we want to write. */
516 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
517
518 /* Specify the data we want to write. */
519 CSR_WRITE_2(sc, VGE_MIIDATA, data);
520
521 /* Issue write command. */
522 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
523
524 /* Wait for the write command bit to self-clear. */
525 for (i = 0; i < VGE_TIMEOUT; i++) {
526 DELAY(1);
527 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
528 break;
529 }
530
531 if (i == VGE_TIMEOUT) {
532 printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
533 }
534
535 vge_miipoll_start(sc);
536 splx(s);
537 }
538
539 static void
540 vge_cam_clear(struct vge_softc *sc)
541 {
542 int i;
543
544 /*
545 * Turn off all the mask bits. This tells the chip
546 * that none of the entries in the CAM filter are valid.
547 * desired entries will be enabled as we fill the filter in.
548 */
549
550 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
551 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
552 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
553 for (i = 0; i < 8; i++)
554 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
555
556 /* Clear the VLAN filter too. */
557
558 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
559 for (i = 0; i < 8; i++)
560 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
561
562 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
563 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
564 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
565
566 sc->sc_camidx = 0;
567 }
568
569 static int
570 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
571 {
572 int i, error;
573
574 error = 0;
575
576 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
577 return ENOSPC;
578
579 /* Select the CAM data page. */
580 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
581 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
582
583 /* Set the filter entry we want to update and enable writing. */
584 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
585
586 /* Write the address to the CAM registers */
587 for (i = 0; i < ETHER_ADDR_LEN; i++)
588 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
589
590 /* Issue a write command. */
591 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
592
593 /* Wake for it to clear. */
594 for (i = 0; i < VGE_TIMEOUT; i++) {
595 DELAY(1);
596 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
597 break;
598 }
599
600 if (i == VGE_TIMEOUT) {
601 printf("%s: setting CAM filter failed\n",
602 device_xname(sc->sc_dev));
603 error = EIO;
604 goto fail;
605 }
606
607 /* Select the CAM mask page. */
608 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
609 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
610
611 /* Set the mask bit that enables this filter. */
612 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
613 1 << (sc->sc_camidx & 7));
614
615 sc->sc_camidx++;
616
617 fail:
618 /* Turn off access to CAM. */
619 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
620 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
621 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
622
623 return error;
624 }
625
626 /*
627 * Program the multicast filter. We use the 64-entry CAM filter
628 * for perfect filtering. If there's more than 64 multicast addresses,
629 * we use the hash filter instead.
630 */
631 static void
632 vge_setmulti(struct vge_softc *sc)
633 {
634 struct ifnet *ifp;
635 int error;
636 uint32_t h, hashes[2] = { 0, 0 };
637 struct ether_multi *enm;
638 struct ether_multistep step;
639
640 error = 0;
641 ifp = &sc->sc_ethercom.ec_if;
642
643 /* First, zot all the multicast entries. */
644 vge_cam_clear(sc);
645 CSR_WRITE_4(sc, VGE_MAR0, 0);
646 CSR_WRITE_4(sc, VGE_MAR1, 0);
647 ifp->if_flags &= ~IFF_ALLMULTI;
648
649 /*
650 * If the user wants allmulti or promisc mode, enable reception
651 * of all multicast frames.
652 */
653 if (ifp->if_flags & IFF_PROMISC) {
654 allmulti:
655 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
656 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
657 ifp->if_flags |= IFF_ALLMULTI;
658 return;
659 }
660
661 /* Now program new ones */
662 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
663 while (enm != NULL) {
664 /*
665 * If multicast range, fall back to ALLMULTI.
666 */
667 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
668 ETHER_ADDR_LEN) != 0)
669 goto allmulti;
670
671 error = vge_cam_set(sc, enm->enm_addrlo);
672 if (error)
673 break;
674
675 ETHER_NEXT_MULTI(step, enm);
676 }
677
678 /* If there were too many addresses, use the hash filter. */
679 if (error) {
680 vge_cam_clear(sc);
681
682 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
683 while (enm != NULL) {
684 /*
685 * If multicast range, fall back to ALLMULTI.
686 */
687 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
688 ETHER_ADDR_LEN) != 0)
689 goto allmulti;
690
691 h = ether_crc32_be(enm->enm_addrlo,
692 ETHER_ADDR_LEN) >> 26;
693 hashes[h >> 5] |= 1 << (h & 0x1f);
694
695 ETHER_NEXT_MULTI(step, enm);
696 }
697
698 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
699 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
700 }
701 }
702
703 static void
704 vge_reset(struct vge_softc *sc)
705 {
706 int i;
707
708 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
709
710 for (i = 0; i < VGE_TIMEOUT; i++) {
711 DELAY(5);
712 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
713 break;
714 }
715
716 if (i == VGE_TIMEOUT) {
717 printf("%s: soft reset timed out", device_xname(sc->sc_dev));
718 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
719 DELAY(2000);
720 }
721
722 DELAY(5000);
723
724 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
725
726 for (i = 0; i < VGE_TIMEOUT; i++) {
727 DELAY(5);
728 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
729 break;
730 }
731
732 if (i == VGE_TIMEOUT) {
733 printf("%s: EEPROM reload timed out\n",
734 device_xname(sc->sc_dev));
735 return;
736 }
737
738 /*
739 * On some machine, the first read data from EEPROM could be
740 * messed up, so read one dummy data here to avoid the mess.
741 */
742 (void)vge_read_eeprom(sc, 0);
743
744 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
745 }
746
747 /*
748 * Probe for a VIA gigabit chip. Check the PCI vendor and device
749 * IDs against our list and return a device name if we find a match.
750 */
751 static int
752 vge_match(device_t parent, cfdata_t match, void *aux)
753 {
754 struct pci_attach_args *pa = aux;
755
756 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
757 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
758 return 1;
759
760 return 0;
761 }
762
763 static int
764 vge_allocmem(struct vge_softc *sc)
765 {
766 int error;
767 int nseg;
768 int i;
769 bus_dma_segment_t seg;
770
771 /*
772 * Allocate memory for control data.
773 */
774
775 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
776 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
777 if (error) {
778 aprint_error_dev(sc->sc_dev,
779 "could not allocate control data dma memory\n");
780 goto fail_1;
781 }
782
783 /* Map the memory to kernel VA space */
784
785 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
786 sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
787 BUS_DMA_NOWAIT);
788 if (error) {
789 aprint_error_dev(sc->sc_dev,
790 "could not map control data dma memory\n");
791 goto fail_2;
792 }
793 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
794
795 /*
796 * Create map for control data.
797 */
798 error = bus_dmamap_create(sc->sc_dmat,
799 sizeof(struct vge_control_data), 1,
800 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
801 &sc->sc_cddmamap);
802 if (error) {
803 aprint_error_dev(sc->sc_dev,
804 "could not create control data dmamap\n");
805 goto fail_3;
806 }
807
808 /* Load the map for the control data. */
809 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
810 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
811 BUS_DMA_NOWAIT);
812 if (error) {
813 aprint_error_dev(sc->sc_dev,
814 "could not load control data dma memory\n");
815 goto fail_4;
816 }
817
818 /* Create DMA maps for TX buffers */
819
820 for (i = 0; i < VGE_NTXDESC; i++) {
821 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
822 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
823 &sc->sc_txsoft[i].txs_dmamap);
824 if (error) {
825 aprint_error_dev(sc->sc_dev,
826 "can't create DMA map for TX descs\n");
827 goto fail_5;
828 }
829 }
830
831 /* Create DMA maps for RX buffers */
832
833 for (i = 0; i < VGE_NRXDESC; i++) {
834 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
835 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
836 &sc->sc_rxsoft[i].rxs_dmamap);
837 if (error) {
838 aprint_error_dev(sc->sc_dev,
839 "can't create DMA map for RX descs\n");
840 goto fail_6;
841 }
842 sc->sc_rxsoft[i].rxs_mbuf = NULL;
843 }
844
845 return 0;
846
847 fail_6:
848 for (i = 0; i < VGE_NRXDESC; i++) {
849 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
850 bus_dmamap_destroy(sc->sc_dmat,
851 sc->sc_rxsoft[i].rxs_dmamap);
852 }
853 fail_5:
854 for (i = 0; i < VGE_NTXDESC; i++) {
855 if (sc->sc_txsoft[i].txs_dmamap != NULL)
856 bus_dmamap_destroy(sc->sc_dmat,
857 sc->sc_txsoft[i].txs_dmamap);
858 }
859 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
860 fail_4:
861 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
862 fail_3:
863 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
864 sizeof(struct vge_control_data));
865 fail_2:
866 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
867 fail_1:
868 return ENOMEM;
869 }
870
871 /*
872 * Attach the interface. Allocate softc structures, do ifmedia
873 * setup and ethernet/BPF attach.
874 */
875 static void
876 vge_attach(device_t parent, device_t self, void *aux)
877 {
878 uint8_t *eaddr;
879 struct vge_softc *sc = device_private(self);
880 struct ifnet *ifp;
881 struct pci_attach_args *pa = aux;
882 pci_chipset_tag_t pc = pa->pa_pc;
883 const char *intrstr;
884 pci_intr_handle_t ih;
885 uint16_t val;
886 char intrbuf[PCI_INTRSTR_LEN];
887
888 sc->sc_dev = self;
889
890 pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
891
892 /* Make sure bus-mastering is enabled */
893 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
894 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
895 PCI_COMMAND_MASTER_ENABLE);
896
897 /*
898 * Map control/status registers.
899 */
900 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
901 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
902 aprint_error_dev(self, "couldn't map memory\n");
903 return;
904 }
905
906 /*
907 * Map and establish our interrupt.
908 */
909 if (pci_intr_map(pa, &ih)) {
910 aprint_error_dev(self, "unable to map interrupt\n");
911 return;
912 }
913 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
914 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
915 if (sc->sc_intrhand == NULL) {
916 aprint_error_dev(self, "unable to establish interrupt");
917 if (intrstr != NULL)
918 aprint_error(" at %s", intrstr);
919 aprint_error("\n");
920 return;
921 }
922 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
923
924 /* Reset the adapter. */
925 vge_reset(sc);
926
927 /*
928 * Get station address from the EEPROM.
929 */
930 eaddr = sc->sc_eaddr;
931 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
932 eaddr[0] = val & 0xff;
933 eaddr[1] = val >> 8;
934 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
935 eaddr[2] = val & 0xff;
936 eaddr[3] = val >> 8;
937 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
938 eaddr[4] = val & 0xff;
939 eaddr[5] = val >> 8;
940
941 aprint_normal_dev(self, "Ethernet address %s\n",
942 ether_sprintf(eaddr));
943
944 /*
945 * Use the 32bit tag. Hardware supports 48bit physical addresses,
946 * but we don't use that for now.
947 */
948 sc->sc_dmat = pa->pa_dmat;
949
950 if (vge_allocmem(sc) != 0)
951 return;
952
953 ifp = &sc->sc_ethercom.ec_if;
954 ifp->if_softc = sc;
955 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
956 ifp->if_mtu = ETHERMTU;
957 ifp->if_baudrate = IF_Gbps(1);
958 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
959 ifp->if_ioctl = vge_ioctl;
960 ifp->if_start = vge_start;
961 ifp->if_init = vge_init;
962 ifp->if_stop = vge_stop;
963
964 /*
965 * We can support 802.1Q VLAN-sized frames and jumbo
966 * Ethernet frames.
967 */
968 sc->sc_ethercom.ec_capabilities |=
969 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
970 ETHERCAP_VLAN_HWTAGGING;
971
972 /*
973 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
974 */
975 ifp->if_capabilities |=
976 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
977 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
978 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
979
980 #ifdef DEVICE_POLLING
981 #ifdef IFCAP_POLLING
982 ifp->if_capabilities |= IFCAP_POLLING;
983 #endif
984 #endif
985 ifp->if_watchdog = vge_watchdog;
986 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
987 IFQ_SET_READY(&ifp->if_snd);
988
989 /*
990 * Initialize our media structures and probe the MII.
991 */
992 sc->sc_mii.mii_ifp = ifp;
993 sc->sc_mii.mii_readreg = vge_miibus_readreg;
994 sc->sc_mii.mii_writereg = vge_miibus_writereg;
995 sc->sc_mii.mii_statchg = vge_miibus_statchg;
996
997 sc->sc_ethercom.ec_mii = &sc->sc_mii;
998 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
999 ether_mediastatus);
1000 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1001 MII_OFFSET_ANY, MIIF_DOPAUSE);
1002 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1003 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1004 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1005 } else
1006 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1007
1008 /*
1009 * Attach the interface.
1010 */
1011 if_attach(ifp);
1012 if_deferred_start_init(ifp, NULL);
1013 ether_ifattach(ifp, eaddr);
1014 ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1015
1016 callout_init(&sc->sc_timeout, 0);
1017 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1018
1019 /*
1020 * Make sure the interface is shutdown during reboot.
1021 */
1022 if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1023 pmf_class_network_register(self, ifp);
1024 else
1025 aprint_error_dev(self, "couldn't establish power handler\n");
1026 }
1027
1028 static int
1029 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1030 {
1031 struct mbuf *m_new;
1032 struct vge_rxdesc *rxd;
1033 struct vge_rxsoft *rxs;
1034 bus_dmamap_t map;
1035 int i;
1036 #ifdef DIAGNOSTIC
1037 uint32_t rd_sts;
1038 #endif
1039
1040 m_new = NULL;
1041 if (m == NULL) {
1042 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1043 if (m_new == NULL)
1044 return ENOBUFS;
1045
1046 MCLGET(m_new, M_DONTWAIT);
1047 if ((m_new->m_flags & M_EXT) == 0) {
1048 m_freem(m_new);
1049 return ENOBUFS;
1050 }
1051
1052 m = m_new;
1053 } else
1054 m->m_data = m->m_ext.ext_buf;
1055
1056
1057 /*
1058 * This is part of an evil trick to deal with non-x86 platforms.
1059 * The VIA chip requires RX buffers to be aligned on 32-bit
1060 * boundaries, but that will hose non-x86 machines. To get around
1061 * this, we leave some empty space at the start of each buffer
1062 * and for non-x86 hosts, we copy the buffer back two bytes
1063 * to achieve word alignment. This is slightly more efficient
1064 * than allocating a new buffer, copying the contents, and
1065 * discarding the old buffer.
1066 */
1067 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1068 #ifndef __NO_STRICT_ALIGNMENT
1069 m->m_data += VGE_RX_PAD;
1070 #endif
1071 rxs = &sc->sc_rxsoft[idx];
1072 map = rxs->rxs_dmamap;
1073
1074 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1075 goto out;
1076
1077 rxd = &sc->sc_rxdescs[idx];
1078
1079 #ifdef DIAGNOSTIC
1080 /* If this descriptor is still owned by the chip, bail. */
1081 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1082 rd_sts = le32toh(rxd->rd_sts);
1083 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1084 if (rd_sts & VGE_RDSTS_OWN) {
1085 panic("%s: tried to map busy RX descriptor",
1086 device_xname(sc->sc_dev));
1087 }
1088 #endif
1089
1090 rxs->rxs_mbuf = m;
1091 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1092 BUS_DMASYNC_PREREAD);
1093
1094 rxd->rd_buflen =
1095 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1096 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1097 rxd->rd_sts = 0;
1098 rxd->rd_ctl = 0;
1099 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1100
1101 /*
1102 * Note: the manual fails to document the fact that for
1103 * proper opration, the driver needs to replentish the RX
1104 * DMA ring 4 descriptors at a time (rather than one at a
1105 * time, like most chips). We can allocate the new buffers
1106 * but we should not set the OWN bits until we're ready
1107 * to hand back 4 of them in one shot.
1108 */
1109
1110 #define VGE_RXCHUNK 4
1111 sc->sc_rx_consumed++;
1112 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1113 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1114 KASSERT(i >= 0);
1115 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1116 VGE_RXDESCSYNC(sc, i,
1117 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1118 }
1119 sc->sc_rx_consumed = 0;
1120 }
1121
1122 return 0;
1123 out:
1124 if (m_new != NULL)
1125 m_freem(m_new);
1126 return ENOMEM;
1127 }
1128
1129 #ifndef __NO_STRICT_ALIGNMENT
1130 static inline void
1131 vge_fixup_rx(struct mbuf *m)
1132 {
1133 int i;
1134 uint16_t *src, *dst;
1135
1136 src = mtod(m, uint16_t *);
1137 dst = src - 1;
1138
1139 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1140 *dst++ = *src++;
1141
1142 m->m_data -= ETHER_ALIGN;
1143 }
1144 #endif
1145
1146 /*
1147 * RX handler. We support the reception of jumbo frames that have
1148 * been fragmented across multiple 2K mbuf cluster buffers.
1149 */
1150 static void
1151 vge_rxeof(struct vge_softc *sc)
1152 {
1153 struct mbuf *m;
1154 struct ifnet *ifp;
1155 int idx, total_len, lim;
1156 struct vge_rxdesc *cur_rxd;
1157 struct vge_rxsoft *rxs;
1158 uint32_t rxstat, rxctl;
1159
1160 ifp = &sc->sc_ethercom.ec_if;
1161 lim = 0;
1162
1163 /* Invalidate the descriptor memory */
1164
1165 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1166 cur_rxd = &sc->sc_rxdescs[idx];
1167
1168 VGE_RXDESCSYNC(sc, idx,
1169 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1170 rxstat = le32toh(cur_rxd->rd_sts);
1171 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1172 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1173 break;
1174 }
1175
1176 rxctl = le32toh(cur_rxd->rd_ctl);
1177 rxs = &sc->sc_rxsoft[idx];
1178 m = rxs->rxs_mbuf;
1179 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1180
1181 /* Invalidate the RX mbuf and unload its map */
1182
1183 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1184 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1185 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1186
1187 /*
1188 * If the 'start of frame' bit is set, this indicates
1189 * either the first fragment in a multi-fragment receive,
1190 * or an intermediate fragment. Either way, we want to
1191 * accumulate the buffers.
1192 */
1193 if (rxstat & VGE_RXPKT_SOF) {
1194 m->m_len = VGE_RX_BUFSIZE;
1195 if (sc->sc_rx_mhead == NULL)
1196 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1197 else {
1198 m->m_flags &= ~M_PKTHDR;
1199 sc->sc_rx_mtail->m_next = m;
1200 sc->sc_rx_mtail = m;
1201 }
1202 vge_newbuf(sc, idx, NULL);
1203 continue;
1204 }
1205
1206 /*
1207 * Bad/error frames will have the RXOK bit cleared.
1208 * However, there's one error case we want to allow:
1209 * if a VLAN tagged frame arrives and the chip can't
1210 * match it against the CAM filter, it considers this
1211 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1212 * We don't want to drop the frame though: our VLAN
1213 * filtering is done in software.
1214 */
1215 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1216 (rxstat & VGE_RDSTS_VIDM) == 0 &&
1217 (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1218 ifp->if_ierrors++;
1219 /*
1220 * If this is part of a multi-fragment packet,
1221 * discard all the pieces.
1222 */
1223 if (sc->sc_rx_mhead != NULL) {
1224 m_freem(sc->sc_rx_mhead);
1225 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1226 }
1227 vge_newbuf(sc, idx, m);
1228 continue;
1229 }
1230
1231 /*
1232 * If allocating a replacement mbuf fails,
1233 * reload the current one.
1234 */
1235
1236 if (vge_newbuf(sc, idx, NULL)) {
1237 ifp->if_ierrors++;
1238 if (sc->sc_rx_mhead != NULL) {
1239 m_freem(sc->sc_rx_mhead);
1240 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1241 }
1242 vge_newbuf(sc, idx, m);
1243 continue;
1244 }
1245
1246 if (sc->sc_rx_mhead != NULL) {
1247 m->m_len = total_len % VGE_RX_BUFSIZE;
1248 /*
1249 * Special case: if there's 4 bytes or less
1250 * in this buffer, the mbuf can be discarded:
1251 * the last 4 bytes is the CRC, which we don't
1252 * care about anyway.
1253 */
1254 if (m->m_len <= ETHER_CRC_LEN) {
1255 sc->sc_rx_mtail->m_len -=
1256 (ETHER_CRC_LEN - m->m_len);
1257 m_freem(m);
1258 } else {
1259 m->m_len -= ETHER_CRC_LEN;
1260 m->m_flags &= ~M_PKTHDR;
1261 sc->sc_rx_mtail->m_next = m;
1262 }
1263 m = sc->sc_rx_mhead;
1264 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1265 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1266 } else
1267 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1268
1269 #ifndef __NO_STRICT_ALIGNMENT
1270 vge_fixup_rx(m);
1271 #endif
1272 m_set_rcvif(m, ifp);
1273
1274 /* Do RX checksumming if enabled */
1275 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1276
1277 /* Check IP header checksum */
1278 if (rxctl & VGE_RDCTL_IPPKT)
1279 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1280 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1281 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1282 }
1283
1284 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1285 /* Check UDP checksum */
1286 if (rxctl & VGE_RDCTL_TCPPKT)
1287 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1288
1289 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1290 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1291 }
1292
1293 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1294 /* Check UDP checksum */
1295 if (rxctl & VGE_RDCTL_UDPPKT)
1296 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1297
1298 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1299 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1300 }
1301
1302 if (rxstat & VGE_RDSTS_VTAG) {
1303 /*
1304 * We use bswap16() here because:
1305 * On LE machines, tag is stored in BE as stream data.
1306 * On BE machines, tag is stored in BE as stream data
1307 * but it was already swapped by le32toh() above.
1308 */
1309 vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
1310 }
1311
1312 if_percpuq_enqueue(ifp->if_percpuq, m);
1313
1314 lim++;
1315 if (lim == VGE_NRXDESC)
1316 break;
1317 }
1318
1319 sc->sc_rx_prodidx = idx;
1320 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1321 }
1322
1323 static void
1324 vge_txeof(struct vge_softc *sc)
1325 {
1326 struct ifnet *ifp;
1327 struct vge_txsoft *txs;
1328 uint32_t txstat;
1329 int idx;
1330
1331 ifp = &sc->sc_ethercom.ec_if;
1332
1333 for (idx = sc->sc_tx_considx;
1334 sc->sc_tx_free < VGE_NTXDESC;
1335 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1336 VGE_TXDESCSYNC(sc, idx,
1337 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1338 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1339 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1340 if (txstat & VGE_TDSTS_OWN) {
1341 break;
1342 }
1343
1344 txs = &sc->sc_txsoft[idx];
1345 m_freem(txs->txs_mbuf);
1346 txs->txs_mbuf = NULL;
1347 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1348 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1349 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1350 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1351 ifp->if_collisions++;
1352 if (txstat & VGE_TDSTS_TXERR)
1353 ifp->if_oerrors++;
1354 else
1355 ifp->if_opackets++;
1356 }
1357
1358 sc->sc_tx_considx = idx;
1359
1360 if (sc->sc_tx_free > 0) {
1361 ifp->if_flags &= ~IFF_OACTIVE;
1362 }
1363
1364 /*
1365 * If not all descriptors have been released reaped yet,
1366 * reload the timer so that we will eventually get another
1367 * interrupt that will cause us to re-enter this routine.
1368 * This is done in case the transmitter has gone idle.
1369 */
1370 if (sc->sc_tx_free < VGE_NTXDESC)
1371 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1372 else
1373 ifp->if_timer = 0;
1374 }
1375
1376 static void
1377 vge_tick(void *arg)
1378 {
1379 struct vge_softc *sc;
1380 struct ifnet *ifp;
1381 struct mii_data *mii;
1382 int s;
1383
1384 sc = arg;
1385 ifp = &sc->sc_ethercom.ec_if;
1386 mii = &sc->sc_mii;
1387
1388 s = splnet();
1389
1390 callout_schedule(&sc->sc_timeout, hz);
1391
1392 mii_tick(mii);
1393 if (sc->sc_link) {
1394 if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1395 sc->sc_link = 0;
1396 } else {
1397 if (mii->mii_media_status & IFM_ACTIVE &&
1398 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1399 sc->sc_link = 1;
1400 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1401 vge_start(ifp);
1402 }
1403 }
1404
1405 splx(s);
1406 }
1407
1408 static int
1409 vge_intr(void *arg)
1410 {
1411 struct vge_softc *sc;
1412 struct ifnet *ifp;
1413 uint32_t status;
1414 int claim;
1415
1416 sc = arg;
1417 claim = 0;
1418 if (sc->sc_suspended) {
1419 return claim;
1420 }
1421
1422 ifp = &sc->sc_ethercom.ec_if;
1423
1424 if ((ifp->if_flags & IFF_UP) == 0) {
1425 return claim;
1426 }
1427
1428 /* Disable interrupts */
1429 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1430
1431 for (;;) {
1432
1433 status = CSR_READ_4(sc, VGE_ISR);
1434 /* If the card has gone away the read returns 0xffffffff. */
1435 if (status == 0xFFFFFFFF)
1436 break;
1437
1438 if (status) {
1439 claim = 1;
1440 CSR_WRITE_4(sc, VGE_ISR, status);
1441 }
1442
1443 if ((status & VGE_INTRS) == 0)
1444 break;
1445
1446 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1447 vge_rxeof(sc);
1448
1449 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1450 vge_rxeof(sc);
1451 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1452 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1453 }
1454
1455 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1456 vge_txeof(sc);
1457
1458 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1459 vge_init(ifp);
1460
1461 if (status & VGE_ISR_LINKSTS)
1462 vge_tick(sc);
1463 }
1464
1465 /* Re-enable interrupts */
1466 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1467
1468 if (claim)
1469 if_schedule_deferred_start(ifp);
1470
1471 return claim;
1472 }
1473
1474 static int
1475 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1476 {
1477 struct vge_txsoft *txs;
1478 struct vge_txdesc *txd;
1479 struct vge_txfrag *f;
1480 struct mbuf *m_new;
1481 bus_dmamap_t map;
1482 int m_csumflags, seg, error, flags;
1483 size_t sz;
1484 uint32_t td_sts, td_ctl;
1485
1486 KASSERT(sc->sc_tx_free > 0);
1487
1488 txd = &sc->sc_txdescs[idx];
1489
1490 #ifdef DIAGNOSTIC
1491 /* If this descriptor is still owned by the chip, bail. */
1492 VGE_TXDESCSYNC(sc, idx,
1493 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1494 td_sts = le32toh(txd->td_sts);
1495 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1496 if (td_sts & VGE_TDSTS_OWN) {
1497 return ENOBUFS;
1498 }
1499 #endif
1500
1501 /*
1502 * Preserve m_pkthdr.csum_flags here since m_head might be
1503 * updated by m_defrag()
1504 */
1505 m_csumflags = m_head->m_pkthdr.csum_flags;
1506
1507 txs = &sc->sc_txsoft[idx];
1508 map = txs->txs_dmamap;
1509 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1510
1511 /* If too many segments to map, coalesce */
1512 if (error == EFBIG ||
1513 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1514 map->dm_nsegs == VGE_TX_FRAGS)) {
1515 m_new = m_defrag(m_head, M_DONTWAIT);
1516 if (m_new == NULL)
1517 return EFBIG;
1518
1519 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1520 m_new, BUS_DMA_NOWAIT);
1521 if (error) {
1522 m_freem(m_new);
1523 return error;
1524 }
1525
1526 m_head = m_new;
1527 } else if (error)
1528 return error;
1529
1530 txs->txs_mbuf = m_head;
1531
1532 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1533 BUS_DMASYNC_PREWRITE);
1534
1535 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1536 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1537 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1538 }
1539
1540 /* Argh. This chip does not autopad short frames */
1541 sz = m_head->m_pkthdr.len;
1542 if (sz < ETHER_PAD_LEN) {
1543 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1544 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1545 sz = ETHER_PAD_LEN;
1546 seg++;
1547 }
1548 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1549
1550 /*
1551 * When telling the chip how many segments there are, we
1552 * must use nsegs + 1 instead of just nsegs. Darned if I
1553 * know why.
1554 */
1555 seg++;
1556
1557 flags = 0;
1558 if (m_csumflags & M_CSUM_IPv4)
1559 flags |= VGE_TDCTL_IPCSUM;
1560 if (m_csumflags & M_CSUM_TCPv4)
1561 flags |= VGE_TDCTL_TCPCSUM;
1562 if (m_csumflags & M_CSUM_UDPv4)
1563 flags |= VGE_TDCTL_UDPCSUM;
1564 td_sts = sz << 16;
1565 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1566
1567 if (sz > ETHERMTU + ETHER_HDR_LEN)
1568 td_ctl |= VGE_TDCTL_JUMBO;
1569
1570 /*
1571 * Set up hardware VLAN tagging.
1572 */
1573 if (vlan_has_tag(m_head)) {
1574 /*
1575 * No need htons() here since vge(4) chip assumes
1576 * that tags are written in little endian and
1577 * we already use htole32() here.
1578 */
1579 td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
1580 }
1581 txd->td_ctl = htole32(td_ctl);
1582 txd->td_sts = htole32(td_sts);
1583 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1584
1585 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1586 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1587
1588 sc->sc_tx_free--;
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Main transmit routine.
1595 */
1596
1597 static void
1598 vge_start(struct ifnet *ifp)
1599 {
1600 struct vge_softc *sc;
1601 struct vge_txsoft *txs;
1602 struct mbuf *m_head;
1603 int idx, pidx, ofree, error;
1604
1605 sc = ifp->if_softc;
1606
1607 if (!sc->sc_link ||
1608 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1609 return;
1610 }
1611
1612 m_head = NULL;
1613 idx = sc->sc_tx_prodidx;
1614 pidx = VGE_PREV_TXDESC(idx);
1615 ofree = sc->sc_tx_free;
1616
1617 /*
1618 * Loop through the send queue, setting up transmit descriptors
1619 * until we drain the queue, or use up all available transmit
1620 * descriptors.
1621 */
1622 for (;;) {
1623 /* Grab a packet off the queue. */
1624 IFQ_POLL(&ifp->if_snd, m_head);
1625 if (m_head == NULL)
1626 break;
1627
1628 if (sc->sc_tx_free == 0) {
1629 /*
1630 * All slots used, stop for now.
1631 */
1632 ifp->if_flags |= IFF_OACTIVE;
1633 break;
1634 }
1635
1636 txs = &sc->sc_txsoft[idx];
1637 KASSERT(txs->txs_mbuf == NULL);
1638
1639 if ((error = vge_encap(sc, m_head, idx))) {
1640 if (error == EFBIG) {
1641 printf("%s: Tx packet consumes too many "
1642 "DMA segments, dropping...\n",
1643 device_xname(sc->sc_dev));
1644 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1645 m_freem(m_head);
1646 continue;
1647 }
1648
1649 /*
1650 * Short on resources, just stop for now.
1651 */
1652 if (error == ENOBUFS)
1653 ifp->if_flags |= IFF_OACTIVE;
1654 break;
1655 }
1656
1657 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1658
1659 /*
1660 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1661 */
1662
1663 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1664 htole16(VGE_TXDESC_Q);
1665 VGE_TXFRAGSYNC(sc, pidx, 1,
1666 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1667
1668 if (txs->txs_mbuf != m_head) {
1669 m_freem(m_head);
1670 m_head = txs->txs_mbuf;
1671 }
1672
1673 pidx = idx;
1674 idx = VGE_NEXT_TXDESC(idx);
1675
1676 /*
1677 * If there's a BPF listener, bounce a copy of this frame
1678 * to him.
1679 */
1680 bpf_mtap(ifp, m_head, BPF_D_OUT);
1681 }
1682
1683 if (sc->sc_tx_free < ofree) {
1684 /* TX packet queued */
1685
1686 sc->sc_tx_prodidx = idx;
1687
1688 /* Issue a transmit command. */
1689 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1690
1691 /*
1692 * Use the countdown timer for interrupt moderation.
1693 * 'TX done' interrupts are disabled. Instead, we reset the
1694 * countdown timer, which will begin counting until it hits
1695 * the value in the SSTIMER register, and then trigger an
1696 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1697 * the timer count is reloaded. Only when the transmitter
1698 * is idle will the timer hit 0 and an interrupt fire.
1699 */
1700 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1701
1702 /*
1703 * Set a timeout in case the chip goes out to lunch.
1704 */
1705 ifp->if_timer = 5;
1706 }
1707 }
1708
1709 static int
1710 vge_init(struct ifnet *ifp)
1711 {
1712 struct vge_softc *sc;
1713 int i, rc = 0;
1714
1715 sc = ifp->if_softc;
1716
1717 /*
1718 * Cancel pending I/O and free all RX/TX buffers.
1719 */
1720 vge_stop(ifp, 0);
1721 vge_reset(sc);
1722
1723 /* Initialize the RX descriptors and mbufs. */
1724 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1725 sc->sc_rx_consumed = 0;
1726 for (i = 0; i < VGE_NRXDESC; i++) {
1727 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1728 printf("%s: unable to allocate or map rx buffer\n",
1729 device_xname(sc->sc_dev));
1730 return 1; /* XXX */
1731 }
1732 }
1733 sc->sc_rx_prodidx = 0;
1734 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1735
1736 /* Initialize the TX descriptors and mbufs. */
1737 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1738 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1739 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1740 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1741 for (i = 0; i < VGE_NTXDESC; i++)
1742 sc->sc_txsoft[i].txs_mbuf = NULL;
1743
1744 sc->sc_tx_prodidx = 0;
1745 sc->sc_tx_considx = 0;
1746 sc->sc_tx_free = VGE_NTXDESC;
1747
1748 /* Set our station address */
1749 for (i = 0; i < ETHER_ADDR_LEN; i++)
1750 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1751
1752 /*
1753 * Set receive FIFO threshold. Also allow transmission and
1754 * reception of VLAN tagged frames.
1755 */
1756 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1757 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1758
1759 /* Set DMA burst length */
1760 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1761 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1762
1763 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1764
1765 /* Set collision backoff algorithm */
1766 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1767 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1768 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1769
1770 /* Disable LPSEL field in priority resolution */
1771 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1772
1773 /*
1774 * Load the addresses of the DMA queues into the chip.
1775 * Note that we only use one transmit queue.
1776 */
1777
1778 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1779 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1780
1781 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1782 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1783 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1784
1785 /* Enable and wake up the RX descriptor queue */
1786 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1787 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1788
1789 /* Enable the TX descriptor queue */
1790 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1791
1792 /* Set up the receive filter -- allow large frames for VLANs. */
1793 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1794
1795 /* If we want promiscuous mode, set the allframes bit. */
1796 if (ifp->if_flags & IFF_PROMISC) {
1797 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1798 }
1799
1800 /* Set capture broadcast bit to capture broadcast frames. */
1801 if (ifp->if_flags & IFF_BROADCAST) {
1802 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1803 }
1804
1805 /* Set multicast bit to capture multicast frames. */
1806 if (ifp->if_flags & IFF_MULTICAST) {
1807 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1808 }
1809
1810 /* Init the cam filter. */
1811 vge_cam_clear(sc);
1812
1813 /* Init the multicast filter. */
1814 vge_setmulti(sc);
1815
1816 /* Enable flow control */
1817
1818 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1819
1820 /* Enable jumbo frame reception (if desired) */
1821
1822 /* Start the MAC. */
1823 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1824 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1825 CSR_WRITE_1(sc, VGE_CRS0,
1826 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1827
1828 /*
1829 * Configure one-shot timer for microsecond
1830 * resulution and load it for 500 usecs.
1831 */
1832 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1833 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1834
1835 /*
1836 * Configure interrupt moderation for receive. Enable
1837 * the holdoff counter and load it, and set the RX
1838 * suppression count to the number of descriptors we
1839 * want to allow before triggering an interrupt.
1840 * The holdoff timer is in units of 20 usecs.
1841 */
1842
1843 #ifdef notyet
1844 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1845 /* Select the interrupt holdoff timer page. */
1846 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1847 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1848 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1849
1850 /* Enable use of the holdoff timer. */
1851 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1852 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1853
1854 /* Select the RX suppression threshold page. */
1855 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1856 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1857 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1858
1859 /* Restore the page select bits. */
1860 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1861 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1862 #endif
1863
1864 #ifdef DEVICE_POLLING
1865 /*
1866 * Disable interrupts if we are polling.
1867 */
1868 if (ifp->if_flags & IFF_POLLING) {
1869 CSR_WRITE_4(sc, VGE_IMR, 0);
1870 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1871 } else /* otherwise ... */
1872 #endif /* DEVICE_POLLING */
1873 {
1874 /*
1875 * Enable interrupts.
1876 */
1877 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1878 CSR_WRITE_4(sc, VGE_ISR, 0);
1879 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1880 }
1881
1882 if ((rc = ether_mediachange(ifp)) != 0)
1883 goto out;
1884
1885 ifp->if_flags |= IFF_RUNNING;
1886 ifp->if_flags &= ~IFF_OACTIVE;
1887
1888 sc->sc_if_flags = 0;
1889 sc->sc_link = 0;
1890
1891 callout_schedule(&sc->sc_timeout, hz);
1892
1893 out:
1894 return rc;
1895 }
1896
1897 static void
1898 vge_miibus_statchg(struct ifnet *ifp)
1899 {
1900 struct vge_softc *sc = ifp->if_softc;
1901 struct mii_data *mii = &sc->sc_mii;
1902 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1903
1904 /*
1905 * If the user manually selects a media mode, we need to turn
1906 * on the forced MAC mode bit in the DIAGCTL register. If the
1907 * user happens to choose a full duplex mode, we also need to
1908 * set the 'force full duplex' bit. This applies only to
1909 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1910 * mode is disabled, and in 1000baseT mode, full duplex is
1911 * always implied, so we turn on the forced mode bit but leave
1912 * the FDX bit cleared.
1913 */
1914
1915 switch (IFM_SUBTYPE(ife->ifm_media)) {
1916 case IFM_AUTO:
1917 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1918 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1919 break;
1920 case IFM_1000_T:
1921 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1922 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1923 break;
1924 case IFM_100_TX:
1925 case IFM_10_T:
1926 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1927 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1928 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1929 } else {
1930 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1931 }
1932 break;
1933 default:
1934 printf("%s: unknown media type: %x\n",
1935 device_xname(sc->sc_dev),
1936 IFM_SUBTYPE(ife->ifm_media));
1937 break;
1938 }
1939 }
1940
1941 static int
1942 vge_ifflags_cb(struct ethercom *ec)
1943 {
1944 struct ifnet *ifp = &ec->ec_if;
1945 struct vge_softc *sc = ifp->if_softc;
1946 int change = ifp->if_flags ^ sc->sc_if_flags;
1947
1948 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
1949 return ENETRESET;
1950 else if ((change & IFF_PROMISC) == 0)
1951 return 0;
1952
1953 if ((ifp->if_flags & IFF_PROMISC) == 0)
1954 CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1955 else
1956 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1957 vge_setmulti(sc);
1958 return 0;
1959 }
1960
1961 static int
1962 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
1963 {
1964 struct vge_softc *sc;
1965 int s, error;
1966
1967 sc = ifp->if_softc;
1968 error = 0;
1969
1970 s = splnet();
1971
1972 if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
1973 error = 0;
1974 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1975 ;
1976 else if (ifp->if_flags & IFF_RUNNING) {
1977 /*
1978 * Multicast list has changed; set the hardware filter
1979 * accordingly.
1980 */
1981 vge_setmulti(sc);
1982 }
1983 }
1984 sc->sc_if_flags = ifp->if_flags;
1985
1986 splx(s);
1987 return error;
1988 }
1989
1990 static void
1991 vge_watchdog(struct ifnet *ifp)
1992 {
1993 struct vge_softc *sc;
1994 int s;
1995
1996 sc = ifp->if_softc;
1997 s = splnet();
1998 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1999 ifp->if_oerrors++;
2000
2001 vge_txeof(sc);
2002 vge_rxeof(sc);
2003
2004 vge_init(ifp);
2005
2006 splx(s);
2007 }
2008
2009 /*
2010 * Stop the adapter and free any mbufs allocated to the
2011 * RX and TX lists.
2012 */
2013 static void
2014 vge_stop(struct ifnet *ifp, int disable)
2015 {
2016 struct vge_softc *sc = ifp->if_softc;
2017 struct vge_txsoft *txs;
2018 struct vge_rxsoft *rxs;
2019 int i, s;
2020
2021 s = splnet();
2022 ifp->if_timer = 0;
2023
2024 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2025 #ifdef DEVICE_POLLING
2026 ether_poll_deregister(ifp);
2027 #endif /* DEVICE_POLLING */
2028
2029 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2030 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2031 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2032 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2033 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2034 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2035
2036 if (sc->sc_rx_mhead != NULL) {
2037 m_freem(sc->sc_rx_mhead);
2038 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2039 }
2040
2041 /* Free the TX list buffers. */
2042
2043 for (i = 0; i < VGE_NTXDESC; i++) {
2044 txs = &sc->sc_txsoft[i];
2045 if (txs->txs_mbuf != NULL) {
2046 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2047 m_freem(txs->txs_mbuf);
2048 txs->txs_mbuf = NULL;
2049 }
2050 }
2051
2052 /* Free the RX list buffers. */
2053
2054 for (i = 0; i < VGE_NRXDESC; i++) {
2055 rxs = &sc->sc_rxsoft[i];
2056 if (rxs->rxs_mbuf != NULL) {
2057 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2058 m_freem(rxs->rxs_mbuf);
2059 rxs->rxs_mbuf = NULL;
2060 }
2061 }
2062
2063 splx(s);
2064 }
2065
2066 #if VGE_POWER_MANAGEMENT
2067 /*
2068 * Device suspend routine. Stop the interface and save some PCI
2069 * settings in case the BIOS doesn't restore them properly on
2070 * resume.
2071 */
2072 static int
2073 vge_suspend(device_t dev)
2074 {
2075 struct vge_softc *sc;
2076 int i;
2077
2078 sc = device_get_softc(dev);
2079
2080 vge_stop(sc);
2081
2082 for (i = 0; i < 5; i++)
2083 sc->sc_saved_maps[i] =
2084 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2085 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2086 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2087 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2088 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2089
2090 sc->suspended = 1;
2091
2092 return 0;
2093 }
2094
2095 /*
2096 * Device resume routine. Restore some PCI settings in case the BIOS
2097 * doesn't, re-enable busmastering, and restart the interface if
2098 * appropriate.
2099 */
2100 static int
2101 vge_resume(device_t dev)
2102 {
2103 struct vge_softc *sc;
2104 struct ifnet *ifp;
2105 int i;
2106
2107 sc = device_private(dev);
2108 ifp = &sc->sc_ethercom.ec_if;
2109
2110 /* better way to do this? */
2111 for (i = 0; i < 5; i++)
2112 pci_write_config(dev, PCIR_MAPS + i * 4,
2113 sc->sc_saved_maps[i], 4);
2114 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2115 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2116 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2117 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2118
2119 /* reenable busmastering */
2120 pci_enable_busmaster(dev);
2121 pci_enable_io(dev, SYS_RES_MEMORY);
2122
2123 /* reinitialize interface if necessary */
2124 if (ifp->if_flags & IFF_UP)
2125 vge_init(sc);
2126
2127 sc->suspended = 0;
2128
2129 return 0;
2130 }
2131 #endif
2132
2133 /*
2134 * Stop all chip I/O so that the kernel's probe routines don't
2135 * get confused by errant DMAs when rebooting.
2136 */
2137 static bool
2138 vge_shutdown(device_t self, int howto)
2139 {
2140 struct vge_softc *sc;
2141
2142 sc = device_private(self);
2143 vge_stop(&sc->sc_ethercom.ec_if, 1);
2144
2145 return true;
2146 }
2147