Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.67
      1 /* $NetBSD: if_vge.c,v 1.67 2019/01/22 03:42:27 msaitoh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.67 2019/01/22 03:42:27 msaitoh Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers. If you only have a 32-bit system, then this isn't
     79  * an issue, but if you have a 64-bit system and more than 4GB of
     80  * memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     84  * and sample NICs for testing.
     85  */
     86 
     87 
     88 #include <sys/param.h>
     89 #include <sys/endian.h>
     90 #include <sys/systm.h>
     91 #include <sys/device.h>
     92 #include <sys/sockio.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/malloc.h>
     95 #include <sys/kernel.h>
     96 #include <sys/socket.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_arp.h>
    100 #include <net/if_ether.h>
    101 #include <net/if_dl.h>
    102 #include <net/if_media.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <sys/bus.h>
    107 
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 
    111 #include <dev/pci/pcireg.h>
    112 #include <dev/pci/pcivar.h>
    113 #include <dev/pci/pcidevs.h>
    114 
    115 #include <dev/pci/if_vgereg.h>
    116 
    117 #define VGE_IFQ_MAXLEN		64
    118 
    119 #define VGE_RING_ALIGN		256
    120 
    121 #define VGE_NTXDESC		256
    122 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    123 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    124 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    125 
    126 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    127 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    128 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    129 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    130 
    131 #define VGE_ADDR_LO(y)		((uint64_t)(y) & 0xFFFFFFFF)
    132 #define VGE_ADDR_HI(y)		((uint64_t)(y) >> 32)
    133 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    134 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    135 
    136 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    137 
    138 /*
    139  * Mbuf adjust factor to force 32-bit alignment of IP header.
    140  * Drivers should pad ETHER_ALIGN bytes when setting up a
    141  * RX mbuf so the upper layers get the IP header properly aligned
    142  * past the 14-byte Ethernet header.
    143  *
    144  * See also comment in vge_encap().
    145  */
    146 #define ETHER_ALIGN		2
    147 
    148 #ifdef __NO_STRICT_ALIGNMENT
    149 #define VGE_RX_BUFSIZE		MCLBYTES
    150 #else
    151 #define VGE_RX_PAD		sizeof(uint32_t)
    152 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    153 #endif
    154 
    155 /*
    156  * Control structures are DMA'd to the vge chip. We allocate them in
    157  * a single clump that maps to a single DMA segment to make several things
    158  * easier.
    159  */
    160 struct vge_control_data {
    161 	/* TX descriptors */
    162 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    163 	/* RX descriptors */
    164 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    165 	/* dummy data for TX padding */
    166 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    167 };
    168 
    169 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    170 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    171 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    172 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    173 
    174 /*
    175  * Software state for TX jobs.
    176  */
    177 struct vge_txsoft {
    178 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    179 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    180 };
    181 
    182 /*
    183  * Software state for RX jobs.
    184  */
    185 struct vge_rxsoft {
    186 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    187 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    188 };
    189 
    190 
    191 struct vge_softc {
    192 	device_t		sc_dev;
    193 
    194 	bus_space_tag_t		sc_bst;		/* bus space tag */
    195 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    196 	bus_dma_tag_t		sc_dmat;
    197 
    198 	struct ethercom		sc_ethercom;	/* interface info */
    199 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    200 
    201 	void			*sc_intrhand;
    202 	struct mii_data		sc_mii;
    203 	uint8_t			sc_type;
    204 	int			sc_if_flags;
    205 	int			sc_link;
    206 	int			sc_camidx;
    207 	callout_t		sc_timeout;
    208 
    209 	bus_dmamap_t		sc_cddmamap;
    210 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    211 
    212 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    213 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    214 	struct vge_control_data	*sc_control_data;
    215 #define sc_txdescs		sc_control_data->vcd_txdescs
    216 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    217 
    218 	int			sc_tx_prodidx;
    219 	int			sc_tx_considx;
    220 	int			sc_tx_free;
    221 
    222 	struct mbuf		*sc_rx_mhead;
    223 	struct mbuf		*sc_rx_mtail;
    224 	int			sc_rx_prodidx;
    225 	int			sc_rx_consumed;
    226 
    227 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    228 	uint32_t		sc_saved_maps[5];	/* pci data */
    229 	uint32_t		sc_saved_biosaddr;
    230 	uint8_t			sc_saved_intline;
    231 	uint8_t			sc_saved_cachelnsz;
    232 	uint8_t			sc_saved_lattimer;
    233 };
    234 
    235 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    236 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    237 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    238 
    239 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    240 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    241 	    VGE_CDTXOFF(idx),						\
    242 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    243 	    (ops))
    244 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    246 	    VGE_CDTXOFF(idx) +						\
    247 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    248 	    sizeof(struct vge_txfrag) * (nsegs),			\
    249 	    (ops))
    250 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    251 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    252 	    VGE_CDRXOFF(idx),						\
    253 	    sizeof(struct vge_rxdesc),					\
    254 	    (ops))
    255 
    256 /*
    257  * register space access macros
    258  */
    259 #define CSR_WRITE_4(sc, reg, val)	\
    260 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    261 #define CSR_WRITE_2(sc, reg, val)	\
    262 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    263 #define CSR_WRITE_1(sc, reg, val)	\
    264 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    265 
    266 #define CSR_READ_4(sc, reg)		\
    267 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    268 #define CSR_READ_2(sc, reg)		\
    269 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    270 #define CSR_READ_1(sc, reg)		\
    271 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    272 
    273 #define CSR_SETBIT_1(sc, reg, x)	\
    274 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    275 #define CSR_SETBIT_2(sc, reg, x)	\
    276 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    277 #define CSR_SETBIT_4(sc, reg, x)	\
    278 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    279 
    280 #define CSR_CLRBIT_1(sc, reg, x)	\
    281 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    282 #define CSR_CLRBIT_2(sc, reg, x)	\
    283 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    284 #define CSR_CLRBIT_4(sc, reg, x)	\
    285 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    286 
    287 #define VGE_TIMEOUT		10000
    288 
    289 #define VGE_PCI_LOIO             0x10
    290 #define VGE_PCI_LOMEM            0x14
    291 
    292 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    293 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    294 
    295 static int vge_ifflags_cb(struct ethercom *);
    296 
    297 static int vge_match(device_t, cfdata_t, void *);
    298 static void vge_attach(device_t, device_t, void *);
    299 
    300 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    301 
    302 static int vge_allocmem(struct vge_softc *);
    303 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    304 #ifndef __NO_STRICT_ALIGNMENT
    305 static inline void vge_fixup_rx(struct mbuf *);
    306 #endif
    307 static void vge_rxeof(struct vge_softc *);
    308 static void vge_txeof(struct vge_softc *);
    309 static int vge_intr(void *);
    310 static void vge_tick(void *);
    311 static void vge_start(struct ifnet *);
    312 static int vge_ioctl(struct ifnet *, u_long, void *);
    313 static int vge_init(struct ifnet *);
    314 static void vge_stop(struct ifnet *, int);
    315 static void vge_watchdog(struct ifnet *);
    316 #if VGE_POWER_MANAGEMENT
    317 static int vge_suspend(device_t);
    318 static int vge_resume(device_t);
    319 #endif
    320 static bool vge_shutdown(device_t, int);
    321 
    322 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    323 
    324 static void vge_miipoll_start(struct vge_softc *);
    325 static void vge_miipoll_stop(struct vge_softc *);
    326 static int vge_miibus_readreg(device_t, int, int, uint16_t *);
    327 static int vge_miibus_writereg(device_t, int, int, uint16_t);
    328 static void vge_miibus_statchg(struct ifnet *);
    329 
    330 static void vge_cam_clear(struct vge_softc *);
    331 static int vge_cam_set(struct vge_softc *, uint8_t *);
    332 static void vge_setmulti(struct vge_softc *);
    333 static void vge_reset(struct vge_softc *);
    334 
    335 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
    336     vge_match, vge_attach, NULL, NULL);
    337 
    338 static inline void
    339 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    340 {
    341 
    342 	f->tf_addrlo = htole32((uint32_t)daddr);
    343 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    344 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    345 	else
    346 		f->tf_addrhi = 0;
    347 }
    348 
    349 static inline void
    350 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    351 {
    352 
    353 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    354 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    355 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    356 	else
    357 		rxd->rd_addrhi = 0;
    358 }
    359 
    360 /*
    361  * Read a word of data stored in the EEPROM at address 'addr.'
    362  */
    363 static uint16_t
    364 vge_read_eeprom(struct vge_softc *sc, int addr)
    365 {
    366 	int i;
    367 	uint16_t word = 0;
    368 
    369 	/*
    370 	 * Enter EEPROM embedded programming mode. In order to
    371 	 * access the EEPROM at all, we first have to set the
    372 	 * EELOAD bit in the CHIPCFG2 register.
    373 	 */
    374 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    375 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    376 
    377 	/* Select the address of the word we want to read */
    378 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    379 
    380 	/* Issue read command */
    381 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    382 
    383 	/* Wait for the done bit to be set. */
    384 	for (i = 0; i < VGE_TIMEOUT; i++) {
    385 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    386 			break;
    387 	}
    388 
    389 	if (i == VGE_TIMEOUT) {
    390 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
    391 		return 0;
    392 	}
    393 
    394 	/* Read the result */
    395 	word = CSR_READ_2(sc, VGE_EERDDAT);
    396 
    397 	/* Turn off EEPROM access mode. */
    398 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
    399 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    400 
    401 	return word;
    402 }
    403 
    404 static void
    405 vge_miipoll_stop(struct vge_softc *sc)
    406 {
    407 	int i;
    408 
    409 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    410 
    411 	for (i = 0; i < VGE_TIMEOUT; i++) {
    412 		DELAY(1);
    413 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    414 			break;
    415 	}
    416 
    417 	if (i == VGE_TIMEOUT) {
    418 		printf("%s: failed to idle MII autopoll\n",
    419 		    device_xname(sc->sc_dev));
    420 	}
    421 }
    422 
    423 static void
    424 vge_miipoll_start(struct vge_softc *sc)
    425 {
    426 	int i;
    427 
    428 	/* First, make sure we're idle. */
    429 
    430 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    431 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    432 
    433 	for (i = 0; i < VGE_TIMEOUT; i++) {
    434 		DELAY(1);
    435 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    436 			break;
    437 	}
    438 
    439 	if (i == VGE_TIMEOUT) {
    440 		printf("%s: failed to idle MII autopoll\n",
    441 		    device_xname(sc->sc_dev));
    442 		return;
    443 	}
    444 
    445 	/* Now enable auto poll mode. */
    446 
    447 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    448 
    449 	/* And make sure it started. */
    450 
    451 	for (i = 0; i < VGE_TIMEOUT; i++) {
    452 		DELAY(1);
    453 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    454 			break;
    455 	}
    456 
    457 	if (i == VGE_TIMEOUT) {
    458 		printf("%s: failed to start MII autopoll\n",
    459 		    device_xname(sc->sc_dev));
    460 	}
    461 }
    462 
    463 static int
    464 vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    465 {
    466 	struct vge_softc *sc;
    467 	int i, s;
    468 	int rv = 0;
    469 
    470 	sc = device_private(dev);
    471 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    472 		return -1;
    473 
    474 	s = splnet();
    475 	vge_miipoll_stop(sc);
    476 
    477 	/* Specify the register we want to read. */
    478 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    479 
    480 	/* Issue read command. */
    481 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    482 
    483 	/* Wait for the read command bit to self-clear. */
    484 	for (i = 0; i < VGE_TIMEOUT; i++) {
    485 		DELAY(1);
    486 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    487 			break;
    488 	}
    489 
    490 	if (i == VGE_TIMEOUT) {
    491 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
    492 		rv = ETIMEDOUT;
    493 	} else
    494 		*val = CSR_READ_2(sc, VGE_MIIDATA);
    495 
    496 	vge_miipoll_start(sc);
    497 	splx(s);
    498 
    499 	return rv;
    500 }
    501 
    502 static int
    503 vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    504 {
    505 	struct vge_softc *sc;
    506 	int i, s, rv = 0;
    507 
    508 	sc = device_private(dev);
    509 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    510 		return -1;
    511 
    512 	s = splnet();
    513 	vge_miipoll_stop(sc);
    514 
    515 	/* Specify the register we want to write. */
    516 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    517 
    518 	/* Specify the data we want to write. */
    519 	CSR_WRITE_2(sc, VGE_MIIDATA, val);
    520 
    521 	/* Issue write command. */
    522 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    523 
    524 	/* Wait for the write command bit to self-clear. */
    525 	for (i = 0; i < VGE_TIMEOUT; i++) {
    526 		DELAY(1);
    527 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    528 			break;
    529 	}
    530 
    531 	if (i == VGE_TIMEOUT) {
    532 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
    533 		rv = ETIMEDOUT;
    534 	}
    535 
    536 	vge_miipoll_start(sc);
    537 	splx(s);
    538 
    539 	return rv;
    540 }
    541 
    542 static void
    543 vge_cam_clear(struct vge_softc *sc)
    544 {
    545 	int i;
    546 
    547 	/*
    548 	 * Turn off all the mask bits. This tells the chip
    549 	 * that none of the entries in the CAM filter are valid.
    550 	 * desired entries will be enabled as we fill the filter in.
    551 	 */
    552 
    553 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    554 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    555 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    556 	for (i = 0; i < 8; i++)
    557 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    558 
    559 	/* Clear the VLAN filter too. */
    560 
    561 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
    562 	for (i = 0; i < 8; i++)
    563 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    564 
    565 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    566 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    567 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    568 
    569 	sc->sc_camidx = 0;
    570 }
    571 
    572 static int
    573 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    574 {
    575 	int i, error;
    576 
    577 	error = 0;
    578 
    579 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    580 		return ENOSPC;
    581 
    582 	/* Select the CAM data page. */
    583 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    584 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    585 
    586 	/* Set the filter entry we want to update and enable writing. */
    587 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    588 
    589 	/* Write the address to the CAM registers */
    590 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    591 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    592 
    593 	/* Issue a write command. */
    594 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    595 
    596 	/* Wake for it to clear. */
    597 	for (i = 0; i < VGE_TIMEOUT; i++) {
    598 		DELAY(1);
    599 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    600 			break;
    601 	}
    602 
    603 	if (i == VGE_TIMEOUT) {
    604 		printf("%s: setting CAM filter failed\n",
    605 		    device_xname(sc->sc_dev));
    606 		error = EIO;
    607 		goto fail;
    608 	}
    609 
    610 	/* Select the CAM mask page. */
    611 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    612 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    613 
    614 	/* Set the mask bit that enables this filter. */
    615 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    616 	    1 << (sc->sc_camidx & 7));
    617 
    618 	sc->sc_camidx++;
    619 
    620  fail:
    621 	/* Turn off access to CAM. */
    622 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    623 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    624 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    625 
    626 	return error;
    627 }
    628 
    629 /*
    630  * Program the multicast filter. We use the 64-entry CAM filter
    631  * for perfect filtering. If there's more than 64 multicast addresses,
    632  * we use the hash filter instead.
    633  */
    634 static void
    635 vge_setmulti(struct vge_softc *sc)
    636 {
    637 	struct ifnet *ifp;
    638 	int error;
    639 	uint32_t h, hashes[2] = { 0, 0 };
    640 	struct ether_multi *enm;
    641 	struct ether_multistep step;
    642 
    643 	error = 0;
    644 	ifp = &sc->sc_ethercom.ec_if;
    645 
    646 	/* First, zot all the multicast entries. */
    647 	vge_cam_clear(sc);
    648 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    649 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    650 	ifp->if_flags &= ~IFF_ALLMULTI;
    651 
    652 	/*
    653 	 * If the user wants allmulti or promisc mode, enable reception
    654 	 * of all multicast frames.
    655 	 */
    656 	if (ifp->if_flags & IFF_PROMISC) {
    657  allmulti:
    658 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    659 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    660 		ifp->if_flags |= IFF_ALLMULTI;
    661 		return;
    662 	}
    663 
    664 	/* Now program new ones */
    665 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    666 	while (enm != NULL) {
    667 		/*
    668 		 * If multicast range, fall back to ALLMULTI.
    669 		 */
    670 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    671 				ETHER_ADDR_LEN) != 0)
    672 			goto allmulti;
    673 
    674 		error = vge_cam_set(sc, enm->enm_addrlo);
    675 		if (error)
    676 			break;
    677 
    678 		ETHER_NEXT_MULTI(step, enm);
    679 	}
    680 
    681 	/* If there were too many addresses, use the hash filter. */
    682 	if (error) {
    683 		vge_cam_clear(sc);
    684 
    685 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
    686 		while (enm != NULL) {
    687 			/*
    688 			 * If multicast range, fall back to ALLMULTI.
    689 			 */
    690 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    691 					ETHER_ADDR_LEN) != 0)
    692 				goto allmulti;
    693 
    694 			h = ether_crc32_be(enm->enm_addrlo,
    695 			    ETHER_ADDR_LEN) >> 26;
    696 			hashes[h >> 5] |= 1 << (h & 0x1f);
    697 
    698 			ETHER_NEXT_MULTI(step, enm);
    699 		}
    700 
    701 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    702 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    703 	}
    704 }
    705 
    706 static void
    707 vge_reset(struct vge_softc *sc)
    708 {
    709 	int i;
    710 
    711 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    712 
    713 	for (i = 0; i < VGE_TIMEOUT; i++) {
    714 		DELAY(5);
    715 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    716 			break;
    717 	}
    718 
    719 	if (i == VGE_TIMEOUT) {
    720 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
    721 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    722 		DELAY(2000);
    723 	}
    724 
    725 	DELAY(5000);
    726 
    727 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    728 
    729 	for (i = 0; i < VGE_TIMEOUT; i++) {
    730 		DELAY(5);
    731 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    732 			break;
    733 	}
    734 
    735 	if (i == VGE_TIMEOUT) {
    736 		printf("%s: EEPROM reload timed out\n",
    737 		    device_xname(sc->sc_dev));
    738 		return;
    739 	}
    740 
    741 	/*
    742 	 * On some machine, the first read data from EEPROM could be
    743 	 * messed up, so read one dummy data here to avoid the mess.
    744 	 */
    745 	(void)vge_read_eeprom(sc, 0);
    746 
    747 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    748 }
    749 
    750 /*
    751  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    752  * IDs against our list and return a device name if we find a match.
    753  */
    754 static int
    755 vge_match(device_t parent, cfdata_t match, void *aux)
    756 {
    757 	struct pci_attach_args *pa = aux;
    758 
    759 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    760 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    761 		return 1;
    762 
    763 	return 0;
    764 }
    765 
    766 static int
    767 vge_allocmem(struct vge_softc *sc)
    768 {
    769 	int error;
    770 	int nseg;
    771 	int i;
    772 	bus_dma_segment_t seg;
    773 
    774 	/*
    775 	 * Allocate memory for control data.
    776 	 */
    777 
    778 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    779 	     VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
    780 	if (error) {
    781 		aprint_error_dev(sc->sc_dev,
    782 		    "could not allocate control data dma memory\n");
    783 		goto fail_1;
    784 	}
    785 
    786 	/* Map the memory to kernel VA space */
    787 
    788 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    789 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
    790 	    BUS_DMA_NOWAIT);
    791 	if (error) {
    792 		aprint_error_dev(sc->sc_dev,
    793 		    "could not map control data dma memory\n");
    794 		goto fail_2;
    795 	}
    796 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    797 
    798 	/*
    799 	 * Create map for control data.
    800 	 */
    801 	error = bus_dmamap_create(sc->sc_dmat,
    802 	    sizeof(struct vge_control_data), 1,
    803 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    804 	    &sc->sc_cddmamap);
    805 	if (error) {
    806 		aprint_error_dev(sc->sc_dev,
    807 		    "could not create control data dmamap\n");
    808 		goto fail_3;
    809 	}
    810 
    811 	/* Load the map for the control data. */
    812 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    813 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    814 	    BUS_DMA_NOWAIT);
    815 	if (error) {
    816 		aprint_error_dev(sc->sc_dev,
    817 		    "could not load control data dma memory\n");
    818 		goto fail_4;
    819 	}
    820 
    821 	/* Create DMA maps for TX buffers */
    822 
    823 	for (i = 0; i < VGE_NTXDESC; i++) {
    824 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    825 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    826 		    &sc->sc_txsoft[i].txs_dmamap);
    827 		if (error) {
    828 			aprint_error_dev(sc->sc_dev,
    829 			    "can't create DMA map for TX descs\n");
    830 			goto fail_5;
    831 		}
    832 	}
    833 
    834 	/* Create DMA maps for RX buffers */
    835 
    836 	for (i = 0; i < VGE_NRXDESC; i++) {
    837 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    838 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    839 		    &sc->sc_rxsoft[i].rxs_dmamap);
    840 		if (error) {
    841 			aprint_error_dev(sc->sc_dev,
    842 			    "can't create DMA map for RX descs\n");
    843 			goto fail_6;
    844 		}
    845 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    846 	}
    847 
    848 	return 0;
    849 
    850  fail_6:
    851 	for (i = 0; i < VGE_NRXDESC; i++) {
    852 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    853 			bus_dmamap_destroy(sc->sc_dmat,
    854 			    sc->sc_rxsoft[i].rxs_dmamap);
    855 	}
    856  fail_5:
    857 	for (i = 0; i < VGE_NTXDESC; i++) {
    858 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    859 			bus_dmamap_destroy(sc->sc_dmat,
    860 			    sc->sc_txsoft[i].txs_dmamap);
    861 	}
    862 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    863  fail_4:
    864 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    865  fail_3:
    866 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    867 	    sizeof(struct vge_control_data));
    868  fail_2:
    869 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    870  fail_1:
    871 	return ENOMEM;
    872 }
    873 
    874 /*
    875  * Attach the interface. Allocate softc structures, do ifmedia
    876  * setup and ethernet/BPF attach.
    877  */
    878 static void
    879 vge_attach(device_t parent, device_t self, void *aux)
    880 {
    881 	uint8_t	*eaddr;
    882 	struct vge_softc *sc = device_private(self);
    883 	struct ifnet *ifp;
    884 	struct pci_attach_args *pa = aux;
    885 	pci_chipset_tag_t pc = pa->pa_pc;
    886 	const char *intrstr;
    887 	pci_intr_handle_t ih;
    888 	uint16_t val;
    889 	char intrbuf[PCI_INTRSTR_LEN];
    890 
    891 	sc->sc_dev = self;
    892 
    893 	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
    894 
    895 	/* Make sure bus-mastering is enabled */
    896         pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    897 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    898 	    PCI_COMMAND_MASTER_ENABLE);
    899 
    900 	/*
    901 	 * Map control/status registers.
    902 	 */
    903 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    904 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    905 		aprint_error_dev(self, "couldn't map memory\n");
    906 		return;
    907 	}
    908 
    909         /*
    910          * Map and establish our interrupt.
    911          */
    912 	if (pci_intr_map(pa, &ih)) {
    913 		aprint_error_dev(self, "unable to map interrupt\n");
    914 		return;
    915 	}
    916 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    917 	sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
    918 	    sc, device_xname(self));
    919 	if (sc->sc_intrhand == NULL) {
    920 		aprint_error_dev(self, "unable to establish interrupt");
    921 		if (intrstr != NULL)
    922 			aprint_error(" at %s", intrstr);
    923 		aprint_error("\n");
    924 		return;
    925 	}
    926 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    927 
    928 	/* Reset the adapter. */
    929 	vge_reset(sc);
    930 
    931 	/*
    932 	 * Get station address from the EEPROM.
    933 	 */
    934 	eaddr = sc->sc_eaddr;
    935 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    936 	eaddr[0] = val & 0xff;
    937 	eaddr[1] = val >> 8;
    938 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    939 	eaddr[2] = val & 0xff;
    940 	eaddr[3] = val >> 8;
    941 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    942 	eaddr[4] = val & 0xff;
    943 	eaddr[5] = val >> 8;
    944 
    945 	aprint_normal_dev(self, "Ethernet address %s\n",
    946 	    ether_sprintf(eaddr));
    947 
    948 	/*
    949 	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
    950 	 * but we don't use that for now.
    951 	 */
    952 	sc->sc_dmat = pa->pa_dmat;
    953 
    954 	if (vge_allocmem(sc) != 0)
    955 		return;
    956 
    957 	ifp = &sc->sc_ethercom.ec_if;
    958 	ifp->if_softc = sc;
    959 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    960 	ifp->if_mtu = ETHERMTU;
    961 	ifp->if_baudrate = IF_Gbps(1);
    962 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    963 	ifp->if_ioctl = vge_ioctl;
    964 	ifp->if_start = vge_start;
    965 	ifp->if_init = vge_init;
    966 	ifp->if_stop = vge_stop;
    967 
    968 	/*
    969 	 * We can support 802.1Q VLAN-sized frames and jumbo
    970 	 * Ethernet frames.
    971 	 */
    972 	sc->sc_ethercom.ec_capabilities |=
    973 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
    974 	    ETHERCAP_VLAN_HWTAGGING;
    975 
    976 	/*
    977 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
    978 	 */
    979 	ifp->if_capabilities |=
    980 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    981 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    982 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    983 
    984 #ifdef DEVICE_POLLING
    985 #ifdef IFCAP_POLLING
    986 	ifp->if_capabilities |= IFCAP_POLLING;
    987 #endif
    988 #endif
    989 	ifp->if_watchdog = vge_watchdog;
    990 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
    991 	IFQ_SET_READY(&ifp->if_snd);
    992 
    993 	/*
    994 	 * Initialize our media structures and probe the MII.
    995 	 */
    996 	sc->sc_mii.mii_ifp = ifp;
    997 	sc->sc_mii.mii_readreg = vge_miibus_readreg;
    998 	sc->sc_mii.mii_writereg = vge_miibus_writereg;
    999 	sc->sc_mii.mii_statchg = vge_miibus_statchg;
   1000 
   1001 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   1002 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   1003 	    ether_mediastatus);
   1004 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   1005 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1006 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   1007 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1008 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   1009 	} else
   1010 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1011 
   1012 	/*
   1013 	 * Attach the interface.
   1014 	 */
   1015 	if_attach(ifp);
   1016 	if_deferred_start_init(ifp, NULL);
   1017 	ether_ifattach(ifp, eaddr);
   1018 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
   1019 
   1020 	callout_init(&sc->sc_timeout, 0);
   1021 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1022 
   1023 	/*
   1024 	 * Make sure the interface is shutdown during reboot.
   1025 	 */
   1026 	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
   1027 		pmf_class_network_register(self, ifp);
   1028 	else
   1029 		aprint_error_dev(self, "couldn't establish power handler\n");
   1030 }
   1031 
   1032 static int
   1033 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1034 {
   1035 	struct mbuf *m_new;
   1036 	struct vge_rxdesc *rxd;
   1037 	struct vge_rxsoft *rxs;
   1038 	bus_dmamap_t map;
   1039 	int i;
   1040 #ifdef DIAGNOSTIC
   1041 	uint32_t rd_sts;
   1042 #endif
   1043 
   1044 	m_new = NULL;
   1045 	if (m == NULL) {
   1046 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1047 		if (m_new == NULL)
   1048 			return ENOBUFS;
   1049 
   1050 		MCLGET(m_new, M_DONTWAIT);
   1051 		if ((m_new->m_flags & M_EXT) == 0) {
   1052 			m_freem(m_new);
   1053 			return ENOBUFS;
   1054 		}
   1055 
   1056 		m = m_new;
   1057 	} else
   1058 		m->m_data = m->m_ext.ext_buf;
   1059 
   1060 
   1061 	/*
   1062 	 * This is part of an evil trick to deal with non-x86 platforms.
   1063 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1064 	 * boundaries, but that will hose non-x86 machines. To get around
   1065 	 * this, we leave some empty space at the start of each buffer
   1066 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1067 	 * to achieve word alignment. This is slightly more efficient
   1068 	 * than allocating a new buffer, copying the contents, and
   1069 	 * discarding the old buffer.
   1070 	 */
   1071 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1072 #ifndef __NO_STRICT_ALIGNMENT
   1073 	m->m_data += VGE_RX_PAD;
   1074 #endif
   1075 	rxs = &sc->sc_rxsoft[idx];
   1076 	map = rxs->rxs_dmamap;
   1077 
   1078 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1079 		goto out;
   1080 
   1081 	rxd = &sc->sc_rxdescs[idx];
   1082 
   1083 #ifdef DIAGNOSTIC
   1084 	/* If this descriptor is still owned by the chip, bail. */
   1085 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1086 	rd_sts = le32toh(rxd->rd_sts);
   1087 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1088 	if (rd_sts & VGE_RDSTS_OWN) {
   1089 		panic("%s: tried to map busy RX descriptor",
   1090 		    device_xname(sc->sc_dev));
   1091 	}
   1092 #endif
   1093 
   1094 	rxs->rxs_mbuf = m;
   1095 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1096 	    BUS_DMASYNC_PREREAD);
   1097 
   1098 	rxd->rd_buflen =
   1099 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1100 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1101 	rxd->rd_sts = 0;
   1102 	rxd->rd_ctl = 0;
   1103 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1104 
   1105 	/*
   1106 	 * Note: the manual fails to document the fact that for
   1107 	 * proper opration, the driver needs to replentish the RX
   1108 	 * DMA ring 4 descriptors at a time (rather than one at a
   1109 	 * time, like most chips). We can allocate the new buffers
   1110 	 * but we should not set the OWN bits until we're ready
   1111 	 * to hand back 4 of them in one shot.
   1112 	 */
   1113 
   1114 #define VGE_RXCHUNK 4
   1115 	sc->sc_rx_consumed++;
   1116 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1117 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1118 			KASSERT(i >= 0);
   1119 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1120 			VGE_RXDESCSYNC(sc, i,
   1121 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1122 		}
   1123 		sc->sc_rx_consumed = 0;
   1124 	}
   1125 
   1126 	return 0;
   1127  out:
   1128 	if (m_new != NULL)
   1129 		m_freem(m_new);
   1130 	return ENOMEM;
   1131 }
   1132 
   1133 #ifndef __NO_STRICT_ALIGNMENT
   1134 static inline void
   1135 vge_fixup_rx(struct mbuf *m)
   1136 {
   1137 	int i;
   1138 	uint16_t *src, *dst;
   1139 
   1140 	src = mtod(m, uint16_t *);
   1141 	dst = src - 1;
   1142 
   1143 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1144 		*dst++ = *src++;
   1145 
   1146 	m->m_data -= ETHER_ALIGN;
   1147 }
   1148 #endif
   1149 
   1150 /*
   1151  * RX handler. We support the reception of jumbo frames that have
   1152  * been fragmented across multiple 2K mbuf cluster buffers.
   1153  */
   1154 static void
   1155 vge_rxeof(struct vge_softc *sc)
   1156 {
   1157 	struct mbuf *m;
   1158 	struct ifnet *ifp;
   1159 	int idx, total_len, lim;
   1160 	struct vge_rxdesc *cur_rxd;
   1161 	struct vge_rxsoft *rxs;
   1162 	uint32_t rxstat, rxctl;
   1163 
   1164 	ifp = &sc->sc_ethercom.ec_if;
   1165 	lim = 0;
   1166 
   1167 	/* Invalidate the descriptor memory */
   1168 
   1169 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1170 		cur_rxd = &sc->sc_rxdescs[idx];
   1171 
   1172 		VGE_RXDESCSYNC(sc, idx,
   1173 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1174 		rxstat = le32toh(cur_rxd->rd_sts);
   1175 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1176 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1177 			break;
   1178 		}
   1179 
   1180 		rxctl = le32toh(cur_rxd->rd_ctl);
   1181 		rxs = &sc->sc_rxsoft[idx];
   1182 		m = rxs->rxs_mbuf;
   1183 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1184 
   1185 		/* Invalidate the RX mbuf and unload its map */
   1186 
   1187 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1188 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1189 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1190 
   1191 		/*
   1192 		 * If the 'start of frame' bit is set, this indicates
   1193 		 * either the first fragment in a multi-fragment receive,
   1194 		 * or an intermediate fragment. Either way, we want to
   1195 		 * accumulate the buffers.
   1196 		 */
   1197 		if (rxstat & VGE_RXPKT_SOF) {
   1198 			m->m_len = VGE_RX_BUFSIZE;
   1199 			if (sc->sc_rx_mhead == NULL)
   1200 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1201 			else {
   1202 				m->m_flags &= ~M_PKTHDR;
   1203 				sc->sc_rx_mtail->m_next = m;
   1204 				sc->sc_rx_mtail = m;
   1205 			}
   1206 			vge_newbuf(sc, idx, NULL);
   1207 			continue;
   1208 		}
   1209 
   1210 		/*
   1211 		 * Bad/error frames will have the RXOK bit cleared.
   1212 		 * However, there's one error case we want to allow:
   1213 		 * if a VLAN tagged frame arrives and the chip can't
   1214 		 * match it against the CAM filter, it considers this
   1215 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1216 		 * We don't want to drop the frame though: our VLAN
   1217 		 * filtering is done in software.
   1218 		 */
   1219 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
   1220 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
   1221 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
   1222 			ifp->if_ierrors++;
   1223 			/*
   1224 			 * If this is part of a multi-fragment packet,
   1225 			 * discard all the pieces.
   1226 			 */
   1227 			if (sc->sc_rx_mhead != NULL) {
   1228 				m_freem(sc->sc_rx_mhead);
   1229 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1230 			}
   1231 			vge_newbuf(sc, idx, m);
   1232 			continue;
   1233 		}
   1234 
   1235 		/*
   1236 		 * If allocating a replacement mbuf fails,
   1237 		 * reload the current one.
   1238 		 */
   1239 
   1240 		if (vge_newbuf(sc, idx, NULL)) {
   1241 			ifp->if_ierrors++;
   1242 			if (sc->sc_rx_mhead != NULL) {
   1243 				m_freem(sc->sc_rx_mhead);
   1244 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1245 			}
   1246 			vge_newbuf(sc, idx, m);
   1247 			continue;
   1248 		}
   1249 
   1250 		if (sc->sc_rx_mhead != NULL) {
   1251 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1252 			/*
   1253 			 * Special case: if there's 4 bytes or less
   1254 			 * in this buffer, the mbuf can be discarded:
   1255 			 * the last 4 bytes is the CRC, which we don't
   1256 			 * care about anyway.
   1257 			 */
   1258 			if (m->m_len <= ETHER_CRC_LEN) {
   1259 				sc->sc_rx_mtail->m_len -=
   1260 				    (ETHER_CRC_LEN - m->m_len);
   1261 				m_freem(m);
   1262 			} else {
   1263 				m->m_len -= ETHER_CRC_LEN;
   1264 				m->m_flags &= ~M_PKTHDR;
   1265 				sc->sc_rx_mtail->m_next = m;
   1266 			}
   1267 			m = sc->sc_rx_mhead;
   1268 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1269 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1270 		} else
   1271 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1272 
   1273 #ifndef __NO_STRICT_ALIGNMENT
   1274 		vge_fixup_rx(m);
   1275 #endif
   1276 		m_set_rcvif(m, ifp);
   1277 
   1278 		/* Do RX checksumming if enabled */
   1279 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1280 
   1281 			/* Check IP header checksum */
   1282 			if (rxctl & VGE_RDCTL_IPPKT)
   1283 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1284 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1285 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1286 		}
   1287 
   1288 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1289 			/* Check UDP checksum */
   1290 			if (rxctl & VGE_RDCTL_TCPPKT)
   1291 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1292 
   1293 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1294 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1295 		}
   1296 
   1297 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1298 			/* Check UDP checksum */
   1299 			if (rxctl & VGE_RDCTL_UDPPKT)
   1300 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1301 
   1302 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1303 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1304 		}
   1305 
   1306 		if (rxstat & VGE_RDSTS_VTAG) {
   1307 			/*
   1308 			 * We use bswap16() here because:
   1309 			 * On LE machines, tag is stored in BE as stream data.
   1310 			 * On BE machines, tag is stored in BE as stream data
   1311 			 *  but it was already swapped by le32toh() above.
   1312 			 */
   1313 			vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
   1314 		}
   1315 
   1316 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1317 
   1318 		lim++;
   1319 		if (lim == VGE_NRXDESC)
   1320 			break;
   1321 	}
   1322 
   1323 	sc->sc_rx_prodidx = idx;
   1324 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1325 }
   1326 
   1327 static void
   1328 vge_txeof(struct vge_softc *sc)
   1329 {
   1330 	struct ifnet *ifp;
   1331 	struct vge_txsoft *txs;
   1332 	uint32_t txstat;
   1333 	int idx;
   1334 
   1335 	ifp = &sc->sc_ethercom.ec_if;
   1336 
   1337 	for (idx = sc->sc_tx_considx;
   1338 	    sc->sc_tx_free < VGE_NTXDESC;
   1339 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1340 		VGE_TXDESCSYNC(sc, idx,
   1341 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1342 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1343 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1344 		if (txstat & VGE_TDSTS_OWN) {
   1345 			break;
   1346 		}
   1347 
   1348 		txs = &sc->sc_txsoft[idx];
   1349 		m_freem(txs->txs_mbuf);
   1350 		txs->txs_mbuf = NULL;
   1351 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1352 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1353 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1354 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
   1355 			ifp->if_collisions++;
   1356 		if (txstat & VGE_TDSTS_TXERR)
   1357 			ifp->if_oerrors++;
   1358 		else
   1359 			ifp->if_opackets++;
   1360 	}
   1361 
   1362 	sc->sc_tx_considx = idx;
   1363 
   1364 	if (sc->sc_tx_free > 0) {
   1365 		ifp->if_flags &= ~IFF_OACTIVE;
   1366 	}
   1367 
   1368 	/*
   1369 	 * If not all descriptors have been released reaped yet,
   1370 	 * reload the timer so that we will eventually get another
   1371 	 * interrupt that will cause us to re-enter this routine.
   1372 	 * This is done in case the transmitter has gone idle.
   1373 	 */
   1374 	if (sc->sc_tx_free < VGE_NTXDESC)
   1375 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1376 	else
   1377 		ifp->if_timer = 0;
   1378 }
   1379 
   1380 static void
   1381 vge_tick(void *arg)
   1382 {
   1383 	struct vge_softc *sc;
   1384 	struct ifnet *ifp;
   1385 	struct mii_data *mii;
   1386 	int s;
   1387 
   1388 	sc = arg;
   1389 	ifp = &sc->sc_ethercom.ec_if;
   1390 	mii = &sc->sc_mii;
   1391 
   1392 	s = splnet();
   1393 
   1394 	callout_schedule(&sc->sc_timeout, hz);
   1395 
   1396 	mii_tick(mii);
   1397 	if (sc->sc_link) {
   1398 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
   1399 			sc->sc_link = 0;
   1400 	} else {
   1401 		if (mii->mii_media_status & IFM_ACTIVE &&
   1402 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1403 			sc->sc_link = 1;
   1404 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1405 				vge_start(ifp);
   1406 		}
   1407 	}
   1408 
   1409 	splx(s);
   1410 }
   1411 
   1412 static int
   1413 vge_intr(void *arg)
   1414 {
   1415 	struct vge_softc *sc;
   1416 	struct ifnet *ifp;
   1417 	uint32_t status;
   1418 	int claim;
   1419 
   1420 	sc = arg;
   1421 	claim = 0;
   1422 	if (sc->sc_suspended) {
   1423 		return claim;
   1424 	}
   1425 
   1426 	ifp = &sc->sc_ethercom.ec_if;
   1427 
   1428 	if ((ifp->if_flags & IFF_UP) == 0) {
   1429 		return claim;
   1430 	}
   1431 
   1432 	/* Disable interrupts */
   1433 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1434 
   1435 	for (;;) {
   1436 
   1437 		status = CSR_READ_4(sc, VGE_ISR);
   1438 		/* If the card has gone away the read returns 0xffffffff. */
   1439 		if (status == 0xFFFFFFFF)
   1440 			break;
   1441 
   1442 		if (status) {
   1443 			claim = 1;
   1444 			CSR_WRITE_4(sc, VGE_ISR, status);
   1445 		}
   1446 
   1447 		if ((status & VGE_INTRS) == 0)
   1448 			break;
   1449 
   1450 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
   1451 			vge_rxeof(sc);
   1452 
   1453 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
   1454 			vge_rxeof(sc);
   1455 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1456 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1457 		}
   1458 
   1459 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
   1460 			vge_txeof(sc);
   1461 
   1462 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
   1463 			vge_init(ifp);
   1464 
   1465 		if (status & VGE_ISR_LINKSTS)
   1466 			vge_tick(sc);
   1467 	}
   1468 
   1469 	/* Re-enable interrupts */
   1470 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1471 
   1472 	if (claim)
   1473 		if_schedule_deferred_start(ifp);
   1474 
   1475 	return claim;
   1476 }
   1477 
   1478 static int
   1479 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1480 {
   1481 	struct vge_txsoft *txs;
   1482 	struct vge_txdesc *txd;
   1483 	struct vge_txfrag *f;
   1484 	struct mbuf *m_new;
   1485 	bus_dmamap_t map;
   1486 	int m_csumflags, seg, error, flags;
   1487 	size_t sz;
   1488 	uint32_t td_sts, td_ctl;
   1489 
   1490 	KASSERT(sc->sc_tx_free > 0);
   1491 
   1492 	txd = &sc->sc_txdescs[idx];
   1493 
   1494 #ifdef DIAGNOSTIC
   1495 	/* If this descriptor is still owned by the chip, bail. */
   1496 	VGE_TXDESCSYNC(sc, idx,
   1497 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1498 	td_sts = le32toh(txd->td_sts);
   1499 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1500 	if (td_sts & VGE_TDSTS_OWN) {
   1501 		return ENOBUFS;
   1502 	}
   1503 #endif
   1504 
   1505 	/*
   1506 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1507 	 * updated by m_defrag()
   1508 	 */
   1509 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1510 
   1511 	txs = &sc->sc_txsoft[idx];
   1512 	map = txs->txs_dmamap;
   1513 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1514 
   1515 	/* If too many segments to map, coalesce */
   1516 	if (error == EFBIG ||
   1517 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1518 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1519 		m_new = m_defrag(m_head, M_DONTWAIT);
   1520 		if (m_new == NULL)
   1521 			return EFBIG;
   1522 
   1523 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1524 		    m_new, BUS_DMA_NOWAIT);
   1525 		if (error) {
   1526 			m_freem(m_new);
   1527 			return error;
   1528 		}
   1529 
   1530 		m_head = m_new;
   1531 	} else if (error)
   1532 		return error;
   1533 
   1534 	txs->txs_mbuf = m_head;
   1535 
   1536 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1537 	    BUS_DMASYNC_PREWRITE);
   1538 
   1539 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1540 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1541 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1542 	}
   1543 
   1544 	/* Argh. This chip does not autopad short frames */
   1545 	sz = m_head->m_pkthdr.len;
   1546 	if (sz < ETHER_PAD_LEN) {
   1547 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1548 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1549 		sz = ETHER_PAD_LEN;
   1550 		seg++;
   1551 	}
   1552 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1553 
   1554 	/*
   1555 	 * When telling the chip how many segments there are, we
   1556 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1557 	 * know why.
   1558 	 */
   1559 	seg++;
   1560 
   1561 	flags = 0;
   1562 	if (m_csumflags & M_CSUM_IPv4)
   1563 		flags |= VGE_TDCTL_IPCSUM;
   1564 	if (m_csumflags & M_CSUM_TCPv4)
   1565 		flags |= VGE_TDCTL_TCPCSUM;
   1566 	if (m_csumflags & M_CSUM_UDPv4)
   1567 		flags |= VGE_TDCTL_UDPCSUM;
   1568 	td_sts = sz << 16;
   1569 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1570 
   1571 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1572 		td_ctl |= VGE_TDCTL_JUMBO;
   1573 
   1574 	/*
   1575 	 * Set up hardware VLAN tagging.
   1576 	 */
   1577 	if (vlan_has_tag(m_head)) {
   1578 		/*
   1579 		 * No need htons() here since vge(4) chip assumes
   1580 		 * that tags are written in little endian and
   1581 		 * we already use htole32() here.
   1582 		 */
   1583 		td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
   1584 	}
   1585 	txd->td_ctl = htole32(td_ctl);
   1586 	txd->td_sts = htole32(td_sts);
   1587 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1588 
   1589 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1590 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1591 
   1592 	sc->sc_tx_free--;
   1593 
   1594 	return 0;
   1595 }
   1596 
   1597 /*
   1598  * Main transmit routine.
   1599  */
   1600 
   1601 static void
   1602 vge_start(struct ifnet *ifp)
   1603 {
   1604 	struct vge_softc *sc;
   1605 	struct vge_txsoft *txs;
   1606 	struct mbuf *m_head;
   1607 	int idx, pidx, ofree, error;
   1608 
   1609 	sc = ifp->if_softc;
   1610 
   1611 	if (!sc->sc_link ||
   1612 	    (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1613 		return;
   1614 	}
   1615 
   1616 	m_head = NULL;
   1617 	idx = sc->sc_tx_prodidx;
   1618 	pidx = VGE_PREV_TXDESC(idx);
   1619 	ofree = sc->sc_tx_free;
   1620 
   1621 	/*
   1622 	 * Loop through the send queue, setting up transmit descriptors
   1623 	 * until we drain the queue, or use up all available transmit
   1624 	 * descriptors.
   1625 	 */
   1626 	for (;;) {
   1627 		/* Grab a packet off the queue. */
   1628 		IFQ_POLL(&ifp->if_snd, m_head);
   1629 		if (m_head == NULL)
   1630 			break;
   1631 
   1632 		if (sc->sc_tx_free == 0) {
   1633 			/*
   1634 			 * All slots used, stop for now.
   1635 			 */
   1636 			ifp->if_flags |= IFF_OACTIVE;
   1637 			break;
   1638 		}
   1639 
   1640 		txs = &sc->sc_txsoft[idx];
   1641 		KASSERT(txs->txs_mbuf == NULL);
   1642 
   1643 		if ((error = vge_encap(sc, m_head, idx))) {
   1644 			if (error == EFBIG) {
   1645 				printf("%s: Tx packet consumes too many "
   1646 				    "DMA segments, dropping...\n",
   1647 				    device_xname(sc->sc_dev));
   1648 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1649 				m_freem(m_head);
   1650 				continue;
   1651 			}
   1652 
   1653 			/*
   1654 			 * Short on resources, just stop for now.
   1655 			 */
   1656 			if (error == ENOBUFS)
   1657 				ifp->if_flags |= IFF_OACTIVE;
   1658 			break;
   1659 		}
   1660 
   1661 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1662 
   1663 		/*
   1664 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1665 		 */
   1666 
   1667 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1668 		    htole16(VGE_TXDESC_Q);
   1669 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1670 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1671 
   1672 		if (txs->txs_mbuf != m_head) {
   1673 			m_freem(m_head);
   1674 			m_head = txs->txs_mbuf;
   1675 		}
   1676 
   1677 		pidx = idx;
   1678 		idx = VGE_NEXT_TXDESC(idx);
   1679 
   1680 		/*
   1681 		 * If there's a BPF listener, bounce a copy of this frame
   1682 		 * to him.
   1683 		 */
   1684 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1685 	}
   1686 
   1687 	if (sc->sc_tx_free < ofree) {
   1688 		/* TX packet queued */
   1689 
   1690 		sc->sc_tx_prodidx = idx;
   1691 
   1692 		/* Issue a transmit command. */
   1693 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1694 
   1695 		/*
   1696 		 * Use the countdown timer for interrupt moderation.
   1697 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1698 		 * countdown timer, which will begin counting until it hits
   1699 		 * the value in the SSTIMER register, and then trigger an
   1700 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1701 		 * the timer count is reloaded. Only when the transmitter
   1702 		 * is idle will the timer hit 0 and an interrupt fire.
   1703 		 */
   1704 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1705 
   1706 		/*
   1707 		 * Set a timeout in case the chip goes out to lunch.
   1708 		 */
   1709 		ifp->if_timer = 5;
   1710 	}
   1711 }
   1712 
   1713 static int
   1714 vge_init(struct ifnet *ifp)
   1715 {
   1716 	struct vge_softc *sc;
   1717 	int i, rc = 0;
   1718 
   1719 	sc = ifp->if_softc;
   1720 
   1721 	/*
   1722 	 * Cancel pending I/O and free all RX/TX buffers.
   1723 	 */
   1724 	vge_stop(ifp, 0);
   1725 	vge_reset(sc);
   1726 
   1727 	/* Initialize the RX descriptors and mbufs. */
   1728 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1729 	sc->sc_rx_consumed = 0;
   1730 	for (i = 0; i < VGE_NRXDESC; i++) {
   1731 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1732 			printf("%s: unable to allocate or map rx buffer\n",
   1733 			    device_xname(sc->sc_dev));
   1734 			return 1; /* XXX */
   1735 		}
   1736 	}
   1737 	sc->sc_rx_prodidx = 0;
   1738 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1739 
   1740 	/* Initialize the  TX descriptors and mbufs. */
   1741 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1742 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1743 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1744 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1745 	for (i = 0; i < VGE_NTXDESC; i++)
   1746 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1747 
   1748 	sc->sc_tx_prodidx = 0;
   1749 	sc->sc_tx_considx = 0;
   1750 	sc->sc_tx_free = VGE_NTXDESC;
   1751 
   1752 	/* Set our station address */
   1753 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1754 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1755 
   1756 	/*
   1757 	 * Set receive FIFO threshold. Also allow transmission and
   1758 	 * reception of VLAN tagged frames.
   1759 	 */
   1760 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
   1761 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
   1762 
   1763 	/* Set DMA burst length */
   1764 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1765 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1766 
   1767 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
   1768 
   1769 	/* Set collision backoff algorithm */
   1770 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
   1771 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
   1772 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1773 
   1774 	/* Disable LPSEL field in priority resolution */
   1775 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1776 
   1777 	/*
   1778 	 * Load the addresses of the DMA queues into the chip.
   1779 	 * Note that we only use one transmit queue.
   1780 	 */
   1781 
   1782 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1783 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1784 
   1785 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1786 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1787 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1788 
   1789 	/* Enable and wake up the RX descriptor queue */
   1790 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1791 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1792 
   1793 	/* Enable the TX descriptor queue */
   1794 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1795 
   1796 	/* Set up the receive filter -- allow large frames for VLANs. */
   1797 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
   1798 
   1799 	/* If we want promiscuous mode, set the allframes bit. */
   1800 	if (ifp->if_flags & IFF_PROMISC) {
   1801 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1802 	}
   1803 
   1804 	/* Set capture broadcast bit to capture broadcast frames. */
   1805 	if (ifp->if_flags & IFF_BROADCAST) {
   1806 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1807 	}
   1808 
   1809 	/* Set multicast bit to capture multicast frames. */
   1810 	if (ifp->if_flags & IFF_MULTICAST) {
   1811 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1812 	}
   1813 
   1814 	/* Init the cam filter. */
   1815 	vge_cam_clear(sc);
   1816 
   1817 	/* Init the multicast filter. */
   1818 	vge_setmulti(sc);
   1819 
   1820 	/* Enable flow control */
   1821 
   1822 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1823 
   1824 	/* Enable jumbo frame reception (if desired) */
   1825 
   1826 	/* Start the MAC. */
   1827 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1828 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1829 	CSR_WRITE_1(sc, VGE_CRS0,
   1830 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
   1831 
   1832 	/*
   1833 	 * Configure one-shot timer for microsecond
   1834 	 * resulution and load it for 500 usecs.
   1835 	 */
   1836 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1837 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1838 
   1839 	/*
   1840 	 * Configure interrupt moderation for receive. Enable
   1841 	 * the holdoff counter and load it, and set the RX
   1842 	 * suppression count to the number of descriptors we
   1843 	 * want to allow before triggering an interrupt.
   1844 	 * The holdoff timer is in units of 20 usecs.
   1845 	 */
   1846 
   1847 #ifdef notyet
   1848 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1849 	/* Select the interrupt holdoff timer page. */
   1850 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1851 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1852 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1853 
   1854 	/* Enable use of the holdoff timer. */
   1855 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1856 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1857 
   1858 	/* Select the RX suppression threshold page. */
   1859 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1860 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1861 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1862 
   1863 	/* Restore the page select bits. */
   1864 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1865 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1866 #endif
   1867 
   1868 #ifdef DEVICE_POLLING
   1869 	/*
   1870 	 * Disable interrupts if we are polling.
   1871 	 */
   1872 	if (ifp->if_flags & IFF_POLLING) {
   1873 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1874 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1875 	} else	/* otherwise ... */
   1876 #endif /* DEVICE_POLLING */
   1877 	{
   1878 	/*
   1879 	 * Enable interrupts.
   1880 	 */
   1881 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1882 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1883 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1884 	}
   1885 
   1886 	if ((rc = ether_mediachange(ifp)) != 0)
   1887 		goto out;
   1888 
   1889 	ifp->if_flags |= IFF_RUNNING;
   1890 	ifp->if_flags &= ~IFF_OACTIVE;
   1891 
   1892 	sc->sc_if_flags = 0;
   1893 	sc->sc_link = 0;
   1894 
   1895 	callout_schedule(&sc->sc_timeout, hz);
   1896 
   1897 out:
   1898 	return rc;
   1899 }
   1900 
   1901 static void
   1902 vge_miibus_statchg(struct ifnet *ifp)
   1903 {
   1904 	struct vge_softc *sc = ifp->if_softc;
   1905 	struct mii_data *mii = &sc->sc_mii;
   1906 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
   1907 
   1908 	/*
   1909 	 * If the user manually selects a media mode, we need to turn
   1910 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1911 	 * user happens to choose a full duplex mode, we also need to
   1912 	 * set the 'force full duplex' bit. This applies only to
   1913 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1914 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1915 	 * always implied, so we turn on the forced mode bit but leave
   1916 	 * the FDX bit cleared.
   1917 	 */
   1918 
   1919 	switch (IFM_SUBTYPE(ife->ifm_media)) {
   1920 	case IFM_AUTO:
   1921 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1922 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1923 		break;
   1924 	case IFM_1000_T:
   1925 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1926 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1927 		break;
   1928 	case IFM_100_TX:
   1929 	case IFM_10_T:
   1930 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   1931 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
   1932 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1933 		} else {
   1934 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
   1935 		}
   1936 		break;
   1937 	default:
   1938 		printf("%s: unknown media type: %x\n",
   1939 		    device_xname(sc->sc_dev),
   1940 		    IFM_SUBTYPE(ife->ifm_media));
   1941 		break;
   1942 	}
   1943 }
   1944 
   1945 static int
   1946 vge_ifflags_cb(struct ethercom *ec)
   1947 {
   1948 	struct ifnet *ifp = &ec->ec_if;
   1949 	struct vge_softc *sc = ifp->if_softc;
   1950 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1951 
   1952 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   1953 		return ENETRESET;
   1954 	else if ((change & IFF_PROMISC) == 0)
   1955 		return 0;
   1956 
   1957 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   1958 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1959 	else
   1960 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1961 	vge_setmulti(sc);
   1962 	return 0;
   1963 }
   1964 
   1965 static int
   1966 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
   1967 {
   1968 	struct vge_softc *sc;
   1969 	int s, error;
   1970 
   1971 	sc = ifp->if_softc;
   1972 	error = 0;
   1973 
   1974 	s = splnet();
   1975 
   1976 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
   1977 		error = 0;
   1978 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1979 			;
   1980 		else if (ifp->if_flags & IFF_RUNNING) {
   1981 			/*
   1982 			 * Multicast list has changed; set the hardware filter
   1983 			 * accordingly.
   1984 			 */
   1985 			vge_setmulti(sc);
   1986 		}
   1987 	}
   1988 	sc->sc_if_flags = ifp->if_flags;
   1989 
   1990 	splx(s);
   1991 	return error;
   1992 }
   1993 
   1994 static void
   1995 vge_watchdog(struct ifnet *ifp)
   1996 {
   1997 	struct vge_softc *sc;
   1998 	int s;
   1999 
   2000 	sc = ifp->if_softc;
   2001 	s = splnet();
   2002 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2003 	ifp->if_oerrors++;
   2004 
   2005 	vge_txeof(sc);
   2006 	vge_rxeof(sc);
   2007 
   2008 	vge_init(ifp);
   2009 
   2010 	splx(s);
   2011 }
   2012 
   2013 /*
   2014  * Stop the adapter and free any mbufs allocated to the
   2015  * RX and TX lists.
   2016  */
   2017 static void
   2018 vge_stop(struct ifnet *ifp, int disable)
   2019 {
   2020 	struct vge_softc *sc = ifp->if_softc;
   2021 	struct vge_txsoft *txs;
   2022 	struct vge_rxsoft *rxs;
   2023 	int i, s;
   2024 
   2025 	s = splnet();
   2026 	ifp->if_timer = 0;
   2027 
   2028 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2029 #ifdef DEVICE_POLLING
   2030 	ether_poll_deregister(ifp);
   2031 #endif /* DEVICE_POLLING */
   2032 
   2033 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2034 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2035 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2036 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2037 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2038 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2039 
   2040 	if (sc->sc_rx_mhead != NULL) {
   2041 		m_freem(sc->sc_rx_mhead);
   2042 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2043 	}
   2044 
   2045 	/* Free the TX list buffers. */
   2046 
   2047 	for (i = 0; i < VGE_NTXDESC; i++) {
   2048 		txs = &sc->sc_txsoft[i];
   2049 		if (txs->txs_mbuf != NULL) {
   2050 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2051 			m_freem(txs->txs_mbuf);
   2052 			txs->txs_mbuf = NULL;
   2053 		}
   2054 	}
   2055 
   2056 	/* Free the RX list buffers. */
   2057 
   2058 	for (i = 0; i < VGE_NRXDESC; i++) {
   2059 		rxs = &sc->sc_rxsoft[i];
   2060 		if (rxs->rxs_mbuf != NULL) {
   2061 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2062 			m_freem(rxs->rxs_mbuf);
   2063 			rxs->rxs_mbuf = NULL;
   2064 		}
   2065 	}
   2066 
   2067 	splx(s);
   2068 }
   2069 
   2070 #if VGE_POWER_MANAGEMENT
   2071 /*
   2072  * Device suspend routine.  Stop the interface and save some PCI
   2073  * settings in case the BIOS doesn't restore them properly on
   2074  * resume.
   2075  */
   2076 static int
   2077 vge_suspend(device_t dev)
   2078 {
   2079 	struct vge_softc *sc;
   2080 	int i;
   2081 
   2082 	sc = device_get_softc(dev);
   2083 
   2084 	vge_stop(sc);
   2085 
   2086         for (i = 0; i < 5; i++)
   2087 		sc->sc_saved_maps[i] =
   2088 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2089 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2090 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2091 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2092 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2093 
   2094 	sc->suspended = 1;
   2095 
   2096 	return 0;
   2097 }
   2098 
   2099 /*
   2100  * Device resume routine.  Restore some PCI settings in case the BIOS
   2101  * doesn't, re-enable busmastering, and restart the interface if
   2102  * appropriate.
   2103  */
   2104 static int
   2105 vge_resume(device_t dev)
   2106 {
   2107 	struct vge_softc *sc;
   2108 	struct ifnet *ifp;
   2109 	int i;
   2110 
   2111 	sc = device_private(dev);
   2112 	ifp = &sc->sc_ethercom.ec_if;
   2113 
   2114         /* better way to do this? */
   2115 	for (i = 0; i < 5; i++)
   2116 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2117 		    sc->sc_saved_maps[i], 4);
   2118 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2119 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2120 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2121 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2122 
   2123 	/* reenable busmastering */
   2124 	pci_enable_busmaster(dev);
   2125 	pci_enable_io(dev, SYS_RES_MEMORY);
   2126 
   2127 	/* reinitialize interface if necessary */
   2128 	if (ifp->if_flags & IFF_UP)
   2129 		vge_init(sc);
   2130 
   2131 	sc->suspended = 0;
   2132 
   2133 	return 0;
   2134 }
   2135 #endif
   2136 
   2137 /*
   2138  * Stop all chip I/O so that the kernel's probe routines don't
   2139  * get confused by errant DMAs when rebooting.
   2140  */
   2141 static bool
   2142 vge_shutdown(device_t self, int howto)
   2143 {
   2144 	struct vge_softc *sc;
   2145 
   2146 	sc = device_private(self);
   2147 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2148 
   2149 	return true;
   2150 }
   2151