if_vge.c revision 1.70 1 /* $NetBSD: if_vge.c,v 1.70 2019/05/23 10:40:39 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.70 2019/05/23 10:40:39 msaitoh Exp $");
39
40 /*
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
52 *
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
62 *
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
68 *
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
74 *
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
82 *
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
85 */
86
87
88 #include <sys/param.h>
89 #include <sys/endian.h>
90 #include <sys/systm.h>
91 #include <sys/device.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/if_ether.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103
104 #include <net/bpf.h>
105
106 #include <sys/bus.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114
115 #include <dev/pci/if_vgereg.h>
116
117 #define VGE_IFQ_MAXLEN 64
118
119 #define VGE_RING_ALIGN 256
120
121 #define VGE_NTXDESC 256
122 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
123 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
124 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
125
126 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
127 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
128 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
129 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
130
131 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
132 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
133 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
134 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
135
136 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
137
138 /*
139 * Mbuf adjust factor to force 32-bit alignment of IP header.
140 * Drivers should pad ETHER_ALIGN bytes when setting up a
141 * RX mbuf so the upper layers get the IP header properly aligned
142 * past the 14-byte Ethernet header.
143 *
144 * See also comment in vge_encap().
145 */
146
147 #ifdef __NO_STRICT_ALIGNMENT
148 #define VGE_RX_BUFSIZE MCLBYTES
149 #else
150 #define VGE_RX_PAD sizeof(uint32_t)
151 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
152 #endif
153
154 /*
155 * Control structures are DMA'd to the vge chip. We allocate them in
156 * a single clump that maps to a single DMA segment to make several things
157 * easier.
158 */
159 struct vge_control_data {
160 /* TX descriptors */
161 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
162 /* RX descriptors */
163 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
164 /* dummy data for TX padding */
165 uint8_t vcd_pad[ETHER_PAD_LEN];
166 };
167
168 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
169 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
170 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
171 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
172
173 /*
174 * Software state for TX jobs.
175 */
176 struct vge_txsoft {
177 struct mbuf *txs_mbuf; /* head of our mbuf chain */
178 bus_dmamap_t txs_dmamap; /* our DMA map */
179 };
180
181 /*
182 * Software state for RX jobs.
183 */
184 struct vge_rxsoft {
185 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
186 bus_dmamap_t rxs_dmamap; /* our DMA map */
187 };
188
189
190 struct vge_softc {
191 device_t sc_dev;
192
193 bus_space_tag_t sc_bst; /* bus space tag */
194 bus_space_handle_t sc_bsh; /* bus space handle */
195 bus_dma_tag_t sc_dmat;
196
197 struct ethercom sc_ethercom; /* interface info */
198 uint8_t sc_eaddr[ETHER_ADDR_LEN];
199
200 void *sc_intrhand;
201 struct mii_data sc_mii;
202 uint8_t sc_type;
203 int sc_if_flags;
204 int sc_link;
205 int sc_camidx;
206 callout_t sc_timeout;
207
208 bus_dmamap_t sc_cddmamap;
209 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
210
211 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
212 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
213 struct vge_control_data *sc_control_data;
214 #define sc_txdescs sc_control_data->vcd_txdescs
215 #define sc_rxdescs sc_control_data->vcd_rxdescs
216
217 int sc_tx_prodidx;
218 int sc_tx_considx;
219 int sc_tx_free;
220
221 struct mbuf *sc_rx_mhead;
222 struct mbuf *sc_rx_mtail;
223 int sc_rx_prodidx;
224 int sc_rx_consumed;
225
226 int sc_suspended; /* 0 = normal 1 = suspended */
227 uint32_t sc_saved_maps[5]; /* pci data */
228 uint32_t sc_saved_biosaddr;
229 uint8_t sc_saved_intline;
230 uint8_t sc_saved_cachelnsz;
231 uint8_t sc_saved_lattimer;
232 };
233
234 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
235 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
236 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
237
238 #define VGE_TXDESCSYNC(sc, idx, ops) \
239 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
240 VGE_CDTXOFF(idx), \
241 offsetof(struct vge_txdesc, td_frag[0]), \
242 (ops))
243 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
244 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
245 VGE_CDTXOFF(idx) + \
246 offsetof(struct vge_txdesc, td_frag[0]), \
247 sizeof(struct vge_txfrag) * (nsegs), \
248 (ops))
249 #define VGE_RXDESCSYNC(sc, idx, ops) \
250 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
251 VGE_CDRXOFF(idx), \
252 sizeof(struct vge_rxdesc), \
253 (ops))
254
255 /*
256 * register space access macros
257 */
258 #define CSR_WRITE_4(sc, reg, val) \
259 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
260 #define CSR_WRITE_2(sc, reg, val) \
261 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
262 #define CSR_WRITE_1(sc, reg, val) \
263 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
264
265 #define CSR_READ_4(sc, reg) \
266 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
267 #define CSR_READ_2(sc, reg) \
268 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
269 #define CSR_READ_1(sc, reg) \
270 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
271
272 #define CSR_SETBIT_1(sc, reg, x) \
273 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
274 #define CSR_SETBIT_2(sc, reg, x) \
275 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
276 #define CSR_SETBIT_4(sc, reg, x) \
277 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
278
279 #define CSR_CLRBIT_1(sc, reg, x) \
280 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
281 #define CSR_CLRBIT_2(sc, reg, x) \
282 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
283 #define CSR_CLRBIT_4(sc, reg, x) \
284 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
285
286 #define VGE_TIMEOUT 10000
287
288 #define VGE_PCI_LOIO 0x10
289 #define VGE_PCI_LOMEM 0x14
290
291 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
292 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
293
294 static int vge_ifflags_cb(struct ethercom *);
295
296 static int vge_match(device_t, cfdata_t, void *);
297 static void vge_attach(device_t, device_t, void *);
298
299 static int vge_encap(struct vge_softc *, struct mbuf *, int);
300
301 static int vge_allocmem(struct vge_softc *);
302 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
303 #ifndef __NO_STRICT_ALIGNMENT
304 static inline void vge_fixup_rx(struct mbuf *);
305 #endif
306 static void vge_rxeof(struct vge_softc *);
307 static void vge_txeof(struct vge_softc *);
308 static int vge_intr(void *);
309 static void vge_tick(void *);
310 static void vge_start(struct ifnet *);
311 static int vge_ioctl(struct ifnet *, u_long, void *);
312 static int vge_init(struct ifnet *);
313 static void vge_stop(struct ifnet *, int);
314 static void vge_watchdog(struct ifnet *);
315 #if VGE_POWER_MANAGEMENT
316 static int vge_suspend(device_t);
317 static int vge_resume(device_t);
318 #endif
319 static bool vge_shutdown(device_t, int);
320
321 static uint16_t vge_read_eeprom(struct vge_softc *, int);
322
323 static void vge_miipoll_start(struct vge_softc *);
324 static void vge_miipoll_stop(struct vge_softc *);
325 static int vge_miibus_readreg(device_t, int, int, uint16_t *);
326 static int vge_miibus_writereg(device_t, int, int, uint16_t);
327 static void vge_miibus_statchg(struct ifnet *);
328
329 static void vge_cam_clear(struct vge_softc *);
330 static int vge_cam_set(struct vge_softc *, uint8_t *);
331 static void vge_setmulti(struct vge_softc *);
332 static void vge_reset(struct vge_softc *);
333
334 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
335 vge_match, vge_attach, NULL, NULL);
336
337 static inline void
338 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
339 {
340
341 f->tf_addrlo = htole32((uint32_t)daddr);
342 if (sizeof(bus_addr_t) == sizeof(uint64_t))
343 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
344 else
345 f->tf_addrhi = 0;
346 }
347
348 static inline void
349 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
350 {
351
352 rxd->rd_addrlo = htole32((uint32_t)daddr);
353 if (sizeof(bus_addr_t) == sizeof(uint64_t))
354 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
355 else
356 rxd->rd_addrhi = 0;
357 }
358
359 /*
360 * Read a word of data stored in the EEPROM at address 'addr.'
361 */
362 static uint16_t
363 vge_read_eeprom(struct vge_softc *sc, int addr)
364 {
365 int i;
366 uint16_t word = 0;
367
368 /*
369 * Enter EEPROM embedded programming mode. In order to
370 * access the EEPROM at all, we first have to set the
371 * EELOAD bit in the CHIPCFG2 register.
372 */
373 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
374 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
375
376 /* Select the address of the word we want to read */
377 CSR_WRITE_1(sc, VGE_EEADDR, addr);
378
379 /* Issue read command */
380 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
381
382 /* Wait for the done bit to be set. */
383 for (i = 0; i < VGE_TIMEOUT; i++) {
384 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
385 break;
386 }
387
388 if (i == VGE_TIMEOUT) {
389 printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
390 return 0;
391 }
392
393 /* Read the result */
394 word = CSR_READ_2(sc, VGE_EERDDAT);
395
396 /* Turn off EEPROM access mode. */
397 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
398 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
399
400 return word;
401 }
402
403 static void
404 vge_miipoll_stop(struct vge_softc *sc)
405 {
406 int i;
407
408 CSR_WRITE_1(sc, VGE_MIICMD, 0);
409
410 for (i = 0; i < VGE_TIMEOUT; i++) {
411 DELAY(1);
412 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
413 break;
414 }
415
416 if (i == VGE_TIMEOUT) {
417 printf("%s: failed to idle MII autopoll\n",
418 device_xname(sc->sc_dev));
419 }
420 }
421
422 static void
423 vge_miipoll_start(struct vge_softc *sc)
424 {
425 int i;
426
427 /* First, make sure we're idle. */
428
429 CSR_WRITE_1(sc, VGE_MIICMD, 0);
430 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
431
432 for (i = 0; i < VGE_TIMEOUT; i++) {
433 DELAY(1);
434 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
435 break;
436 }
437
438 if (i == VGE_TIMEOUT) {
439 printf("%s: failed to idle MII autopoll\n",
440 device_xname(sc->sc_dev));
441 return;
442 }
443
444 /* Now enable auto poll mode. */
445
446 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
447
448 /* And make sure it started. */
449
450 for (i = 0; i < VGE_TIMEOUT; i++) {
451 DELAY(1);
452 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
453 break;
454 }
455
456 if (i == VGE_TIMEOUT) {
457 printf("%s: failed to start MII autopoll\n",
458 device_xname(sc->sc_dev));
459 }
460 }
461
462 static int
463 vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
464 {
465 struct vge_softc *sc;
466 int i, s;
467 int rv = 0;
468
469 sc = device_private(dev);
470 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
471 return -1;
472
473 s = splnet();
474 vge_miipoll_stop(sc);
475
476 /* Specify the register we want to read. */
477 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
478
479 /* Issue read command. */
480 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
481
482 /* Wait for the read command bit to self-clear. */
483 for (i = 0; i < VGE_TIMEOUT; i++) {
484 DELAY(1);
485 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
486 break;
487 }
488
489 if (i == VGE_TIMEOUT) {
490 printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
491 rv = ETIMEDOUT;
492 } else
493 *val = CSR_READ_2(sc, VGE_MIIDATA);
494
495 vge_miipoll_start(sc);
496 splx(s);
497
498 return rv;
499 }
500
501 static int
502 vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
503 {
504 struct vge_softc *sc;
505 int i, s, rv = 0;
506
507 sc = device_private(dev);
508 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
509 return -1;
510
511 s = splnet();
512 vge_miipoll_stop(sc);
513
514 /* Specify the register we want to write. */
515 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
516
517 /* Specify the data we want to write. */
518 CSR_WRITE_2(sc, VGE_MIIDATA, val);
519
520 /* Issue write command. */
521 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
522
523 /* Wait for the write command bit to self-clear. */
524 for (i = 0; i < VGE_TIMEOUT; i++) {
525 DELAY(1);
526 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
527 break;
528 }
529
530 if (i == VGE_TIMEOUT) {
531 printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
532 rv = ETIMEDOUT;
533 }
534
535 vge_miipoll_start(sc);
536 splx(s);
537
538 return rv;
539 }
540
541 static void
542 vge_cam_clear(struct vge_softc *sc)
543 {
544 int i;
545
546 /*
547 * Turn off all the mask bits. This tells the chip
548 * that none of the entries in the CAM filter are valid.
549 * desired entries will be enabled as we fill the filter in.
550 */
551
552 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
553 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
554 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
555 for (i = 0; i < 8; i++)
556 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
557
558 /* Clear the VLAN filter too. */
559
560 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
561 for (i = 0; i < 8; i++)
562 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
563
564 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
565 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
566 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
567
568 sc->sc_camidx = 0;
569 }
570
571 static int
572 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
573 {
574 int i, error;
575
576 error = 0;
577
578 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
579 return ENOSPC;
580
581 /* Select the CAM data page. */
582 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
583 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
584
585 /* Set the filter entry we want to update and enable writing. */
586 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
587
588 /* Write the address to the CAM registers */
589 for (i = 0; i < ETHER_ADDR_LEN; i++)
590 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
591
592 /* Issue a write command. */
593 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
594
595 /* Wake for it to clear. */
596 for (i = 0; i < VGE_TIMEOUT; i++) {
597 DELAY(1);
598 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
599 break;
600 }
601
602 if (i == VGE_TIMEOUT) {
603 printf("%s: setting CAM filter failed\n",
604 device_xname(sc->sc_dev));
605 error = EIO;
606 goto fail;
607 }
608
609 /* Select the CAM mask page. */
610 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
611 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
612
613 /* Set the mask bit that enables this filter. */
614 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
615 1 << (sc->sc_camidx & 7));
616
617 sc->sc_camidx++;
618
619 fail:
620 /* Turn off access to CAM. */
621 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
622 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
623 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
624
625 return error;
626 }
627
628 /*
629 * Program the multicast filter. We use the 64-entry CAM filter
630 * for perfect filtering. If there's more than 64 multicast addresses,
631 * we use the hash filter instead.
632 */
633 static void
634 vge_setmulti(struct vge_softc *sc)
635 {
636 struct ethercom *ec = &sc->sc_ethercom;
637 struct ifnet *ifp = &ec->ec_if;
638 int error;
639 uint32_t h, hashes[2] = { 0, 0 };
640 struct ether_multi *enm;
641 struct ether_multistep step;
642
643 error = 0;
644
645 /* First, zot all the multicast entries. */
646 vge_cam_clear(sc);
647 CSR_WRITE_4(sc, VGE_MAR0, 0);
648 CSR_WRITE_4(sc, VGE_MAR1, 0);
649 ifp->if_flags &= ~IFF_ALLMULTI;
650
651 /*
652 * If the user wants allmulti or promisc mode, enable reception
653 * of all multicast frames.
654 */
655 if (ifp->if_flags & IFF_PROMISC) {
656 allmulti:
657 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
658 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
659 ifp->if_flags |= IFF_ALLMULTI;
660 return;
661 }
662
663 /* Now program new ones */
664 ETHER_FIRST_MULTI(step, ec, enm);
665 while (enm != NULL) {
666 /*
667 * If multicast range, fall back to ALLMULTI.
668 */
669 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
670 ETHER_ADDR_LEN) != 0)
671 goto allmulti;
672
673 error = vge_cam_set(sc, enm->enm_addrlo);
674 if (error)
675 break;
676
677 ETHER_NEXT_MULTI(step, enm);
678 }
679
680 /* If there were too many addresses, use the hash filter. */
681 if (error) {
682 vge_cam_clear(sc);
683
684 ETHER_FIRST_MULTI(step, ec, enm);
685 while (enm != NULL) {
686 /*
687 * If multicast range, fall back to ALLMULTI.
688 */
689 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
690 ETHER_ADDR_LEN) != 0)
691 goto allmulti;
692
693 h = ether_crc32_be(enm->enm_addrlo,
694 ETHER_ADDR_LEN) >> 26;
695 hashes[h >> 5] |= 1 << (h & 0x1f);
696
697 ETHER_NEXT_MULTI(step, enm);
698 }
699
700 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
701 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
702 }
703 }
704
705 static void
706 vge_reset(struct vge_softc *sc)
707 {
708 int i;
709
710 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
711
712 for (i = 0; i < VGE_TIMEOUT; i++) {
713 DELAY(5);
714 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
715 break;
716 }
717
718 if (i == VGE_TIMEOUT) {
719 printf("%s: soft reset timed out", device_xname(sc->sc_dev));
720 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
721 DELAY(2000);
722 }
723
724 DELAY(5000);
725
726 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
727
728 for (i = 0; i < VGE_TIMEOUT; i++) {
729 DELAY(5);
730 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
731 break;
732 }
733
734 if (i == VGE_TIMEOUT) {
735 printf("%s: EEPROM reload timed out\n",
736 device_xname(sc->sc_dev));
737 return;
738 }
739
740 /*
741 * On some machine, the first read data from EEPROM could be
742 * messed up, so read one dummy data here to avoid the mess.
743 */
744 (void)vge_read_eeprom(sc, 0);
745
746 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
747 }
748
749 /*
750 * Probe for a VIA gigabit chip. Check the PCI vendor and device
751 * IDs against our list and return a device name if we find a match.
752 */
753 static int
754 vge_match(device_t parent, cfdata_t match, void *aux)
755 {
756 struct pci_attach_args *pa = aux;
757
758 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
759 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
760 return 1;
761
762 return 0;
763 }
764
765 static int
766 vge_allocmem(struct vge_softc *sc)
767 {
768 int error;
769 int nseg;
770 int i;
771 bus_dma_segment_t seg;
772
773 /*
774 * Allocate memory for control data.
775 */
776
777 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
778 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
779 if (error) {
780 aprint_error_dev(sc->sc_dev,
781 "could not allocate control data dma memory\n");
782 goto fail_1;
783 }
784
785 /* Map the memory to kernel VA space */
786
787 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
788 sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
789 BUS_DMA_NOWAIT);
790 if (error) {
791 aprint_error_dev(sc->sc_dev,
792 "could not map control data dma memory\n");
793 goto fail_2;
794 }
795 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
796
797 /*
798 * Create map for control data.
799 */
800 error = bus_dmamap_create(sc->sc_dmat,
801 sizeof(struct vge_control_data), 1,
802 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
803 &sc->sc_cddmamap);
804 if (error) {
805 aprint_error_dev(sc->sc_dev,
806 "could not create control data dmamap\n");
807 goto fail_3;
808 }
809
810 /* Load the map for the control data. */
811 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
812 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
813 BUS_DMA_NOWAIT);
814 if (error) {
815 aprint_error_dev(sc->sc_dev,
816 "could not load control data dma memory\n");
817 goto fail_4;
818 }
819
820 /* Create DMA maps for TX buffers */
821
822 for (i = 0; i < VGE_NTXDESC; i++) {
823 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
824 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
825 &sc->sc_txsoft[i].txs_dmamap);
826 if (error) {
827 aprint_error_dev(sc->sc_dev,
828 "can't create DMA map for TX descs\n");
829 goto fail_5;
830 }
831 }
832
833 /* Create DMA maps for RX buffers */
834
835 for (i = 0; i < VGE_NRXDESC; i++) {
836 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
837 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
838 &sc->sc_rxsoft[i].rxs_dmamap);
839 if (error) {
840 aprint_error_dev(sc->sc_dev,
841 "can't create DMA map for RX descs\n");
842 goto fail_6;
843 }
844 sc->sc_rxsoft[i].rxs_mbuf = NULL;
845 }
846
847 return 0;
848
849 fail_6:
850 for (i = 0; i < VGE_NRXDESC; i++) {
851 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
852 bus_dmamap_destroy(sc->sc_dmat,
853 sc->sc_rxsoft[i].rxs_dmamap);
854 }
855 fail_5:
856 for (i = 0; i < VGE_NTXDESC; i++) {
857 if (sc->sc_txsoft[i].txs_dmamap != NULL)
858 bus_dmamap_destroy(sc->sc_dmat,
859 sc->sc_txsoft[i].txs_dmamap);
860 }
861 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
862 fail_4:
863 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
864 fail_3:
865 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
866 sizeof(struct vge_control_data));
867 fail_2:
868 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
869 fail_1:
870 return ENOMEM;
871 }
872
873 /*
874 * Attach the interface. Allocate softc structures, do ifmedia
875 * setup and ethernet/BPF attach.
876 */
877 static void
878 vge_attach(device_t parent, device_t self, void *aux)
879 {
880 uint8_t *eaddr;
881 struct vge_softc *sc = device_private(self);
882 struct ifnet *ifp;
883 struct mii_data * const mii = &sc->sc_mii;
884 struct pci_attach_args *pa = aux;
885 pci_chipset_tag_t pc = pa->pa_pc;
886 const char *intrstr;
887 pci_intr_handle_t ih;
888 uint16_t val;
889 char intrbuf[PCI_INTRSTR_LEN];
890
891 sc->sc_dev = self;
892
893 pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
894
895 /* Make sure bus-mastering is enabled */
896 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
897 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
898 PCI_COMMAND_MASTER_ENABLE);
899
900 /*
901 * Map control/status registers.
902 */
903 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
904 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
905 aprint_error_dev(self, "couldn't map memory\n");
906 return;
907 }
908
909 /*
910 * Map and establish our interrupt.
911 */
912 if (pci_intr_map(pa, &ih)) {
913 aprint_error_dev(self, "unable to map interrupt\n");
914 return;
915 }
916 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
917 sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
918 sc, device_xname(self));
919 if (sc->sc_intrhand == NULL) {
920 aprint_error_dev(self, "unable to establish interrupt");
921 if (intrstr != NULL)
922 aprint_error(" at %s", intrstr);
923 aprint_error("\n");
924 return;
925 }
926 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
927
928 /* Reset the adapter. */
929 vge_reset(sc);
930
931 /*
932 * Get station address from the EEPROM.
933 */
934 eaddr = sc->sc_eaddr;
935 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
936 eaddr[0] = val & 0xff;
937 eaddr[1] = val >> 8;
938 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
939 eaddr[2] = val & 0xff;
940 eaddr[3] = val >> 8;
941 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
942 eaddr[4] = val & 0xff;
943 eaddr[5] = val >> 8;
944
945 aprint_normal_dev(self, "Ethernet address %s\n",
946 ether_sprintf(eaddr));
947
948 /*
949 * Use the 32bit tag. Hardware supports 48bit physical addresses,
950 * but we don't use that for now.
951 */
952 sc->sc_dmat = pa->pa_dmat;
953
954 if (vge_allocmem(sc) != 0)
955 return;
956
957 ifp = &sc->sc_ethercom.ec_if;
958 ifp->if_softc = sc;
959 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
960 ifp->if_mtu = ETHERMTU;
961 ifp->if_baudrate = IF_Gbps(1);
962 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
963 ifp->if_ioctl = vge_ioctl;
964 ifp->if_start = vge_start;
965 ifp->if_init = vge_init;
966 ifp->if_stop = vge_stop;
967
968 /*
969 * We can support 802.1Q VLAN-sized frames and jumbo
970 * Ethernet frames.
971 */
972 sc->sc_ethercom.ec_capabilities |=
973 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
974 ETHERCAP_VLAN_HWTAGGING;
975
976 /*
977 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
978 */
979 ifp->if_capabilities |=
980 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
981 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
982 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
983
984 #ifdef DEVICE_POLLING
985 #ifdef IFCAP_POLLING
986 ifp->if_capabilities |= IFCAP_POLLING;
987 #endif
988 #endif
989 ifp->if_watchdog = vge_watchdog;
990 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
991 IFQ_SET_READY(&ifp->if_snd);
992
993 /*
994 * Initialize our media structures and probe the MII.
995 */
996 mii->mii_ifp = ifp;
997 mii->mii_readreg = vge_miibus_readreg;
998 mii->mii_writereg = vge_miibus_writereg;
999 mii->mii_statchg = vge_miibus_statchg;
1000
1001 sc->sc_ethercom.ec_mii = mii;
1002 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1003 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1004 MII_OFFSET_ANY, MIIF_DOPAUSE);
1005 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1006 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1007 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1008 } else
1009 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1010
1011 /*
1012 * Attach the interface.
1013 */
1014 if_attach(ifp);
1015 if_deferred_start_init(ifp, NULL);
1016 ether_ifattach(ifp, eaddr);
1017 ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1018
1019 callout_init(&sc->sc_timeout, 0);
1020 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1021
1022 /*
1023 * Make sure the interface is shutdown during reboot.
1024 */
1025 if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1026 pmf_class_network_register(self, ifp);
1027 else
1028 aprint_error_dev(self, "couldn't establish power handler\n");
1029 }
1030
1031 static int
1032 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1033 {
1034 struct mbuf *m_new;
1035 struct vge_rxdesc *rxd;
1036 struct vge_rxsoft *rxs;
1037 bus_dmamap_t map;
1038 int i;
1039 #ifdef DIAGNOSTIC
1040 uint32_t rd_sts;
1041 #endif
1042
1043 m_new = NULL;
1044 if (m == NULL) {
1045 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1046 if (m_new == NULL)
1047 return ENOBUFS;
1048
1049 MCLGET(m_new, M_DONTWAIT);
1050 if ((m_new->m_flags & M_EXT) == 0) {
1051 m_freem(m_new);
1052 return ENOBUFS;
1053 }
1054
1055 m = m_new;
1056 } else
1057 m->m_data = m->m_ext.ext_buf;
1058
1059
1060 /*
1061 * This is part of an evil trick to deal with non-x86 platforms.
1062 * The VIA chip requires RX buffers to be aligned on 32-bit
1063 * boundaries, but that will hose non-x86 machines. To get around
1064 * this, we leave some empty space at the start of each buffer
1065 * and for non-x86 hosts, we copy the buffer back two bytes
1066 * to achieve word alignment. This is slightly more efficient
1067 * than allocating a new buffer, copying the contents, and
1068 * discarding the old buffer.
1069 */
1070 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1071 #ifndef __NO_STRICT_ALIGNMENT
1072 m->m_data += VGE_RX_PAD;
1073 #endif
1074 rxs = &sc->sc_rxsoft[idx];
1075 map = rxs->rxs_dmamap;
1076
1077 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1078 goto out;
1079
1080 rxd = &sc->sc_rxdescs[idx];
1081
1082 #ifdef DIAGNOSTIC
1083 /* If this descriptor is still owned by the chip, bail. */
1084 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1085 rd_sts = le32toh(rxd->rd_sts);
1086 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1087 if (rd_sts & VGE_RDSTS_OWN) {
1088 panic("%s: tried to map busy RX descriptor",
1089 device_xname(sc->sc_dev));
1090 }
1091 #endif
1092
1093 rxs->rxs_mbuf = m;
1094 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1095 BUS_DMASYNC_PREREAD);
1096
1097 rxd->rd_buflen =
1098 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1099 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1100 rxd->rd_sts = 0;
1101 rxd->rd_ctl = 0;
1102 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1103
1104 /*
1105 * Note: the manual fails to document the fact that for
1106 * proper opration, the driver needs to replentish the RX
1107 * DMA ring 4 descriptors at a time (rather than one at a
1108 * time, like most chips). We can allocate the new buffers
1109 * but we should not set the OWN bits until we're ready
1110 * to hand back 4 of them in one shot.
1111 */
1112
1113 #define VGE_RXCHUNK 4
1114 sc->sc_rx_consumed++;
1115 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1116 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1117 KASSERT(i >= 0);
1118 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1119 VGE_RXDESCSYNC(sc, i,
1120 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1121 }
1122 sc->sc_rx_consumed = 0;
1123 }
1124
1125 return 0;
1126 out:
1127 if (m_new != NULL)
1128 m_freem(m_new);
1129 return ENOMEM;
1130 }
1131
1132 #ifndef __NO_STRICT_ALIGNMENT
1133 static inline void
1134 vge_fixup_rx(struct mbuf *m)
1135 {
1136 int i;
1137 uint16_t *src, *dst;
1138
1139 src = mtod(m, uint16_t *);
1140 dst = src - 1;
1141
1142 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1143 *dst++ = *src++;
1144
1145 m->m_data -= ETHER_ALIGN;
1146 }
1147 #endif
1148
1149 /*
1150 * RX handler. We support the reception of jumbo frames that have
1151 * been fragmented across multiple 2K mbuf cluster buffers.
1152 */
1153 static void
1154 vge_rxeof(struct vge_softc *sc)
1155 {
1156 struct mbuf *m;
1157 struct ifnet *ifp;
1158 int idx, total_len, lim;
1159 struct vge_rxdesc *cur_rxd;
1160 struct vge_rxsoft *rxs;
1161 uint32_t rxstat, rxctl;
1162
1163 ifp = &sc->sc_ethercom.ec_if;
1164 lim = 0;
1165
1166 /* Invalidate the descriptor memory */
1167
1168 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1169 cur_rxd = &sc->sc_rxdescs[idx];
1170
1171 VGE_RXDESCSYNC(sc, idx,
1172 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1173 rxstat = le32toh(cur_rxd->rd_sts);
1174 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1175 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1176 break;
1177 }
1178
1179 rxctl = le32toh(cur_rxd->rd_ctl);
1180 rxs = &sc->sc_rxsoft[idx];
1181 m = rxs->rxs_mbuf;
1182 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1183
1184 /* Invalidate the RX mbuf and unload its map */
1185
1186 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1187 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1188 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1189
1190 /*
1191 * If the 'start of frame' bit is set, this indicates
1192 * either the first fragment in a multi-fragment receive,
1193 * or an intermediate fragment. Either way, we want to
1194 * accumulate the buffers.
1195 */
1196 if (rxstat & VGE_RXPKT_SOF) {
1197 m->m_len = VGE_RX_BUFSIZE;
1198 if (sc->sc_rx_mhead == NULL)
1199 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1200 else {
1201 m->m_flags &= ~M_PKTHDR;
1202 sc->sc_rx_mtail->m_next = m;
1203 sc->sc_rx_mtail = m;
1204 }
1205 vge_newbuf(sc, idx, NULL);
1206 continue;
1207 }
1208
1209 /*
1210 * Bad/error frames will have the RXOK bit cleared.
1211 * However, there's one error case we want to allow:
1212 * if a VLAN tagged frame arrives and the chip can't
1213 * match it against the CAM filter, it considers this
1214 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1215 * We don't want to drop the frame though: our VLAN
1216 * filtering is done in software.
1217 */
1218 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1219 (rxstat & VGE_RDSTS_VIDM) == 0 &&
1220 (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1221 ifp->if_ierrors++;
1222 /*
1223 * If this is part of a multi-fragment packet,
1224 * discard all the pieces.
1225 */
1226 if (sc->sc_rx_mhead != NULL) {
1227 m_freem(sc->sc_rx_mhead);
1228 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1229 }
1230 vge_newbuf(sc, idx, m);
1231 continue;
1232 }
1233
1234 /*
1235 * If allocating a replacement mbuf fails,
1236 * reload the current one.
1237 */
1238
1239 if (vge_newbuf(sc, idx, NULL)) {
1240 ifp->if_ierrors++;
1241 if (sc->sc_rx_mhead != NULL) {
1242 m_freem(sc->sc_rx_mhead);
1243 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1244 }
1245 vge_newbuf(sc, idx, m);
1246 continue;
1247 }
1248
1249 if (sc->sc_rx_mhead != NULL) {
1250 m->m_len = total_len % VGE_RX_BUFSIZE;
1251 /*
1252 * Special case: if there's 4 bytes or less
1253 * in this buffer, the mbuf can be discarded:
1254 * the last 4 bytes is the CRC, which we don't
1255 * care about anyway.
1256 */
1257 if (m->m_len <= ETHER_CRC_LEN) {
1258 sc->sc_rx_mtail->m_len -=
1259 (ETHER_CRC_LEN - m->m_len);
1260 m_freem(m);
1261 } else {
1262 m->m_len -= ETHER_CRC_LEN;
1263 m->m_flags &= ~M_PKTHDR;
1264 sc->sc_rx_mtail->m_next = m;
1265 }
1266 m = sc->sc_rx_mhead;
1267 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1268 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1269 } else
1270 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1271
1272 #ifndef __NO_STRICT_ALIGNMENT
1273 vge_fixup_rx(m);
1274 #endif
1275 m_set_rcvif(m, ifp);
1276
1277 /* Do RX checksumming if enabled */
1278 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1279
1280 /* Check IP header checksum */
1281 if (rxctl & VGE_RDCTL_IPPKT)
1282 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1283 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1284 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1285 }
1286
1287 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1288 /* Check UDP checksum */
1289 if (rxctl & VGE_RDCTL_TCPPKT)
1290 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1291
1292 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 }
1295
1296 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1297 /* Check UDP checksum */
1298 if (rxctl & VGE_RDCTL_UDPPKT)
1299 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1300
1301 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1302 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1303 }
1304
1305 if (rxstat & VGE_RDSTS_VTAG) {
1306 /*
1307 * We use bswap16() here because:
1308 * On LE machines, tag is stored in BE as stream data.
1309 * On BE machines, tag is stored in BE as stream data
1310 * but it was already swapped by le32toh() above.
1311 */
1312 vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
1313 }
1314
1315 if_percpuq_enqueue(ifp->if_percpuq, m);
1316
1317 lim++;
1318 if (lim == VGE_NRXDESC)
1319 break;
1320 }
1321
1322 sc->sc_rx_prodidx = idx;
1323 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1324 }
1325
1326 static void
1327 vge_txeof(struct vge_softc *sc)
1328 {
1329 struct ifnet *ifp;
1330 struct vge_txsoft *txs;
1331 uint32_t txstat;
1332 int idx;
1333
1334 ifp = &sc->sc_ethercom.ec_if;
1335
1336 for (idx = sc->sc_tx_considx;
1337 sc->sc_tx_free < VGE_NTXDESC;
1338 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1339 VGE_TXDESCSYNC(sc, idx,
1340 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1341 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1342 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1343 if (txstat & VGE_TDSTS_OWN) {
1344 break;
1345 }
1346
1347 txs = &sc->sc_txsoft[idx];
1348 m_freem(txs->txs_mbuf);
1349 txs->txs_mbuf = NULL;
1350 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1351 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1352 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1353 if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
1354 ifp->if_collisions++;
1355 if (txstat & VGE_TDSTS_TXERR)
1356 ifp->if_oerrors++;
1357 else
1358 ifp->if_opackets++;
1359 }
1360
1361 sc->sc_tx_considx = idx;
1362
1363 if (sc->sc_tx_free > 0) {
1364 ifp->if_flags &= ~IFF_OACTIVE;
1365 }
1366
1367 /*
1368 * If not all descriptors have been released reaped yet,
1369 * reload the timer so that we will eventually get another
1370 * interrupt that will cause us to re-enter this routine.
1371 * This is done in case the transmitter has gone idle.
1372 */
1373 if (sc->sc_tx_free < VGE_NTXDESC)
1374 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1375 else
1376 ifp->if_timer = 0;
1377 }
1378
1379 static void
1380 vge_tick(void *arg)
1381 {
1382 struct vge_softc *sc;
1383 struct ifnet *ifp;
1384 struct mii_data *mii;
1385 int s;
1386
1387 sc = arg;
1388 ifp = &sc->sc_ethercom.ec_if;
1389 mii = &sc->sc_mii;
1390
1391 s = splnet();
1392
1393 callout_schedule(&sc->sc_timeout, hz);
1394
1395 mii_tick(mii);
1396 if (sc->sc_link) {
1397 if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1398 sc->sc_link = 0;
1399 } else {
1400 if (mii->mii_media_status & IFM_ACTIVE &&
1401 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1402 sc->sc_link = 1;
1403 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1404 vge_start(ifp);
1405 }
1406 }
1407
1408 splx(s);
1409 }
1410
1411 static int
1412 vge_intr(void *arg)
1413 {
1414 struct vge_softc *sc;
1415 struct ifnet *ifp;
1416 uint32_t status;
1417 int claim;
1418
1419 sc = arg;
1420 claim = 0;
1421 if (sc->sc_suspended) {
1422 return claim;
1423 }
1424
1425 ifp = &sc->sc_ethercom.ec_if;
1426
1427 if ((ifp->if_flags & IFF_UP) == 0) {
1428 return claim;
1429 }
1430
1431 /* Disable interrupts */
1432 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1433
1434 for (;;) {
1435
1436 status = CSR_READ_4(sc, VGE_ISR);
1437 /* If the card has gone away the read returns 0xffffffff. */
1438 if (status == 0xFFFFFFFF)
1439 break;
1440
1441 if (status) {
1442 claim = 1;
1443 CSR_WRITE_4(sc, VGE_ISR, status);
1444 }
1445
1446 if ((status & VGE_INTRS) == 0)
1447 break;
1448
1449 if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
1450 vge_rxeof(sc);
1451
1452 if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1453 vge_rxeof(sc);
1454 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1455 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1456 }
1457
1458 if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
1459 vge_txeof(sc);
1460
1461 if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
1462 vge_init(ifp);
1463
1464 if (status & VGE_ISR_LINKSTS)
1465 vge_tick(sc);
1466 }
1467
1468 /* Re-enable interrupts */
1469 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1470
1471 if (claim)
1472 if_schedule_deferred_start(ifp);
1473
1474 return claim;
1475 }
1476
1477 static int
1478 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1479 {
1480 struct vge_txsoft *txs;
1481 struct vge_txdesc *txd;
1482 struct vge_txfrag *f;
1483 struct mbuf *m_new;
1484 bus_dmamap_t map;
1485 int m_csumflags, seg, error, flags;
1486 size_t sz;
1487 uint32_t td_sts, td_ctl;
1488
1489 KASSERT(sc->sc_tx_free > 0);
1490
1491 txd = &sc->sc_txdescs[idx];
1492
1493 #ifdef DIAGNOSTIC
1494 /* If this descriptor is still owned by the chip, bail. */
1495 VGE_TXDESCSYNC(sc, idx,
1496 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1497 td_sts = le32toh(txd->td_sts);
1498 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1499 if (td_sts & VGE_TDSTS_OWN) {
1500 return ENOBUFS;
1501 }
1502 #endif
1503
1504 /*
1505 * Preserve m_pkthdr.csum_flags here since m_head might be
1506 * updated by m_defrag()
1507 */
1508 m_csumflags = m_head->m_pkthdr.csum_flags;
1509
1510 txs = &sc->sc_txsoft[idx];
1511 map = txs->txs_dmamap;
1512 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1513
1514 /* If too many segments to map, coalesce */
1515 if (error == EFBIG ||
1516 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1517 map->dm_nsegs == VGE_TX_FRAGS)) {
1518 m_new = m_defrag(m_head, M_DONTWAIT);
1519 if (m_new == NULL)
1520 return EFBIG;
1521
1522 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1523 m_new, BUS_DMA_NOWAIT);
1524 if (error) {
1525 m_freem(m_new);
1526 return error;
1527 }
1528
1529 m_head = m_new;
1530 } else if (error)
1531 return error;
1532
1533 txs->txs_mbuf = m_head;
1534
1535 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1536 BUS_DMASYNC_PREWRITE);
1537
1538 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1539 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1540 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1541 }
1542
1543 /* Argh. This chip does not autopad short frames */
1544 sz = m_head->m_pkthdr.len;
1545 if (sz < ETHER_PAD_LEN) {
1546 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1547 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1548 sz = ETHER_PAD_LEN;
1549 seg++;
1550 }
1551 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1552
1553 /*
1554 * When telling the chip how many segments there are, we
1555 * must use nsegs + 1 instead of just nsegs. Darned if I
1556 * know why.
1557 */
1558 seg++;
1559
1560 flags = 0;
1561 if (m_csumflags & M_CSUM_IPv4)
1562 flags |= VGE_TDCTL_IPCSUM;
1563 if (m_csumflags & M_CSUM_TCPv4)
1564 flags |= VGE_TDCTL_TCPCSUM;
1565 if (m_csumflags & M_CSUM_UDPv4)
1566 flags |= VGE_TDCTL_UDPCSUM;
1567 td_sts = sz << 16;
1568 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1569
1570 if (sz > ETHERMTU + ETHER_HDR_LEN)
1571 td_ctl |= VGE_TDCTL_JUMBO;
1572
1573 /*
1574 * Set up hardware VLAN tagging.
1575 */
1576 if (vlan_has_tag(m_head)) {
1577 /*
1578 * No need htons() here since vge(4) chip assumes
1579 * that tags are written in little endian and
1580 * we already use htole32() here.
1581 */
1582 td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
1583 }
1584 txd->td_ctl = htole32(td_ctl);
1585 txd->td_sts = htole32(td_sts);
1586 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1587
1588 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1589 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1590
1591 sc->sc_tx_free--;
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * Main transmit routine.
1598 */
1599
1600 static void
1601 vge_start(struct ifnet *ifp)
1602 {
1603 struct vge_softc *sc;
1604 struct vge_txsoft *txs;
1605 struct mbuf *m_head;
1606 int idx, pidx, ofree, error;
1607
1608 sc = ifp->if_softc;
1609
1610 if (!sc->sc_link ||
1611 (ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1612 return;
1613 }
1614
1615 m_head = NULL;
1616 idx = sc->sc_tx_prodidx;
1617 pidx = VGE_PREV_TXDESC(idx);
1618 ofree = sc->sc_tx_free;
1619
1620 /*
1621 * Loop through the send queue, setting up transmit descriptors
1622 * until we drain the queue, or use up all available transmit
1623 * descriptors.
1624 */
1625 for (;;) {
1626 /* Grab a packet off the queue. */
1627 IFQ_POLL(&ifp->if_snd, m_head);
1628 if (m_head == NULL)
1629 break;
1630
1631 if (sc->sc_tx_free == 0) {
1632 /*
1633 * All slots used, stop for now.
1634 */
1635 ifp->if_flags |= IFF_OACTIVE;
1636 break;
1637 }
1638
1639 txs = &sc->sc_txsoft[idx];
1640 KASSERT(txs->txs_mbuf == NULL);
1641
1642 if ((error = vge_encap(sc, m_head, idx))) {
1643 if (error == EFBIG) {
1644 printf("%s: Tx packet consumes too many "
1645 "DMA segments, dropping...\n",
1646 device_xname(sc->sc_dev));
1647 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1648 m_freem(m_head);
1649 continue;
1650 }
1651
1652 /*
1653 * Short on resources, just stop for now.
1654 */
1655 if (error == ENOBUFS)
1656 ifp->if_flags |= IFF_OACTIVE;
1657 break;
1658 }
1659
1660 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1661
1662 /*
1663 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1664 */
1665
1666 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1667 htole16(VGE_TXDESC_Q);
1668 VGE_TXFRAGSYNC(sc, pidx, 1,
1669 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1670
1671 if (txs->txs_mbuf != m_head) {
1672 m_freem(m_head);
1673 m_head = txs->txs_mbuf;
1674 }
1675
1676 pidx = idx;
1677 idx = VGE_NEXT_TXDESC(idx);
1678
1679 /*
1680 * If there's a BPF listener, bounce a copy of this frame
1681 * to him.
1682 */
1683 bpf_mtap(ifp, m_head, BPF_D_OUT);
1684 }
1685
1686 if (sc->sc_tx_free < ofree) {
1687 /* TX packet queued */
1688
1689 sc->sc_tx_prodidx = idx;
1690
1691 /* Issue a transmit command. */
1692 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1693
1694 /*
1695 * Use the countdown timer for interrupt moderation.
1696 * 'TX done' interrupts are disabled. Instead, we reset the
1697 * countdown timer, which will begin counting until it hits
1698 * the value in the SSTIMER register, and then trigger an
1699 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1700 * the timer count is reloaded. Only when the transmitter
1701 * is idle will the timer hit 0 and an interrupt fire.
1702 */
1703 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1704
1705 /*
1706 * Set a timeout in case the chip goes out to lunch.
1707 */
1708 ifp->if_timer = 5;
1709 }
1710 }
1711
1712 static int
1713 vge_init(struct ifnet *ifp)
1714 {
1715 struct vge_softc *sc;
1716 int i, rc = 0;
1717
1718 sc = ifp->if_softc;
1719
1720 /*
1721 * Cancel pending I/O and free all RX/TX buffers.
1722 */
1723 vge_stop(ifp, 0);
1724 vge_reset(sc);
1725
1726 /* Initialize the RX descriptors and mbufs. */
1727 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1728 sc->sc_rx_consumed = 0;
1729 for (i = 0; i < VGE_NRXDESC; i++) {
1730 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1731 printf("%s: unable to allocate or map rx buffer\n",
1732 device_xname(sc->sc_dev));
1733 return 1; /* XXX */
1734 }
1735 }
1736 sc->sc_rx_prodidx = 0;
1737 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1738
1739 /* Initialize the TX descriptors and mbufs. */
1740 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1741 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1742 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1743 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1744 for (i = 0; i < VGE_NTXDESC; i++)
1745 sc->sc_txsoft[i].txs_mbuf = NULL;
1746
1747 sc->sc_tx_prodidx = 0;
1748 sc->sc_tx_considx = 0;
1749 sc->sc_tx_free = VGE_NTXDESC;
1750
1751 /* Set our station address */
1752 for (i = 0; i < ETHER_ADDR_LEN; i++)
1753 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1754
1755 /*
1756 * Set receive FIFO threshold. Also allow transmission and
1757 * reception of VLAN tagged frames.
1758 */
1759 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
1760 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);
1761
1762 /* Set DMA burst length */
1763 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1764 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1765
1766 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);
1767
1768 /* Set collision backoff algorithm */
1769 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
1770 VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
1771 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1772
1773 /* Disable LPSEL field in priority resolution */
1774 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1775
1776 /*
1777 * Load the addresses of the DMA queues into the chip.
1778 * Note that we only use one transmit queue.
1779 */
1780
1781 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1782 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1783
1784 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1785 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1786 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1787
1788 /* Enable and wake up the RX descriptor queue */
1789 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1790 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1791
1792 /* Enable the TX descriptor queue */
1793 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1794
1795 /* Set up the receive filter -- allow large frames for VLANs. */
1796 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);
1797
1798 /* If we want promiscuous mode, set the allframes bit. */
1799 if (ifp->if_flags & IFF_PROMISC) {
1800 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1801 }
1802
1803 /* Set capture broadcast bit to capture broadcast frames. */
1804 if (ifp->if_flags & IFF_BROADCAST) {
1805 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1806 }
1807
1808 /* Set multicast bit to capture multicast frames. */
1809 if (ifp->if_flags & IFF_MULTICAST) {
1810 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1811 }
1812
1813 /* Init the cam filter. */
1814 vge_cam_clear(sc);
1815
1816 /* Init the multicast filter. */
1817 vge_setmulti(sc);
1818
1819 /* Enable flow control */
1820
1821 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1822
1823 /* Enable jumbo frame reception (if desired) */
1824
1825 /* Start the MAC. */
1826 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1827 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1828 CSR_WRITE_1(sc, VGE_CRS0,
1829 VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);
1830
1831 /*
1832 * Configure one-shot timer for microsecond
1833 * resulution and load it for 500 usecs.
1834 */
1835 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1836 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1837
1838 /*
1839 * Configure interrupt moderation for receive. Enable
1840 * the holdoff counter and load it, and set the RX
1841 * suppression count to the number of descriptors we
1842 * want to allow before triggering an interrupt.
1843 * The holdoff timer is in units of 20 usecs.
1844 */
1845
1846 #ifdef notyet
1847 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1848 /* Select the interrupt holdoff timer page. */
1849 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1850 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1851 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1852
1853 /* Enable use of the holdoff timer. */
1854 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1855 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1856
1857 /* Select the RX suppression threshold page. */
1858 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1859 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1860 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1861
1862 /* Restore the page select bits. */
1863 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1864 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1865 #endif
1866
1867 #ifdef DEVICE_POLLING
1868 /*
1869 * Disable interrupts if we are polling.
1870 */
1871 if (ifp->if_flags & IFF_POLLING) {
1872 CSR_WRITE_4(sc, VGE_IMR, 0);
1873 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1874 } else /* otherwise ... */
1875 #endif /* DEVICE_POLLING */
1876 {
1877 /*
1878 * Enable interrupts.
1879 */
1880 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1881 CSR_WRITE_4(sc, VGE_ISR, 0);
1882 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1883 }
1884
1885 if ((rc = ether_mediachange(ifp)) != 0)
1886 goto out;
1887
1888 ifp->if_flags |= IFF_RUNNING;
1889 ifp->if_flags &= ~IFF_OACTIVE;
1890
1891 sc->sc_if_flags = 0;
1892 sc->sc_link = 0;
1893
1894 callout_schedule(&sc->sc_timeout, hz);
1895
1896 out:
1897 return rc;
1898 }
1899
1900 static void
1901 vge_miibus_statchg(struct ifnet *ifp)
1902 {
1903 struct vge_softc *sc = ifp->if_softc;
1904 struct mii_data *mii = &sc->sc_mii;
1905 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
1906
1907 /*
1908 * If the user manually selects a media mode, we need to turn
1909 * on the forced MAC mode bit in the DIAGCTL register. If the
1910 * user happens to choose a full duplex mode, we also need to
1911 * set the 'force full duplex' bit. This applies only to
1912 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1913 * mode is disabled, and in 1000baseT mode, full duplex is
1914 * always implied, so we turn on the forced mode bit but leave
1915 * the FDX bit cleared.
1916 */
1917
1918 switch (IFM_SUBTYPE(ife->ifm_media)) {
1919 case IFM_AUTO:
1920 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1921 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1922 break;
1923 case IFM_1000_T:
1924 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1925 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1926 break;
1927 case IFM_100_TX:
1928 case IFM_10_T:
1929 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1930 if ((ife->ifm_media & IFM_FDX) != 0) {
1931 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1932 } else {
1933 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1934 }
1935 break;
1936 default:
1937 printf("%s: unknown media type: %x\n",
1938 device_xname(sc->sc_dev),
1939 IFM_SUBTYPE(ife->ifm_media));
1940 break;
1941 }
1942 }
1943
1944 static int
1945 vge_ifflags_cb(struct ethercom *ec)
1946 {
1947 struct ifnet *ifp = &ec->ec_if;
1948 struct vge_softc *sc = ifp->if_softc;
1949 int change = ifp->if_flags ^ sc->sc_if_flags;
1950
1951 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1952 return ENETRESET;
1953 else if ((change & IFF_PROMISC) == 0)
1954 return 0;
1955
1956 if ((ifp->if_flags & IFF_PROMISC) == 0)
1957 CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1958 else
1959 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1960 vge_setmulti(sc);
1961 return 0;
1962 }
1963
1964 static int
1965 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
1966 {
1967 struct vge_softc *sc;
1968 int s, error;
1969
1970 sc = ifp->if_softc;
1971 error = 0;
1972
1973 s = splnet();
1974
1975 if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
1976 error = 0;
1977 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1978 ;
1979 else if (ifp->if_flags & IFF_RUNNING) {
1980 /*
1981 * Multicast list has changed; set the hardware filter
1982 * accordingly.
1983 */
1984 vge_setmulti(sc);
1985 }
1986 }
1987 sc->sc_if_flags = ifp->if_flags;
1988
1989 splx(s);
1990 return error;
1991 }
1992
1993 static void
1994 vge_watchdog(struct ifnet *ifp)
1995 {
1996 struct vge_softc *sc;
1997 int s;
1998
1999 sc = ifp->if_softc;
2000 s = splnet();
2001 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2002 ifp->if_oerrors++;
2003
2004 vge_txeof(sc);
2005 vge_rxeof(sc);
2006
2007 vge_init(ifp);
2008
2009 splx(s);
2010 }
2011
2012 /*
2013 * Stop the adapter and free any mbufs allocated to the
2014 * RX and TX lists.
2015 */
2016 static void
2017 vge_stop(struct ifnet *ifp, int disable)
2018 {
2019 struct vge_softc *sc = ifp->if_softc;
2020 struct vge_txsoft *txs;
2021 struct vge_rxsoft *rxs;
2022 int i, s;
2023
2024 s = splnet();
2025 ifp->if_timer = 0;
2026
2027 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2028 #ifdef DEVICE_POLLING
2029 ether_poll_deregister(ifp);
2030 #endif /* DEVICE_POLLING */
2031
2032 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2033 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2034 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2035 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2036 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2037 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2038
2039 if (sc->sc_rx_mhead != NULL) {
2040 m_freem(sc->sc_rx_mhead);
2041 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2042 }
2043
2044 /* Free the TX list buffers. */
2045
2046 for (i = 0; i < VGE_NTXDESC; i++) {
2047 txs = &sc->sc_txsoft[i];
2048 if (txs->txs_mbuf != NULL) {
2049 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2050 m_freem(txs->txs_mbuf);
2051 txs->txs_mbuf = NULL;
2052 }
2053 }
2054
2055 /* Free the RX list buffers. */
2056
2057 for (i = 0; i < VGE_NRXDESC; i++) {
2058 rxs = &sc->sc_rxsoft[i];
2059 if (rxs->rxs_mbuf != NULL) {
2060 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2061 m_freem(rxs->rxs_mbuf);
2062 rxs->rxs_mbuf = NULL;
2063 }
2064 }
2065
2066 splx(s);
2067 }
2068
2069 #if VGE_POWER_MANAGEMENT
2070 /*
2071 * Device suspend routine. Stop the interface and save some PCI
2072 * settings in case the BIOS doesn't restore them properly on
2073 * resume.
2074 */
2075 static int
2076 vge_suspend(device_t dev)
2077 {
2078 struct vge_softc *sc;
2079 int i;
2080
2081 sc = device_get_softc(dev);
2082
2083 vge_stop(sc);
2084
2085 for (i = 0; i < 5; i++)
2086 sc->sc_saved_maps[i] =
2087 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2088 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2089 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2090 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2091 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2092
2093 sc->suspended = 1;
2094
2095 return 0;
2096 }
2097
2098 /*
2099 * Device resume routine. Restore some PCI settings in case the BIOS
2100 * doesn't, re-enable busmastering, and restart the interface if
2101 * appropriate.
2102 */
2103 static int
2104 vge_resume(device_t dev)
2105 {
2106 struct vge_softc *sc;
2107 struct ifnet *ifp;
2108 int i;
2109
2110 sc = device_private(dev);
2111 ifp = &sc->sc_ethercom.ec_if;
2112
2113 /* better way to do this? */
2114 for (i = 0; i < 5; i++)
2115 pci_write_config(dev, PCIR_MAPS + i * 4,
2116 sc->sc_saved_maps[i], 4);
2117 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2118 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2119 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2120 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2121
2122 /* reenable busmastering */
2123 pci_enable_busmaster(dev);
2124 pci_enable_io(dev, SYS_RES_MEMORY);
2125
2126 /* reinitialize interface if necessary */
2127 if (ifp->if_flags & IFF_UP)
2128 vge_init(sc);
2129
2130 sc->suspended = 0;
2131
2132 return 0;
2133 }
2134 #endif
2135
2136 /*
2137 * Stop all chip I/O so that the kernel's probe routines don't
2138 * get confused by errant DMAs when rebooting.
2139 */
2140 static bool
2141 vge_shutdown(device_t self, int howto)
2142 {
2143 struct vge_softc *sc;
2144
2145 sc = device_private(self);
2146 vge_stop(&sc->sc_ethercom.ec_if, 1);
2147
2148 return true;
2149 }
2150