Home | History | Annotate | Line # | Download | only in pci
if_vge.c revision 1.80
      1 /* $NetBSD: if_vge.c,v 1.80 2020/03/21 16:56:00 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2004
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.80 2020/03/21 16:56:00 thorpej Exp $");
     39 
     40 /*
     41  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
     42  *
     43  * Written by Bill Paul <wpaul (at) windriver.com>
     44  * Senior Networking Software Engineer
     45  * Wind River Systems
     46  */
     47 
     48 /*
     49  * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
     50  * combines a tri-speed ethernet MAC and PHY, with the following
     51  * features:
     52  *
     53  *	o Jumbo frame support up to 16K
     54  *	o Transmit and receive flow control
     55  *	o IPv4 checksum offload
     56  *	o VLAN tag insertion and stripping
     57  *	o TCP large send
     58  *	o 64-bit multicast hash table filter
     59  *	o 64 entry CAM filter
     60  *	o 16K RX FIFO and 48K TX FIFO memory
     61  *	o Interrupt moderation
     62  *
     63  * The VT6122 supports up to four transmit DMA queues. The descriptors
     64  * in the transmit ring can address up to 7 data fragments; frames which
     65  * span more than 7 data buffers must be coalesced, but in general the
     66  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
     67  * long. The receive descriptors address only a single buffer.
     68  *
     69  * There are two peculiar design issues with the VT6122. One is that
     70  * receive data buffers must be aligned on a 32-bit boundary. This is
     71  * not a problem where the VT6122 is used as a LOM device in x86-based
     72  * systems, but on architectures that generate unaligned access traps, we
     73  * have to do some copying.
     74  *
     75  * The other issue has to do with the way 64-bit addresses are handled.
     76  * The DMA descriptors only allow you to specify 48 bits of addressing
     77  * information. The remaining 16 bits are specified using one of the
     78  * I/O registers (VGE_DATABUF_HIADDR). If you only have a 32-bit system,
     79  * then this isn't an issue, but if you have a 64-bit system and more than
     80  * 4GB of memory, you must have to make sure your network data buffers reside
     81  * in the same 48-bit 'segment.'
     82  *
     83  * Furthermore, the descriptors must also all reside within the same 32-bit
     84  * 'segment' (see VGE_TXDESC_HIADDR).
     85  *
     86  * Special thanks to Ryan Fu at VIA Networking for providing documentation
     87  * and sample NICs for testing.
     88  */
     89 
     90 
     91 #include <sys/param.h>
     92 #include <sys/endian.h>
     93 #include <sys/systm.h>
     94 #include <sys/device.h>
     95 #include <sys/sockio.h>
     96 #include <sys/mbuf.h>
     97 #include <sys/malloc.h>
     98 #include <sys/kernel.h>
     99 #include <sys/socket.h>
    100 
    101 #include <net/if.h>
    102 #include <net/if_arp.h>
    103 #include <net/if_ether.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 
    107 #include <net/bpf.h>
    108 
    109 #include <sys/bus.h>
    110 
    111 #include <dev/mii/mii.h>
    112 #include <dev/mii/miivar.h>
    113 
    114 #include <dev/pci/pcireg.h>
    115 #include <dev/pci/pcivar.h>
    116 #include <dev/pci/pcidevs.h>
    117 
    118 #include <dev/pci/if_vgereg.h>
    119 
    120 #define VGE_IFQ_MAXLEN		64
    121 
    122 #define VGE_RING_ALIGN		256
    123 
    124 #define VGE_NTXDESC		256
    125 #define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
    126 #define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
    127 #define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)
    128 
    129 #define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
    130 #define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
    131 #define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
    132 #define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)
    133 
    134 #define VGE_ADDR_LO(y)		BUS_ADDR_LO32(y)
    135 #define VGE_ADDR_HI(y)		BUS_ADDR_HI32(y)
    136 #define VGE_BUFLEN(y)		((y) & 0x7FFF)
    137 #define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)
    138 
    139 #define VGE_POWER_MANAGEMENT	0	/* disabled for now */
    140 
    141 /*
    142  * Mbuf adjust factor to force 32-bit alignment of IP header.
    143  * Drivers should pad ETHER_ALIGN bytes when setting up a
    144  * RX mbuf so the upper layers get the IP header properly aligned
    145  * past the 14-byte Ethernet header.
    146  *
    147  * See also comment in vge_encap().
    148  */
    149 
    150 #ifdef __NO_STRICT_ALIGNMENT
    151 #define VGE_RX_BUFSIZE		MCLBYTES
    152 #else
    153 #define VGE_RX_PAD		sizeof(uint32_t)
    154 #define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
    155 #endif
    156 
    157 /*
    158  * Control structures are DMA'd to the vge chip. We allocate them in
    159  * a single clump that maps to a single DMA segment to make several things
    160  * easier.
    161  */
    162 struct vge_control_data {
    163 	/* TX descriptors */
    164 	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
    165 	/* RX descriptors */
    166 	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
    167 	/* dummy data for TX padding */
    168 	uint8_t			vcd_pad[ETHER_PAD_LEN];
    169 };
    170 
    171 #define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
    172 #define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
    173 #define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
    174 #define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])
    175 
    176 /*
    177  * Software state for TX jobs.
    178  */
    179 struct vge_txsoft {
    180 	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
    181 	bus_dmamap_t	txs_dmamap;		/* our DMA map */
    182 };
    183 
    184 /*
    185  * Software state for RX jobs.
    186  */
    187 struct vge_rxsoft {
    188 	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
    189 	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
    190 };
    191 
    192 
    193 struct vge_softc {
    194 	device_t		sc_dev;
    195 
    196 	bus_space_tag_t		sc_bst;		/* bus space tag */
    197 	bus_space_handle_t	sc_bsh;		/* bus space handle */
    198 	bus_dma_tag_t		sc_dmat;
    199 
    200 	struct ethercom		sc_ethercom;	/* interface info */
    201 	uint8_t			sc_eaddr[ETHER_ADDR_LEN];
    202 
    203 	void			*sc_intrhand;
    204 	struct mii_data		sc_mii;
    205 	uint8_t			sc_type;
    206 	u_short			sc_if_flags;
    207 	int			sc_link;
    208 	int			sc_camidx;
    209 	callout_t		sc_timeout;
    210 
    211 	bus_dmamap_t		sc_cddmamap;
    212 #define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr
    213 
    214 	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
    215 	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
    216 	struct vge_control_data	*sc_control_data;
    217 #define sc_txdescs		sc_control_data->vcd_txdescs
    218 #define sc_rxdescs		sc_control_data->vcd_rxdescs
    219 
    220 	int			sc_tx_prodidx;
    221 	int			sc_tx_considx;
    222 	int			sc_tx_free;
    223 
    224 	struct mbuf		*sc_rx_mhead;
    225 	struct mbuf		*sc_rx_mtail;
    226 	int			sc_rx_prodidx;
    227 	int			sc_rx_consumed;
    228 
    229 	int			sc_suspended;	/* 0 = normal  1 = suspended */
    230 	uint32_t		sc_saved_maps[5];	/* pci data */
    231 	uint32_t		sc_saved_biosaddr;
    232 	uint8_t			sc_saved_intline;
    233 	uint8_t			sc_saved_cachelnsz;
    234 	uint8_t			sc_saved_lattimer;
    235 };
    236 
    237 #define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
    238 #define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
    239 #define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())
    240 
    241 #define VGE_TXDESCSYNC(sc, idx, ops)					\
    242 	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
    243 	    VGE_CDTXOFF(idx),						\
    244 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    245 	    (ops))
    246 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
    247 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    248 	    VGE_CDTXOFF(idx) +						\
    249 	    offsetof(struct vge_txdesc, td_frag[0]),			\
    250 	    sizeof(struct vge_txfrag) * (nsegs),			\
    251 	    (ops))
    252 #define VGE_RXDESCSYNC(sc, idx, ops)					\
    253 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    254 	    VGE_CDRXOFF(idx),						\
    255 	    sizeof(struct vge_rxdesc),					\
    256 	    (ops))
    257 
    258 /*
    259  * register space access macros
    260  */
    261 #define CSR_WRITE_4(sc, reg, val)	\
    262 	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    263 #define CSR_WRITE_2(sc, reg, val)	\
    264 	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    265 #define CSR_WRITE_1(sc, reg, val)	\
    266 	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
    267 
    268 #define CSR_READ_4(sc, reg)		\
    269 	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
    270 #define CSR_READ_2(sc, reg)		\
    271 	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
    272 #define CSR_READ_1(sc, reg)		\
    273 	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
    274 
    275 #define CSR_SETBIT_1(sc, reg, x)	\
    276 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
    277 #define CSR_SETBIT_2(sc, reg, x)	\
    278 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
    279 #define CSR_SETBIT_4(sc, reg, x)	\
    280 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
    281 
    282 #define CSR_CLRBIT_1(sc, reg, x)	\
    283 	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
    284 #define CSR_CLRBIT_2(sc, reg, x)	\
    285 	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
    286 #define CSR_CLRBIT_4(sc, reg, x)	\
    287 	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
    288 
    289 #define VGE_TIMEOUT		10000
    290 
    291 #define VGE_PCI_LOIO		 0x10
    292 #define VGE_PCI_LOMEM		 0x14
    293 
    294 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
    295 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
    296 
    297 static int vge_ifflags_cb(struct ethercom *);
    298 
    299 static int vge_match(device_t, cfdata_t, void *);
    300 static void vge_attach(device_t, device_t, void *);
    301 
    302 static int vge_encap(struct vge_softc *, struct mbuf *, int);
    303 
    304 static int vge_allocmem(struct vge_softc *);
    305 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
    306 #ifndef __NO_STRICT_ALIGNMENT
    307 static inline void vge_fixup_rx(struct mbuf *);
    308 #endif
    309 static void vge_rxeof(struct vge_softc *);
    310 static void vge_txeof(struct vge_softc *);
    311 static int vge_intr(void *);
    312 static void vge_tick(void *);
    313 static void vge_start(struct ifnet *);
    314 static int vge_ioctl(struct ifnet *, u_long, void *);
    315 static int vge_init(struct ifnet *);
    316 static void vge_stop(struct ifnet *, int);
    317 static void vge_watchdog(struct ifnet *);
    318 #if VGE_POWER_MANAGEMENT
    319 static int vge_suspend(device_t);
    320 static int vge_resume(device_t);
    321 #endif
    322 static bool vge_shutdown(device_t, int);
    323 
    324 static uint16_t vge_read_eeprom(struct vge_softc *, int);
    325 
    326 static void vge_miipoll_start(struct vge_softc *);
    327 static void vge_miipoll_stop(struct vge_softc *);
    328 static int vge_miibus_readreg(device_t, int, int, uint16_t *);
    329 static int vge_miibus_writereg(device_t, int, int, uint16_t);
    330 static void vge_miibus_statchg(struct ifnet *);
    331 
    332 static void vge_cam_clear(struct vge_softc *);
    333 static int vge_cam_set(struct vge_softc *, uint8_t *);
    334 static void	vge_clrwol(struct vge_softc *);
    335 static void vge_setmulti(struct vge_softc *);
    336 static void vge_reset(struct vge_softc *);
    337 
    338 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
    339     vge_match, vge_attach, NULL, NULL);
    340 
    341 static inline void
    342 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
    343 {
    344 
    345 	f->tf_addrlo = htole32((uint32_t)daddr);
    346 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    347 		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    348 	else
    349 		f->tf_addrhi = 0;
    350 }
    351 
    352 static inline void
    353 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
    354 {
    355 
    356 	rxd->rd_addrlo = htole32((uint32_t)daddr);
    357 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    358 		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
    359 	else
    360 		rxd->rd_addrhi = 0;
    361 }
    362 
    363 /*
    364  * Read a word of data stored in the EEPROM at address 'addr.'
    365  */
    366 static uint16_t
    367 vge_read_eeprom(struct vge_softc *sc, int addr)
    368 {
    369 	int i;
    370 	uint16_t word = 0;
    371 
    372 	/*
    373 	 * Enter EEPROM embedded programming mode. In order to
    374 	 * access the EEPROM at all, we first have to set the
    375 	 * EELOAD bit in the CHIPCFG2 register.
    376 	 */
    377 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    378 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
    379 
    380 	/* Select the address of the word we want to read */
    381 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
    382 
    383 	/* Issue read command */
    384 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
    385 
    386 	/* Wait for the done bit to be set. */
    387 	for (i = 0; i < VGE_TIMEOUT; i++) {
    388 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
    389 			break;
    390 	}
    391 
    392 	if (i == VGE_TIMEOUT) {
    393 		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
    394 		return 0;
    395 	}
    396 
    397 	/* Read the result */
    398 	word = CSR_READ_2(sc, VGE_EERDDAT);
    399 
    400 	/* Turn off EEPROM access mode. */
    401 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
    402 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
    403 
    404 	return word;
    405 }
    406 
    407 static void
    408 vge_miipoll_stop(struct vge_softc *sc)
    409 {
    410 	int i;
    411 
    412 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    413 
    414 	for (i = 0; i < VGE_TIMEOUT; i++) {
    415 		DELAY(1);
    416 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    417 			break;
    418 	}
    419 
    420 	if (i == VGE_TIMEOUT) {
    421 		printf("%s: failed to idle MII autopoll\n",
    422 		    device_xname(sc->sc_dev));
    423 	}
    424 }
    425 
    426 static void
    427 vge_miipoll_start(struct vge_softc *sc)
    428 {
    429 	int i;
    430 
    431 	/* First, make sure we're idle. */
    432 
    433 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
    434 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
    435 
    436 	for (i = 0; i < VGE_TIMEOUT; i++) {
    437 		DELAY(1);
    438 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
    439 			break;
    440 	}
    441 
    442 	if (i == VGE_TIMEOUT) {
    443 		printf("%s: failed to idle MII autopoll\n",
    444 		    device_xname(sc->sc_dev));
    445 		return;
    446 	}
    447 
    448 	/* Now enable auto poll mode. */
    449 
    450 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
    451 
    452 	/* And make sure it started. */
    453 
    454 	for (i = 0; i < VGE_TIMEOUT; i++) {
    455 		DELAY(1);
    456 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
    457 			break;
    458 	}
    459 
    460 	if (i == VGE_TIMEOUT) {
    461 		printf("%s: failed to start MII autopoll\n",
    462 		    device_xname(sc->sc_dev));
    463 	}
    464 }
    465 
    466 static int
    467 vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    468 {
    469 	struct vge_softc *sc;
    470 	int i, s;
    471 	int rv = 0;
    472 
    473 	sc = device_private(dev);
    474 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    475 		return -1;
    476 
    477 	s = splnet();
    478 	vge_miipoll_stop(sc);
    479 
    480 	/* Specify the register we want to read. */
    481 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    482 
    483 	/* Issue read command. */
    484 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
    485 
    486 	/* Wait for the read command bit to self-clear. */
    487 	for (i = 0; i < VGE_TIMEOUT; i++) {
    488 		DELAY(1);
    489 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
    490 			break;
    491 	}
    492 
    493 	if (i == VGE_TIMEOUT) {
    494 		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
    495 		rv = ETIMEDOUT;
    496 	} else
    497 		*val = CSR_READ_2(sc, VGE_MIIDATA);
    498 
    499 	vge_miipoll_start(sc);
    500 	splx(s);
    501 
    502 	return rv;
    503 }
    504 
    505 static int
    506 vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    507 {
    508 	struct vge_softc *sc;
    509 	int i, s, rv = 0;
    510 
    511 	sc = device_private(dev);
    512 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
    513 		return -1;
    514 
    515 	s = splnet();
    516 	vge_miipoll_stop(sc);
    517 
    518 	/* Specify the register we want to write. */
    519 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
    520 
    521 	/* Specify the data we want to write. */
    522 	CSR_WRITE_2(sc, VGE_MIIDATA, val);
    523 
    524 	/* Issue write command. */
    525 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
    526 
    527 	/* Wait for the write command bit to self-clear. */
    528 	for (i = 0; i < VGE_TIMEOUT; i++) {
    529 		DELAY(1);
    530 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
    531 			break;
    532 	}
    533 
    534 	if (i == VGE_TIMEOUT) {
    535 		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
    536 		rv = ETIMEDOUT;
    537 	}
    538 
    539 	vge_miipoll_start(sc);
    540 	splx(s);
    541 
    542 	return rv;
    543 }
    544 
    545 static void
    546 vge_cam_clear(struct vge_softc *sc)
    547 {
    548 	int i;
    549 
    550 	/*
    551 	 * Turn off all the mask bits. This tells the chip
    552 	 * that none of the entries in the CAM filter are valid.
    553 	 * desired entries will be enabled as we fill the filter in.
    554 	 */
    555 
    556 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    557 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    558 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
    559 	for (i = 0; i < 8; i++)
    560 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    561 
    562 	/* Clear the VLAN filter too. */
    563 
    564 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
    565 	for (i = 0; i < 8; i++)
    566 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
    567 
    568 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    569 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    570 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    571 
    572 	sc->sc_camidx = 0;
    573 }
    574 
    575 static int
    576 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
    577 {
    578 	int i, error;
    579 
    580 	error = 0;
    581 
    582 	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
    583 		return ENOSPC;
    584 
    585 	/* Select the CAM data page. */
    586 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    587 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
    588 
    589 	/* Set the filter entry we want to update and enable writing. */
    590 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
    591 
    592 	/* Write the address to the CAM registers */
    593 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    594 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
    595 
    596 	/* Issue a write command. */
    597 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
    598 
    599 	/* Wake for it to clear. */
    600 	for (i = 0; i < VGE_TIMEOUT; i++) {
    601 		DELAY(1);
    602 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
    603 			break;
    604 	}
    605 
    606 	if (i == VGE_TIMEOUT) {
    607 		printf("%s: setting CAM filter failed\n",
    608 		    device_xname(sc->sc_dev));
    609 		error = EIO;
    610 		goto fail;
    611 	}
    612 
    613 	/* Select the CAM mask page. */
    614 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    615 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
    616 
    617 	/* Set the mask bit that enables this filter. */
    618 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
    619 	    1 << (sc->sc_camidx & 7));
    620 
    621 	sc->sc_camidx++;
    622 
    623  fail:
    624 	/* Turn off access to CAM. */
    625 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
    626 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
    627 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
    628 
    629 	return error;
    630 }
    631 
    632 /*
    633  * Program the multicast filter. We use the 64-entry CAM filter
    634  * for perfect filtering. If there's more than 64 multicast addresses,
    635  * we use the hash filter instead.
    636  */
    637 static void
    638 vge_setmulti(struct vge_softc *sc)
    639 {
    640 	struct ethercom *ec = &sc->sc_ethercom;
    641 	struct ifnet *ifp = &ec->ec_if;
    642 	int error;
    643 	uint32_t h, hashes[2] = { 0, 0 };
    644 	struct ether_multi *enm;
    645 	struct ether_multistep step;
    646 
    647 	error = 0;
    648 
    649 	/* First, zot all the multicast entries. */
    650 	vge_cam_clear(sc);
    651 	CSR_WRITE_4(sc, VGE_MAR0, 0);
    652 	CSR_WRITE_4(sc, VGE_MAR1, 0);
    653 	ifp->if_flags &= ~IFF_ALLMULTI;
    654 
    655 	/*
    656 	 * If the user wants allmulti or promisc mode, enable reception
    657 	 * of all multicast frames.
    658 	 */
    659 	if (ifp->if_flags & IFF_PROMISC) {
    660  allmulti:
    661 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
    662 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
    663 		ifp->if_flags |= IFF_ALLMULTI;
    664 		return;
    665 	}
    666 
    667 	/* Now program new ones */
    668 	ETHER_LOCK(ec);
    669 	ETHER_FIRST_MULTI(step, ec, enm);
    670 	while (enm != NULL) {
    671 		/*
    672 		 * If multicast range, fall back to ALLMULTI.
    673 		 */
    674 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    675 		    ETHER_ADDR_LEN) != 0) {
    676 			ETHER_UNLOCK(ec);
    677 			goto allmulti;
    678 		}
    679 
    680 		error = vge_cam_set(sc, enm->enm_addrlo);
    681 		if (error)
    682 			break;
    683 
    684 		ETHER_NEXT_MULTI(step, enm);
    685 	}
    686 	ETHER_UNLOCK(ec);
    687 
    688 	/* If there were too many addresses, use the hash filter. */
    689 	if (error) {
    690 		vge_cam_clear(sc);
    691 
    692 		ETHER_LOCK(ec);
    693 		ETHER_FIRST_MULTI(step, ec, enm);
    694 		while (enm != NULL) {
    695 			/*
    696 			 * If multicast range, fall back to ALLMULTI.
    697 			 */
    698 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    699 			    ETHER_ADDR_LEN) != 0) {
    700 				ETHER_UNLOCK(ec);
    701 				goto allmulti;
    702 			}
    703 
    704 			h = ether_crc32_be(enm->enm_addrlo,
    705 			    ETHER_ADDR_LEN) >> 26;
    706 			hashes[h >> 5] |= 1 << (h & 0x1f);
    707 
    708 			ETHER_NEXT_MULTI(step, enm);
    709 		}
    710 		ETHER_UNLOCK(ec);
    711 
    712 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
    713 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
    714 	}
    715 }
    716 
    717 static void
    718 vge_reset(struct vge_softc *sc)
    719 {
    720 	int i;
    721 
    722 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
    723 
    724 	for (i = 0; i < VGE_TIMEOUT; i++) {
    725 		DELAY(5);
    726 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
    727 			break;
    728 	}
    729 
    730 	if (i == VGE_TIMEOUT) {
    731 		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
    732 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
    733 		DELAY(2000);
    734 	}
    735 
    736 	DELAY(5000);
    737 
    738 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
    739 
    740 	for (i = 0; i < VGE_TIMEOUT; i++) {
    741 		DELAY(5);
    742 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
    743 			break;
    744 	}
    745 
    746 	if (i == VGE_TIMEOUT) {
    747 		printf("%s: EEPROM reload timed out\n",
    748 		    device_xname(sc->sc_dev));
    749 		return;
    750 	}
    751 
    752 	/*
    753 	 * On some machine, the first read data from EEPROM could be
    754 	 * messed up, so read one dummy data here to avoid the mess.
    755 	 */
    756 	(void)vge_read_eeprom(sc, 0);
    757 
    758 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
    759 }
    760 
    761 /*
    762  * Probe for a VIA gigabit chip. Check the PCI vendor and device
    763  * IDs against our list and return a device name if we find a match.
    764  */
    765 static int
    766 vge_match(device_t parent, cfdata_t match, void *aux)
    767 {
    768 	struct pci_attach_args *pa = aux;
    769 
    770 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
    771 	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
    772 		return 1;
    773 
    774 	return 0;
    775 }
    776 
    777 static int
    778 vge_allocmem(struct vge_softc *sc)
    779 {
    780 	int error;
    781 	int nseg;
    782 	int i;
    783 	bus_dma_segment_t seg;
    784 
    785 	/*
    786 	 * Allocate memory for control data.
    787 	 *
    788 	 * NOTE: This must all fit within the same 4GB segment.  The
    789 	 * "boundary" argument to bus_dmamem_alloc() will end up as
    790 	 * 4GB on 64-bit platforms and 0 ("no boundary constraint") on
    791 	 * 32-bit platformds.
    792 	 */
    793 
    794 	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
    795 	     VGE_RING_ALIGN,
    796 	     (bus_size_t)(1ULL << 32),
    797 	     &seg, 1, &nseg, BUS_DMA_NOWAIT);
    798 	if (error) {
    799 		aprint_error_dev(sc->sc_dev,
    800 		    "could not allocate control data dma memory\n");
    801 		goto fail_1;
    802 	}
    803 
    804 	/* Map the memory to kernel VA space */
    805 
    806 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    807 	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
    808 	    BUS_DMA_NOWAIT);
    809 	if (error) {
    810 		aprint_error_dev(sc->sc_dev,
    811 		    "could not map control data dma memory\n");
    812 		goto fail_2;
    813 	}
    814 	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
    815 
    816 	/*
    817 	 * Create map for control data.
    818 	 */
    819 	error = bus_dmamap_create(sc->sc_dmat,
    820 	    sizeof(struct vge_control_data), 1,
    821 	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
    822 	    &sc->sc_cddmamap);
    823 	if (error) {
    824 		aprint_error_dev(sc->sc_dev,
    825 		    "could not create control data dmamap\n");
    826 		goto fail_3;
    827 	}
    828 
    829 	/* Load the map for the control data. */
    830 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    831 	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
    832 	    BUS_DMA_NOWAIT);
    833 	if (error) {
    834 		aprint_error_dev(sc->sc_dev,
    835 		    "could not load control data dma memory\n");
    836 		goto fail_4;
    837 	}
    838 
    839 	/* Create DMA maps for TX buffers */
    840 
    841 	for (i = 0; i < VGE_NTXDESC; i++) {
    842 		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
    843 		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
    844 		    &sc->sc_txsoft[i].txs_dmamap);
    845 		if (error) {
    846 			aprint_error_dev(sc->sc_dev,
    847 			    "can't create DMA map for TX descs\n");
    848 			goto fail_5;
    849 		}
    850 	}
    851 
    852 	/* Create DMA maps for RX buffers */
    853 
    854 	for (i = 0; i < VGE_NRXDESC; i++) {
    855 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    856 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    857 		    &sc->sc_rxsoft[i].rxs_dmamap);
    858 		if (error) {
    859 			aprint_error_dev(sc->sc_dev,
    860 			    "can't create DMA map for RX descs\n");
    861 			goto fail_6;
    862 		}
    863 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    864 	}
    865 
    866 	return 0;
    867 
    868  fail_6:
    869 	for (i = 0; i < VGE_NRXDESC; i++) {
    870 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    871 			bus_dmamap_destroy(sc->sc_dmat,
    872 			    sc->sc_rxsoft[i].rxs_dmamap);
    873 	}
    874  fail_5:
    875 	for (i = 0; i < VGE_NTXDESC; i++) {
    876 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    877 			bus_dmamap_destroy(sc->sc_dmat,
    878 			    sc->sc_txsoft[i].txs_dmamap);
    879 	}
    880 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    881  fail_4:
    882 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    883  fail_3:
    884 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    885 	    sizeof(struct vge_control_data));
    886  fail_2:
    887 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    888  fail_1:
    889 	return ENOMEM;
    890 }
    891 
    892 /*
    893  * Attach the interface. Allocate softc structures, do ifmedia
    894  * setup and ethernet/BPF attach.
    895  */
    896 static void
    897 vge_attach(device_t parent, device_t self, void *aux)
    898 {
    899 	uint8_t	*eaddr;
    900 	struct vge_softc *sc = device_private(self);
    901 	struct ifnet *ifp;
    902 	struct mii_data * const mii = &sc->sc_mii;
    903 	struct pci_attach_args *pa = aux;
    904 	pci_chipset_tag_t pc = pa->pa_pc;
    905 	const char *intrstr;
    906 	pci_intr_handle_t ih;
    907 	uint16_t val;
    908 	char intrbuf[PCI_INTRSTR_LEN];
    909 
    910 	sc->sc_dev = self;
    911 
    912 	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);
    913 
    914 	/* Make sure bus-mastering is enabled */
    915 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    916 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    917 	    PCI_COMMAND_MASTER_ENABLE);
    918 
    919 	/*
    920 	 * Map control/status registers.
    921 	 */
    922 	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
    923 	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
    924 		aprint_error_dev(self, "couldn't map memory\n");
    925 		return;
    926 	}
    927 
    928 	/*
    929 	 * Map and establish our interrupt.
    930 	 */
    931 	if (pci_intr_map(pa, &ih)) {
    932 		aprint_error_dev(self, "unable to map interrupt\n");
    933 		return;
    934 	}
    935 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    936 	sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
    937 	    sc, device_xname(self));
    938 	if (sc->sc_intrhand == NULL) {
    939 		aprint_error_dev(self, "unable to establish interrupt");
    940 		if (intrstr != NULL)
    941 			aprint_error(" at %s", intrstr);
    942 		aprint_error("\n");
    943 		return;
    944 	}
    945 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    946 
    947 	/* Reset the adapter. */
    948 	vge_reset(sc);
    949 
    950 	/*
    951 	 * Get station address from the EEPROM.
    952 	 */
    953 	eaddr = sc->sc_eaddr;
    954 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
    955 	eaddr[0] = val & 0xff;
    956 	eaddr[1] = val >> 8;
    957 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
    958 	eaddr[2] = val & 0xff;
    959 	eaddr[3] = val >> 8;
    960 	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
    961 	eaddr[4] = val & 0xff;
    962 	eaddr[5] = val >> 8;
    963 
    964 	aprint_normal_dev(self, "Ethernet address %s\n",
    965 	    ether_sprintf(eaddr));
    966 
    967 	/* Clear WOL and take hardware from powerdown. */
    968 	vge_clrwol(sc);
    969 
    970 	/*
    971 	 * The hardware supports 64-bit DMA addresses, but it's a little
    972 	 * complicated (see large comment about the hardware near the top
    973 	 * of the file).  TL;DR -- restrict ourselves to 48-bit.
    974 	 */
    975 	if (pci_dma64_available(pa)) {
    976 		if (bus_dmatag_subregion(pa->pa_dmat64,
    977 					 0,
    978 					 (bus_addr_t)(1ULL << 48),
    979 					 &sc->sc_dmat,
    980 					 BUS_DMA_WAITOK) != 0) {
    981 			aprint_error_dev(self,
    982 			    "WARNING: failed to restrict dma range,"
    983 			    " falling back to parent bus dma range\n");
    984 			sc->sc_dmat = pa->pa_dmat64;
    985 		}
    986 	} else {
    987 		sc->sc_dmat = pa->pa_dmat;
    988 	}
    989 
    990 	if (vge_allocmem(sc) != 0)
    991 		return;
    992 
    993 	ifp = &sc->sc_ethercom.ec_if;
    994 	ifp->if_softc = sc;
    995 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    996 	ifp->if_mtu = ETHERMTU;
    997 	ifp->if_baudrate = IF_Gbps(1);
    998 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    999 	ifp->if_ioctl = vge_ioctl;
   1000 	ifp->if_start = vge_start;
   1001 	ifp->if_init = vge_init;
   1002 	ifp->if_stop = vge_stop;
   1003 
   1004 	/*
   1005 	 * We can support 802.1Q VLAN-sized frames and jumbo
   1006 	 * Ethernet frames.
   1007 	 */
   1008 	sc->sc_ethercom.ec_capabilities |=
   1009 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
   1010 	    ETHERCAP_VLAN_HWTAGGING;
   1011 	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   1012 
   1013 	/*
   1014 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
   1015 	 */
   1016 	ifp->if_capabilities |=
   1017 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1018 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1019 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1020 
   1021 #ifdef DEVICE_POLLING
   1022 #ifdef IFCAP_POLLING
   1023 	ifp->if_capabilities |= IFCAP_POLLING;
   1024 #endif
   1025 #endif
   1026 	ifp->if_watchdog = vge_watchdog;
   1027 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
   1028 	IFQ_SET_READY(&ifp->if_snd);
   1029 
   1030 	/*
   1031 	 * Initialize our media structures and probe the MII.
   1032 	 */
   1033 	mii->mii_ifp = ifp;
   1034 	mii->mii_readreg = vge_miibus_readreg;
   1035 	mii->mii_writereg = vge_miibus_writereg;
   1036 	mii->mii_statchg = vge_miibus_statchg;
   1037 
   1038 	sc->sc_ethercom.ec_mii = mii;
   1039 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
   1040 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1041 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
   1042 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   1043 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   1044 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   1045 	} else
   1046 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1047 
   1048 	/*
   1049 	 * Attach the interface.
   1050 	 */
   1051 	if_attach(ifp);
   1052 	if_deferred_start_init(ifp, NULL);
   1053 	ether_ifattach(ifp, eaddr);
   1054 	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
   1055 
   1056 	callout_init(&sc->sc_timeout, 0);
   1057 	callout_setfunc(&sc->sc_timeout, vge_tick, sc);
   1058 
   1059 	/*
   1060 	 * Make sure the interface is shutdown during reboot.
   1061 	 */
   1062 	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
   1063 		pmf_class_network_register(self, ifp);
   1064 	else
   1065 		aprint_error_dev(self, "couldn't establish power handler\n");
   1066 }
   1067 
   1068 static int
   1069 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
   1070 {
   1071 	struct mbuf *m_new;
   1072 	struct vge_rxdesc *rxd;
   1073 	struct vge_rxsoft *rxs;
   1074 	bus_dmamap_t map;
   1075 	int i;
   1076 #ifdef DIAGNOSTIC
   1077 	uint32_t rd_sts;
   1078 #endif
   1079 
   1080 	m_new = NULL;
   1081 	if (m == NULL) {
   1082 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1083 		if (m_new == NULL)
   1084 			return ENOBUFS;
   1085 
   1086 		MCLGET(m_new, M_DONTWAIT);
   1087 		if ((m_new->m_flags & M_EXT) == 0) {
   1088 			m_freem(m_new);
   1089 			return ENOBUFS;
   1090 		}
   1091 
   1092 		m = m_new;
   1093 	} else
   1094 		m->m_data = m->m_ext.ext_buf;
   1095 
   1096 
   1097 	/*
   1098 	 * This is part of an evil trick to deal with non-x86 platforms.
   1099 	 * The VIA chip requires RX buffers to be aligned on 32-bit
   1100 	 * boundaries, but that will hose non-x86 machines. To get around
   1101 	 * this, we leave some empty space at the start of each buffer
   1102 	 * and for non-x86 hosts, we copy the buffer back two bytes
   1103 	 * to achieve word alignment. This is slightly more efficient
   1104 	 * than allocating a new buffer, copying the contents, and
   1105 	 * discarding the old buffer.
   1106 	 */
   1107 	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
   1108 #ifndef __NO_STRICT_ALIGNMENT
   1109 	m->m_data += VGE_RX_PAD;
   1110 #endif
   1111 	rxs = &sc->sc_rxsoft[idx];
   1112 	map = rxs->rxs_dmamap;
   1113 
   1114 	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
   1115 		goto out;
   1116 
   1117 	rxd = &sc->sc_rxdescs[idx];
   1118 
   1119 #ifdef DIAGNOSTIC
   1120 	/* If this descriptor is still owned by the chip, bail. */
   1121 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1122 	rd_sts = le32toh(rxd->rd_sts);
   1123 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1124 	if (rd_sts & VGE_RDSTS_OWN) {
   1125 		panic("%s: tried to map busy RX descriptor",
   1126 		    device_xname(sc->sc_dev));
   1127 	}
   1128 #endif
   1129 
   1130 	rxs->rxs_mbuf = m;
   1131 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1132 	    BUS_DMASYNC_PREREAD);
   1133 
   1134 	rxd->rd_buflen =
   1135 	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
   1136 	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
   1137 	rxd->rd_sts = 0;
   1138 	rxd->rd_ctl = 0;
   1139 	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1140 
   1141 	/*
   1142 	 * Note: the manual fails to document the fact that for
   1143 	 * proper operation, the driver needs to replentish the RX
   1144 	 * DMA ring 4 descriptors at a time (rather than one at a
   1145 	 * time, like most chips). We can allocate the new buffers
   1146 	 * but we should not set the OWN bits until we're ready
   1147 	 * to hand back 4 of them in one shot.
   1148 	 */
   1149 
   1150 #define VGE_RXCHUNK 4
   1151 	sc->sc_rx_consumed++;
   1152 	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
   1153 		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
   1154 			KASSERT(i >= 0);
   1155 			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
   1156 			VGE_RXDESCSYNC(sc, i,
   1157 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1158 		}
   1159 		sc->sc_rx_consumed = 0;
   1160 	}
   1161 
   1162 	return 0;
   1163  out:
   1164 	if (m_new != NULL)
   1165 		m_freem(m_new);
   1166 	return ENOMEM;
   1167 }
   1168 
   1169 #ifndef __NO_STRICT_ALIGNMENT
   1170 static inline void
   1171 vge_fixup_rx(struct mbuf *m)
   1172 {
   1173 	int i;
   1174 	uint16_t *src, *dst;
   1175 
   1176 	src = mtod(m, uint16_t *);
   1177 	dst = src - 1;
   1178 
   1179 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
   1180 		*dst++ = *src++;
   1181 
   1182 	m->m_data -= ETHER_ALIGN;
   1183 }
   1184 #endif
   1185 
   1186 /*
   1187  * RX handler. We support the reception of jumbo frames that have
   1188  * been fragmented across multiple 2K mbuf cluster buffers.
   1189  */
   1190 static void
   1191 vge_rxeof(struct vge_softc *sc)
   1192 {
   1193 	struct mbuf *m;
   1194 	struct ifnet *ifp;
   1195 	int idx, total_len, lim;
   1196 	struct vge_rxdesc *cur_rxd;
   1197 	struct vge_rxsoft *rxs;
   1198 	uint32_t rxstat, rxctl;
   1199 
   1200 	ifp = &sc->sc_ethercom.ec_if;
   1201 	lim = 0;
   1202 
   1203 	/* Invalidate the descriptor memory */
   1204 
   1205 	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
   1206 		cur_rxd = &sc->sc_rxdescs[idx];
   1207 
   1208 		VGE_RXDESCSYNC(sc, idx,
   1209 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1210 		rxstat = le32toh(cur_rxd->rd_sts);
   1211 		if ((rxstat & VGE_RDSTS_OWN) != 0) {
   1212 			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1213 			break;
   1214 		}
   1215 
   1216 		rxctl = le32toh(cur_rxd->rd_ctl);
   1217 		rxs = &sc->sc_rxsoft[idx];
   1218 		m = rxs->rxs_mbuf;
   1219 		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
   1220 
   1221 		/* Invalidate the RX mbuf and unload its map */
   1222 
   1223 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
   1224 		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1225 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1226 
   1227 		/*
   1228 		 * If the 'start of frame' bit is set, this indicates
   1229 		 * either the first fragment in a multi-fragment receive,
   1230 		 * or an intermediate fragment. Either way, we want to
   1231 		 * accumulate the buffers.
   1232 		 */
   1233 		if (rxstat & VGE_RXPKT_SOF) {
   1234 			m->m_len = VGE_RX_BUFSIZE;
   1235 			if (sc->sc_rx_mhead == NULL)
   1236 				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
   1237 			else {
   1238 				m->m_flags &= ~M_PKTHDR;
   1239 				sc->sc_rx_mtail->m_next = m;
   1240 				sc->sc_rx_mtail = m;
   1241 			}
   1242 			vge_newbuf(sc, idx, NULL);
   1243 			continue;
   1244 		}
   1245 
   1246 		/*
   1247 		 * Bad/error frames will have the RXOK bit cleared.
   1248 		 * However, there's one error case we want to allow:
   1249 		 * if a VLAN tagged frame arrives and the chip can't
   1250 		 * match it against the CAM filter, it considers this
   1251 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
   1252 		 * We don't want to drop the frame though: our VLAN
   1253 		 * filtering is done in software.
   1254 		 */
   1255 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
   1256 		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
   1257 		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
   1258 			if_statinc(ifp, if_ierrors);
   1259 			/*
   1260 			 * If this is part of a multi-fragment packet,
   1261 			 * discard all the pieces.
   1262 			 */
   1263 			if (sc->sc_rx_mhead != NULL) {
   1264 				m_freem(sc->sc_rx_mhead);
   1265 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1266 			}
   1267 			vge_newbuf(sc, idx, m);
   1268 			continue;
   1269 		}
   1270 
   1271 		/*
   1272 		 * If allocating a replacement mbuf fails,
   1273 		 * reload the current one.
   1274 		 */
   1275 
   1276 		if (vge_newbuf(sc, idx, NULL)) {
   1277 			if_statinc(ifp, if_ierrors);
   1278 			if (sc->sc_rx_mhead != NULL) {
   1279 				m_freem(sc->sc_rx_mhead);
   1280 				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1281 			}
   1282 			vge_newbuf(sc, idx, m);
   1283 			continue;
   1284 		}
   1285 
   1286 		if (sc->sc_rx_mhead != NULL) {
   1287 			m->m_len = total_len % VGE_RX_BUFSIZE;
   1288 			/*
   1289 			 * Special case: if there's 4 bytes or less
   1290 			 * in this buffer, the mbuf can be discarded:
   1291 			 * the last 4 bytes is the CRC, which we don't
   1292 			 * care about anyway.
   1293 			 */
   1294 			if (m->m_len <= ETHER_CRC_LEN) {
   1295 				sc->sc_rx_mtail->m_len -=
   1296 				    (ETHER_CRC_LEN - m->m_len);
   1297 				m_freem(m);
   1298 			} else {
   1299 				m->m_len -= ETHER_CRC_LEN;
   1300 				m->m_flags &= ~M_PKTHDR;
   1301 				sc->sc_rx_mtail->m_next = m;
   1302 			}
   1303 			m = sc->sc_rx_mhead;
   1304 			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1305 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1306 		} else
   1307 			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1308 
   1309 #ifndef __NO_STRICT_ALIGNMENT
   1310 		vge_fixup_rx(m);
   1311 #endif
   1312 		m_set_rcvif(m, ifp);
   1313 
   1314 		/* Do RX checksumming if enabled */
   1315 		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
   1316 
   1317 			/* Check IP header checksum */
   1318 			if (rxctl & VGE_RDCTL_IPPKT)
   1319 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1320 			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
   1321 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1322 		}
   1323 
   1324 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1325 			/* Check UDP checksum */
   1326 			if (rxctl & VGE_RDCTL_TCPPKT)
   1327 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1328 
   1329 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1330 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1331 		}
   1332 
   1333 		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
   1334 			/* Check UDP checksum */
   1335 			if (rxctl & VGE_RDCTL_UDPPKT)
   1336 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1337 
   1338 			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
   1339 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1340 		}
   1341 
   1342 		if (rxstat & VGE_RDSTS_VTAG) {
   1343 			/*
   1344 			 * We use bswap16() here because:
   1345 			 * On LE machines, tag is stored in BE as stream data.
   1346 			 * On BE machines, tag is stored in BE as stream data
   1347 			 *  but it was already swapped by le32toh() above.
   1348 			 */
   1349 			vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
   1350 		}
   1351 
   1352 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1353 
   1354 		lim++;
   1355 		if (lim == VGE_NRXDESC)
   1356 			break;
   1357 	}
   1358 
   1359 	sc->sc_rx_prodidx = idx;
   1360 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
   1361 }
   1362 
   1363 static void
   1364 vge_txeof(struct vge_softc *sc)
   1365 {
   1366 	struct ifnet *ifp;
   1367 	struct vge_txsoft *txs;
   1368 	uint32_t txstat;
   1369 	int idx;
   1370 
   1371 	ifp = &sc->sc_ethercom.ec_if;
   1372 
   1373 	for (idx = sc->sc_tx_considx;
   1374 	    sc->sc_tx_free < VGE_NTXDESC;
   1375 	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
   1376 		VGE_TXDESCSYNC(sc, idx,
   1377 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1378 		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
   1379 		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1380 		if (txstat & VGE_TDSTS_OWN) {
   1381 			break;
   1382 		}
   1383 
   1384 		txs = &sc->sc_txsoft[idx];
   1385 		m_freem(txs->txs_mbuf);
   1386 		txs->txs_mbuf = NULL;
   1387 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
   1388 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1389 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1390 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1391 		if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
   1392 			if_statinc_ref(nsr, if_collisions);
   1393 		if (txstat & VGE_TDSTS_TXERR)
   1394 			if_statinc_ref(nsr, if_oerrors);
   1395 		else
   1396 			if_statinc_ref(nsr, if_opackets);
   1397 		IF_STAT_PUTREF(ifp);
   1398 	}
   1399 
   1400 	sc->sc_tx_considx = idx;
   1401 
   1402 	if (sc->sc_tx_free > 0) {
   1403 		ifp->if_flags &= ~IFF_OACTIVE;
   1404 	}
   1405 
   1406 	/*
   1407 	 * If not all descriptors have been released reaped yet,
   1408 	 * reload the timer so that we will eventually get another
   1409 	 * interrupt that will cause us to re-enter this routine.
   1410 	 * This is done in case the transmitter has gone idle.
   1411 	 */
   1412 	if (sc->sc_tx_free < VGE_NTXDESC)
   1413 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1414 	else
   1415 		ifp->if_timer = 0;
   1416 }
   1417 
   1418 static void
   1419 vge_tick(void *arg)
   1420 {
   1421 	struct vge_softc *sc;
   1422 	struct ifnet *ifp;
   1423 	struct mii_data *mii;
   1424 	int s;
   1425 
   1426 	sc = arg;
   1427 	ifp = &sc->sc_ethercom.ec_if;
   1428 	mii = &sc->sc_mii;
   1429 
   1430 	s = splnet();
   1431 
   1432 	callout_schedule(&sc->sc_timeout, hz);
   1433 
   1434 	mii_tick(mii);
   1435 	if (sc->sc_link) {
   1436 		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
   1437 			sc->sc_link = 0;
   1438 	} else {
   1439 		if (mii->mii_media_status & IFM_ACTIVE &&
   1440 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   1441 			sc->sc_link = 1;
   1442 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1443 				vge_start(ifp);
   1444 		}
   1445 	}
   1446 
   1447 	splx(s);
   1448 }
   1449 
   1450 static int
   1451 vge_intr(void *arg)
   1452 {
   1453 	struct vge_softc *sc;
   1454 	struct ifnet *ifp;
   1455 	uint32_t status;
   1456 	int claim;
   1457 
   1458 	sc = arg;
   1459 	claim = 0;
   1460 	if (sc->sc_suspended) {
   1461 		return claim;
   1462 	}
   1463 
   1464 	ifp = &sc->sc_ethercom.ec_if;
   1465 
   1466 	if ((ifp->if_flags & IFF_UP) == 0) {
   1467 		return claim;
   1468 	}
   1469 
   1470 	/* Disable interrupts */
   1471 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1472 
   1473 	for (;;) {
   1474 
   1475 		status = CSR_READ_4(sc, VGE_ISR);
   1476 		/* If the card has gone away the read returns 0xffffffff. */
   1477 		if (status == 0xFFFFFFFF)
   1478 			break;
   1479 
   1480 		if (status) {
   1481 			claim = 1;
   1482 			CSR_WRITE_4(sc, VGE_ISR, status);
   1483 		}
   1484 
   1485 		if ((status & VGE_INTRS) == 0)
   1486 			break;
   1487 
   1488 		if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
   1489 			vge_rxeof(sc);
   1490 
   1491 		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
   1492 			vge_rxeof(sc);
   1493 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1494 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1495 		}
   1496 
   1497 		if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
   1498 			vge_txeof(sc);
   1499 
   1500 		if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
   1501 			vge_init(ifp);
   1502 
   1503 		if (status & VGE_ISR_LINKSTS)
   1504 			vge_tick(sc);
   1505 	}
   1506 
   1507 	/* Re-enable interrupts */
   1508 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1509 
   1510 	if (claim)
   1511 		if_schedule_deferred_start(ifp);
   1512 
   1513 	return claim;
   1514 }
   1515 
   1516 static int
   1517 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
   1518 {
   1519 	struct vge_txsoft *txs;
   1520 	struct vge_txdesc *txd;
   1521 	struct vge_txfrag *f;
   1522 	struct mbuf *m_new;
   1523 	bus_dmamap_t map;
   1524 	int m_csumflags, seg, error, flags;
   1525 	size_t sz;
   1526 	uint32_t td_sts, td_ctl;
   1527 
   1528 	KASSERT(sc->sc_tx_free > 0);
   1529 
   1530 	txd = &sc->sc_txdescs[idx];
   1531 
   1532 #ifdef DIAGNOSTIC
   1533 	/* If this descriptor is still owned by the chip, bail. */
   1534 	VGE_TXDESCSYNC(sc, idx,
   1535 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1536 	td_sts = le32toh(txd->td_sts);
   1537 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1538 	if (td_sts & VGE_TDSTS_OWN) {
   1539 		return ENOBUFS;
   1540 	}
   1541 #endif
   1542 
   1543 	/*
   1544 	 * Preserve m_pkthdr.csum_flags here since m_head might be
   1545 	 * updated by m_defrag()
   1546 	 */
   1547 	m_csumflags = m_head->m_pkthdr.csum_flags;
   1548 
   1549 	txs = &sc->sc_txsoft[idx];
   1550 	map = txs->txs_dmamap;
   1551 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
   1552 
   1553 	/* If too many segments to map, coalesce */
   1554 	if (error == EFBIG ||
   1555 	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
   1556 	     map->dm_nsegs == VGE_TX_FRAGS)) {
   1557 		m_new = m_defrag(m_head, M_DONTWAIT);
   1558 		if (m_new == NULL)
   1559 			return EFBIG;
   1560 
   1561 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1562 		    m_new, BUS_DMA_NOWAIT);
   1563 		if (error) {
   1564 			m_freem(m_new);
   1565 			return error;
   1566 		}
   1567 
   1568 		m_head = m_new;
   1569 	} else if (error)
   1570 		return error;
   1571 
   1572 	txs->txs_mbuf = m_head;
   1573 
   1574 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1575 	    BUS_DMASYNC_PREWRITE);
   1576 
   1577 	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
   1578 		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
   1579 		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
   1580 	}
   1581 
   1582 	/* Argh. This chip does not autopad short frames */
   1583 	sz = m_head->m_pkthdr.len;
   1584 	if (sz < ETHER_PAD_LEN) {
   1585 		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
   1586 		vge_set_txaddr(f, VGE_CDPADADDR(sc));
   1587 		sz = ETHER_PAD_LEN;
   1588 		seg++;
   1589 	}
   1590 	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
   1591 
   1592 	/*
   1593 	 * When telling the chip how many segments there are, we
   1594 	 * must use nsegs + 1 instead of just nsegs. Darned if I
   1595 	 * know why.
   1596 	 */
   1597 	seg++;
   1598 
   1599 	flags = 0;
   1600 	if (m_csumflags & M_CSUM_IPv4)
   1601 		flags |= VGE_TDCTL_IPCSUM;
   1602 	if (m_csumflags & M_CSUM_TCPv4)
   1603 		flags |= VGE_TDCTL_TCPCSUM;
   1604 	if (m_csumflags & M_CSUM_UDPv4)
   1605 		flags |= VGE_TDCTL_UDPCSUM;
   1606 	td_sts = sz << 16;
   1607 	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
   1608 
   1609 	if (sz > ETHERMTU + ETHER_HDR_LEN)
   1610 		td_ctl |= VGE_TDCTL_JUMBO;
   1611 
   1612 	/*
   1613 	 * Set up hardware VLAN tagging.
   1614 	 */
   1615 	if (vlan_has_tag(m_head)) {
   1616 		/*
   1617 		 * No need htons() here since vge(4) chip assumes
   1618 		 * that tags are written in little endian and
   1619 		 * we already use htole32() here.
   1620 		 */
   1621 		td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
   1622 	}
   1623 	txd->td_ctl = htole32(td_ctl);
   1624 	txd->td_sts = htole32(td_sts);
   1625 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1626 
   1627 	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
   1628 	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1629 
   1630 	sc->sc_tx_free--;
   1631 
   1632 	return 0;
   1633 }
   1634 
   1635 /*
   1636  * Main transmit routine.
   1637  */
   1638 
   1639 static void
   1640 vge_start(struct ifnet *ifp)
   1641 {
   1642 	struct vge_softc *sc;
   1643 	struct vge_txsoft *txs;
   1644 	struct mbuf *m_head;
   1645 	int idx, pidx, ofree, error;
   1646 
   1647 	sc = ifp->if_softc;
   1648 
   1649 	if (!sc->sc_link ||
   1650 	    (ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
   1651 		return;
   1652 	}
   1653 
   1654 	m_head = NULL;
   1655 	idx = sc->sc_tx_prodidx;
   1656 	pidx = VGE_PREV_TXDESC(idx);
   1657 	ofree = sc->sc_tx_free;
   1658 
   1659 	/*
   1660 	 * Loop through the send queue, setting up transmit descriptors
   1661 	 * until we drain the queue, or use up all available transmit
   1662 	 * descriptors.
   1663 	 */
   1664 	for (;;) {
   1665 		/* Grab a packet off the queue. */
   1666 		IFQ_POLL(&ifp->if_snd, m_head);
   1667 		if (m_head == NULL)
   1668 			break;
   1669 
   1670 		if (sc->sc_tx_free == 0) {
   1671 			/*
   1672 			 * All slots used, stop for now.
   1673 			 */
   1674 			ifp->if_flags |= IFF_OACTIVE;
   1675 			break;
   1676 		}
   1677 
   1678 		txs = &sc->sc_txsoft[idx];
   1679 		KASSERT(txs->txs_mbuf == NULL);
   1680 
   1681 		if ((error = vge_encap(sc, m_head, idx))) {
   1682 			if (error == EFBIG) {
   1683 				printf("%s: Tx packet consumes too many "
   1684 				    "DMA segments, dropping...\n",
   1685 				    device_xname(sc->sc_dev));
   1686 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1687 				m_freem(m_head);
   1688 				continue;
   1689 			}
   1690 
   1691 			/*
   1692 			 * Short on resources, just stop for now.
   1693 			 */
   1694 			if (error == ENOBUFS)
   1695 				ifp->if_flags |= IFF_OACTIVE;
   1696 			break;
   1697 		}
   1698 
   1699 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1700 
   1701 		/*
   1702 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1703 		 */
   1704 
   1705 		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
   1706 		    htole16(VGE_TXDESC_Q);
   1707 		VGE_TXFRAGSYNC(sc, pidx, 1,
   1708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1709 
   1710 		if (txs->txs_mbuf != m_head) {
   1711 			m_freem(m_head);
   1712 			m_head = txs->txs_mbuf;
   1713 		}
   1714 
   1715 		pidx = idx;
   1716 		idx = VGE_NEXT_TXDESC(idx);
   1717 
   1718 		/*
   1719 		 * If there's a BPF listener, bounce a copy of this frame
   1720 		 * to him.
   1721 		 */
   1722 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1723 	}
   1724 
   1725 	if (sc->sc_tx_free < ofree) {
   1726 		/* TX packet queued */
   1727 
   1728 		sc->sc_tx_prodidx = idx;
   1729 
   1730 		/* Issue a transmit command. */
   1731 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
   1732 
   1733 		/*
   1734 		 * Use the countdown timer for interrupt moderation.
   1735 		 * 'TX done' interrupts are disabled. Instead, we reset the
   1736 		 * countdown timer, which will begin counting until it hits
   1737 		 * the value in the SSTIMER register, and then trigger an
   1738 		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
   1739 		 * the timer count is reloaded. Only when the transmitter
   1740 		 * is idle will the timer hit 0 and an interrupt fire.
   1741 		 */
   1742 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
   1743 
   1744 		/*
   1745 		 * Set a timeout in case the chip goes out to lunch.
   1746 		 */
   1747 		ifp->if_timer = 5;
   1748 	}
   1749 }
   1750 
   1751 static int
   1752 vge_init(struct ifnet *ifp)
   1753 {
   1754 	struct vge_softc *sc;
   1755 	int i, rc = 0;
   1756 
   1757 	sc = ifp->if_softc;
   1758 
   1759 	/*
   1760 	 * Cancel pending I/O and free all RX/TX buffers.
   1761 	 */
   1762 	vge_stop(ifp, 0);
   1763 	vge_reset(sc);
   1764 
   1765 	/* Initialize the RX descriptors and mbufs. */
   1766 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
   1767 	sc->sc_rx_consumed = 0;
   1768 	for (i = 0; i < VGE_NRXDESC; i++) {
   1769 		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
   1770 			printf("%s: unable to allocate or map rx buffer\n",
   1771 			    device_xname(sc->sc_dev));
   1772 			return 1; /* XXX */
   1773 		}
   1774 	}
   1775 	sc->sc_rx_prodidx = 0;
   1776 	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   1777 
   1778 	/* Initialize the  TX descriptors and mbufs. */
   1779 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1780 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
   1781 	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
   1782 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1783 	for (i = 0; i < VGE_NTXDESC; i++)
   1784 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1785 
   1786 	sc->sc_tx_prodidx = 0;
   1787 	sc->sc_tx_considx = 0;
   1788 	sc->sc_tx_free = VGE_NTXDESC;
   1789 
   1790 	/* Set our station address */
   1791 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1792 		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
   1793 
   1794 	/*
   1795 	 * Set receive FIFO threshold. Also allow transmission and
   1796 	 * reception of VLAN tagged frames.
   1797 	 */
   1798 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
   1799 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);
   1800 
   1801 	/* Set DMA burst length */
   1802 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
   1803 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
   1804 
   1805 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);
   1806 
   1807 	/* Set collision backoff algorithm */
   1808 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
   1809 	    VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
   1810 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
   1811 
   1812 	/* Disable LPSEL field in priority resolution */
   1813 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
   1814 
   1815 	/*
   1816 	 * Load the addresses of the DMA queues into the chip.
   1817 	 * Note that we only use one transmit queue.
   1818 	 */
   1819 
   1820 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR, VGE_ADDR_HI(VGE_CDTXADDR(sc, 0)));
   1821 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
   1822 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
   1823 
   1824 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
   1825 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
   1826 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
   1827 
   1828 	/* Enable and wake up the RX descriptor queue */
   1829 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
   1830 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
   1831 
   1832 	/* Enable the TX descriptor queue */
   1833 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
   1834 
   1835 	/* Set up the receive filter -- allow large frames for VLANs. */
   1836 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);
   1837 
   1838 	/* If we want promiscuous mode, set the allframes bit. */
   1839 	if (ifp->if_flags & IFF_PROMISC) {
   1840 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   1841 	}
   1842 
   1843 	/* Set capture broadcast bit to capture broadcast frames. */
   1844 	if (ifp->if_flags & IFF_BROADCAST) {
   1845 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
   1846 	}
   1847 
   1848 	/* Set multicast bit to capture multicast frames. */
   1849 	if (ifp->if_flags & IFF_MULTICAST) {
   1850 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
   1851 	}
   1852 
   1853 	/* Init the cam filter. */
   1854 	vge_cam_clear(sc);
   1855 
   1856 	/* Init the multicast filter. */
   1857 	vge_setmulti(sc);
   1858 
   1859 	/* Enable flow control */
   1860 
   1861 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
   1862 
   1863 	/* Enable jumbo frame reception (if desired) */
   1864 
   1865 	/* Start the MAC. */
   1866 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
   1867 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
   1868 	CSR_WRITE_1(sc, VGE_CRS0,
   1869 	    VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);
   1870 
   1871 	/*
   1872 	 * Configure one-shot timer for microsecond
   1873 	 * resulution and load it for 500 usecs.
   1874 	 */
   1875 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
   1876 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
   1877 
   1878 	/*
   1879 	 * Configure interrupt moderation for receive. Enable
   1880 	 * the holdoff counter and load it, and set the RX
   1881 	 * suppression count to the number of descriptors we
   1882 	 * want to allow before triggering an interrupt.
   1883 	 * The holdoff timer is in units of 20 usecs.
   1884 	 */
   1885 
   1886 #ifdef notyet
   1887 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
   1888 	/* Select the interrupt holdoff timer page. */
   1889 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1890 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
   1891 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
   1892 
   1893 	/* Enable use of the holdoff timer. */
   1894 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
   1895 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
   1896 
   1897 	/* Select the RX suppression threshold page. */
   1898 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1899 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
   1900 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
   1901 
   1902 	/* Restore the page select bits. */
   1903 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
   1904 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
   1905 #endif
   1906 
   1907 #ifdef DEVICE_POLLING
   1908 	/*
   1909 	 * Disable interrupts if we are polling.
   1910 	 */
   1911 	if (ifp->if_flags & IFF_POLLING) {
   1912 		CSR_WRITE_4(sc, VGE_IMR, 0);
   1913 		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   1914 	} else	/* otherwise ... */
   1915 #endif /* DEVICE_POLLING */
   1916 	{
   1917 	/*
   1918 	 * Enable interrupts.
   1919 	 */
   1920 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
   1921 		CSR_WRITE_4(sc, VGE_ISR, 0);
   1922 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
   1923 	}
   1924 
   1925 	if ((rc = ether_mediachange(ifp)) != 0)
   1926 		goto out;
   1927 
   1928 	ifp->if_flags |= IFF_RUNNING;
   1929 	ifp->if_flags &= ~IFF_OACTIVE;
   1930 
   1931 	sc->sc_if_flags = 0;
   1932 	sc->sc_link = 0;
   1933 
   1934 	callout_schedule(&sc->sc_timeout, hz);
   1935 
   1936 out:
   1937 	return rc;
   1938 }
   1939 
   1940 static void
   1941 vge_miibus_statchg(struct ifnet *ifp)
   1942 {
   1943 	struct vge_softc *sc = ifp->if_softc;
   1944 	struct mii_data *mii = &sc->sc_mii;
   1945 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
   1946 	uint8_t dctl;
   1947 
   1948 	/*
   1949 	 * If the user manually selects a media mode, we need to turn
   1950 	 * on the forced MAC mode bit in the DIAGCTL register. If the
   1951 	 * user happens to choose a full duplex mode, we also need to
   1952 	 * set the 'force full duplex' bit. This applies only to
   1953 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
   1954 	 * mode is disabled, and in 1000baseT mode, full duplex is
   1955 	 * always implied, so we turn on the forced mode bit but leave
   1956 	 * the FDX bit cleared.
   1957 	 */
   1958 	dctl = CSR_READ_1(sc, VGE_DIAGCTL);
   1959 
   1960 	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
   1961 		dctl &= ~VGE_DIAGCTL_MACFORCE;
   1962 		dctl &= ~VGE_DIAGCTL_FDXFORCE;
   1963 	} else {
   1964 		u_int ifmword;
   1965 
   1966 		/* If the link is up, use the current active media. */
   1967 		if ((mii->mii_media_status & IFM_ACTIVE) != 0)
   1968 			ifmword = mii->mii_media_active;
   1969 		else
   1970 			ifmword = ife->ifm_media;
   1971 
   1972 		dctl |= VGE_DIAGCTL_MACFORCE;
   1973 		if ((ifmword & IFM_FDX) != 0)
   1974 			dctl |= VGE_DIAGCTL_FDXFORCE;
   1975 		else
   1976 			dctl &= ~VGE_DIAGCTL_FDXFORCE;
   1977 
   1978 		if (IFM_SUBTYPE(ifmword) == IFM_1000_T) {
   1979 			/*
   1980 			 * It means the user setting is not auto but it's
   1981 			 * 1000baseT-FDX or 1000baseT.
   1982 			 */
   1983 			dctl |= VGE_DIAGCTL_GMII;
   1984 		} else
   1985 			dctl &= ~VGE_DIAGCTL_GMII;
   1986 	}
   1987 
   1988 	CSR_WRITE_1(sc, VGE_DIAGCTL, dctl);
   1989 }
   1990 
   1991 static int
   1992 vge_ifflags_cb(struct ethercom *ec)
   1993 {
   1994 	struct ifnet *ifp = &ec->ec_if;
   1995 	struct vge_softc *sc = ifp->if_softc;
   1996 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
   1997 
   1998 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
   1999 		return ENETRESET;
   2000 	else if ((change & IFF_PROMISC) == 0)
   2001 		return 0;
   2002 
   2003 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   2004 		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   2005 	else
   2006 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
   2007 	vge_setmulti(sc);
   2008 	return 0;
   2009 }
   2010 
   2011 static int
   2012 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
   2013 {
   2014 	struct vge_softc *sc;
   2015 	int s, error;
   2016 
   2017 	sc = ifp->if_softc;
   2018 	error = 0;
   2019 
   2020 	s = splnet();
   2021 
   2022 	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
   2023 		error = 0;
   2024 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2025 			;
   2026 		else if (ifp->if_flags & IFF_RUNNING) {
   2027 			/*
   2028 			 * Multicast list has changed; set the hardware filter
   2029 			 * accordingly.
   2030 			 */
   2031 			vge_setmulti(sc);
   2032 		}
   2033 	}
   2034 	sc->sc_if_flags = ifp->if_flags;
   2035 
   2036 	splx(s);
   2037 	return error;
   2038 }
   2039 
   2040 static void
   2041 vge_watchdog(struct ifnet *ifp)
   2042 {
   2043 	struct vge_softc *sc;
   2044 	int s;
   2045 
   2046 	sc = ifp->if_softc;
   2047 	s = splnet();
   2048 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2049 	if_statinc(ifp, if_oerrors);
   2050 
   2051 	vge_txeof(sc);
   2052 	vge_rxeof(sc);
   2053 
   2054 	vge_init(ifp);
   2055 
   2056 	splx(s);
   2057 }
   2058 
   2059 /*
   2060  * Stop the adapter and free any mbufs allocated to the
   2061  * RX and TX lists.
   2062  */
   2063 static void
   2064 vge_stop(struct ifnet *ifp, int disable)
   2065 {
   2066 	struct vge_softc *sc = ifp->if_softc;
   2067 	struct vge_txsoft *txs;
   2068 	struct vge_rxsoft *rxs;
   2069 	int i, s;
   2070 
   2071 	s = splnet();
   2072 	ifp->if_timer = 0;
   2073 
   2074 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2075 #ifdef DEVICE_POLLING
   2076 	ether_poll_deregister(ifp);
   2077 #endif /* DEVICE_POLLING */
   2078 
   2079 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
   2080 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
   2081 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
   2082 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
   2083 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
   2084 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
   2085 
   2086 	if (sc->sc_rx_mhead != NULL) {
   2087 		m_freem(sc->sc_rx_mhead);
   2088 		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
   2089 	}
   2090 
   2091 	/* Free the TX list buffers. */
   2092 
   2093 	for (i = 0; i < VGE_NTXDESC; i++) {
   2094 		txs = &sc->sc_txsoft[i];
   2095 		if (txs->txs_mbuf != NULL) {
   2096 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2097 			m_freem(txs->txs_mbuf);
   2098 			txs->txs_mbuf = NULL;
   2099 		}
   2100 	}
   2101 
   2102 	/* Free the RX list buffers. */
   2103 
   2104 	for (i = 0; i < VGE_NRXDESC; i++) {
   2105 		rxs = &sc->sc_rxsoft[i];
   2106 		if (rxs->rxs_mbuf != NULL) {
   2107 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2108 			m_freem(rxs->rxs_mbuf);
   2109 			rxs->rxs_mbuf = NULL;
   2110 		}
   2111 	}
   2112 
   2113 	splx(s);
   2114 }
   2115 
   2116 #if VGE_POWER_MANAGEMENT
   2117 /*
   2118  * Device suspend routine.  Stop the interface and save some PCI
   2119  * settings in case the BIOS doesn't restore them properly on
   2120  * resume.
   2121  */
   2122 static int
   2123 vge_suspend(device_t dev)
   2124 {
   2125 	struct vge_softc *sc;
   2126 	int i;
   2127 
   2128 	sc = device_get_softc(dev);
   2129 
   2130 	vge_stop(sc);
   2131 
   2132 	for (i = 0; i < 5; i++)
   2133 		sc->sc_saved_maps[i] =
   2134 		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
   2135 	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
   2136 	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
   2137 	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
   2138 	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
   2139 
   2140 	sc->suspended = 1;
   2141 
   2142 	return 0;
   2143 }
   2144 
   2145 /*
   2146  * Device resume routine.  Restore some PCI settings in case the BIOS
   2147  * doesn't, re-enable busmastering, and restart the interface if
   2148  * appropriate.
   2149  */
   2150 static int
   2151 vge_resume(device_t dev)
   2152 {
   2153 	struct vge_softc *sc;
   2154 	struct ifnet *ifp;
   2155 	int i;
   2156 
   2157 	sc = device_private(dev);
   2158 	ifp = &sc->sc_ethercom.ec_if;
   2159 
   2160 	/* better way to do this? */
   2161 	for (i = 0; i < 5; i++)
   2162 		pci_write_config(dev, PCIR_MAPS + i * 4,
   2163 		    sc->sc_saved_maps[i], 4);
   2164 	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
   2165 	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
   2166 	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
   2167 	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
   2168 
   2169 	/* reenable busmastering */
   2170 	pci_enable_busmaster(dev);
   2171 	pci_enable_io(dev, SYS_RES_MEMORY);
   2172 
   2173 	/* reinitialize interface if necessary */
   2174 	if (ifp->if_flags & IFF_UP)
   2175 		vge_init(sc);
   2176 
   2177 	sc->suspended = 0;
   2178 
   2179 	return 0;
   2180 }
   2181 #endif
   2182 
   2183 /*
   2184  * Stop all chip I/O so that the kernel's probe routines don't
   2185  * get confused by errant DMAs when rebooting.
   2186  */
   2187 static bool
   2188 vge_shutdown(device_t self, int howto)
   2189 {
   2190 	struct vge_softc *sc;
   2191 
   2192 	sc = device_private(self);
   2193 	vge_stop(&sc->sc_ethercom.ec_if, 1);
   2194 
   2195 	return true;
   2196 }
   2197 
   2198 static void
   2199 vge_clrwol(struct vge_softc *sc)
   2200 {
   2201 	uint8_t val;
   2202 
   2203 	val = CSR_READ_1(sc, VGE_PWRSTAT);
   2204 	val &= ~VGE_STICKHW_SWPTAG;
   2205 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
   2206 	/* Disable WOL and clear power state indicator. */
   2207 	val = CSR_READ_1(sc, VGE_PWRSTAT);
   2208 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
   2209 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
   2210 
   2211 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
   2212 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
   2213 
   2214 	/* Clear WOL on pattern match. */
   2215 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
   2216 	/* Disable WOL on magic/unicast packet. */
   2217 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
   2218 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
   2219 	    VGE_WOLCFG_PMEOVR);
   2220 	/* Clear WOL status on pattern match. */
   2221 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
   2222 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
   2223 }
   2224