if_vr.c revision 1.2 1 1.2 sakamoto /* $Id: if_vr.c,v 1.2 1999/01/21 12:00:25 sakamoto Exp $ */
2 1.2 sakamoto
3 1.1 sakamoto /*
4 1.1 sakamoto * Copyright (c) 1997, 1998
5 1.1 sakamoto * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 1.1 sakamoto *
7 1.1 sakamoto * Redistribution and use in source and binary forms, with or without
8 1.1 sakamoto * modification, are permitted provided that the following conditions
9 1.1 sakamoto * are met:
10 1.1 sakamoto * 1. Redistributions of source code must retain the above copyright
11 1.1 sakamoto * notice, this list of conditions and the following disclaimer.
12 1.1 sakamoto * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 sakamoto * notice, this list of conditions and the following disclaimer in the
14 1.1 sakamoto * documentation and/or other materials provided with the distribution.
15 1.1 sakamoto * 3. All advertising materials mentioning features or use of this software
16 1.1 sakamoto * must display the following acknowledgement:
17 1.1 sakamoto * This product includes software developed by Bill Paul.
18 1.1 sakamoto * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 sakamoto * may be used to endorse or promote products derived from this software
20 1.1 sakamoto * without specific prior written permission.
21 1.1 sakamoto *
22 1.1 sakamoto * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 sakamoto * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 sakamoto * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 sakamoto * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 sakamoto * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 sakamoto * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 sakamoto * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 sakamoto * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 sakamoto * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 sakamoto * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 sakamoto * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 sakamoto *
34 1.2 sakamoto * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
35 1.1 sakamoto */
36 1.1 sakamoto
37 1.1 sakamoto /*
38 1.1 sakamoto * VIA Rhine fast ethernet PCI NIC driver
39 1.1 sakamoto *
40 1.1 sakamoto * Supports various network adapters based on the VIA Rhine
41 1.1 sakamoto * and Rhine II PCI controllers, including the D-Link DFE530TX.
42 1.1 sakamoto * Datasheets are available at http://www.via.com.tw.
43 1.1 sakamoto *
44 1.1 sakamoto * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 1.1 sakamoto * Electrical Engineering Department
46 1.1 sakamoto * Columbia University, New York City
47 1.1 sakamoto */
48 1.1 sakamoto
49 1.1 sakamoto /*
50 1.1 sakamoto * The VIA Rhine controllers are similar in some respects to the
51 1.1 sakamoto * the DEC tulip chips, except less complicated. The controller
52 1.1 sakamoto * uses an MII bus and an external physical layer interface. The
53 1.1 sakamoto * receiver has a one entry perfect filter and a 64-bit hash table
54 1.1 sakamoto * multicast filter. Transmit and receive descriptors are similar
55 1.1 sakamoto * to the tulip.
56 1.1 sakamoto *
57 1.1 sakamoto * The Rhine has a serious flaw in its transmit DMA mechanism:
58 1.1 sakamoto * transmit buffers must be longword aligned. Unfortunately,
59 1.1 sakamoto * FreeBSD doesn't guarantee that mbufs will be filled in starting
60 1.1 sakamoto * at longword boundaries, so we have to do a buffer copy before
61 1.1 sakamoto * transmission.
62 1.1 sakamoto */
63 1.1 sakamoto
64 1.2 sakamoto #if defined(__NetBSD__)
65 1.2 sakamoto #include "opt_inet.h"
66 1.2 sakamoto #endif
67 1.1 sakamoto
68 1.1 sakamoto #include <sys/param.h>
69 1.1 sakamoto #include <sys/systm.h>
70 1.1 sakamoto #include <sys/sockio.h>
71 1.1 sakamoto #include <sys/mbuf.h>
72 1.1 sakamoto #include <sys/malloc.h>
73 1.1 sakamoto #include <sys/kernel.h>
74 1.1 sakamoto #include <sys/socket.h>
75 1.1 sakamoto
76 1.1 sakamoto #include <net/if.h>
77 1.1 sakamoto #include <net/if_arp.h>
78 1.1 sakamoto #include <net/if_dl.h>
79 1.1 sakamoto #include <net/if_media.h>
80 1.2 sakamoto #if defined(__FreeBSD__)
81 1.2 sakamoto #include <net/ethernet.h>
82 1.2 sakamoto #endif
83 1.2 sakamoto #if defined(__NetBSD__)
84 1.2 sakamoto #include <net/if_ether.h>
85 1.2 sakamoto #if defined(INET)
86 1.2 sakamoto #include <netinet/in.h>
87 1.2 sakamoto #include <netinet/if_inarp.h>
88 1.2 sakamoto #endif
89 1.2 sakamoto #endif
90 1.1 sakamoto
91 1.2 sakamoto #include "bpfilter.h"
92 1.1 sakamoto #if NBPFILTER > 0
93 1.1 sakamoto #include <net/bpf.h>
94 1.1 sakamoto #endif
95 1.1 sakamoto
96 1.2 sakamoto #include <vm/vm.h> /* for vtophys */
97 1.2 sakamoto #if defined(__FreeBSD__)
98 1.2 sakamoto #include <vm/pmap.h> /* for vtophys */
99 1.2 sakamoto #endif
100 1.2 sakamoto
101 1.2 sakamoto #if defined(__FreeBSD__)
102 1.2 sakamoto #include <machine/clock.h>
103 1.2 sakamoto #else
104 1.2 sakamoto #include <sys/device.h>
105 1.2 sakamoto #endif
106 1.2 sakamoto #if defined(__FreeBSD__)
107 1.1 sakamoto #include <machine/bus_pio.h>
108 1.1 sakamoto #include <machine/bus_memio.h>
109 1.2 sakamoto #endif
110 1.1 sakamoto #include <machine/bus.h>
111 1.1 sakamoto
112 1.2 sakamoto #if defined(__FreeBSD__)
113 1.1 sakamoto #include <pci/pcireg.h>
114 1.1 sakamoto #include <pci/pcivar.h>
115 1.2 sakamoto #include <pci/if_vrreg.h>
116 1.2 sakamoto #endif
117 1.2 sakamoto
118 1.2 sakamoto #if defined(__NetBSD__)
119 1.2 sakamoto #include <dev/pci/pcireg.h>
120 1.2 sakamoto #include <dev/pci/pcivar.h>
121 1.2 sakamoto #include <dev/pci/if_vrreg.h>
122 1.2 sakamoto #endif
123 1.1 sakamoto
124 1.2 sakamoto #define VR_USEIOSPACE
125 1.1 sakamoto
126 1.2 sakamoto /* #define VR_BACKGROUND_AUTONEG */
127 1.1 sakamoto
128 1.2 sakamoto #if defined(__NetBSD__)
129 1.2 sakamoto #define bootverbose 1
130 1.2 sakamoto #define ETHER_CRC_LEN 4
131 1.2 sakamoto #endif
132 1.1 sakamoto
133 1.2 sakamoto #if !defined(lint) && !defined(__NetBSD__)
134 1.1 sakamoto static const char rcsid[] =
135 1.2 sakamoto "$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $";
136 1.1 sakamoto #endif
137 1.1 sakamoto
138 1.1 sakamoto /*
139 1.1 sakamoto * Various supported device vendors/types and their names.
140 1.1 sakamoto */
141 1.1 sakamoto static struct vr_type vr_devs[] = {
142 1.1 sakamoto { VIA_VENDORID, VIA_DEVICEID_RHINE,
143 1.1 sakamoto "VIA VT3043 Rhine I 10/100BaseTX" },
144 1.1 sakamoto { VIA_VENDORID, VIA_DEVICEID_RHINE_II,
145 1.1 sakamoto "VIA VT86C100A Rhine II 10/100BaseTX" },
146 1.1 sakamoto { 0, 0, NULL }
147 1.1 sakamoto };
148 1.1 sakamoto
149 1.1 sakamoto /*
150 1.1 sakamoto * Various supported PHY vendors/types and their names. Note that
151 1.1 sakamoto * this driver will work with pretty much any MII-compliant PHY,
152 1.1 sakamoto * so failure to positively identify the chip is not a fatal error.
153 1.1 sakamoto */
154 1.1 sakamoto
155 1.1 sakamoto static struct vr_type vr_phys[] = {
156 1.1 sakamoto { TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
157 1.1 sakamoto { TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
158 1.1 sakamoto { NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
159 1.2 sakamoto { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
160 1.1 sakamoto { INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
161 1.1 sakamoto { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
162 1.1 sakamoto { 0, 0, "<MII-compliant physical interface>" }
163 1.1 sakamoto };
164 1.1 sakamoto
165 1.1 sakamoto static int vr_newbuf __P((struct vr_softc *,
166 1.1 sakamoto struct vr_chain_onefrag *));
167 1.1 sakamoto static int vr_encap __P((struct vr_softc *, struct vr_chain *,
168 1.2 sakamoto struct mbuf *));
169 1.1 sakamoto
170 1.1 sakamoto static void vr_rxeof __P((struct vr_softc *));
171 1.1 sakamoto static void vr_rxeoc __P((struct vr_softc *));
172 1.1 sakamoto static void vr_txeof __P((struct vr_softc *));
173 1.1 sakamoto static void vr_txeoc __P((struct vr_softc *));
174 1.1 sakamoto static void vr_intr __P((void *));
175 1.1 sakamoto static void vr_start __P((struct ifnet *));
176 1.1 sakamoto static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
177 1.1 sakamoto static void vr_init __P((void *));
178 1.1 sakamoto static void vr_stop __P((struct vr_softc *));
179 1.1 sakamoto static void vr_watchdog __P((struct ifnet *));
180 1.1 sakamoto static int vr_ifmedia_upd __P((struct ifnet *));
181 1.1 sakamoto static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
182 1.1 sakamoto
183 1.1 sakamoto static void vr_mii_sync __P((struct vr_softc *));
184 1.1 sakamoto static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
185 1.1 sakamoto static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *));
186 1.1 sakamoto static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *));
187 1.1 sakamoto static u_int16_t vr_phy_readreg __P((struct vr_softc *, int));
188 1.1 sakamoto static void vr_phy_writereg __P((struct vr_softc *, u_int16_t, u_int16_t));
189 1.1 sakamoto
190 1.1 sakamoto static void vr_autoneg_xmit __P((struct vr_softc *));
191 1.1 sakamoto static void vr_autoneg_mii __P((struct vr_softc *, int, int));
192 1.1 sakamoto static void vr_setmode_mii __P((struct vr_softc *, int));
193 1.1 sakamoto static void vr_getmode_mii __P((struct vr_softc *));
194 1.1 sakamoto static void vr_setcfg __P((struct vr_softc *, u_int16_t));
195 1.1 sakamoto static u_int8_t vr_calchash __P((u_int8_t *));
196 1.1 sakamoto static void vr_setmulti __P((struct vr_softc *));
197 1.1 sakamoto static void vr_reset __P((struct vr_softc *));
198 1.1 sakamoto static int vr_list_rx_init __P((struct vr_softc *));
199 1.1 sakamoto static int vr_list_tx_init __P((struct vr_softc *));
200 1.1 sakamoto
201 1.2 sakamoto #define VR_SETBIT(sc, reg, x) \
202 1.1 sakamoto CSR_WRITE_1(sc, reg, \
203 1.1 sakamoto CSR_READ_1(sc, reg) | x)
204 1.1 sakamoto
205 1.2 sakamoto #define VR_CLRBIT(sc, reg, x) \
206 1.1 sakamoto CSR_WRITE_1(sc, reg, \
207 1.1 sakamoto CSR_READ_1(sc, reg) & ~x)
208 1.1 sakamoto
209 1.2 sakamoto #define VR_SETBIT16(sc, reg, x) \
210 1.1 sakamoto CSR_WRITE_2(sc, reg, \
211 1.1 sakamoto CSR_READ_2(sc, reg) | x)
212 1.1 sakamoto
213 1.2 sakamoto #define VR_CLRBIT16(sc, reg, x) \
214 1.1 sakamoto CSR_WRITE_2(sc, reg, \
215 1.1 sakamoto CSR_READ_2(sc, reg) & ~x)
216 1.1 sakamoto
217 1.2 sakamoto #define VR_SETBIT32(sc, reg, x) \
218 1.1 sakamoto CSR_WRITE_4(sc, reg, \
219 1.1 sakamoto CSR_READ_4(sc, reg) | x)
220 1.1 sakamoto
221 1.2 sakamoto #define VR_CLRBIT32(sc, reg, x) \
222 1.1 sakamoto CSR_WRITE_4(sc, reg, \
223 1.1 sakamoto CSR_READ_4(sc, reg) & ~x)
224 1.1 sakamoto
225 1.2 sakamoto #define SIO_SET(x) \
226 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, \
227 1.1 sakamoto CSR_READ_1(sc, VR_MIICMD) | x)
228 1.1 sakamoto
229 1.2 sakamoto #define SIO_CLR(x) \
230 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, \
231 1.1 sakamoto CSR_READ_1(sc, VR_MIICMD) & ~x)
232 1.1 sakamoto
233 1.1 sakamoto /*
234 1.1 sakamoto * Sync the PHYs by setting data bit and strobing the clock 32 times.
235 1.1 sakamoto */
236 1.1 sakamoto static void vr_mii_sync(sc)
237 1.1 sakamoto struct vr_softc *sc;
238 1.1 sakamoto {
239 1.1 sakamoto register int i;
240 1.1 sakamoto
241 1.1 sakamoto SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN);
242 1.1 sakamoto
243 1.1 sakamoto for (i = 0; i < 32; i++) {
244 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
245 1.1 sakamoto DELAY(1);
246 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
247 1.1 sakamoto DELAY(1);
248 1.1 sakamoto }
249 1.1 sakamoto
250 1.1 sakamoto return;
251 1.1 sakamoto }
252 1.1 sakamoto
253 1.1 sakamoto /*
254 1.1 sakamoto * Clock a series of bits through the MII.
255 1.1 sakamoto */
256 1.1 sakamoto static void vr_mii_send(sc, bits, cnt)
257 1.1 sakamoto struct vr_softc *sc;
258 1.1 sakamoto u_int32_t bits;
259 1.1 sakamoto int cnt;
260 1.1 sakamoto {
261 1.1 sakamoto int i;
262 1.1 sakamoto
263 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
264 1.1 sakamoto
265 1.1 sakamoto for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
266 1.2 sakamoto if (bits & i) {
267 1.1 sakamoto SIO_SET(VR_MIICMD_DATAIN);
268 1.2 sakamoto } else {
269 1.1 sakamoto SIO_CLR(VR_MIICMD_DATAIN);
270 1.2 sakamoto }
271 1.1 sakamoto DELAY(1);
272 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
273 1.1 sakamoto DELAY(1);
274 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
275 1.1 sakamoto }
276 1.1 sakamoto }
277 1.1 sakamoto
278 1.1 sakamoto /*
279 1.1 sakamoto * Read an PHY register through the MII.
280 1.1 sakamoto */
281 1.1 sakamoto static int vr_mii_readreg(sc, frame)
282 1.1 sakamoto struct vr_softc *sc;
283 1.1 sakamoto struct vr_mii_frame *frame;
284 1.2 sakamoto
285 1.1 sakamoto {
286 1.1 sakamoto int i, ack, s;
287 1.1 sakamoto
288 1.1 sakamoto s = splimp();
289 1.1 sakamoto
290 1.1 sakamoto /*
291 1.1 sakamoto * Set up frame for RX.
292 1.1 sakamoto */
293 1.1 sakamoto frame->mii_stdelim = VR_MII_STARTDELIM;
294 1.1 sakamoto frame->mii_opcode = VR_MII_READOP;
295 1.1 sakamoto frame->mii_turnaround = 0;
296 1.1 sakamoto frame->mii_data = 0;
297 1.2 sakamoto
298 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, 0);
299 1.1 sakamoto VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
300 1.1 sakamoto
301 1.1 sakamoto /*
302 1.2 sakamoto * Turn on data xmit.
303 1.1 sakamoto */
304 1.1 sakamoto SIO_SET(VR_MIICMD_DIR);
305 1.1 sakamoto
306 1.1 sakamoto vr_mii_sync(sc);
307 1.1 sakamoto
308 1.1 sakamoto /*
309 1.1 sakamoto * Send command/address info.
310 1.1 sakamoto */
311 1.1 sakamoto vr_mii_send(sc, frame->mii_stdelim, 2);
312 1.1 sakamoto vr_mii_send(sc, frame->mii_opcode, 2);
313 1.1 sakamoto vr_mii_send(sc, frame->mii_phyaddr, 5);
314 1.1 sakamoto vr_mii_send(sc, frame->mii_regaddr, 5);
315 1.1 sakamoto
316 1.1 sakamoto /* Idle bit */
317 1.1 sakamoto SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN));
318 1.1 sakamoto DELAY(1);
319 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
320 1.1 sakamoto DELAY(1);
321 1.1 sakamoto
322 1.1 sakamoto /* Turn off xmit. */
323 1.1 sakamoto SIO_CLR(VR_MIICMD_DIR);
324 1.1 sakamoto
325 1.1 sakamoto /* Check for ack */
326 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
327 1.1 sakamoto DELAY(1);
328 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
329 1.1 sakamoto DELAY(1);
330 1.1 sakamoto ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT;
331 1.1 sakamoto
332 1.1 sakamoto /*
333 1.1 sakamoto * Now try reading data bits. If the ack failed, we still
334 1.1 sakamoto * need to clock through 16 cycles to keep the PHY(s) in sync.
335 1.1 sakamoto */
336 1.1 sakamoto if (ack) {
337 1.2 sakamoto for (i = 0; i < 16; i++) {
338 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
339 1.1 sakamoto DELAY(1);
340 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
341 1.1 sakamoto DELAY(1);
342 1.1 sakamoto }
343 1.1 sakamoto goto fail;
344 1.1 sakamoto }
345 1.1 sakamoto
346 1.1 sakamoto for (i = 0x8000; i; i >>= 1) {
347 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
348 1.1 sakamoto DELAY(1);
349 1.1 sakamoto if (!ack) {
350 1.1 sakamoto if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT)
351 1.1 sakamoto frame->mii_data |= i;
352 1.1 sakamoto DELAY(1);
353 1.1 sakamoto }
354 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
355 1.1 sakamoto DELAY(1);
356 1.1 sakamoto }
357 1.1 sakamoto
358 1.1 sakamoto fail:
359 1.1 sakamoto
360 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
361 1.1 sakamoto DELAY(1);
362 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
363 1.1 sakamoto DELAY(1);
364 1.1 sakamoto
365 1.1 sakamoto splx(s);
366 1.1 sakamoto
367 1.1 sakamoto if (ack)
368 1.2 sakamoto return (1);
369 1.2 sakamoto return (0);
370 1.1 sakamoto }
371 1.1 sakamoto
372 1.1 sakamoto /*
373 1.1 sakamoto * Write to a PHY register through the MII.
374 1.1 sakamoto */
375 1.1 sakamoto static int vr_mii_writereg(sc, frame)
376 1.1 sakamoto struct vr_softc *sc;
377 1.1 sakamoto struct vr_mii_frame *frame;
378 1.1 sakamoto {
379 1.1 sakamoto int s;
380 1.1 sakamoto
381 1.1 sakamoto s = splimp();
382 1.1 sakamoto
383 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, 0);
384 1.1 sakamoto VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
385 1.1 sakamoto
386 1.1 sakamoto /*
387 1.1 sakamoto * Set up frame for TX.
388 1.1 sakamoto */
389 1.1 sakamoto
390 1.1 sakamoto frame->mii_stdelim = VR_MII_STARTDELIM;
391 1.1 sakamoto frame->mii_opcode = VR_MII_WRITEOP;
392 1.1 sakamoto frame->mii_turnaround = VR_MII_TURNAROUND;
393 1.2 sakamoto
394 1.1 sakamoto /*
395 1.2 sakamoto * Turn on data output.
396 1.1 sakamoto */
397 1.1 sakamoto SIO_SET(VR_MIICMD_DIR);
398 1.1 sakamoto
399 1.1 sakamoto vr_mii_sync(sc);
400 1.1 sakamoto
401 1.1 sakamoto vr_mii_send(sc, frame->mii_stdelim, 2);
402 1.1 sakamoto vr_mii_send(sc, frame->mii_opcode, 2);
403 1.1 sakamoto vr_mii_send(sc, frame->mii_phyaddr, 5);
404 1.1 sakamoto vr_mii_send(sc, frame->mii_regaddr, 5);
405 1.1 sakamoto vr_mii_send(sc, frame->mii_turnaround, 2);
406 1.1 sakamoto vr_mii_send(sc, frame->mii_data, 16);
407 1.1 sakamoto
408 1.1 sakamoto /* Idle bit. */
409 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
410 1.1 sakamoto DELAY(1);
411 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
412 1.1 sakamoto DELAY(1);
413 1.1 sakamoto
414 1.1 sakamoto /*
415 1.1 sakamoto * Turn off xmit.
416 1.1 sakamoto */
417 1.1 sakamoto SIO_CLR(VR_MIICMD_DIR);
418 1.1 sakamoto
419 1.1 sakamoto splx(s);
420 1.1 sakamoto
421 1.2 sakamoto return (0);
422 1.1 sakamoto }
423 1.1 sakamoto
424 1.1 sakamoto static u_int16_t vr_phy_readreg(sc, reg)
425 1.1 sakamoto struct vr_softc *sc;
426 1.1 sakamoto int reg;
427 1.1 sakamoto {
428 1.1 sakamoto struct vr_mii_frame frame;
429 1.1 sakamoto
430 1.2 sakamoto bzero((char *)&frame, sizeof (frame));
431 1.1 sakamoto
432 1.1 sakamoto frame.mii_phyaddr = sc->vr_phy_addr;
433 1.1 sakamoto frame.mii_regaddr = reg;
434 1.1 sakamoto vr_mii_readreg(sc, &frame);
435 1.1 sakamoto
436 1.2 sakamoto return (frame.mii_data);
437 1.1 sakamoto }
438 1.1 sakamoto
439 1.1 sakamoto static void vr_phy_writereg(sc, reg, data)
440 1.1 sakamoto struct vr_softc *sc;
441 1.1 sakamoto u_int16_t reg;
442 1.1 sakamoto u_int16_t data;
443 1.1 sakamoto {
444 1.1 sakamoto struct vr_mii_frame frame;
445 1.1 sakamoto
446 1.2 sakamoto bzero((char *)&frame, sizeof (frame));
447 1.1 sakamoto
448 1.1 sakamoto frame.mii_phyaddr = sc->vr_phy_addr;
449 1.1 sakamoto frame.mii_regaddr = reg;
450 1.1 sakamoto frame.mii_data = data;
451 1.1 sakamoto
452 1.1 sakamoto vr_mii_writereg(sc, &frame);
453 1.1 sakamoto
454 1.1 sakamoto return;
455 1.1 sakamoto }
456 1.1 sakamoto
457 1.1 sakamoto /*
458 1.1 sakamoto * Calculate CRC of a multicast group address, return the lower 6 bits.
459 1.1 sakamoto */
460 1.1 sakamoto static u_int8_t vr_calchash(addr)
461 1.1 sakamoto u_int8_t *addr;
462 1.1 sakamoto {
463 1.1 sakamoto u_int32_t crc, carry;
464 1.1 sakamoto int i, j;
465 1.1 sakamoto u_int8_t c;
466 1.1 sakamoto
467 1.1 sakamoto /* Compute CRC for the address value. */
468 1.1 sakamoto crc = 0xFFFFFFFF; /* initial value */
469 1.1 sakamoto
470 1.1 sakamoto for (i = 0; i < 6; i++) {
471 1.1 sakamoto c = *(addr + i);
472 1.1 sakamoto for (j = 0; j < 8; j++) {
473 1.1 sakamoto carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
474 1.1 sakamoto crc <<= 1;
475 1.1 sakamoto c >>= 1;
476 1.1 sakamoto if (carry)
477 1.1 sakamoto crc = (crc ^ 0x04c11db6) | carry;
478 1.1 sakamoto }
479 1.1 sakamoto }
480 1.1 sakamoto
481 1.1 sakamoto /* return the filter bit position */
482 1.2 sakamoto return ((crc >> 26) & 0x0000003F);
483 1.1 sakamoto }
484 1.1 sakamoto
485 1.1 sakamoto /*
486 1.1 sakamoto * Program the 64-bit multicast hash filter.
487 1.1 sakamoto */
488 1.1 sakamoto static void vr_setmulti(sc)
489 1.1 sakamoto struct vr_softc *sc;
490 1.1 sakamoto {
491 1.1 sakamoto struct ifnet *ifp;
492 1.1 sakamoto int h = 0;
493 1.1 sakamoto u_int32_t hashes[2] = { 0, 0 };
494 1.2 sakamoto #if defined(__NetBSD__)
495 1.2 sakamoto struct ether_multistep step;
496 1.2 sakamoto struct ether_multi *enm;
497 1.2 sakamoto #else
498 1.1 sakamoto struct ifmultiaddr *ifma;
499 1.2 sakamoto #endif
500 1.2 sakamoto int mcnt = 0;
501 1.1 sakamoto u_int8_t rxfilt;
502 1.1 sakamoto
503 1.2 sakamoto ifp = &sc->vr_if;
504 1.1 sakamoto
505 1.1 sakamoto rxfilt = CSR_READ_1(sc, VR_RXCFG);
506 1.1 sakamoto
507 1.1 sakamoto if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
508 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
509 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
510 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
511 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
512 1.1 sakamoto return;
513 1.1 sakamoto }
514 1.1 sakamoto
515 1.1 sakamoto /* first, zot all the existing hash bits */
516 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0);
517 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0);
518 1.1 sakamoto
519 1.1 sakamoto /* now program new ones */
520 1.2 sakamoto #if defined(__NetBSD__)
521 1.2 sakamoto ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
522 1.2 sakamoto while (enm != NULL) {
523 1.2 sakamoto if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
524 1.2 sakamoto continue;
525 1.2 sakamoto
526 1.2 sakamoto h = vr_calchash(enm->enm_addrlo);
527 1.2 sakamoto #else
528 1.1 sakamoto for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
529 1.1 sakamoto ifma = ifma->ifma_link.le_next) {
530 1.1 sakamoto if (ifma->ifma_addr->sa_family != AF_LINK)
531 1.1 sakamoto continue;
532 1.2 sakamoto
533 1.1 sakamoto h = vr_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
534 1.2 sakamoto #endif
535 1.2 sakamoto
536 1.1 sakamoto if (h < 32)
537 1.1 sakamoto hashes[0] |= (1 << h);
538 1.1 sakamoto else
539 1.1 sakamoto hashes[1] |= (1 << (h - 32));
540 1.2 sakamoto #if defined(__NetBSD__)
541 1.2 sakamoto ETHER_NEXT_MULTI(step, enm);
542 1.2 sakamoto #endif
543 1.1 sakamoto mcnt++;
544 1.1 sakamoto }
545 1.1 sakamoto
546 1.1 sakamoto if (mcnt)
547 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
548 1.1 sakamoto else
549 1.1 sakamoto rxfilt &= ~VR_RXCFG_RX_MULTI;
550 1.1 sakamoto
551 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
552 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
553 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
554 1.1 sakamoto
555 1.1 sakamoto return;
556 1.1 sakamoto }
557 1.1 sakamoto
558 1.1 sakamoto /*
559 1.1 sakamoto * Initiate an autonegotiation session.
560 1.1 sakamoto */
561 1.1 sakamoto static void vr_autoneg_xmit(sc)
562 1.1 sakamoto struct vr_softc *sc;
563 1.1 sakamoto {
564 1.1 sakamoto u_int16_t phy_sts;
565 1.1 sakamoto
566 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
567 1.1 sakamoto DELAY(500);
568 1.2 sakamoto while (vr_phy_readreg(sc, PHY_BMCR)
569 1.1 sakamoto & PHY_BMCR_RESET);
570 1.1 sakamoto
571 1.1 sakamoto phy_sts = vr_phy_readreg(sc, PHY_BMCR);
572 1.1 sakamoto phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
573 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, phy_sts);
574 1.1 sakamoto
575 1.1 sakamoto return;
576 1.1 sakamoto }
577 1.1 sakamoto
578 1.1 sakamoto /*
579 1.1 sakamoto * Invoke autonegotiation on a PHY.
580 1.1 sakamoto */
581 1.1 sakamoto static void vr_autoneg_mii(sc, flag, verbose)
582 1.1 sakamoto struct vr_softc *sc;
583 1.1 sakamoto int flag;
584 1.1 sakamoto int verbose;
585 1.1 sakamoto {
586 1.1 sakamoto u_int16_t phy_sts = 0, media, advert, ability;
587 1.1 sakamoto struct ifnet *ifp;
588 1.1 sakamoto struct ifmedia *ifm;
589 1.1 sakamoto
590 1.1 sakamoto ifm = &sc->ifmedia;
591 1.2 sakamoto ifp = &sc->vr_if;
592 1.1 sakamoto
593 1.1 sakamoto ifm->ifm_media = IFM_ETHER | IFM_AUTO;
594 1.1 sakamoto
595 1.1 sakamoto /*
596 1.1 sakamoto * The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
597 1.1 sakamoto * bit cleared in the status register, but has the 'autoneg enabled'
598 1.1 sakamoto * bit set in the control register. This is a contradiction, and
599 1.1 sakamoto * I'm not sure how to handle it. If you want to force an attempt
600 1.1 sakamoto * to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
601 1.1 sakamoto * and see what happens.
602 1.1 sakamoto */
603 1.1 sakamoto #ifndef FORCE_AUTONEG_TFOUR
604 1.1 sakamoto /*
605 1.1 sakamoto * First, see if autoneg is supported. If not, there's
606 1.1 sakamoto * no point in continuing.
607 1.1 sakamoto */
608 1.1 sakamoto phy_sts = vr_phy_readreg(sc, PHY_BMSR);
609 1.1 sakamoto if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
610 1.1 sakamoto if (verbose)
611 1.2 sakamoto printf(VR_PRINTF_FMT
612 1.2 sakamoto ": autonegotiation not supported\n",
613 1.2 sakamoto VR_PRINTF_ARGS);
614 1.2 sakamoto ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
615 1.1 sakamoto return;
616 1.1 sakamoto }
617 1.1 sakamoto #endif
618 1.1 sakamoto
619 1.1 sakamoto switch (flag) {
620 1.1 sakamoto case VR_FLAG_FORCEDELAY:
621 1.1 sakamoto /*
622 1.2 sakamoto * XXX Never use this option anywhere but in the probe
623 1.2 sakamoto * routine: making the kernel stop dead in its tracks
624 1.2 sakamoto * for three whole seconds after we've gone multi-user
625 1.1 sakamoto * is really bad manners.
626 1.2 sakamoto */
627 1.1 sakamoto vr_autoneg_xmit(sc);
628 1.1 sakamoto DELAY(5000000);
629 1.1 sakamoto break;
630 1.1 sakamoto case VR_FLAG_SCHEDDELAY:
631 1.1 sakamoto /*
632 1.1 sakamoto * Wait for the transmitter to go idle before starting
633 1.1 sakamoto * an autoneg session, otherwise vr_start() may clobber
634 1.2 sakamoto * our timeout, and we don't want to allow transmission
635 1.1 sakamoto * during an autoneg session since that can screw it up.
636 1.2 sakamoto */
637 1.1 sakamoto if (sc->vr_cdata.vr_tx_head != NULL) {
638 1.1 sakamoto sc->vr_want_auto = 1;
639 1.1 sakamoto return;
640 1.1 sakamoto }
641 1.1 sakamoto vr_autoneg_xmit(sc);
642 1.1 sakamoto ifp->if_timer = 5;
643 1.1 sakamoto sc->vr_autoneg = 1;
644 1.1 sakamoto sc->vr_want_auto = 0;
645 1.1 sakamoto return;
646 1.1 sakamoto break;
647 1.1 sakamoto case VR_FLAG_DELAYTIMEO:
648 1.1 sakamoto ifp->if_timer = 0;
649 1.1 sakamoto sc->vr_autoneg = 0;
650 1.1 sakamoto break;
651 1.1 sakamoto default:
652 1.2 sakamoto printf(VR_PRINTF_FMT ": invalid autoneg flag: %d\n",
653 1.2 sakamoto VR_PRINTF_ARGS, flag);
654 1.1 sakamoto return;
655 1.1 sakamoto }
656 1.1 sakamoto
657 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
658 1.1 sakamoto if (verbose)
659 1.2 sakamoto printf(VR_PRINTF_FMT ": autoneg complete, ",
660 1.2 sakamoto VR_PRINTF_ARGS);
661 1.1 sakamoto phy_sts = vr_phy_readreg(sc, PHY_BMSR);
662 1.1 sakamoto } else {
663 1.1 sakamoto if (verbose)
664 1.2 sakamoto printf(VR_PRINTF_FMT ": autoneg not complete, ",
665 1.2 sakamoto VR_PRINTF_ARGS);
666 1.1 sakamoto }
667 1.1 sakamoto
668 1.1 sakamoto media = vr_phy_readreg(sc, PHY_BMCR);
669 1.1 sakamoto
670 1.1 sakamoto /* Link is good. Report modes and set duplex mode. */
671 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
672 1.1 sakamoto if (verbose)
673 1.1 sakamoto printf("link status good ");
674 1.1 sakamoto advert = vr_phy_readreg(sc, PHY_ANAR);
675 1.1 sakamoto ability = vr_phy_readreg(sc, PHY_LPAR);
676 1.1 sakamoto
677 1.1 sakamoto if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
678 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_100_T4;
679 1.1 sakamoto media |= PHY_BMCR_SPEEDSEL;
680 1.1 sakamoto media &= ~PHY_BMCR_DUPLEX;
681 1.1 sakamoto printf("(100baseT4)\n");
682 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXFULL &&
683 1.1 sakamoto ability & PHY_ANAR_100BTXFULL) {
684 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
685 1.1 sakamoto media |= PHY_BMCR_SPEEDSEL;
686 1.1 sakamoto media |= PHY_BMCR_DUPLEX;
687 1.1 sakamoto printf("(full-duplex, 100Mbps)\n");
688 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXHALF &&
689 1.1 sakamoto ability & PHY_ANAR_100BTXHALF) {
690 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
691 1.1 sakamoto media |= PHY_BMCR_SPEEDSEL;
692 1.1 sakamoto media &= ~PHY_BMCR_DUPLEX;
693 1.1 sakamoto printf("(half-duplex, 100Mbps)\n");
694 1.1 sakamoto } else if (advert & PHY_ANAR_10BTFULL &&
695 1.1 sakamoto ability & PHY_ANAR_10BTFULL) {
696 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
697 1.1 sakamoto media &= ~PHY_BMCR_SPEEDSEL;
698 1.1 sakamoto media |= PHY_BMCR_DUPLEX;
699 1.1 sakamoto printf("(full-duplex, 10Mbps)\n");
700 1.1 sakamoto } else {
701 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
702 1.1 sakamoto media &= ~PHY_BMCR_SPEEDSEL;
703 1.1 sakamoto media &= ~PHY_BMCR_DUPLEX;
704 1.1 sakamoto printf("(half-duplex, 10Mbps)\n");
705 1.1 sakamoto }
706 1.1 sakamoto
707 1.1 sakamoto media &= ~PHY_BMCR_AUTONEGENBL;
708 1.1 sakamoto
709 1.1 sakamoto /* Set ASIC's duplex mode to match the PHY. */
710 1.1 sakamoto vr_setcfg(sc, media);
711 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, media);
712 1.1 sakamoto } else {
713 1.1 sakamoto if (verbose)
714 1.1 sakamoto printf("no carrier\n");
715 1.1 sakamoto }
716 1.1 sakamoto
717 1.1 sakamoto vr_init(sc);
718 1.1 sakamoto
719 1.1 sakamoto if (sc->vr_tx_pend) {
720 1.1 sakamoto sc->vr_autoneg = 0;
721 1.1 sakamoto sc->vr_tx_pend = 0;
722 1.1 sakamoto vr_start(ifp);
723 1.1 sakamoto }
724 1.1 sakamoto
725 1.1 sakamoto return;
726 1.1 sakamoto }
727 1.1 sakamoto
728 1.1 sakamoto static void vr_getmode_mii(sc)
729 1.1 sakamoto struct vr_softc *sc;
730 1.1 sakamoto {
731 1.1 sakamoto u_int16_t bmsr;
732 1.1 sakamoto struct ifnet *ifp;
733 1.1 sakamoto
734 1.2 sakamoto ifp = &sc->vr_if;
735 1.1 sakamoto
736 1.1 sakamoto bmsr = vr_phy_readreg(sc, PHY_BMSR);
737 1.1 sakamoto if (bootverbose)
738 1.2 sakamoto printf(VR_PRINTF_FMT ": PHY status word: %x\n",
739 1.2 sakamoto VR_PRINTF_ARGS, bmsr);
740 1.1 sakamoto
741 1.1 sakamoto /* fallback */
742 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
743 1.1 sakamoto
744 1.1 sakamoto if (bmsr & PHY_BMSR_10BTHALF) {
745 1.1 sakamoto if (bootverbose)
746 1.2 sakamoto printf(VR_PRINTF_FMT
747 1.2 sakamoto ": 10Mbps half-duplex mode supported\n",
748 1.2 sakamoto VR_PRINTF_ARGS);
749 1.1 sakamoto ifmedia_add(&sc->ifmedia,
750 1.1 sakamoto IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
751 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
752 1.1 sakamoto }
753 1.1 sakamoto
754 1.1 sakamoto if (bmsr & PHY_BMSR_10BTFULL) {
755 1.1 sakamoto if (bootverbose)
756 1.2 sakamoto printf(VR_PRINTF_FMT
757 1.2 sakamoto ": 10Mbps full-duplex mode supported\n",
758 1.2 sakamoto VR_PRINTF_ARGS);
759 1.1 sakamoto ifmedia_add(&sc->ifmedia,
760 1.1 sakamoto IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
761 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
762 1.1 sakamoto }
763 1.1 sakamoto
764 1.1 sakamoto if (bmsr & PHY_BMSR_100BTXHALF) {
765 1.1 sakamoto if (bootverbose)
766 1.2 sakamoto printf(VR_PRINTF_FMT
767 1.2 sakamoto ": 100Mbps half-duplex mode supported\n",
768 1.2 sakamoto VR_PRINTF_ARGS);
769 1.1 sakamoto ifp->if_baudrate = 100000000;
770 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
771 1.1 sakamoto ifmedia_add(&sc->ifmedia,
772 1.1 sakamoto IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
773 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
774 1.1 sakamoto }
775 1.1 sakamoto
776 1.1 sakamoto if (bmsr & PHY_BMSR_100BTXFULL) {
777 1.1 sakamoto if (bootverbose)
778 1.2 sakamoto printf(VR_PRINTF_FMT
779 1.2 sakamoto ": 100Mbps full-duplex mode supported\n",
780 1.2 sakamoto VR_PRINTF_ARGS);
781 1.1 sakamoto ifp->if_baudrate = 100000000;
782 1.1 sakamoto ifmedia_add(&sc->ifmedia,
783 1.1 sakamoto IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
784 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
785 1.1 sakamoto }
786 1.1 sakamoto
787 1.1 sakamoto /* Some also support 100BaseT4. */
788 1.1 sakamoto if (bmsr & PHY_BMSR_100BT4) {
789 1.1 sakamoto if (bootverbose)
790 1.2 sakamoto printf(VR_PRINTF_FMT ": 100baseT4 mode supported\n",
791 1.2 sakamoto VR_PRINTF_ARGS);
792 1.1 sakamoto ifp->if_baudrate = 100000000;
793 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
794 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
795 1.1 sakamoto #ifdef FORCE_AUTONEG_TFOUR
796 1.1 sakamoto if (bootverbose)
797 1.2 sakamoto printf(VR_PRINTF_FMT
798 1.2 sakamoto ": forcing on autoneg support for BT4\n",
799 1.2 sakamoto VR_PRINTF_ARGS);
800 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
801 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
802 1.1 sakamoto #endif
803 1.1 sakamoto }
804 1.1 sakamoto
805 1.1 sakamoto if (bmsr & PHY_BMSR_CANAUTONEG) {
806 1.1 sakamoto if (bootverbose)
807 1.2 sakamoto printf(VR_PRINTF_FMT ": autoneg supported\n",
808 1.2 sakamoto VR_PRINTF_ARGS);
809 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
810 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
811 1.1 sakamoto }
812 1.1 sakamoto
813 1.1 sakamoto return;
814 1.1 sakamoto }
815 1.1 sakamoto
816 1.1 sakamoto /*
817 1.1 sakamoto * Set speed and duplex mode.
818 1.1 sakamoto */
819 1.1 sakamoto static void vr_setmode_mii(sc, media)
820 1.1 sakamoto struct vr_softc *sc;
821 1.1 sakamoto int media;
822 1.1 sakamoto {
823 1.1 sakamoto u_int16_t bmcr;
824 1.1 sakamoto struct ifnet *ifp;
825 1.1 sakamoto
826 1.2 sakamoto ifp = &sc->vr_if;
827 1.1 sakamoto
828 1.1 sakamoto /*
829 1.1 sakamoto * If an autoneg session is in progress, stop it.
830 1.1 sakamoto */
831 1.1 sakamoto if (sc->vr_autoneg) {
832 1.2 sakamoto printf(VR_PRINTF_FMT ": canceling autoneg session\n",
833 1.2 sakamoto VR_PRINTF_ARGS);
834 1.1 sakamoto ifp->if_timer = sc->vr_autoneg = sc->vr_want_auto = 0;
835 1.1 sakamoto bmcr = vr_phy_readreg(sc, PHY_BMCR);
836 1.1 sakamoto bmcr &= ~PHY_BMCR_AUTONEGENBL;
837 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, bmcr);
838 1.1 sakamoto }
839 1.1 sakamoto
840 1.2 sakamoto printf(VR_PRINTF_FMT ": selecting MII, ", VR_PRINTF_ARGS);
841 1.1 sakamoto
842 1.1 sakamoto bmcr = vr_phy_readreg(sc, PHY_BMCR);
843 1.1 sakamoto
844 1.1 sakamoto bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
845 1.1 sakamoto PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
846 1.1 sakamoto
847 1.1 sakamoto if (IFM_SUBTYPE(media) == IFM_100_T4) {
848 1.1 sakamoto printf("100Mbps/T4, half-duplex\n");
849 1.1 sakamoto bmcr |= PHY_BMCR_SPEEDSEL;
850 1.1 sakamoto bmcr &= ~PHY_BMCR_DUPLEX;
851 1.1 sakamoto }
852 1.1 sakamoto
853 1.1 sakamoto if (IFM_SUBTYPE(media) == IFM_100_TX) {
854 1.1 sakamoto printf("100Mbps, ");
855 1.1 sakamoto bmcr |= PHY_BMCR_SPEEDSEL;
856 1.1 sakamoto }
857 1.1 sakamoto
858 1.1 sakamoto if (IFM_SUBTYPE(media) == IFM_10_T) {
859 1.1 sakamoto printf("10Mbps, ");
860 1.1 sakamoto bmcr &= ~PHY_BMCR_SPEEDSEL;
861 1.1 sakamoto }
862 1.1 sakamoto
863 1.1 sakamoto if ((media & IFM_GMASK) == IFM_FDX) {
864 1.1 sakamoto printf("full duplex\n");
865 1.1 sakamoto bmcr |= PHY_BMCR_DUPLEX;
866 1.1 sakamoto } else {
867 1.1 sakamoto printf("half duplex\n");
868 1.1 sakamoto bmcr &= ~PHY_BMCR_DUPLEX;
869 1.1 sakamoto }
870 1.1 sakamoto
871 1.1 sakamoto vr_setcfg(sc, bmcr);
872 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, bmcr);
873 1.1 sakamoto
874 1.1 sakamoto return;
875 1.1 sakamoto }
876 1.1 sakamoto
877 1.1 sakamoto /*
878 1.1 sakamoto * In order to fiddle with the
879 1.1 sakamoto * 'full-duplex' and '100Mbps' bits in the netconfig register, we
880 1.1 sakamoto * first have to put the transmit and/or receive logic in the idle state.
881 1.1 sakamoto */
882 1.1 sakamoto static void vr_setcfg(sc, bmcr)
883 1.1 sakamoto struct vr_softc *sc;
884 1.1 sakamoto u_int16_t bmcr;
885 1.1 sakamoto {
886 1.1 sakamoto int restart = 0;
887 1.1 sakamoto
888 1.1 sakamoto if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
889 1.1 sakamoto restart = 1;
890 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
891 1.1 sakamoto }
892 1.1 sakamoto
893 1.1 sakamoto if (bmcr & PHY_BMCR_DUPLEX)
894 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
895 1.1 sakamoto else
896 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
897 1.1 sakamoto
898 1.1 sakamoto if (restart)
899 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
900 1.1 sakamoto
901 1.1 sakamoto return;
902 1.1 sakamoto }
903 1.1 sakamoto
904 1.1 sakamoto static void vr_reset(sc)
905 1.1 sakamoto struct vr_softc *sc;
906 1.1 sakamoto {
907 1.1 sakamoto register int i;
908 1.1 sakamoto
909 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
910 1.1 sakamoto
911 1.1 sakamoto for (i = 0; i < VR_TIMEOUT; i++) {
912 1.1 sakamoto DELAY(10);
913 1.1 sakamoto if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
914 1.1 sakamoto break;
915 1.1 sakamoto }
916 1.1 sakamoto if (i == VR_TIMEOUT)
917 1.2 sakamoto printf(VR_PRINTF_FMT ": reset never completed!\n",
918 1.2 sakamoto VR_PRINTF_ARGS);
919 1.1 sakamoto
920 1.1 sakamoto /* Wait a little while for the chip to get its brains in order. */
921 1.1 sakamoto DELAY(1000);
922 1.1 sakamoto
923 1.1 sakamoto return;
924 1.1 sakamoto }
925 1.1 sakamoto
926 1.1 sakamoto /*
927 1.1 sakamoto * Initialize the transmit descriptors.
928 1.1 sakamoto */
929 1.1 sakamoto static int vr_list_tx_init(sc)
930 1.1 sakamoto struct vr_softc *sc;
931 1.1 sakamoto {
932 1.1 sakamoto struct vr_chain_data *cd;
933 1.1 sakamoto struct vr_list_data *ld;
934 1.1 sakamoto int i;
935 1.1 sakamoto
936 1.1 sakamoto cd = &sc->vr_cdata;
937 1.1 sakamoto ld = sc->vr_ldata;
938 1.1 sakamoto for (i = 0; i < VR_TX_LIST_CNT; i++) {
939 1.1 sakamoto cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
940 1.1 sakamoto if (i == (VR_TX_LIST_CNT - 1))
941 1.2 sakamoto cd->vr_tx_chain[i].vr_nextdesc =
942 1.1 sakamoto &cd->vr_tx_chain[0];
943 1.1 sakamoto else
944 1.1 sakamoto cd->vr_tx_chain[i].vr_nextdesc =
945 1.1 sakamoto &cd->vr_tx_chain[i + 1];
946 1.1 sakamoto }
947 1.1 sakamoto
948 1.1 sakamoto cd->vr_tx_free = &cd->vr_tx_chain[0];
949 1.1 sakamoto cd->vr_tx_tail = cd->vr_tx_head = NULL;
950 1.1 sakamoto
951 1.2 sakamoto return (0);
952 1.1 sakamoto }
953 1.1 sakamoto
954 1.1 sakamoto
955 1.1 sakamoto /*
956 1.1 sakamoto * Initialize the RX descriptors and allocate mbufs for them. Note that
957 1.1 sakamoto * we arrange the descriptors in a closed ring, so that the last descriptor
958 1.1 sakamoto * points back to the first.
959 1.1 sakamoto */
960 1.1 sakamoto static int vr_list_rx_init(sc)
961 1.1 sakamoto struct vr_softc *sc;
962 1.1 sakamoto {
963 1.1 sakamoto struct vr_chain_data *cd;
964 1.1 sakamoto struct vr_list_data *ld;
965 1.1 sakamoto int i;
966 1.1 sakamoto
967 1.1 sakamoto cd = &sc->vr_cdata;
968 1.1 sakamoto ld = sc->vr_ldata;
969 1.1 sakamoto
970 1.1 sakamoto for (i = 0; i < VR_RX_LIST_CNT; i++) {
971 1.1 sakamoto cd->vr_rx_chain[i].vr_ptr =
972 1.1 sakamoto (struct vr_desc *)&ld->vr_rx_list[i];
973 1.1 sakamoto if (vr_newbuf(sc, &cd->vr_rx_chain[i]) == ENOBUFS)
974 1.2 sakamoto return (ENOBUFS);
975 1.1 sakamoto if (i == (VR_RX_LIST_CNT - 1)) {
976 1.1 sakamoto cd->vr_rx_chain[i].vr_nextdesc =
977 1.1 sakamoto &cd->vr_rx_chain[0];
978 1.1 sakamoto ld->vr_rx_list[i].vr_next =
979 1.1 sakamoto vtophys(&ld->vr_rx_list[0]);
980 1.1 sakamoto } else {
981 1.1 sakamoto cd->vr_rx_chain[i].vr_nextdesc =
982 1.1 sakamoto &cd->vr_rx_chain[i + 1];
983 1.1 sakamoto ld->vr_rx_list[i].vr_next =
984 1.1 sakamoto vtophys(&ld->vr_rx_list[i + 1]);
985 1.1 sakamoto }
986 1.1 sakamoto }
987 1.1 sakamoto
988 1.1 sakamoto cd->vr_rx_head = &cd->vr_rx_chain[0];
989 1.1 sakamoto
990 1.2 sakamoto return (0);
991 1.1 sakamoto }
992 1.1 sakamoto
993 1.1 sakamoto /*
994 1.1 sakamoto * Initialize an RX descriptor and attach an MBUF cluster.
995 1.1 sakamoto * Note: the length fields are only 11 bits wide, which means the
996 1.1 sakamoto * largest size we can specify is 2047. This is important because
997 1.1 sakamoto * MCLBYTES is 2048, so we have to subtract one otherwise we'll
998 1.1 sakamoto * overflow the field and make a mess.
999 1.1 sakamoto */
1000 1.1 sakamoto static int vr_newbuf(sc, c)
1001 1.1 sakamoto struct vr_softc *sc;
1002 1.1 sakamoto struct vr_chain_onefrag *c;
1003 1.1 sakamoto {
1004 1.1 sakamoto struct mbuf *m_new = NULL;
1005 1.1 sakamoto
1006 1.1 sakamoto MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1007 1.1 sakamoto if (m_new == NULL) {
1008 1.2 sakamoto printf(VR_PRINTF_FMT
1009 1.2 sakamoto ": no memory for rx list -- packet dropped!\n",
1010 1.2 sakamoto VR_PRINTF_ARGS);
1011 1.2 sakamoto return (ENOBUFS);
1012 1.1 sakamoto }
1013 1.1 sakamoto
1014 1.1 sakamoto MCLGET(m_new, M_DONTWAIT);
1015 1.1 sakamoto if (!(m_new->m_flags & M_EXT)) {
1016 1.2 sakamoto printf(VR_PRINTF_FMT
1017 1.2 sakamoto ": no memory for rx list -- packet dropped!\n",
1018 1.2 sakamoto VR_PRINTF_ARGS);
1019 1.1 sakamoto m_freem(m_new);
1020 1.2 sakamoto return (ENOBUFS);
1021 1.1 sakamoto }
1022 1.1 sakamoto
1023 1.1 sakamoto c->vr_mbuf = m_new;
1024 1.1 sakamoto c->vr_ptr->vr_status = VR_RXSTAT;
1025 1.1 sakamoto c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
1026 1.1 sakamoto c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
1027 1.1 sakamoto
1028 1.2 sakamoto return (0);
1029 1.1 sakamoto }
1030 1.1 sakamoto
1031 1.1 sakamoto /*
1032 1.1 sakamoto * A frame has been uploaded: pass the resulting mbuf chain up to
1033 1.1 sakamoto * the higher level protocols.
1034 1.1 sakamoto */
1035 1.1 sakamoto static void vr_rxeof(sc)
1036 1.1 sakamoto struct vr_softc *sc;
1037 1.1 sakamoto {
1038 1.2 sakamoto struct ether_header *eh;
1039 1.2 sakamoto struct mbuf *m;
1040 1.2 sakamoto struct ifnet *ifp;
1041 1.1 sakamoto struct vr_chain_onefrag *cur_rx;
1042 1.1 sakamoto int total_len = 0;
1043 1.1 sakamoto u_int32_t rxstat;
1044 1.1 sakamoto
1045 1.2 sakamoto ifp = &sc->vr_if;
1046 1.1 sakamoto
1047 1.2 sakamoto while (!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
1048 1.1 sakamoto VR_RXSTAT_OWN)) {
1049 1.1 sakamoto cur_rx = sc->vr_cdata.vr_rx_head;
1050 1.1 sakamoto sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
1051 1.1 sakamoto
1052 1.1 sakamoto /*
1053 1.1 sakamoto * If an error occurs, update stats, clear the
1054 1.1 sakamoto * status word and leave the mbuf cluster in place:
1055 1.1 sakamoto * it should simply get re-used next time this descriptor
1056 1.2 sakamoto * comes up in the ring.
1057 1.1 sakamoto */
1058 1.1 sakamoto if (rxstat & VR_RXSTAT_RXERR) {
1059 1.1 sakamoto ifp->if_ierrors++;
1060 1.2 sakamoto printf(VR_PRINTF_FMT ": rx error: ", VR_PRINTF_ARGS);
1061 1.2 sakamoto switch (rxstat & 0x000000FF) {
1062 1.1 sakamoto case VR_RXSTAT_CRCERR:
1063 1.1 sakamoto printf("crc error\n");
1064 1.1 sakamoto break;
1065 1.1 sakamoto case VR_RXSTAT_FRAMEALIGNERR:
1066 1.1 sakamoto printf("frame alignment error\n");
1067 1.1 sakamoto break;
1068 1.1 sakamoto case VR_RXSTAT_FIFOOFLOW:
1069 1.1 sakamoto printf("FIFO overflow\n");
1070 1.1 sakamoto break;
1071 1.1 sakamoto case VR_RXSTAT_GIANT:
1072 1.1 sakamoto printf("received giant packet\n");
1073 1.1 sakamoto break;
1074 1.1 sakamoto case VR_RXSTAT_RUNT:
1075 1.1 sakamoto printf("received runt packet\n");
1076 1.1 sakamoto break;
1077 1.1 sakamoto case VR_RXSTAT_BUSERR:
1078 1.1 sakamoto printf("system bus error\n");
1079 1.1 sakamoto break;
1080 1.1 sakamoto case VR_RXSTAT_BUFFERR:
1081 1.1 sakamoto printf("rx buffer error\n");
1082 1.1 sakamoto break;
1083 1.1 sakamoto default:
1084 1.1 sakamoto printf("unknown rx error\n");
1085 1.1 sakamoto break;
1086 1.1 sakamoto }
1087 1.1 sakamoto cur_rx->vr_ptr->vr_status = VR_RXSTAT;
1088 1.1 sakamoto cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
1089 1.1 sakamoto continue;
1090 1.1 sakamoto }
1091 1.1 sakamoto
1092 1.2 sakamoto /* No errors; receive the packet. */
1093 1.1 sakamoto m = cur_rx->vr_mbuf;
1094 1.1 sakamoto total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
1095 1.1 sakamoto
1096 1.1 sakamoto /*
1097 1.1 sakamoto * XXX The VIA Rhine chip includes the CRC with every
1098 1.1 sakamoto * received frame, and there's no way to turn this
1099 1.1 sakamoto * behavior off (at least, I can't find anything in
1100 1.2 sakamoto * the manual that explains how to do it) so we have
1101 1.1 sakamoto * to trim off the CRC manually.
1102 1.1 sakamoto */
1103 1.1 sakamoto total_len -= ETHER_CRC_LEN;
1104 1.1 sakamoto
1105 1.1 sakamoto /*
1106 1.1 sakamoto * Try to conjure up a new mbuf cluster. If that
1107 1.1 sakamoto * fails, it means we have an out of memory condition and
1108 1.1 sakamoto * should leave the buffer in place and continue. This will
1109 1.1 sakamoto * result in a lost packet, but there's little else we
1110 1.1 sakamoto * can do in this situation.
1111 1.1 sakamoto */
1112 1.1 sakamoto if (vr_newbuf(sc, cur_rx) == ENOBUFS) {
1113 1.1 sakamoto ifp->if_ierrors++;
1114 1.1 sakamoto cur_rx->vr_ptr->vr_status = VR_RXSTAT;
1115 1.1 sakamoto cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
1116 1.1 sakamoto continue;
1117 1.1 sakamoto }
1118 1.1 sakamoto
1119 1.1 sakamoto ifp->if_ipackets++;
1120 1.1 sakamoto eh = mtod(m, struct ether_header *);
1121 1.1 sakamoto m->m_pkthdr.rcvif = ifp;
1122 1.1 sakamoto m->m_pkthdr.len = m->m_len = total_len;
1123 1.1 sakamoto #if NBPFILTER > 0
1124 1.1 sakamoto /*
1125 1.1 sakamoto * Handle BPF listeners. Let the BPF user see the packet, but
1126 1.1 sakamoto * don't pass it up to the ether_input() layer unless it's
1127 1.1 sakamoto * a broadcast packet, multicast packet, matches our ethernet
1128 1.1 sakamoto * address or the interface is in promiscuous mode.
1129 1.1 sakamoto */
1130 1.1 sakamoto if (ifp->if_bpf) {
1131 1.2 sakamoto #if defined(__NetBSD__)
1132 1.2 sakamoto bpf_mtap(ifp->if_bpf, m);
1133 1.2 sakamoto #else
1134 1.1 sakamoto bpf_mtap(ifp, m);
1135 1.2 sakamoto #endif
1136 1.1 sakamoto if (ifp->if_flags & IFF_PROMISC &&
1137 1.2 sakamoto (memcmp(eh->ether_dhost, sc->vr_enaddr,
1138 1.1 sakamoto ETHER_ADDR_LEN) &&
1139 1.1 sakamoto (eh->ether_dhost[0] & 1) == 0)) {
1140 1.1 sakamoto m_freem(m);
1141 1.1 sakamoto continue;
1142 1.1 sakamoto }
1143 1.1 sakamoto }
1144 1.1 sakamoto #endif
1145 1.1 sakamoto /* Remove header from mbuf and pass it on. */
1146 1.2 sakamoto m_adj(m, sizeof (struct ether_header));
1147 1.1 sakamoto ether_input(ifp, eh, m);
1148 1.1 sakamoto }
1149 1.1 sakamoto
1150 1.1 sakamoto return;
1151 1.1 sakamoto }
1152 1.1 sakamoto
1153 1.1 sakamoto void vr_rxeoc(sc)
1154 1.1 sakamoto struct vr_softc *sc;
1155 1.1 sakamoto {
1156 1.1 sakamoto
1157 1.1 sakamoto vr_rxeof(sc);
1158 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
1159 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
1160 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
1161 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
1162 1.1 sakamoto
1163 1.1 sakamoto return;
1164 1.1 sakamoto }
1165 1.1 sakamoto
1166 1.1 sakamoto /*
1167 1.1 sakamoto * A frame was downloaded to the chip. It's safe for us to clean up
1168 1.1 sakamoto * the list buffers.
1169 1.1 sakamoto */
1170 1.1 sakamoto
1171 1.1 sakamoto static void vr_txeof(sc)
1172 1.1 sakamoto struct vr_softc *sc;
1173 1.1 sakamoto {
1174 1.1 sakamoto struct vr_chain *cur_tx;
1175 1.1 sakamoto struct ifnet *ifp;
1176 1.1 sakamoto register struct mbuf *n;
1177 1.1 sakamoto
1178 1.2 sakamoto ifp = &sc->vr_if;
1179 1.1 sakamoto
1180 1.1 sakamoto /* Clear the timeout timer. */
1181 1.1 sakamoto ifp->if_timer = 0;
1182 1.1 sakamoto
1183 1.1 sakamoto /* Sanity check. */
1184 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == NULL)
1185 1.1 sakamoto return;
1186 1.1 sakamoto
1187 1.1 sakamoto /*
1188 1.1 sakamoto * Go through our tx list and free mbufs for those
1189 1.1 sakamoto * frames that have been transmitted.
1190 1.1 sakamoto */
1191 1.2 sakamoto while (sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
1192 1.1 sakamoto u_int32_t txstat;
1193 1.1 sakamoto
1194 1.1 sakamoto cur_tx = sc->vr_cdata.vr_tx_head;
1195 1.1 sakamoto txstat = cur_tx->vr_ptr->vr_status;
1196 1.1 sakamoto
1197 1.1 sakamoto if (txstat & VR_TXSTAT_OWN)
1198 1.1 sakamoto break;
1199 1.1 sakamoto
1200 1.1 sakamoto if (txstat & VR_TXSTAT_ERRSUM) {
1201 1.1 sakamoto ifp->if_oerrors++;
1202 1.1 sakamoto if (txstat & VR_TXSTAT_DEFER)
1203 1.1 sakamoto ifp->if_collisions++;
1204 1.1 sakamoto if (txstat & VR_TXSTAT_LATECOLL)
1205 1.1 sakamoto ifp->if_collisions++;
1206 1.1 sakamoto }
1207 1.1 sakamoto
1208 1.1 sakamoto ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
1209 1.1 sakamoto
1210 1.1 sakamoto ifp->if_opackets++;
1211 1.2 sakamoto MFREE(cur_tx->vr_mbuf, n);
1212 1.1 sakamoto cur_tx->vr_mbuf = NULL;
1213 1.1 sakamoto
1214 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
1215 1.1 sakamoto sc->vr_cdata.vr_tx_head = NULL;
1216 1.1 sakamoto sc->vr_cdata.vr_tx_tail = NULL;
1217 1.1 sakamoto break;
1218 1.1 sakamoto }
1219 1.1 sakamoto
1220 1.1 sakamoto sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
1221 1.1 sakamoto }
1222 1.1 sakamoto
1223 1.1 sakamoto return;
1224 1.1 sakamoto }
1225 1.1 sakamoto
1226 1.1 sakamoto /*
1227 1.1 sakamoto * TX 'end of channel' interrupt handler.
1228 1.1 sakamoto */
1229 1.1 sakamoto static void vr_txeoc(sc)
1230 1.1 sakamoto struct vr_softc *sc;
1231 1.1 sakamoto {
1232 1.1 sakamoto struct ifnet *ifp;
1233 1.1 sakamoto
1234 1.2 sakamoto ifp = &sc->vr_if;
1235 1.1 sakamoto
1236 1.1 sakamoto ifp->if_timer = 0;
1237 1.1 sakamoto
1238 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == NULL) {
1239 1.1 sakamoto ifp->if_flags &= ~IFF_OACTIVE;
1240 1.1 sakamoto sc->vr_cdata.vr_tx_tail = NULL;
1241 1.1 sakamoto if (sc->vr_want_auto)
1242 1.1 sakamoto vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
1243 1.1 sakamoto }
1244 1.1 sakamoto
1245 1.1 sakamoto return;
1246 1.1 sakamoto }
1247 1.1 sakamoto
1248 1.1 sakamoto static void vr_intr(arg)
1249 1.1 sakamoto void *arg;
1250 1.1 sakamoto {
1251 1.1 sakamoto struct vr_softc *sc;
1252 1.1 sakamoto struct ifnet *ifp;
1253 1.1 sakamoto u_int16_t status;
1254 1.1 sakamoto
1255 1.1 sakamoto sc = arg;
1256 1.2 sakamoto ifp = &sc->vr_if;
1257 1.1 sakamoto
1258 1.1 sakamoto /* Supress unwanted interrupts. */
1259 1.1 sakamoto if (!(ifp->if_flags & IFF_UP)) {
1260 1.1 sakamoto vr_stop(sc);
1261 1.1 sakamoto return;
1262 1.1 sakamoto }
1263 1.1 sakamoto
1264 1.1 sakamoto /* Disable interrupts. */
1265 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
1266 1.1 sakamoto
1267 1.1 sakamoto for (;;) {
1268 1.1 sakamoto
1269 1.1 sakamoto status = CSR_READ_2(sc, VR_ISR);
1270 1.1 sakamoto if (status)
1271 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, status);
1272 1.1 sakamoto
1273 1.1 sakamoto if ((status & VR_INTRS) == 0)
1274 1.1 sakamoto break;
1275 1.1 sakamoto
1276 1.1 sakamoto if (status & VR_ISR_RX_OK)
1277 1.1 sakamoto vr_rxeof(sc);
1278 1.1 sakamoto
1279 1.1 sakamoto if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
1280 1.1 sakamoto (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
1281 1.1 sakamoto (status & VR_ISR_RX_DROPPED)) {
1282 1.1 sakamoto vr_rxeof(sc);
1283 1.1 sakamoto vr_rxeoc(sc);
1284 1.1 sakamoto }
1285 1.1 sakamoto
1286 1.1 sakamoto if (status & VR_ISR_TX_OK) {
1287 1.1 sakamoto vr_txeof(sc);
1288 1.1 sakamoto vr_txeoc(sc);
1289 1.1 sakamoto }
1290 1.1 sakamoto
1291 1.2 sakamoto if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)) {
1292 1.1 sakamoto ifp->if_oerrors++;
1293 1.1 sakamoto vr_txeof(sc);
1294 1.1 sakamoto if (sc->vr_cdata.vr_tx_head != NULL) {
1295 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
1296 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1297 1.1 sakamoto }
1298 1.1 sakamoto }
1299 1.1 sakamoto
1300 1.1 sakamoto if (status & VR_ISR_BUSERR) {
1301 1.1 sakamoto vr_reset(sc);
1302 1.1 sakamoto vr_init(sc);
1303 1.1 sakamoto }
1304 1.1 sakamoto }
1305 1.1 sakamoto
1306 1.1 sakamoto /* Re-enable interrupts. */
1307 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1308 1.1 sakamoto
1309 1.1 sakamoto if (ifp->if_snd.ifq_head != NULL) {
1310 1.1 sakamoto vr_start(ifp);
1311 1.1 sakamoto }
1312 1.1 sakamoto
1313 1.1 sakamoto return;
1314 1.1 sakamoto }
1315 1.1 sakamoto
1316 1.1 sakamoto /*
1317 1.1 sakamoto * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1318 1.1 sakamoto * pointers to the fragment pointers.
1319 1.1 sakamoto */
1320 1.1 sakamoto static int vr_encap(sc, c, m_head)
1321 1.1 sakamoto struct vr_softc *sc;
1322 1.1 sakamoto struct vr_chain *c;
1323 1.1 sakamoto struct mbuf *m_head;
1324 1.1 sakamoto {
1325 1.1 sakamoto int frag = 0;
1326 1.1 sakamoto struct vr_desc *f = NULL;
1327 1.1 sakamoto int total_len;
1328 1.1 sakamoto struct mbuf *m;
1329 1.1 sakamoto
1330 1.1 sakamoto m = m_head;
1331 1.1 sakamoto total_len = 0;
1332 1.1 sakamoto
1333 1.1 sakamoto /*
1334 1.1 sakamoto * The VIA Rhine wants packet buffers to be longword
1335 1.1 sakamoto * aligned, but very often our mbufs aren't. Rather than
1336 1.1 sakamoto * waste time trying to decide when to copy and when not
1337 1.1 sakamoto * to copy, just do it all the time.
1338 1.1 sakamoto */
1339 1.1 sakamoto if (m != NULL) {
1340 1.1 sakamoto struct mbuf *m_new = NULL;
1341 1.1 sakamoto
1342 1.1 sakamoto MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1343 1.1 sakamoto if (m_new == NULL) {
1344 1.2 sakamoto printf(VR_PRINTF_FMT ": no memory for tx list",
1345 1.2 sakamoto VR_PRINTF_ARGS);
1346 1.2 sakamoto return (1);
1347 1.1 sakamoto }
1348 1.1 sakamoto if (m_head->m_pkthdr.len > MHLEN) {
1349 1.1 sakamoto MCLGET(m_new, M_DONTWAIT);
1350 1.1 sakamoto if (!(m_new->m_flags & M_EXT)) {
1351 1.1 sakamoto m_freem(m_new);
1352 1.2 sakamoto printf(VR_PRINTF_FMT ": no memory for tx list",
1353 1.2 sakamoto VR_PRINTF_ARGS);
1354 1.2 sakamoto return (1);
1355 1.1 sakamoto }
1356 1.1 sakamoto }
1357 1.2 sakamoto m_copydata(m_head, 0, m_head->m_pkthdr.len,
1358 1.1 sakamoto mtod(m_new, caddr_t));
1359 1.1 sakamoto m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1360 1.1 sakamoto m_freem(m_head);
1361 1.1 sakamoto m_head = m_new;
1362 1.1 sakamoto /*
1363 1.1 sakamoto * The Rhine chip doesn't auto-pad, so we have to make
1364 1.1 sakamoto * sure to pad short frames out to the minimum frame length
1365 1.1 sakamoto * ourselves.
1366 1.1 sakamoto */
1367 1.1 sakamoto if (m_head->m_len < VR_MIN_FRAMELEN) {
1368 1.1 sakamoto m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
1369 1.1 sakamoto m_new->m_len = m_new->m_pkthdr.len;
1370 1.1 sakamoto }
1371 1.1 sakamoto f = c->vr_ptr;
1372 1.1 sakamoto f->vr_data = vtophys(mtod(m_new, caddr_t));
1373 1.1 sakamoto f->vr_ctl = total_len = m_new->m_len;
1374 1.1 sakamoto f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
1375 1.1 sakamoto f->vr_status = 0;
1376 1.1 sakamoto frag = 1;
1377 1.1 sakamoto }
1378 1.1 sakamoto
1379 1.1 sakamoto c->vr_mbuf = m_head;
1380 1.1 sakamoto c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
1381 1.1 sakamoto c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
1382 1.1 sakamoto
1383 1.2 sakamoto return (0);
1384 1.1 sakamoto }
1385 1.1 sakamoto
1386 1.1 sakamoto /*
1387 1.1 sakamoto * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1388 1.1 sakamoto * to the mbuf data regions directly in the transmit lists. We also save a
1389 1.1 sakamoto * copy of the pointers since the transmit list fragment pointers are
1390 1.1 sakamoto * physical addresses.
1391 1.1 sakamoto */
1392 1.1 sakamoto
1393 1.1 sakamoto static void vr_start(ifp)
1394 1.1 sakamoto struct ifnet *ifp;
1395 1.1 sakamoto {
1396 1.1 sakamoto struct vr_softc *sc;
1397 1.1 sakamoto struct mbuf *m_head = NULL;
1398 1.1 sakamoto struct vr_chain *cur_tx = NULL, *start_tx;
1399 1.1 sakamoto
1400 1.1 sakamoto sc = ifp->if_softc;
1401 1.1 sakamoto
1402 1.1 sakamoto if (sc->vr_autoneg) {
1403 1.1 sakamoto sc->vr_tx_pend = 1;
1404 1.1 sakamoto return;
1405 1.1 sakamoto }
1406 1.1 sakamoto
1407 1.1 sakamoto /*
1408 1.1 sakamoto * Check for an available queue slot. If there are none,
1409 1.1 sakamoto * punt.
1410 1.1 sakamoto */
1411 1.1 sakamoto if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
1412 1.1 sakamoto ifp->if_flags |= IFF_OACTIVE;
1413 1.1 sakamoto return;
1414 1.1 sakamoto }
1415 1.1 sakamoto
1416 1.1 sakamoto start_tx = sc->vr_cdata.vr_tx_free;
1417 1.1 sakamoto
1418 1.2 sakamoto while (sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
1419 1.1 sakamoto IF_DEQUEUE(&ifp->if_snd, m_head);
1420 1.1 sakamoto if (m_head == NULL)
1421 1.1 sakamoto break;
1422 1.1 sakamoto
1423 1.1 sakamoto /* Pick a descriptor off the free list. */
1424 1.1 sakamoto cur_tx = sc->vr_cdata.vr_tx_free;
1425 1.1 sakamoto sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
1426 1.1 sakamoto
1427 1.1 sakamoto /* Pack the data into the descriptor. */
1428 1.1 sakamoto vr_encap(sc, cur_tx, m_head);
1429 1.1 sakamoto
1430 1.1 sakamoto if (cur_tx != start_tx)
1431 1.1 sakamoto VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
1432 1.1 sakamoto
1433 1.1 sakamoto #if NBPFILTER > 0
1434 1.1 sakamoto /*
1435 1.1 sakamoto * If there's a BPF listener, bounce a copy of this frame
1436 1.1 sakamoto * to him.
1437 1.1 sakamoto */
1438 1.1 sakamoto if (ifp->if_bpf)
1439 1.2 sakamoto #if defined(__NetBSD__)
1440 1.2 sakamoto bpf_mtap(ifp->if_bpf, cur_tx->vr_mbuf);
1441 1.2 sakamoto #else
1442 1.1 sakamoto bpf_mtap(ifp, cur_tx->vr_mbuf);
1443 1.1 sakamoto #endif
1444 1.2 sakamoto #endif
1445 1.1 sakamoto VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
1446 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1447 1.1 sakamoto }
1448 1.1 sakamoto
1449 1.1 sakamoto /*
1450 1.1 sakamoto * If there are no frames queued, bail.
1451 1.1 sakamoto */
1452 1.1 sakamoto if (cur_tx == NULL)
1453 1.1 sakamoto return;
1454 1.1 sakamoto
1455 1.1 sakamoto sc->vr_cdata.vr_tx_tail = cur_tx;
1456 1.1 sakamoto
1457 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == NULL)
1458 1.1 sakamoto sc->vr_cdata.vr_tx_head = start_tx;
1459 1.1 sakamoto
1460 1.1 sakamoto /*
1461 1.1 sakamoto * Set a timeout in case the chip goes out to lunch.
1462 1.1 sakamoto */
1463 1.1 sakamoto ifp->if_timer = 5;
1464 1.1 sakamoto
1465 1.1 sakamoto return;
1466 1.1 sakamoto }
1467 1.1 sakamoto
1468 1.1 sakamoto static void vr_init(xsc)
1469 1.1 sakamoto void *xsc;
1470 1.1 sakamoto {
1471 1.1 sakamoto struct vr_softc *sc = xsc;
1472 1.2 sakamoto struct ifnet *ifp = &sc->vr_if;
1473 1.1 sakamoto u_int16_t phy_bmcr = 0;
1474 1.1 sakamoto int s;
1475 1.1 sakamoto
1476 1.1 sakamoto if (sc->vr_autoneg)
1477 1.1 sakamoto return;
1478 1.1 sakamoto
1479 1.1 sakamoto s = splimp();
1480 1.1 sakamoto
1481 1.1 sakamoto if (sc->vr_pinfo != NULL)
1482 1.1 sakamoto phy_bmcr = vr_phy_readreg(sc, PHY_BMCR);
1483 1.1 sakamoto
1484 1.1 sakamoto /*
1485 1.1 sakamoto * Cancel pending I/O and free all RX/TX buffers.
1486 1.1 sakamoto */
1487 1.1 sakamoto vr_stop(sc);
1488 1.1 sakamoto vr_reset(sc);
1489 1.1 sakamoto
1490 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1491 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1492 1.1 sakamoto
1493 1.1 sakamoto VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1494 1.1 sakamoto VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1495 1.1 sakamoto
1496 1.1 sakamoto /* Init circular RX list. */
1497 1.1 sakamoto if (vr_list_rx_init(sc) == ENOBUFS) {
1498 1.2 sakamoto printf(VR_PRINTF_FMT ": initialization failed: no "
1499 1.2 sakamoto "memory for rx buffers\n", VR_PRINTF_ARGS);
1500 1.1 sakamoto vr_stop(sc);
1501 1.1 sakamoto (void)splx(s);
1502 1.1 sakamoto return;
1503 1.1 sakamoto }
1504 1.1 sakamoto
1505 1.1 sakamoto /*
1506 1.1 sakamoto * Init tx descriptors.
1507 1.1 sakamoto */
1508 1.1 sakamoto vr_list_tx_init(sc);
1509 1.1 sakamoto
1510 1.1 sakamoto /* If we want promiscuous mode, set the allframes bit. */
1511 1.1 sakamoto if (ifp->if_flags & IFF_PROMISC)
1512 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1513 1.1 sakamoto else
1514 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1515 1.1 sakamoto
1516 1.1 sakamoto /* Set capture broadcast bit to capture broadcast frames. */
1517 1.1 sakamoto if (ifp->if_flags & IFF_BROADCAST)
1518 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1519 1.1 sakamoto else
1520 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1521 1.1 sakamoto
1522 1.1 sakamoto /*
1523 1.1 sakamoto * Program the multicast filter, if necessary.
1524 1.1 sakamoto */
1525 1.1 sakamoto vr_setmulti(sc);
1526 1.1 sakamoto
1527 1.1 sakamoto /*
1528 1.1 sakamoto * Load the address of the RX list.
1529 1.1 sakamoto */
1530 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
1531 1.1 sakamoto
1532 1.1 sakamoto /* Enable receiver and transmitter. */
1533 1.1 sakamoto CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1534 1.1 sakamoto VR_CMD_TX_ON|VR_CMD_RX_ON|
1535 1.1 sakamoto VR_CMD_RX_GO);
1536 1.1 sakamoto
1537 1.1 sakamoto vr_setcfg(sc, vr_phy_readreg(sc, PHY_BMCR));
1538 1.1 sakamoto
1539 1.1 sakamoto CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
1540 1.1 sakamoto
1541 1.1 sakamoto /*
1542 1.1 sakamoto * Enable interrupts.
1543 1.1 sakamoto */
1544 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1545 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1546 1.1 sakamoto
1547 1.1 sakamoto /* Restore state of BMCR */
1548 1.1 sakamoto if (sc->vr_pinfo != NULL)
1549 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1550 1.1 sakamoto
1551 1.1 sakamoto ifp->if_flags |= IFF_RUNNING;
1552 1.1 sakamoto ifp->if_flags &= ~IFF_OACTIVE;
1553 1.1 sakamoto
1554 1.1 sakamoto (void)splx(s);
1555 1.1 sakamoto
1556 1.1 sakamoto return;
1557 1.1 sakamoto }
1558 1.1 sakamoto
1559 1.1 sakamoto /*
1560 1.1 sakamoto * Set media options.
1561 1.1 sakamoto */
1562 1.1 sakamoto static int vr_ifmedia_upd(ifp)
1563 1.1 sakamoto struct ifnet *ifp;
1564 1.1 sakamoto {
1565 1.1 sakamoto struct vr_softc *sc;
1566 1.1 sakamoto struct ifmedia *ifm;
1567 1.1 sakamoto
1568 1.1 sakamoto sc = ifp->if_softc;
1569 1.1 sakamoto ifm = &sc->ifmedia;
1570 1.1 sakamoto
1571 1.1 sakamoto if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1572 1.2 sakamoto return (EINVAL);
1573 1.1 sakamoto
1574 1.1 sakamoto if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1575 1.1 sakamoto vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
1576 1.1 sakamoto else
1577 1.1 sakamoto vr_setmode_mii(sc, ifm->ifm_media);
1578 1.1 sakamoto
1579 1.2 sakamoto return (0);
1580 1.1 sakamoto }
1581 1.1 sakamoto
1582 1.1 sakamoto /*
1583 1.1 sakamoto * Report current media status.
1584 1.1 sakamoto */
1585 1.1 sakamoto static void vr_ifmedia_sts(ifp, ifmr)
1586 1.1 sakamoto struct ifnet *ifp;
1587 1.1 sakamoto struct ifmediareq *ifmr;
1588 1.1 sakamoto {
1589 1.1 sakamoto struct vr_softc *sc;
1590 1.1 sakamoto u_int16_t advert = 0, ability = 0;
1591 1.1 sakamoto
1592 1.1 sakamoto sc = ifp->if_softc;
1593 1.1 sakamoto
1594 1.1 sakamoto ifmr->ifm_active = IFM_ETHER;
1595 1.1 sakamoto
1596 1.1 sakamoto if (!(vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1597 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1598 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
1599 1.1 sakamoto else
1600 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_10_T;
1601 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1602 1.1 sakamoto ifmr->ifm_active |= IFM_FDX;
1603 1.1 sakamoto else
1604 1.1 sakamoto ifmr->ifm_active |= IFM_HDX;
1605 1.1 sakamoto return;
1606 1.1 sakamoto }
1607 1.1 sakamoto
1608 1.1 sakamoto ability = vr_phy_readreg(sc, PHY_LPAR);
1609 1.1 sakamoto advert = vr_phy_readreg(sc, PHY_ANAR);
1610 1.1 sakamoto if (advert & PHY_ANAR_100BT4 &&
1611 1.1 sakamoto ability & PHY_ANAR_100BT4) {
1612 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
1613 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXFULL &&
1614 1.1 sakamoto ability & PHY_ANAR_100BTXFULL) {
1615 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
1616 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXHALF &&
1617 1.1 sakamoto ability & PHY_ANAR_100BTXHALF) {
1618 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
1619 1.1 sakamoto } else if (advert & PHY_ANAR_10BTFULL &&
1620 1.1 sakamoto ability & PHY_ANAR_10BTFULL) {
1621 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
1622 1.1 sakamoto } else if (advert & PHY_ANAR_10BTHALF &&
1623 1.1 sakamoto ability & PHY_ANAR_10BTHALF) {
1624 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
1625 1.1 sakamoto }
1626 1.1 sakamoto
1627 1.1 sakamoto return;
1628 1.1 sakamoto }
1629 1.1 sakamoto
1630 1.1 sakamoto static int vr_ioctl(ifp, command, data)
1631 1.1 sakamoto struct ifnet *ifp;
1632 1.1 sakamoto u_long command;
1633 1.1 sakamoto caddr_t data;
1634 1.1 sakamoto {
1635 1.1 sakamoto struct vr_softc *sc = ifp->if_softc;
1636 1.2 sakamoto #if defined(__NetBSD__)
1637 1.2 sakamoto struct ifaddr *ifa = (struct ifaddr *)data;
1638 1.2 sakamoto #endif
1639 1.1 sakamoto struct ifreq *ifr = (struct ifreq *) data;
1640 1.1 sakamoto int s, error = 0;
1641 1.1 sakamoto
1642 1.1 sakamoto s = splimp();
1643 1.1 sakamoto
1644 1.2 sakamoto switch (command) {
1645 1.2 sakamoto #if defined(__NetBSD__)
1646 1.2 sakamoto case SIOCSIFADDR:
1647 1.2 sakamoto ifp->if_flags |= IFF_UP;
1648 1.2 sakamoto
1649 1.2 sakamoto switch (ifa->ifa_addr->sa_family) {
1650 1.2 sakamoto #ifdef INET
1651 1.2 sakamoto case AF_INET:
1652 1.2 sakamoto vr_init(sc);
1653 1.2 sakamoto arp_ifinit(ifp, ifa);
1654 1.2 sakamoto break;
1655 1.2 sakamoto #endif /* INET */
1656 1.2 sakamoto default:
1657 1.2 sakamoto vr_init(sc);
1658 1.2 sakamoto break;
1659 1.2 sakamoto }
1660 1.2 sakamoto break;
1661 1.2 sakamoto
1662 1.2 sakamoto case SIOCGIFADDR:
1663 1.2 sakamoto bcopy((caddr_t) sc->vr_enaddr,
1664 1.2 sakamoto (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1665 1.2 sakamoto ETHER_ADDR_LEN);
1666 1.2 sakamoto break;
1667 1.2 sakamoto
1668 1.2 sakamoto case SIOCSIFMTU:
1669 1.2 sakamoto if (ifr->ifr_mtu > ETHERMTU)
1670 1.2 sakamoto error = EINVAL;
1671 1.2 sakamoto else
1672 1.2 sakamoto ifp->if_mtu = ifr->ifr_mtu;
1673 1.2 sakamoto break;
1674 1.2 sakamoto
1675 1.2 sakamoto #else /* __NetBSD__ */
1676 1.1 sakamoto case SIOCSIFADDR:
1677 1.1 sakamoto case SIOCGIFADDR:
1678 1.1 sakamoto case SIOCSIFMTU:
1679 1.1 sakamoto error = ether_ioctl(ifp, command, data);
1680 1.1 sakamoto break;
1681 1.2 sakamoto
1682 1.2 sakamoto #endif /* __NetBSD__ */
1683 1.1 sakamoto case SIOCSIFFLAGS:
1684 1.1 sakamoto if (ifp->if_flags & IFF_UP) {
1685 1.1 sakamoto vr_init(sc);
1686 1.1 sakamoto } else {
1687 1.1 sakamoto if (ifp->if_flags & IFF_RUNNING)
1688 1.1 sakamoto vr_stop(sc);
1689 1.1 sakamoto }
1690 1.1 sakamoto error = 0;
1691 1.1 sakamoto break;
1692 1.1 sakamoto case SIOCADDMULTI:
1693 1.1 sakamoto case SIOCDELMULTI:
1694 1.2 sakamoto if (command == SIOCADDMULTI)
1695 1.2 sakamoto error = ether_addmulti(ifr, &sc->vr_ec);
1696 1.2 sakamoto else
1697 1.2 sakamoto error = ether_delmulti(ifr, &sc->vr_ec);
1698 1.2 sakamoto
1699 1.2 sakamoto if (error == ENETRESET) {
1700 1.2 sakamoto vr_setmulti(sc);
1701 1.2 sakamoto error = 0;
1702 1.2 sakamoto }
1703 1.1 sakamoto break;
1704 1.1 sakamoto case SIOCGIFMEDIA:
1705 1.1 sakamoto case SIOCSIFMEDIA:
1706 1.1 sakamoto error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1707 1.1 sakamoto break;
1708 1.1 sakamoto default:
1709 1.1 sakamoto error = EINVAL;
1710 1.1 sakamoto break;
1711 1.1 sakamoto }
1712 1.1 sakamoto
1713 1.1 sakamoto (void)splx(s);
1714 1.1 sakamoto
1715 1.2 sakamoto return (error);
1716 1.1 sakamoto }
1717 1.1 sakamoto
1718 1.1 sakamoto static void vr_watchdog(ifp)
1719 1.1 sakamoto struct ifnet *ifp;
1720 1.1 sakamoto {
1721 1.1 sakamoto struct vr_softc *sc;
1722 1.1 sakamoto
1723 1.1 sakamoto sc = ifp->if_softc;
1724 1.1 sakamoto
1725 1.1 sakamoto if (sc->vr_autoneg) {
1726 1.1 sakamoto vr_autoneg_mii(sc, VR_FLAG_DELAYTIMEO, 1);
1727 1.1 sakamoto return;
1728 1.1 sakamoto }
1729 1.1 sakamoto
1730 1.1 sakamoto ifp->if_oerrors++;
1731 1.2 sakamoto printf(VR_PRINTF_FMT ": watchdog timeout\n", VR_PRINTF_ARGS);
1732 1.1 sakamoto
1733 1.1 sakamoto if (!(vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1734 1.2 sakamoto printf(VR_PRINTF_FMT
1735 1.2 sakamoto ": no carrier - transceiver cable problem?\n",
1736 1.2 sakamoto VR_PRINTF_ARGS);
1737 1.1 sakamoto
1738 1.1 sakamoto vr_stop(sc);
1739 1.1 sakamoto vr_reset(sc);
1740 1.1 sakamoto vr_init(sc);
1741 1.1 sakamoto
1742 1.1 sakamoto if (ifp->if_snd.ifq_head != NULL)
1743 1.1 sakamoto vr_start(ifp);
1744 1.1 sakamoto
1745 1.1 sakamoto return;
1746 1.1 sakamoto }
1747 1.1 sakamoto
1748 1.1 sakamoto /*
1749 1.1 sakamoto * Stop the adapter and free any mbufs allocated to the
1750 1.1 sakamoto * RX and TX lists.
1751 1.1 sakamoto */
1752 1.1 sakamoto static void vr_stop(sc)
1753 1.1 sakamoto struct vr_softc *sc;
1754 1.1 sakamoto {
1755 1.1 sakamoto register int i;
1756 1.1 sakamoto struct ifnet *ifp;
1757 1.1 sakamoto
1758 1.2 sakamoto ifp = &sc->vr_if;
1759 1.1 sakamoto ifp->if_timer = 0;
1760 1.1 sakamoto
1761 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1762 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1763 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
1764 1.1 sakamoto CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1765 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1766 1.1 sakamoto
1767 1.1 sakamoto /*
1768 1.1 sakamoto * Free data in the RX lists.
1769 1.1 sakamoto */
1770 1.1 sakamoto for (i = 0; i < VR_RX_LIST_CNT; i++) {
1771 1.1 sakamoto if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
1772 1.1 sakamoto m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
1773 1.1 sakamoto sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
1774 1.1 sakamoto }
1775 1.1 sakamoto }
1776 1.1 sakamoto bzero((char *)&sc->vr_ldata->vr_rx_list,
1777 1.2 sakamoto sizeof (sc->vr_ldata->vr_rx_list));
1778 1.1 sakamoto
1779 1.1 sakamoto /*
1780 1.1 sakamoto * Free the TX list buffers.
1781 1.1 sakamoto */
1782 1.1 sakamoto for (i = 0; i < VR_TX_LIST_CNT; i++) {
1783 1.1 sakamoto if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
1784 1.1 sakamoto m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
1785 1.1 sakamoto sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
1786 1.1 sakamoto }
1787 1.1 sakamoto }
1788 1.1 sakamoto
1789 1.1 sakamoto bzero((char *)&sc->vr_ldata->vr_tx_list,
1790 1.2 sakamoto sizeof (sc->vr_ldata->vr_tx_list));
1791 1.1 sakamoto
1792 1.1 sakamoto ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1793 1.1 sakamoto
1794 1.1 sakamoto return;
1795 1.1 sakamoto }
1796 1.1 sakamoto
1797 1.2 sakamoto #if defined(__FreeBSD__)
1798 1.2 sakamoto static const char *vr_probe __P((pcici_t, pcidi_t));
1799 1.2 sakamoto static void vr_attach __P((pcici_t, int));
1800 1.2 sakamoto static void vr_shutdown __P((int, void *));
1801 1.2 sakamoto
1802 1.2 sakamoto static unsigned long vr_count = 0;
1803 1.2 sakamoto
1804 1.1 sakamoto /*
1805 1.2 sakamoto * Probe for a VIA Rhine chip. Check the PCI vendor and device
1806 1.2 sakamoto * IDs against our list and return a device name if we find a match.
1807 1.1 sakamoto */
1808 1.2 sakamoto static const char *
1809 1.2 sakamoto vr_probe(config_id, device_id)
1810 1.2 sakamoto pcici_t config_id;
1811 1.2 sakamoto pcidi_t device_id;
1812 1.1 sakamoto {
1813 1.2 sakamoto struct vr_type *t;
1814 1.2 sakamoto
1815 1.2 sakamoto t = vr_devs;
1816 1.1 sakamoto
1817 1.2 sakamoto while (t->vr_name != NULL) {
1818 1.2 sakamoto if ((device_id & 0xFFFF) == t->vr_vid &&
1819 1.2 sakamoto ((device_id >> 16) & 0xFFFF) == t->vr_did) {
1820 1.2 sakamoto return (t->vr_name);
1821 1.2 sakamoto }
1822 1.2 sakamoto t++;
1823 1.2 sakamoto }
1824 1.1 sakamoto
1825 1.2 sakamoto return (NULL);
1826 1.1 sakamoto }
1827 1.1 sakamoto
1828 1.1 sakamoto static struct pci_device vr_device = {
1829 1.1 sakamoto "vr",
1830 1.1 sakamoto vr_probe,
1831 1.1 sakamoto vr_attach,
1832 1.1 sakamoto &vr_count,
1833 1.1 sakamoto NULL
1834 1.1 sakamoto };
1835 1.1 sakamoto DATA_SET(pcidevice_set, vr_device);
1836 1.2 sakamoto #endif /* __FreeBSD__ */
1837 1.2 sakamoto
1838 1.2 sakamoto #if defined(__NetBSD__)
1839 1.2 sakamoto static int vr_probe __P((struct device *, struct cfdata *, void *));
1840 1.2 sakamoto static void vr_attach __P((struct device *, struct device *, void *));
1841 1.2 sakamoto static void vr_shutdown __P((void *));
1842 1.2 sakamoto
1843 1.2 sakamoto struct cfattach vr_ca = {
1844 1.2 sakamoto sizeof (struct vr_softc), vr_probe, vr_attach
1845 1.2 sakamoto };
1846 1.2 sakamoto
1847 1.2 sakamoto static int
1848 1.2 sakamoto vr_probe(parent, match, aux)
1849 1.2 sakamoto struct device *parent;
1850 1.2 sakamoto struct cfdata *match;
1851 1.2 sakamoto void *aux;
1852 1.2 sakamoto {
1853 1.2 sakamoto struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1854 1.2 sakamoto struct vr_type *t;
1855 1.2 sakamoto
1856 1.2 sakamoto t = vr_devs;
1857 1.2 sakamoto
1858 1.2 sakamoto while (t->vr_name != NULL) {
1859 1.2 sakamoto if (PCI_VENDOR(pa->pa_id) == t->vr_vid &&
1860 1.2 sakamoto PCI_PRODUCT(pa->pa_id) == t->vr_did) {
1861 1.2 sakamoto return (1);
1862 1.2 sakamoto }
1863 1.2 sakamoto t++;
1864 1.2 sakamoto }
1865 1.2 sakamoto
1866 1.2 sakamoto return (0);
1867 1.2 sakamoto }
1868 1.2 sakamoto #endif /* __NetBSD__ */
1869 1.2 sakamoto
1870 1.2 sakamoto /*
1871 1.2 sakamoto * Stop all chip I/O so that the kernel's probe routines don't
1872 1.2 sakamoto * get confused by errant DMAs when rebooting.
1873 1.2 sakamoto */
1874 1.2 sakamoto #if defined(__FreeBSD__)
1875 1.2 sakamoto static void vr_shutdown(howto, arg)
1876 1.2 sakamoto int howto;
1877 1.2 sakamoto void *arg;
1878 1.2 sakamoto #endif
1879 1.2 sakamoto #if defined(__NetBSD__)
1880 1.2 sakamoto static void vr_shutdown(arg)
1881 1.2 sakamoto void *arg;
1882 1.2 sakamoto #endif
1883 1.2 sakamoto {
1884 1.2 sakamoto struct vr_softc *sc = (struct vr_softc *)arg;
1885 1.2 sakamoto
1886 1.2 sakamoto vr_stop(sc);
1887 1.2 sakamoto
1888 1.2 sakamoto return;
1889 1.2 sakamoto }
1890 1.2 sakamoto
1891 1.2 sakamoto /*
1892 1.2 sakamoto * Attach the interface. Allocate softc structures, do ifmedia
1893 1.2 sakamoto * setup and ethernet/BPF attach.
1894 1.2 sakamoto */
1895 1.2 sakamoto #if defined(__FreeBSD__)
1896 1.2 sakamoto static void
1897 1.2 sakamoto vr_attach(config_id, unit)
1898 1.2 sakamoto pcici_t config_id;
1899 1.2 sakamoto int unit;
1900 1.2 sakamoto #endif
1901 1.2 sakamoto #if defined(__NetBSD__)
1902 1.2 sakamoto static void
1903 1.2 sakamoto vr_attach(parent, self, aux)
1904 1.2 sakamoto struct device * const parent;
1905 1.2 sakamoto struct device * const self;
1906 1.2 sakamoto void * const aux;
1907 1.2 sakamoto #endif
1908 1.2 sakamoto {
1909 1.2 sakamoto #if defined(__FreeBSD__)
1910 1.2 sakamoto #define PCI_CONF_WRITE(r, v) pci_conf_write(config_id, (r), (v))
1911 1.2 sakamoto #define PCI_CONF_READ(r) pci_conf_read(config_id, (r))
1912 1.2 sakamoto int s;
1913 1.2 sakamoto struct vr_softc *sc;
1914 1.2 sakamoto #ifndef VR_USEIOSPACE
1915 1.2 sakamoto vm_offset_t pbase, vbase;
1916 1.2 sakamoto #endif
1917 1.2 sakamoto #endif
1918 1.2 sakamoto
1919 1.2 sakamoto #if defined(__NetBSD__)
1920 1.2 sakamoto #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1921 1.2 sakamoto #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1922 1.2 sakamoto struct vr_softc * const sc = (struct vr_softc *) self;
1923 1.2 sakamoto struct pci_attach_args * const pa = (struct pci_attach_args *) aux;
1924 1.2 sakamoto #endif
1925 1.2 sakamoto int i;
1926 1.2 sakamoto u_int32_t command;
1927 1.2 sakamoto struct ifnet *ifp;
1928 1.2 sakamoto int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
1929 1.2 sakamoto unsigned int round;
1930 1.2 sakamoto caddr_t roundptr;
1931 1.2 sakamoto u_char eaddr[ETHER_ADDR_LEN];
1932 1.2 sakamoto struct vr_type *p;
1933 1.2 sakamoto u_int16_t phy_vid, phy_did, phy_sts;
1934 1.2 sakamoto
1935 1.2 sakamoto #if defined(__FreeBSD__)
1936 1.2 sakamoto s = splimp();
1937 1.2 sakamoto
1938 1.2 sakamoto sc = malloc(sizeof (struct vr_softc), M_DEVBUF, M_NOWAIT);
1939 1.2 sakamoto if (sc == NULL) {
1940 1.2 sakamoto printf("vr%d: no memory for softc struct!\n", unit);
1941 1.2 sakamoto return;
1942 1.2 sakamoto }
1943 1.2 sakamoto bzero(sc, sizeof (struct vr_softc));
1944 1.2 sakamoto
1945 1.2 sakamoto sc->vr_unit = unit;
1946 1.2 sakamoto #endif
1947 1.2 sakamoto
1948 1.2 sakamoto
1949 1.2 sakamoto /*
1950 1.2 sakamoto * Handle power management nonsense.
1951 1.2 sakamoto */
1952 1.2 sakamoto
1953 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1954 1.2 sakamoto if (command == 0x01) {
1955 1.2 sakamoto
1956 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1957 1.2 sakamoto if (command & VR_PSTATE_MASK) {
1958 1.2 sakamoto u_int32_t iobase, membase, irq;
1959 1.2 sakamoto
1960 1.2 sakamoto /* Save important PCI config data. */
1961 1.2 sakamoto iobase = PCI_CONF_READ(VR_PCI_LOIO);
1962 1.2 sakamoto membase = PCI_CONF_READ(VR_PCI_LOMEM);
1963 1.2 sakamoto irq = PCI_CONF_READ(VR_PCI_INTLINE);
1964 1.2 sakamoto
1965 1.2 sakamoto /* Reset the power state. */
1966 1.2 sakamoto printf(VR_PRINTF_FMT ": chip is in D%d power mode "
1967 1.2 sakamoto "-- setting to D0\n",
1968 1.2 sakamoto VR_PRINTF_ARGS, command & VR_PSTATE_MASK);
1969 1.2 sakamoto command &= 0xFFFFFFFC;
1970 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1971 1.2 sakamoto
1972 1.2 sakamoto /* Restore PCI config data. */
1973 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1974 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1975 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1976 1.2 sakamoto }
1977 1.2 sakamoto }
1978 1.2 sakamoto
1979 1.2 sakamoto /*
1980 1.2 sakamoto * Map control/status registers.
1981 1.2 sakamoto */
1982 1.2 sakamoto command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1983 1.2 sakamoto #if defined(__FreeBSD__)
1984 1.2 sakamoto command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1985 1.2 sakamoto #endif
1986 1.2 sakamoto #if defined(__NetBSD__)
1987 1.2 sakamoto command |= (PCI_COMMAND_IO_ENABLE |
1988 1.2 sakamoto PCI_COMMAND_MEM_ENABLE |
1989 1.2 sakamoto PCI_COMMAND_MASTER_ENABLE);
1990 1.2 sakamoto #endif
1991 1.2 sakamoto PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1992 1.2 sakamoto command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1993 1.2 sakamoto
1994 1.2 sakamoto #if defined(__FreeBSD__)
1995 1.2 sakamoto #ifdef VR_USEIOSPACE
1996 1.2 sakamoto if (!(command & PCIM_CMD_PORTEN)) {
1997 1.2 sakamoto printf(VR_PRINTF_FMT ": failed to enable I/O ports!\n",
1998 1.2 sakamoto VR_PRINTF_ARGS);
1999 1.2 sakamoto free(sc, M_DEVBUF);
2000 1.2 sakamoto goto fail;
2001 1.2 sakamoto }
2002 1.2 sakamoto
2003 1.2 sakamoto if (!pci_map_port(config_id, VR_PCI_LOIO,
2004 1.2 sakamoto (u_int16_t *)(&sc->vr_bhandle))) {
2005 1.2 sakamoto printf (VR_PRINTF_FMT ": couldn't map ports\n",
2006 1.2 sakamoto VR_PRINTF_ARGS);
2007 1.2 sakamoto goto fail;
2008 1.2 sakamoto }
2009 1.2 sakamoto sc->vr_btag = I386_BUS_SPACE_IO;
2010 1.2 sakamoto #else
2011 1.2 sakamoto if (!(command & PCIM_CMD_MEMEN)) {
2012 1.2 sakamoto printf(VR_PRINTF_FMT ": failed to enable memory mapping!\n",
2013 1.2 sakamoto VR_PRINTF_ARGS);
2014 1.2 sakamoto goto fail;
2015 1.2 sakamoto }
2016 1.2 sakamoto
2017 1.2 sakamoto if (!pci_map_mem(config_id, VR_PCI_LOMEM, &vbase, &pbase)) {
2018 1.2 sakamoto printf (VR_PRINTF_FMT ": couldn't map memory\n",
2019 1.2 sakamoto VR_PRINTF_ARGS);
2020 1.2 sakamoto goto fail;
2021 1.2 sakamoto }
2022 1.2 sakamoto
2023 1.2 sakamoto sc->vr_bhandle = vbase;
2024 1.2 sakamoto sc->vr_btag = I386_BUS_SPACE_MEM;
2025 1.2 sakamoto #endif
2026 1.2 sakamoto
2027 1.2 sakamoto /* Allocate interrupt */
2028 1.2 sakamoto if (!pci_map_int(config_id, vr_intr, sc, &net_imask)) {
2029 1.2 sakamoto printf(VR_PRINTF_FMT ": couldn't map interrupt\n",
2030 1.2 sakamoto VR_PRINTF_ARGS);
2031 1.2 sakamoto goto fail;
2032 1.2 sakamoto }
2033 1.2 sakamoto #endif /* __FreeBSD__ */
2034 1.2 sakamoto
2035 1.2 sakamoto #if defined(__NetBSD__)
2036 1.2 sakamoto {
2037 1.2 sakamoto bus_space_tag_t iot, memt;
2038 1.2 sakamoto bus_space_handle_t ioh, memh;
2039 1.2 sakamoto int ioh_valid, memh_valid;
2040 1.2 sakamoto pci_intr_handle_t intrhandle;
2041 1.2 sakamoto const char *intrstr;
2042 1.2 sakamoto
2043 1.2 sakamoto ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
2044 1.2 sakamoto PCI_MAPREG_TYPE_IO, 0,
2045 1.2 sakamoto &iot, &ioh, NULL, NULL) == 0);
2046 1.2 sakamoto memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
2047 1.2 sakamoto PCI_MAPREG_TYPE_MEM |
2048 1.2 sakamoto PCI_MAPREG_MEM_TYPE_32BIT,
2049 1.2 sakamoto 0, &memt, &memh, NULL, NULL) == 0);
2050 1.2 sakamoto #if defined(VR_USEIOSPACE)
2051 1.2 sakamoto if (ioh_valid) {
2052 1.2 sakamoto sc->vr_btag = iot;
2053 1.2 sakamoto sc->vr_bhandle = ioh;
2054 1.2 sakamoto } else if (memh_valid) {
2055 1.2 sakamoto sc->vr_btag = memt;
2056 1.2 sakamoto sc->vr_bhandle = memh;
2057 1.2 sakamoto }
2058 1.2 sakamoto #else
2059 1.2 sakamoto if (memh_valid) {
2060 1.2 sakamoto sc->vr_btag = memt;
2061 1.2 sakamoto sc->vr_bhandle = memh;
2062 1.2 sakamoto } else if (ioh_valid) {
2063 1.2 sakamoto sc->vr_btag = iot;
2064 1.2 sakamoto sc->vr_bhandle = ioh;
2065 1.2 sakamoto }
2066 1.2 sakamoto #endif
2067 1.2 sakamoto else {
2068 1.2 sakamoto printf(": unable to map device registers\n");
2069 1.2 sakamoto return;
2070 1.2 sakamoto }
2071 1.2 sakamoto
2072 1.2 sakamoto /* Allocate interrupt */
2073 1.2 sakamoto if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
2074 1.2 sakamoto pa->pa_intrline, &intrhandle)) {
2075 1.2 sakamoto printf("%s: couldn't map interrupt\n",
2076 1.2 sakamoto sc->vr_dev.dv_xname);
2077 1.2 sakamoto goto fail;
2078 1.2 sakamoto }
2079 1.2 sakamoto intrstr = pci_intr_string(pa->pa_pc, intrhandle);
2080 1.2 sakamoto sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
2081 1.2 sakamoto (void *)vr_intr, sc);
2082 1.2 sakamoto if (sc->vr_ih == NULL) {
2083 1.2 sakamoto printf("%s: couldn't establish interrupt",
2084 1.2 sakamoto sc->vr_dev.dv_xname);
2085 1.2 sakamoto if (intrstr != NULL)
2086 1.2 sakamoto printf(" at %s", intrstr);
2087 1.2 sakamoto printf("\n");
2088 1.2 sakamoto }
2089 1.2 sakamoto printf("%s: interrupting at %s\n",
2090 1.2 sakamoto sc->vr_dev.dv_xname, intrstr);
2091 1.2 sakamoto }
2092 1.2 sakamoto sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
2093 1.2 sakamoto if (sc->vr_ats == NULL)
2094 1.2 sakamoto printf("%s: warning: couldn't establish shutdown hook\n",
2095 1.2 sakamoto sc->vr_if.if_xname);
2096 1.2 sakamoto #endif /* __NetBSD__ */
2097 1.2 sakamoto
2098 1.2 sakamoto /* Reset the adapter. */
2099 1.2 sakamoto vr_reset(sc);
2100 1.2 sakamoto
2101 1.2 sakamoto /*
2102 1.2 sakamoto * Get station address. The way the Rhine chips work,
2103 1.2 sakamoto * you're not allowed to directly access the EEPROM once
2104 1.2 sakamoto * they've been programmed a special way. Consequently,
2105 1.2 sakamoto * we need to read the node address from the PAR0 and PAR1
2106 1.2 sakamoto * registers.
2107 1.2 sakamoto */
2108 1.2 sakamoto VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
2109 1.2 sakamoto DELAY(200);
2110 1.2 sakamoto for (i = 0; i < ETHER_ADDR_LEN; i++)
2111 1.2 sakamoto eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
2112 1.2 sakamoto
2113 1.2 sakamoto /*
2114 1.2 sakamoto * A Rhine chip was detected. Inform the world.
2115 1.2 sakamoto */
2116 1.2 sakamoto printf(VR_PRINTF_FMT ": Ethernet address: %s\n",
2117 1.2 sakamoto VR_PRINTF_ARGS, ether_sprintf(eaddr));
2118 1.2 sakamoto
2119 1.2 sakamoto bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
2120 1.2 sakamoto
2121 1.2 sakamoto sc->vr_ldata_ptr = malloc(sizeof (struct vr_list_data) + 8,
2122 1.2 sakamoto M_DEVBUF, M_NOWAIT);
2123 1.2 sakamoto if (sc->vr_ldata_ptr == NULL) {
2124 1.2 sakamoto free(sc, M_DEVBUF);
2125 1.2 sakamoto printf(VR_PRINTF_FMT ": no memory for list buffers!\n",
2126 1.2 sakamoto VR_PRINTF_ARGS);
2127 1.2 sakamoto return;
2128 1.2 sakamoto }
2129 1.2 sakamoto
2130 1.2 sakamoto sc->vr_ldata = (struct vr_list_data *)sc->vr_ldata_ptr;
2131 1.2 sakamoto round = (unsigned int)sc->vr_ldata_ptr & 0xF;
2132 1.2 sakamoto roundptr = sc->vr_ldata_ptr;
2133 1.2 sakamoto for (i = 0; i < 8; i++) {
2134 1.2 sakamoto if (round % 8) {
2135 1.2 sakamoto round++;
2136 1.2 sakamoto roundptr++;
2137 1.2 sakamoto } else
2138 1.2 sakamoto break;
2139 1.2 sakamoto }
2140 1.2 sakamoto sc->vr_ldata = (struct vr_list_data *)roundptr;
2141 1.2 sakamoto bzero(sc->vr_ldata, sizeof (struct vr_list_data));
2142 1.2 sakamoto
2143 1.2 sakamoto ifp = &sc->vr_if;
2144 1.2 sakamoto ifp->if_softc = sc;
2145 1.2 sakamoto ifp->if_mtu = ETHERMTU;
2146 1.2 sakamoto ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2147 1.2 sakamoto ifp->if_ioctl = vr_ioctl;
2148 1.2 sakamoto ifp->if_output = ether_output;
2149 1.2 sakamoto ifp->if_start = vr_start;
2150 1.2 sakamoto ifp->if_watchdog = vr_watchdog;
2151 1.2 sakamoto ifp->if_baudrate = 10000000;
2152 1.2 sakamoto #if defined(__NetBSD__)
2153 1.2 sakamoto bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2154 1.2 sakamoto #else
2155 1.2 sakamoto ifp->if_unit = unit;
2156 1.2 sakamoto ifp->if_name = "vr";
2157 1.2 sakamoto ifp->if_init = vr_init;
2158 1.2 sakamoto #endif
2159 1.2 sakamoto
2160 1.2 sakamoto if (bootverbose)
2161 1.2 sakamoto printf(VR_PRINTF_FMT ": probing for a PHY\n",
2162 1.2 sakamoto VR_PRINTF_ARGS);
2163 1.2 sakamoto for (i = VR_PHYADDR_MIN; i < VR_PHYADDR_MAX + 1; i++) {
2164 1.2 sakamoto if (bootverbose)
2165 1.2 sakamoto printf(VR_PRINTF_FMT ": checking address: %d\n",
2166 1.2 sakamoto VR_PRINTF_ARGS, i);
2167 1.2 sakamoto
2168 1.2 sakamoto sc->vr_phy_addr = i;
2169 1.2 sakamoto vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
2170 1.2 sakamoto DELAY(500);
2171 1.2 sakamoto while (vr_phy_readreg(sc, PHY_BMCR)
2172 1.2 sakamoto & PHY_BMCR_RESET);
2173 1.2 sakamoto if ((phy_sts = vr_phy_readreg(sc, PHY_BMSR)))
2174 1.2 sakamoto break;
2175 1.2 sakamoto }
2176 1.2 sakamoto if (phy_sts) {
2177 1.2 sakamoto phy_vid = vr_phy_readreg(sc, PHY_VENID);
2178 1.2 sakamoto phy_did = vr_phy_readreg(sc, PHY_DEVID);
2179 1.2 sakamoto if (bootverbose)
2180 1.2 sakamoto printf(VR_PRINTF_FMT ": found PHY at address %d, ",
2181 1.2 sakamoto VR_PRINTF_ARGS, sc->vr_phy_addr);
2182 1.2 sakamoto if (bootverbose)
2183 1.2 sakamoto printf("vendor id: %x device id: %x\n",
2184 1.2 sakamoto phy_vid, phy_did);
2185 1.2 sakamoto p = vr_phys;
2186 1.2 sakamoto while (p->vr_vid) {
2187 1.2 sakamoto if (phy_vid == p->vr_vid &&
2188 1.2 sakamoto (phy_did | 0x000F) == p->vr_did) {
2189 1.2 sakamoto sc->vr_pinfo = p;
2190 1.2 sakamoto break;
2191 1.2 sakamoto }
2192 1.2 sakamoto p++;
2193 1.2 sakamoto }
2194 1.2 sakamoto if (sc->vr_pinfo == NULL)
2195 1.2 sakamoto sc->vr_pinfo = &vr_phys[PHY_UNKNOWN];
2196 1.2 sakamoto if (bootverbose)
2197 1.2 sakamoto printf(VR_PRINTF_FMT ": PHY type: %s\n",
2198 1.2 sakamoto VR_PRINTF_ARGS, sc->vr_pinfo->vr_name);
2199 1.2 sakamoto } else {
2200 1.2 sakamoto printf(VR_PRINTF_FMT ": MII without any phy!\n",
2201 1.2 sakamoto VR_PRINTF_ARGS);
2202 1.2 sakamoto goto fail;
2203 1.2 sakamoto }
2204 1.2 sakamoto
2205 1.2 sakamoto /*
2206 1.2 sakamoto * Do ifmedia setup.
2207 1.2 sakamoto */
2208 1.2 sakamoto ifmedia_init(&sc->ifmedia, 0, vr_ifmedia_upd, vr_ifmedia_sts);
2209 1.2 sakamoto
2210 1.2 sakamoto vr_getmode_mii(sc);
2211 1.2 sakamoto vr_autoneg_mii(sc, VR_FLAG_FORCEDELAY, 1);
2212 1.2 sakamoto media = sc->ifmedia.ifm_media;
2213 1.2 sakamoto vr_stop(sc);
2214 1.2 sakamoto
2215 1.2 sakamoto ifmedia_set(&sc->ifmedia, media);
2216 1.2 sakamoto
2217 1.2 sakamoto /*
2218 1.2 sakamoto * Call MI attach routines.
2219 1.2 sakamoto */
2220 1.2 sakamoto if_attach(ifp);
2221 1.2 sakamoto #if defined(__NetBSD__)
2222 1.2 sakamoto ether_ifattach(ifp, sc->vr_enaddr);
2223 1.2 sakamoto #else
2224 1.2 sakamoto ether_ifattach(ifp);
2225 1.2 sakamoto #endif
2226 1.2 sakamoto
2227 1.2 sakamoto #if NBPFILTER > 0
2228 1.2 sakamoto #if defined(__NetBSD__)
2229 1.2 sakamoto bpfattach(&sc->vr_if.if_bpf,
2230 1.2 sakamoto ifp, DLT_EN10MB, sizeof (struct ether_header));
2231 1.2 sakamoto #else
2232 1.2 sakamoto bpfattach(ifp, DLT_EN10MB, sizeof (struct ether_header));
2233 1.2 sakamoto #endif
2234 1.2 sakamoto #endif
2235 1.2 sakamoto
2236 1.2 sakamoto #if defined(__NetBSD__)
2237 1.2 sakamoto sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
2238 1.2 sakamoto if (sc->vr_ats == NULL)
2239 1.2 sakamoto printf("%s: warning: couldn't establish shutdown hook\n",
2240 1.2 sakamoto sc->vr_dev.dv_xname);
2241 1.2 sakamoto #else
2242 1.2 sakamoto at_shutdown(vr_shutdown, sc, SHUTDOWN_POST_SYNC);
2243 1.2 sakamoto #endif
2244 1.2 sakamoto
2245 1.2 sakamoto fail:
2246 1.2 sakamoto #if !defined(__NetBSD__)
2247 1.2 sakamoto splx(s);
2248 1.2 sakamoto #endif
2249 1.2 sakamoto return;
2250 1.2 sakamoto }
2251