if_vr.c revision 1.23 1 1.23 thorpej /* $NetBSD: if_vr.c,v 1.23 1999/08/03 17:25:52 thorpej Exp $ */
2 1.18 thorpej
3 1.18 thorpej /*-
4 1.18 thorpej * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 1.18 thorpej * All rights reserved.
6 1.18 thorpej *
7 1.18 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.18 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.18 thorpej * NASA Ames Research Center.
10 1.18 thorpej *
11 1.18 thorpej * Redistribution and use in source and binary forms, with or without
12 1.18 thorpej * modification, are permitted provided that the following conditions
13 1.18 thorpej * are met:
14 1.18 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.18 thorpej * notice, this list of conditions and the following disclaimer.
16 1.18 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.18 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.18 thorpej * documentation and/or other materials provided with the distribution.
19 1.18 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.18 thorpej * must display the following acknowledgement:
21 1.18 thorpej * This product includes software developed by the NetBSD
22 1.18 thorpej * Foundation, Inc. and its contributors.
23 1.18 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.18 thorpej * contributors may be used to endorse or promote products derived
25 1.18 thorpej * from this software without specific prior written permission.
26 1.18 thorpej *
27 1.18 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.18 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.18 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.18 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.18 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.18 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.18 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.18 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.18 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.18 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.18 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.18 thorpej */
39 1.2 sakamoto
40 1.1 sakamoto /*
41 1.1 sakamoto * Copyright (c) 1997, 1998
42 1.1 sakamoto * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 1.1 sakamoto *
44 1.1 sakamoto * Redistribution and use in source and binary forms, with or without
45 1.1 sakamoto * modification, are permitted provided that the following conditions
46 1.1 sakamoto * are met:
47 1.1 sakamoto * 1. Redistributions of source code must retain the above copyright
48 1.1 sakamoto * notice, this list of conditions and the following disclaimer.
49 1.1 sakamoto * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 sakamoto * notice, this list of conditions and the following disclaimer in the
51 1.1 sakamoto * documentation and/or other materials provided with the distribution.
52 1.1 sakamoto * 3. All advertising materials mentioning features or use of this software
53 1.1 sakamoto * must display the following acknowledgement:
54 1.1 sakamoto * This product includes software developed by Bill Paul.
55 1.1 sakamoto * 4. Neither the name of the author nor the names of any co-contributors
56 1.1 sakamoto * may be used to endorse or promote products derived from this software
57 1.1 sakamoto * without specific prior written permission.
58 1.1 sakamoto *
59 1.1 sakamoto * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 1.1 sakamoto * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 sakamoto * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 sakamoto * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 1.1 sakamoto * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 1.1 sakamoto * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 1.1 sakamoto * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 1.1 sakamoto * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 1.1 sakamoto * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 1.1 sakamoto * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 1.1 sakamoto * THE POSSIBILITY OF SUCH DAMAGE.
70 1.1 sakamoto *
71 1.2 sakamoto * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 1.1 sakamoto */
73 1.1 sakamoto
74 1.1 sakamoto /*
75 1.1 sakamoto * VIA Rhine fast ethernet PCI NIC driver
76 1.1 sakamoto *
77 1.1 sakamoto * Supports various network adapters based on the VIA Rhine
78 1.1 sakamoto * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 1.1 sakamoto * Datasheets are available at http://www.via.com.tw.
80 1.1 sakamoto *
81 1.1 sakamoto * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 1.1 sakamoto * Electrical Engineering Department
83 1.1 sakamoto * Columbia University, New York City
84 1.1 sakamoto */
85 1.1 sakamoto
86 1.1 sakamoto /*
87 1.1 sakamoto * The VIA Rhine controllers are similar in some respects to the
88 1.1 sakamoto * the DEC tulip chips, except less complicated. The controller
89 1.1 sakamoto * uses an MII bus and an external physical layer interface. The
90 1.1 sakamoto * receiver has a one entry perfect filter and a 64-bit hash table
91 1.1 sakamoto * multicast filter. Transmit and receive descriptors are similar
92 1.1 sakamoto * to the tulip.
93 1.1 sakamoto *
94 1.1 sakamoto * The Rhine has a serious flaw in its transmit DMA mechanism:
95 1.1 sakamoto * transmit buffers must be longword aligned. Unfortunately,
96 1.17 thorpej * the kernel doesn't guarantee that mbufs will be filled in starting
97 1.1 sakamoto * at longword boundaries, so we have to do a buffer copy before
98 1.1 sakamoto * transmission.
99 1.17 thorpej *
100 1.17 thorpej * Apparently, the receive DMA mechanism also has the same flaw. This
101 1.17 thorpej * means that on systems with struct alignment requirements, incoming
102 1.17 thorpej * frames must be copied to a new buffer which shifts the data forward
103 1.17 thorpej * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 1.1 sakamoto */
105 1.1 sakamoto
106 1.2 sakamoto #include "opt_inet.h"
107 1.1 sakamoto
108 1.1 sakamoto #include <sys/param.h>
109 1.1 sakamoto #include <sys/systm.h>
110 1.1 sakamoto #include <sys/sockio.h>
111 1.1 sakamoto #include <sys/mbuf.h>
112 1.1 sakamoto #include <sys/malloc.h>
113 1.1 sakamoto #include <sys/kernel.h>
114 1.1 sakamoto #include <sys/socket.h>
115 1.6 thorpej #include <sys/device.h>
116 1.1 sakamoto
117 1.18 thorpej #include <vm/vm.h> /* for PAGE_SIZE */
118 1.18 thorpej
119 1.1 sakamoto #include <net/if.h>
120 1.1 sakamoto #include <net/if_arp.h>
121 1.1 sakamoto #include <net/if_dl.h>
122 1.1 sakamoto #include <net/if_media.h>
123 1.2 sakamoto #include <net/if_ether.h>
124 1.6 thorpej
125 1.2 sakamoto #if defined(INET)
126 1.2 sakamoto #include <netinet/in.h>
127 1.2 sakamoto #include <netinet/if_inarp.h>
128 1.2 sakamoto #endif
129 1.1 sakamoto
130 1.2 sakamoto #include "bpfilter.h"
131 1.1 sakamoto #if NBPFILTER > 0
132 1.1 sakamoto #include <net/bpf.h>
133 1.1 sakamoto #endif
134 1.1 sakamoto
135 1.1 sakamoto #include <machine/bus.h>
136 1.6 thorpej #include <machine/intr.h>
137 1.1 sakamoto
138 1.10 thorpej #include <dev/mii/mii.h>
139 1.11 thorpej #include <dev/mii/miivar.h>
140 1.10 thorpej
141 1.2 sakamoto #include <dev/pci/pcireg.h>
142 1.2 sakamoto #include <dev/pci/pcivar.h>
143 1.8 thorpej #include <dev/pci/pcidevs.h>
144 1.8 thorpej
145 1.2 sakamoto #include <dev/pci/if_vrreg.h>
146 1.1 sakamoto
147 1.21 thorpej #if BYTE_ORDER == BIG_ENDIAN
148 1.21 thorpej #include <machine/bswap.h>
149 1.21 thorpej #define htopci(x) bswap32(x)
150 1.21 thorpej #define pcitoh(x) bswap32(x)
151 1.21 thorpej #else
152 1.21 thorpej #define htopci(x) (x)
153 1.21 thorpej #define pcitoh(x) (x)
154 1.21 thorpej #endif
155 1.21 thorpej
156 1.2 sakamoto #define VR_USEIOSPACE
157 1.1 sakamoto
158 1.1 sakamoto /*
159 1.1 sakamoto * Various supported device vendors/types and their names.
160 1.1 sakamoto */
161 1.7 thorpej static struct vr_type {
162 1.7 thorpej pci_vendor_id_t vr_vid;
163 1.7 thorpej pci_product_id_t vr_did;
164 1.7 thorpej const char *vr_name;
165 1.7 thorpej } vr_devs[] = {
166 1.8 thorpej { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
167 1.18 thorpej "VIA VT3043 (Rhine) 10/100 Ethernet" },
168 1.8 thorpej { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
169 1.18 thorpej "VIA VT86C100A (Rhine-II) 10/100 Ethernet" },
170 1.1 sakamoto { 0, 0, NULL }
171 1.1 sakamoto };
172 1.1 sakamoto
173 1.18 thorpej /*
174 1.18 thorpej * Transmit descriptor list size.
175 1.18 thorpej */
176 1.18 thorpej #define VR_NTXDESC 64
177 1.18 thorpej #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
178 1.18 thorpej #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
179 1.18 thorpej
180 1.18 thorpej /*
181 1.18 thorpej * Receive descriptor list size.
182 1.18 thorpej */
183 1.18 thorpej #define VR_NRXDESC 64
184 1.18 thorpej #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
185 1.18 thorpej #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
186 1.7 thorpej
187 1.18 thorpej /*
188 1.18 thorpej * Control data structres that are DMA'd to the Rhine chip. We allocate
189 1.18 thorpej * them in a single clump that maps to a single DMA segment to make several
190 1.18 thorpej * things easier.
191 1.18 thorpej *
192 1.18 thorpej * Note that since we always copy outgoing packets to aligned transmit
193 1.18 thorpej * buffers, we can reduce the transmit descriptors to one per packet.
194 1.18 thorpej */
195 1.18 thorpej struct vr_control_data {
196 1.18 thorpej struct vr_desc vr_txdescs[VR_NTXDESC];
197 1.18 thorpej struct vr_desc vr_rxdescs[VR_NRXDESC];
198 1.7 thorpej };
199 1.7 thorpej
200 1.18 thorpej #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
201 1.18 thorpej #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
202 1.18 thorpej #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
203 1.7 thorpej
204 1.18 thorpej /*
205 1.18 thorpej * Software state of transmit and receive descriptors.
206 1.18 thorpej */
207 1.18 thorpej struct vr_descsoft {
208 1.18 thorpej struct mbuf *ds_mbuf; /* head of mbuf chain */
209 1.18 thorpej bus_dmamap_t ds_dmamap; /* our DMA map */
210 1.7 thorpej };
211 1.7 thorpej
212 1.7 thorpej struct vr_softc {
213 1.14 thorpej struct device vr_dev; /* generic device glue */
214 1.14 thorpej void *vr_ih; /* interrupt cookie */
215 1.14 thorpej void *vr_ats; /* shutdown hook */
216 1.14 thorpej bus_space_tag_t vr_bst; /* bus space tag */
217 1.14 thorpej bus_space_handle_t vr_bsh; /* bus space handle */
218 1.18 thorpej bus_dma_tag_t vr_dmat; /* bus DMA tag */
219 1.14 thorpej pci_chipset_tag_t vr_pc; /* PCI chipset info */
220 1.14 thorpej struct ethercom vr_ec; /* Ethernet common info */
221 1.7 thorpej u_int8_t vr_enaddr[ETHER_ADDR_LEN];
222 1.11 thorpej struct mii_data vr_mii; /* MII/media info */
223 1.18 thorpej
224 1.18 thorpej bus_dmamap_t vr_cddmamap; /* control data DMA map */
225 1.18 thorpej #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
226 1.18 thorpej
227 1.18 thorpej /*
228 1.18 thorpej * Software state for transmit and receive descriptors.
229 1.18 thorpej */
230 1.18 thorpej struct vr_descsoft vr_txsoft[VR_NTXDESC];
231 1.18 thorpej struct vr_descsoft vr_rxsoft[VR_NRXDESC];
232 1.18 thorpej
233 1.18 thorpej /*
234 1.18 thorpej * Control data structures.
235 1.18 thorpej */
236 1.18 thorpej struct vr_control_data *vr_control_data;
237 1.18 thorpej
238 1.18 thorpej int vr_txpending; /* number of TX requests pending */
239 1.18 thorpej int vr_txdirty; /* first dirty TX descriptor */
240 1.18 thorpej int vr_txlast; /* last used TX descriptor */
241 1.18 thorpej
242 1.18 thorpej int vr_rxptr; /* next ready RX descriptor */
243 1.7 thorpej };
244 1.7 thorpej
245 1.18 thorpej #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
246 1.18 thorpej #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
247 1.18 thorpej
248 1.18 thorpej #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
249 1.18 thorpej #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
250 1.18 thorpej
251 1.18 thorpej #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
252 1.18 thorpej #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
253 1.18 thorpej
254 1.18 thorpej #define VR_CDTXSYNC(sc, x, ops) \
255 1.18 thorpej bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
256 1.18 thorpej VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
257 1.18 thorpej
258 1.18 thorpej #define VR_CDRXSYNC(sc, x, ops) \
259 1.18 thorpej bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
260 1.18 thorpej VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
261 1.18 thorpej
262 1.18 thorpej /*
263 1.18 thorpej * Note we rely on MCLBYTES being a power of two below.
264 1.18 thorpej */
265 1.18 thorpej #define VR_INIT_RXDESC(sc, i) \
266 1.18 thorpej do { \
267 1.18 thorpej struct vr_desc *__d = VR_CDRX((sc), (i)); \
268 1.18 thorpej struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
269 1.18 thorpej \
270 1.21 thorpej __d->vr_next = htopci(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
271 1.21 thorpej __d->vr_status = htopci(VR_RXSTAT_FIRSTFRAG | \
272 1.21 thorpej VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
273 1.21 thorpej __d->vr_data = htopci(__ds->ds_dmamap->dm_segs[0].ds_addr); \
274 1.21 thorpej __d->vr_ctl = htopci(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
275 1.21 thorpej ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
276 1.18 thorpej VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
277 1.18 thorpej } while (0)
278 1.18 thorpej
279 1.7 thorpej /*
280 1.7 thorpej * register space access macros
281 1.7 thorpej */
282 1.18 thorpej #define CSR_WRITE_4(sc, reg, val) \
283 1.14 thorpej bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
284 1.18 thorpej #define CSR_WRITE_2(sc, reg, val) \
285 1.14 thorpej bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
286 1.18 thorpej #define CSR_WRITE_1(sc, reg, val) \
287 1.14 thorpej bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
288 1.7 thorpej
289 1.18 thorpej #define CSR_READ_4(sc, reg) \
290 1.14 thorpej bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
291 1.18 thorpej #define CSR_READ_2(sc, reg) \
292 1.14 thorpej bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
293 1.18 thorpej #define CSR_READ_1(sc, reg) \
294 1.14 thorpej bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
295 1.7 thorpej
296 1.7 thorpej #define VR_TIMEOUT 1000
297 1.1 sakamoto
298 1.18 thorpej static int vr_add_rxbuf __P((struct vr_softc *, int));
299 1.1 sakamoto
300 1.1 sakamoto static void vr_rxeof __P((struct vr_softc *));
301 1.1 sakamoto static void vr_rxeoc __P((struct vr_softc *));
302 1.1 sakamoto static void vr_txeof __P((struct vr_softc *));
303 1.16 thorpej static int vr_intr __P((void *));
304 1.1 sakamoto static void vr_start __P((struct ifnet *));
305 1.1 sakamoto static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
306 1.23 thorpej static int vr_init __P((struct vr_softc *));
307 1.23 thorpej static void vr_stop __P((struct vr_softc *, int));
308 1.23 thorpej static void vr_rxdrain __P((struct vr_softc *));
309 1.1 sakamoto static void vr_watchdog __P((struct ifnet *));
310 1.11 thorpej static void vr_tick __P((void *));
311 1.11 thorpej
312 1.1 sakamoto static int vr_ifmedia_upd __P((struct ifnet *));
313 1.1 sakamoto static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
314 1.1 sakamoto
315 1.1 sakamoto static void vr_mii_sync __P((struct vr_softc *));
316 1.1 sakamoto static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
317 1.11 thorpej static int vr_mii_readreg __P((struct device *, int, int));
318 1.11 thorpej static void vr_mii_writereg __P((struct device *, int, int, int));
319 1.11 thorpej static void vr_mii_statchg __P((struct device *));
320 1.11 thorpej
321 1.1 sakamoto static u_int8_t vr_calchash __P((u_int8_t *));
322 1.1 sakamoto static void vr_setmulti __P((struct vr_softc *));
323 1.1 sakamoto static void vr_reset __P((struct vr_softc *));
324 1.1 sakamoto
325 1.23 thorpej int vr_copy_small = 0;
326 1.23 thorpej
327 1.2 sakamoto #define VR_SETBIT(sc, reg, x) \
328 1.1 sakamoto CSR_WRITE_1(sc, reg, \
329 1.1 sakamoto CSR_READ_1(sc, reg) | x)
330 1.1 sakamoto
331 1.2 sakamoto #define VR_CLRBIT(sc, reg, x) \
332 1.1 sakamoto CSR_WRITE_1(sc, reg, \
333 1.1 sakamoto CSR_READ_1(sc, reg) & ~x)
334 1.1 sakamoto
335 1.2 sakamoto #define VR_SETBIT16(sc, reg, x) \
336 1.1 sakamoto CSR_WRITE_2(sc, reg, \
337 1.1 sakamoto CSR_READ_2(sc, reg) | x)
338 1.1 sakamoto
339 1.2 sakamoto #define VR_CLRBIT16(sc, reg, x) \
340 1.1 sakamoto CSR_WRITE_2(sc, reg, \
341 1.1 sakamoto CSR_READ_2(sc, reg) & ~x)
342 1.1 sakamoto
343 1.2 sakamoto #define VR_SETBIT32(sc, reg, x) \
344 1.1 sakamoto CSR_WRITE_4(sc, reg, \
345 1.1 sakamoto CSR_READ_4(sc, reg) | x)
346 1.1 sakamoto
347 1.2 sakamoto #define VR_CLRBIT32(sc, reg, x) \
348 1.1 sakamoto CSR_WRITE_4(sc, reg, \
349 1.1 sakamoto CSR_READ_4(sc, reg) & ~x)
350 1.1 sakamoto
351 1.2 sakamoto #define SIO_SET(x) \
352 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, \
353 1.1 sakamoto CSR_READ_1(sc, VR_MIICMD) | x)
354 1.1 sakamoto
355 1.2 sakamoto #define SIO_CLR(x) \
356 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, \
357 1.1 sakamoto CSR_READ_1(sc, VR_MIICMD) & ~x)
358 1.1 sakamoto
359 1.1 sakamoto /*
360 1.1 sakamoto * Sync the PHYs by setting data bit and strobing the clock 32 times.
361 1.1 sakamoto */
362 1.15 thorpej static void
363 1.15 thorpej vr_mii_sync(sc)
364 1.15 thorpej struct vr_softc *sc;
365 1.1 sakamoto {
366 1.15 thorpej int i;
367 1.1 sakamoto
368 1.9 thorpej SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT);
369 1.1 sakamoto
370 1.1 sakamoto for (i = 0; i < 32; i++) {
371 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
372 1.1 sakamoto DELAY(1);
373 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
374 1.1 sakamoto DELAY(1);
375 1.1 sakamoto }
376 1.1 sakamoto }
377 1.1 sakamoto
378 1.1 sakamoto /*
379 1.1 sakamoto * Clock a series of bits through the MII.
380 1.1 sakamoto */
381 1.15 thorpej static void
382 1.15 thorpej vr_mii_send(sc, bits, cnt)
383 1.15 thorpej struct vr_softc *sc;
384 1.15 thorpej u_int32_t bits;
385 1.15 thorpej int cnt;
386 1.1 sakamoto {
387 1.15 thorpej int i;
388 1.1 sakamoto
389 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
390 1.1 sakamoto
391 1.1 sakamoto for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
392 1.2 sakamoto if (bits & i) {
393 1.9 thorpej SIO_SET(VR_MIICMD_DATAOUT);
394 1.2 sakamoto } else {
395 1.9 thorpej SIO_CLR(VR_MIICMD_DATAOUT);
396 1.2 sakamoto }
397 1.1 sakamoto DELAY(1);
398 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
399 1.1 sakamoto DELAY(1);
400 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
401 1.1 sakamoto }
402 1.1 sakamoto }
403 1.1 sakamoto
404 1.1 sakamoto /*
405 1.1 sakamoto * Read an PHY register through the MII.
406 1.1 sakamoto */
407 1.15 thorpej static int
408 1.15 thorpej vr_mii_readreg(self, phy, reg)
409 1.11 thorpej struct device *self;
410 1.11 thorpej int phy, reg;
411 1.1 sakamoto {
412 1.11 thorpej struct vr_softc *sc = (struct vr_softc *)self;
413 1.13 thorpej int i, ack, val = 0;
414 1.1 sakamoto
415 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, 0);
416 1.1 sakamoto VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
417 1.1 sakamoto
418 1.1 sakamoto /*
419 1.2 sakamoto * Turn on data xmit.
420 1.1 sakamoto */
421 1.1 sakamoto SIO_SET(VR_MIICMD_DIR);
422 1.1 sakamoto
423 1.1 sakamoto vr_mii_sync(sc);
424 1.1 sakamoto
425 1.1 sakamoto /*
426 1.1 sakamoto * Send command/address info.
427 1.1 sakamoto */
428 1.11 thorpej vr_mii_send(sc, MII_COMMAND_START, 2);
429 1.11 thorpej vr_mii_send(sc, MII_COMMAND_READ, 2);
430 1.11 thorpej vr_mii_send(sc, phy, 5);
431 1.11 thorpej vr_mii_send(sc, reg, 5);
432 1.1 sakamoto
433 1.1 sakamoto /* Idle bit */
434 1.9 thorpej SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT));
435 1.1 sakamoto DELAY(1);
436 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
437 1.1 sakamoto DELAY(1);
438 1.1 sakamoto
439 1.1 sakamoto /* Turn off xmit. */
440 1.1 sakamoto SIO_CLR(VR_MIICMD_DIR);
441 1.1 sakamoto
442 1.1 sakamoto /* Check for ack */
443 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
444 1.1 sakamoto DELAY(1);
445 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
446 1.1 sakamoto DELAY(1);
447 1.9 thorpej ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN;
448 1.1 sakamoto
449 1.1 sakamoto /*
450 1.1 sakamoto * Now try reading data bits. If the ack failed, we still
451 1.1 sakamoto * need to clock through 16 cycles to keep the PHY(s) in sync.
452 1.1 sakamoto */
453 1.1 sakamoto if (ack) {
454 1.2 sakamoto for (i = 0; i < 16; i++) {
455 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
456 1.1 sakamoto DELAY(1);
457 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
458 1.1 sakamoto DELAY(1);
459 1.1 sakamoto }
460 1.1 sakamoto goto fail;
461 1.1 sakamoto }
462 1.1 sakamoto
463 1.1 sakamoto for (i = 0x8000; i; i >>= 1) {
464 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
465 1.1 sakamoto DELAY(1);
466 1.1 sakamoto if (!ack) {
467 1.9 thorpej if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN)
468 1.11 thorpej val |= i;
469 1.1 sakamoto DELAY(1);
470 1.1 sakamoto }
471 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
472 1.1 sakamoto DELAY(1);
473 1.1 sakamoto }
474 1.1 sakamoto
475 1.11 thorpej fail:
476 1.1 sakamoto
477 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
478 1.1 sakamoto DELAY(1);
479 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
480 1.1 sakamoto DELAY(1);
481 1.1 sakamoto
482 1.11 thorpej return (val);
483 1.1 sakamoto }
484 1.1 sakamoto
485 1.1 sakamoto /*
486 1.1 sakamoto * Write to a PHY register through the MII.
487 1.1 sakamoto */
488 1.15 thorpej static void
489 1.15 thorpej vr_mii_writereg(self, phy, reg, val)
490 1.11 thorpej struct device *self;
491 1.11 thorpej int phy, reg, val;
492 1.1 sakamoto {
493 1.11 thorpej struct vr_softc *sc = (struct vr_softc *)self;
494 1.1 sakamoto
495 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, 0);
496 1.1 sakamoto VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
497 1.1 sakamoto
498 1.1 sakamoto /*
499 1.2 sakamoto * Turn on data output.
500 1.1 sakamoto */
501 1.1 sakamoto SIO_SET(VR_MIICMD_DIR);
502 1.1 sakamoto
503 1.1 sakamoto vr_mii_sync(sc);
504 1.1 sakamoto
505 1.11 thorpej vr_mii_send(sc, MII_COMMAND_START, 2);
506 1.11 thorpej vr_mii_send(sc, MII_COMMAND_WRITE, 2);
507 1.11 thorpej vr_mii_send(sc, phy, 5);
508 1.11 thorpej vr_mii_send(sc, reg, 5);
509 1.11 thorpej vr_mii_send(sc, MII_COMMAND_ACK, 2);
510 1.11 thorpej vr_mii_send(sc, val, 16);
511 1.1 sakamoto
512 1.1 sakamoto /* Idle bit. */
513 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
514 1.1 sakamoto DELAY(1);
515 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
516 1.1 sakamoto DELAY(1);
517 1.1 sakamoto
518 1.1 sakamoto /*
519 1.1 sakamoto * Turn off xmit.
520 1.1 sakamoto */
521 1.1 sakamoto SIO_CLR(VR_MIICMD_DIR);
522 1.1 sakamoto }
523 1.1 sakamoto
524 1.15 thorpej static void
525 1.15 thorpej vr_mii_statchg(self)
526 1.11 thorpej struct device *self;
527 1.1 sakamoto {
528 1.11 thorpej struct vr_softc *sc = (struct vr_softc *)self;
529 1.1 sakamoto
530 1.11 thorpej /*
531 1.11 thorpej * In order to fiddle with the 'full-duplex' bit in the netconfig
532 1.11 thorpej * register, we first have to put the transmit and/or receive logic
533 1.11 thorpej * in the idle state.
534 1.11 thorpej */
535 1.18 thorpej VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
536 1.1 sakamoto
537 1.11 thorpej if (sc->vr_mii.mii_media_active & IFM_FDX)
538 1.11 thorpej VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
539 1.11 thorpej else
540 1.11 thorpej VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
541 1.1 sakamoto
542 1.18 thorpej if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
543 1.11 thorpej VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
544 1.1 sakamoto
545 1.11 thorpej /* XXX Update ifp->if_baudrate */
546 1.1 sakamoto }
547 1.1 sakamoto
548 1.1 sakamoto /*
549 1.1 sakamoto * Calculate CRC of a multicast group address, return the lower 6 bits.
550 1.1 sakamoto */
551 1.15 thorpej static u_int8_t
552 1.15 thorpej vr_calchash(addr)
553 1.15 thorpej u_int8_t *addr;
554 1.15 thorpej {
555 1.15 thorpej u_int32_t crc, carry;
556 1.15 thorpej int i, j;
557 1.15 thorpej u_int8_t c;
558 1.1 sakamoto
559 1.1 sakamoto /* Compute CRC for the address value. */
560 1.1 sakamoto crc = 0xFFFFFFFF; /* initial value */
561 1.1 sakamoto
562 1.1 sakamoto for (i = 0; i < 6; i++) {
563 1.1 sakamoto c = *(addr + i);
564 1.1 sakamoto for (j = 0; j < 8; j++) {
565 1.1 sakamoto carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
566 1.1 sakamoto crc <<= 1;
567 1.1 sakamoto c >>= 1;
568 1.1 sakamoto if (carry)
569 1.1 sakamoto crc = (crc ^ 0x04c11db6) | carry;
570 1.1 sakamoto }
571 1.1 sakamoto }
572 1.1 sakamoto
573 1.1 sakamoto /* return the filter bit position */
574 1.2 sakamoto return ((crc >> 26) & 0x0000003F);
575 1.1 sakamoto }
576 1.1 sakamoto
577 1.1 sakamoto /*
578 1.1 sakamoto * Program the 64-bit multicast hash filter.
579 1.1 sakamoto */
580 1.15 thorpej static void
581 1.15 thorpej vr_setmulti(sc)
582 1.15 thorpej struct vr_softc *sc;
583 1.1 sakamoto {
584 1.15 thorpej struct ifnet *ifp;
585 1.15 thorpej int h = 0;
586 1.15 thorpej u_int32_t hashes[2] = { 0, 0 };
587 1.15 thorpej struct ether_multistep step;
588 1.15 thorpej struct ether_multi *enm;
589 1.15 thorpej int mcnt = 0;
590 1.15 thorpej u_int8_t rxfilt;
591 1.1 sakamoto
592 1.6 thorpej ifp = &sc->vr_ec.ec_if;
593 1.1 sakamoto
594 1.1 sakamoto rxfilt = CSR_READ_1(sc, VR_RXCFG);
595 1.1 sakamoto
596 1.1 sakamoto if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
597 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
598 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
599 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
600 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
601 1.1 sakamoto return;
602 1.1 sakamoto }
603 1.1 sakamoto
604 1.1 sakamoto /* first, zot all the existing hash bits */
605 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0);
606 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0);
607 1.1 sakamoto
608 1.1 sakamoto /* now program new ones */
609 1.2 sakamoto ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
610 1.2 sakamoto while (enm != NULL) {
611 1.2 sakamoto if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
612 1.2 sakamoto continue;
613 1.2 sakamoto
614 1.2 sakamoto h = vr_calchash(enm->enm_addrlo);
615 1.2 sakamoto
616 1.1 sakamoto if (h < 32)
617 1.1 sakamoto hashes[0] |= (1 << h);
618 1.1 sakamoto else
619 1.1 sakamoto hashes[1] |= (1 << (h - 32));
620 1.2 sakamoto ETHER_NEXT_MULTI(step, enm);
621 1.1 sakamoto mcnt++;
622 1.1 sakamoto }
623 1.1 sakamoto
624 1.1 sakamoto if (mcnt)
625 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
626 1.1 sakamoto else
627 1.1 sakamoto rxfilt &= ~VR_RXCFG_RX_MULTI;
628 1.1 sakamoto
629 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
630 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
631 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
632 1.1 sakamoto }
633 1.1 sakamoto
634 1.15 thorpej static void
635 1.15 thorpej vr_reset(sc)
636 1.15 thorpej struct vr_softc *sc;
637 1.1 sakamoto {
638 1.15 thorpej int i;
639 1.1 sakamoto
640 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
641 1.1 sakamoto
642 1.1 sakamoto for (i = 0; i < VR_TIMEOUT; i++) {
643 1.1 sakamoto DELAY(10);
644 1.1 sakamoto if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
645 1.1 sakamoto break;
646 1.1 sakamoto }
647 1.1 sakamoto if (i == VR_TIMEOUT)
648 1.6 thorpej printf("%s: reset never completed!\n",
649 1.6 thorpej sc->vr_dev.dv_xname);
650 1.1 sakamoto
651 1.1 sakamoto /* Wait a little while for the chip to get its brains in order. */
652 1.1 sakamoto DELAY(1000);
653 1.1 sakamoto }
654 1.1 sakamoto
655 1.1 sakamoto /*
656 1.1 sakamoto * Initialize an RX descriptor and attach an MBUF cluster.
657 1.1 sakamoto * Note: the length fields are only 11 bits wide, which means the
658 1.1 sakamoto * largest size we can specify is 2047. This is important because
659 1.1 sakamoto * MCLBYTES is 2048, so we have to subtract one otherwise we'll
660 1.1 sakamoto * overflow the field and make a mess.
661 1.1 sakamoto */
662 1.15 thorpej static int
663 1.18 thorpej vr_add_rxbuf(sc, i)
664 1.15 thorpej struct vr_softc *sc;
665 1.18 thorpej int i;
666 1.1 sakamoto {
667 1.18 thorpej struct vr_descsoft *ds = VR_DSRX(sc, i);
668 1.18 thorpej struct mbuf *m_new;
669 1.18 thorpej int error;
670 1.1 sakamoto
671 1.1 sakamoto MGETHDR(m_new, M_DONTWAIT, MT_DATA);
672 1.18 thorpej if (m_new == NULL)
673 1.2 sakamoto return (ENOBUFS);
674 1.1 sakamoto
675 1.1 sakamoto MCLGET(m_new, M_DONTWAIT);
676 1.18 thorpej if ((m_new->m_flags & M_EXT) == 0) {
677 1.1 sakamoto m_freem(m_new);
678 1.2 sakamoto return (ENOBUFS);
679 1.1 sakamoto }
680 1.1 sakamoto
681 1.18 thorpej if (ds->ds_mbuf != NULL)
682 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
683 1.18 thorpej
684 1.18 thorpej ds->ds_mbuf = m_new;
685 1.18 thorpej
686 1.18 thorpej error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
687 1.18 thorpej m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
688 1.18 thorpej if (error) {
689 1.18 thorpej printf("%s: unable to load rx DMA map %d, error = %d\n",
690 1.18 thorpej sc->vr_dev.dv_xname, i, error);
691 1.18 thorpej panic("vr_add_rxbuf"); /* XXX */
692 1.18 thorpej }
693 1.18 thorpej
694 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
695 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
696 1.18 thorpej
697 1.18 thorpej VR_INIT_RXDESC(sc, i);
698 1.1 sakamoto
699 1.2 sakamoto return (0);
700 1.1 sakamoto }
701 1.1 sakamoto
702 1.1 sakamoto /*
703 1.1 sakamoto * A frame has been uploaded: pass the resulting mbuf chain up to
704 1.1 sakamoto * the higher level protocols.
705 1.1 sakamoto */
706 1.15 thorpej static void
707 1.15 thorpej vr_rxeof(sc)
708 1.15 thorpej struct vr_softc *sc;
709 1.1 sakamoto {
710 1.15 thorpej struct ether_header *eh;
711 1.15 thorpej struct mbuf *m;
712 1.15 thorpej struct ifnet *ifp;
713 1.18 thorpej struct vr_desc *d;
714 1.18 thorpej struct vr_descsoft *ds;
715 1.18 thorpej int i, total_len;
716 1.15 thorpej u_int32_t rxstat;
717 1.1 sakamoto
718 1.6 thorpej ifp = &sc->vr_ec.ec_if;
719 1.1 sakamoto
720 1.18 thorpej for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
721 1.18 thorpej d = VR_CDRX(sc, i);
722 1.18 thorpej ds = VR_DSRX(sc, i);
723 1.18 thorpej
724 1.18 thorpej VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
725 1.18 thorpej
726 1.21 thorpej rxstat = pcitoh(d->vr_status);
727 1.18 thorpej
728 1.18 thorpej if (rxstat & VR_RXSTAT_OWN) {
729 1.18 thorpej /*
730 1.18 thorpej * We have processed all of the receive buffers.
731 1.18 thorpej */
732 1.18 thorpej break;
733 1.18 thorpej }
734 1.1 sakamoto
735 1.1 sakamoto /*
736 1.1 sakamoto * If an error occurs, update stats, clear the
737 1.1 sakamoto * status word and leave the mbuf cluster in place:
738 1.1 sakamoto * it should simply get re-used next time this descriptor
739 1.2 sakamoto * comes up in the ring.
740 1.1 sakamoto */
741 1.1 sakamoto if (rxstat & VR_RXSTAT_RXERR) {
742 1.18 thorpej const char *errstr;
743 1.18 thorpej
744 1.1 sakamoto ifp->if_ierrors++;
745 1.2 sakamoto switch (rxstat & 0x000000FF) {
746 1.1 sakamoto case VR_RXSTAT_CRCERR:
747 1.18 thorpej errstr = "crc error";
748 1.1 sakamoto break;
749 1.1 sakamoto case VR_RXSTAT_FRAMEALIGNERR:
750 1.18 thorpej errstr = "frame alignment error";
751 1.1 sakamoto break;
752 1.1 sakamoto case VR_RXSTAT_FIFOOFLOW:
753 1.18 thorpej errstr = "FIFO overflow";
754 1.1 sakamoto break;
755 1.1 sakamoto case VR_RXSTAT_GIANT:
756 1.18 thorpej errstr = "received giant packet";
757 1.1 sakamoto break;
758 1.1 sakamoto case VR_RXSTAT_RUNT:
759 1.18 thorpej errstr = "received runt packet";
760 1.1 sakamoto break;
761 1.1 sakamoto case VR_RXSTAT_BUSERR:
762 1.18 thorpej errstr = "system bus error";
763 1.1 sakamoto break;
764 1.1 sakamoto case VR_RXSTAT_BUFFERR:
765 1.18 thorpej errstr = "rx buffer error";
766 1.1 sakamoto break;
767 1.1 sakamoto default:
768 1.18 thorpej errstr = "unknown rx error";
769 1.1 sakamoto break;
770 1.1 sakamoto }
771 1.18 thorpej printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
772 1.18 thorpej errstr);
773 1.18 thorpej
774 1.18 thorpej VR_INIT_RXDESC(sc, i);
775 1.18 thorpej
776 1.1 sakamoto continue;
777 1.1 sakamoto }
778 1.1 sakamoto
779 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
780 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
781 1.18 thorpej
782 1.2 sakamoto /* No errors; receive the packet. */
783 1.21 thorpej total_len = VR_RXBYTES(pcitoh(d->vr_status));
784 1.1 sakamoto
785 1.1 sakamoto /*
786 1.1 sakamoto * XXX The VIA Rhine chip includes the CRC with every
787 1.1 sakamoto * received frame, and there's no way to turn this
788 1.1 sakamoto * behavior off (at least, I can't find anything in
789 1.2 sakamoto * the manual that explains how to do it) so we have
790 1.1 sakamoto * to trim off the CRC manually.
791 1.1 sakamoto */
792 1.1 sakamoto total_len -= ETHER_CRC_LEN;
793 1.1 sakamoto
794 1.17 thorpej #ifdef __NO_STRICT_ALIGNMENT
795 1.1 sakamoto /*
796 1.23 thorpej * If the packet is small enough to fit in a
797 1.23 thorpej * single header mbuf, allocate one and copy
798 1.23 thorpej * the data into it. This greatly reduces
799 1.23 thorpej * memory consumption when we receive lots
800 1.23 thorpej * of small packets.
801 1.23 thorpej *
802 1.23 thorpej * Otherwise, we add a new buffer to the receive
803 1.23 thorpej * chain. If this fails, we drop the packet and
804 1.23 thorpej * recycle the old buffer.
805 1.1 sakamoto */
806 1.23 thorpej if (vr_copy_small != 0 && total_len <= MHLEN) {
807 1.23 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
808 1.23 thorpej if (m == NULL)
809 1.23 thorpej goto dropit;
810 1.23 thorpej memcpy(mtod(m, caddr_t),
811 1.23 thorpej mtod(ds->ds_mbuf, caddr_t), total_len);
812 1.18 thorpej VR_INIT_RXDESC(sc, i);
813 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
814 1.23 thorpej ds->ds_dmamap->dm_mapsize,
815 1.23 thorpej BUS_DMASYNC_PREREAD);
816 1.23 thorpej } else {
817 1.23 thorpej m = ds->ds_mbuf;
818 1.23 thorpej if (vr_add_rxbuf(sc, i) == ENOBUFS) {
819 1.23 thorpej dropit:
820 1.23 thorpej ifp->if_ierrors++;
821 1.23 thorpej VR_INIT_RXDESC(sc, i);
822 1.23 thorpej bus_dmamap_sync(sc->vr_dmat,
823 1.23 thorpej ds->ds_dmamap, 0,
824 1.23 thorpej ds->ds_dmamap->dm_mapsize,
825 1.23 thorpej BUS_DMASYNC_PREREAD);
826 1.23 thorpej continue;
827 1.23 thorpej }
828 1.1 sakamoto }
829 1.17 thorpej #else
830 1.17 thorpej /*
831 1.17 thorpej * The Rhine's packet buffers must be 4-byte aligned.
832 1.17 thorpej * But this means that the data after the Ethernet header
833 1.17 thorpej * is misaligned. We must allocate a new buffer and
834 1.17 thorpej * copy the data, shifted forward 2 bytes.
835 1.17 thorpej */
836 1.17 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
837 1.17 thorpej if (m == NULL) {
838 1.17 thorpej dropit:
839 1.17 thorpej ifp->if_ierrors++;
840 1.18 thorpej VR_INIT_RXDESC(sc, i);
841 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
842 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
843 1.17 thorpej continue;
844 1.17 thorpej }
845 1.17 thorpej if (total_len > (MHLEN - 2)) {
846 1.17 thorpej MCLGET(m, M_DONTWAIT);
847 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
848 1.20 thorpej m_freem(m);
849 1.17 thorpej goto dropit;
850 1.20 thorpej }
851 1.17 thorpej }
852 1.17 thorpej m->m_data += 2;
853 1.17 thorpej
854 1.17 thorpej /*
855 1.17 thorpej * Note that we use clusters for incoming frames, so the
856 1.17 thorpej * buffer is virtually contiguous.
857 1.17 thorpej */
858 1.18 thorpej memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
859 1.17 thorpej total_len);
860 1.17 thorpej
861 1.17 thorpej /* Allow the recieve descriptor to continue using its mbuf. */
862 1.18 thorpej VR_INIT_RXDESC(sc, i);
863 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
864 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
865 1.17 thorpej #endif /* __NO_STRICT_ALIGNMENT */
866 1.1 sakamoto
867 1.1 sakamoto ifp->if_ipackets++;
868 1.1 sakamoto eh = mtod(m, struct ether_header *);
869 1.1 sakamoto m->m_pkthdr.rcvif = ifp;
870 1.1 sakamoto m->m_pkthdr.len = m->m_len = total_len;
871 1.1 sakamoto #if NBPFILTER > 0
872 1.1 sakamoto /*
873 1.1 sakamoto * Handle BPF listeners. Let the BPF user see the packet, but
874 1.1 sakamoto * don't pass it up to the ether_input() layer unless it's
875 1.1 sakamoto * a broadcast packet, multicast packet, matches our ethernet
876 1.1 sakamoto * address or the interface is in promiscuous mode.
877 1.1 sakamoto */
878 1.1 sakamoto if (ifp->if_bpf) {
879 1.2 sakamoto bpf_mtap(ifp->if_bpf, m);
880 1.18 thorpej if ((ifp->if_flags & IFF_PROMISC) != 0 &&
881 1.18 thorpej (rxstat & (VR_RXSTAT_RX_PHYS | VR_RXSTAT_RX_BROAD |
882 1.18 thorpej VR_RXSTAT_RX_MULTI)) == 0) {
883 1.1 sakamoto m_freem(m);
884 1.1 sakamoto continue;
885 1.1 sakamoto }
886 1.1 sakamoto }
887 1.1 sakamoto #endif
888 1.22 thorpej /* Pass it on. */
889 1.22 thorpej (*ifp->if_input)(ifp, m);
890 1.1 sakamoto }
891 1.18 thorpej
892 1.18 thorpej /* Update the receive pointer. */
893 1.18 thorpej sc->vr_rxptr = i;
894 1.1 sakamoto }
895 1.1 sakamoto
896 1.15 thorpej void
897 1.15 thorpej vr_rxeoc(sc)
898 1.15 thorpej struct vr_softc *sc;
899 1.1 sakamoto {
900 1.1 sakamoto
901 1.1 sakamoto vr_rxeof(sc);
902 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
903 1.18 thorpej CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
904 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
905 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
906 1.1 sakamoto }
907 1.1 sakamoto
908 1.1 sakamoto /*
909 1.1 sakamoto * A frame was downloaded to the chip. It's safe for us to clean up
910 1.1 sakamoto * the list buffers.
911 1.1 sakamoto */
912 1.15 thorpej static void
913 1.15 thorpej vr_txeof(sc)
914 1.15 thorpej struct vr_softc *sc;
915 1.1 sakamoto {
916 1.18 thorpej struct ifnet *ifp = &sc->vr_ec.ec_if;
917 1.18 thorpej struct vr_desc *d;
918 1.18 thorpej struct vr_descsoft *ds;
919 1.18 thorpej u_int32_t txstat;
920 1.18 thorpej int i;
921 1.1 sakamoto
922 1.18 thorpej ifp->if_flags &= ~IFF_OACTIVE;
923 1.1 sakamoto
924 1.1 sakamoto /*
925 1.1 sakamoto * Go through our tx list and free mbufs for those
926 1.1 sakamoto * frames that have been transmitted.
927 1.1 sakamoto */
928 1.18 thorpej for (i = sc->vr_txdirty; sc->vr_txpending != 0;
929 1.18 thorpej i = VR_NEXTTX(i), sc->vr_txpending--) {
930 1.18 thorpej d = VR_CDTX(sc, i);
931 1.18 thorpej ds = VR_DSTX(sc, i);
932 1.1 sakamoto
933 1.18 thorpej VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
934 1.1 sakamoto
935 1.21 thorpej txstat = pcitoh(d->vr_status);
936 1.1 sakamoto if (txstat & VR_TXSTAT_OWN)
937 1.1 sakamoto break;
938 1.1 sakamoto
939 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
940 1.18 thorpej 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
941 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
942 1.18 thorpej m_freem(ds->ds_mbuf);
943 1.18 thorpej ds->ds_mbuf = NULL;
944 1.18 thorpej
945 1.1 sakamoto if (txstat & VR_TXSTAT_ERRSUM) {
946 1.1 sakamoto ifp->if_oerrors++;
947 1.1 sakamoto if (txstat & VR_TXSTAT_DEFER)
948 1.1 sakamoto ifp->if_collisions++;
949 1.1 sakamoto if (txstat & VR_TXSTAT_LATECOLL)
950 1.1 sakamoto ifp->if_collisions++;
951 1.1 sakamoto }
952 1.1 sakamoto
953 1.18 thorpej ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
954 1.1 sakamoto ifp->if_opackets++;
955 1.1 sakamoto }
956 1.1 sakamoto
957 1.18 thorpej /* Update the dirty transmit buffer pointer. */
958 1.18 thorpej sc->vr_txdirty = i;
959 1.1 sakamoto
960 1.18 thorpej /*
961 1.18 thorpej * Cancel the watchdog timer if there are no pending
962 1.18 thorpej * transmissions.
963 1.18 thorpej */
964 1.18 thorpej if (sc->vr_txpending == 0)
965 1.18 thorpej ifp->if_timer = 0;
966 1.1 sakamoto }
967 1.1 sakamoto
968 1.16 thorpej static int
969 1.15 thorpej vr_intr(arg)
970 1.15 thorpej void *arg;
971 1.1 sakamoto {
972 1.15 thorpej struct vr_softc *sc;
973 1.15 thorpej struct ifnet *ifp;
974 1.15 thorpej u_int16_t status;
975 1.18 thorpej int handled = 0, dotx = 0;
976 1.1 sakamoto
977 1.1 sakamoto sc = arg;
978 1.6 thorpej ifp = &sc->vr_ec.ec_if;
979 1.1 sakamoto
980 1.18 thorpej /* Suppress unwanted interrupts. */
981 1.16 thorpej if ((ifp->if_flags & IFF_UP) == 0) {
982 1.23 thorpej vr_stop(sc, 1);
983 1.16 thorpej return (0);
984 1.1 sakamoto }
985 1.1 sakamoto
986 1.1 sakamoto /* Disable interrupts. */
987 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
988 1.1 sakamoto
989 1.1 sakamoto for (;;) {
990 1.1 sakamoto status = CSR_READ_2(sc, VR_ISR);
991 1.1 sakamoto if (status)
992 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, status);
993 1.1 sakamoto
994 1.1 sakamoto if ((status & VR_INTRS) == 0)
995 1.1 sakamoto break;
996 1.1 sakamoto
997 1.16 thorpej handled = 1;
998 1.16 thorpej
999 1.1 sakamoto if (status & VR_ISR_RX_OK)
1000 1.1 sakamoto vr_rxeof(sc);
1001 1.1 sakamoto
1002 1.18 thorpej if (status &
1003 1.18 thorpej (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
1004 1.18 thorpej VR_ISR_RX_DROPPED))
1005 1.1 sakamoto vr_rxeoc(sc);
1006 1.1 sakamoto
1007 1.1 sakamoto if (status & VR_ISR_TX_OK) {
1008 1.18 thorpej dotx = 1;
1009 1.1 sakamoto vr_txeof(sc);
1010 1.1 sakamoto }
1011 1.1 sakamoto
1012 1.18 thorpej if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
1013 1.18 thorpej if (status & VR_ISR_TX_UNDERRUN)
1014 1.18 thorpej printf("%s: transmit underrun\n",
1015 1.18 thorpej sc->vr_dev.dv_xname);
1016 1.18 thorpej if (status & VR_ISR_TX_ABRT)
1017 1.18 thorpej printf("%s: transmit aborted\n",
1018 1.18 thorpej sc->vr_dev.dv_xname);
1019 1.1 sakamoto ifp->if_oerrors++;
1020 1.18 thorpej dotx = 1;
1021 1.1 sakamoto vr_txeof(sc);
1022 1.18 thorpej if (sc->vr_txpending) {
1023 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
1024 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1025 1.1 sakamoto }
1026 1.1 sakamoto }
1027 1.1 sakamoto
1028 1.1 sakamoto if (status & VR_ISR_BUSERR) {
1029 1.18 thorpej printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
1030 1.18 thorpej /* vr_init() calls vr_start() */
1031 1.18 thorpej dotx = 0;
1032 1.23 thorpej (void) vr_init(sc);
1033 1.1 sakamoto }
1034 1.1 sakamoto }
1035 1.1 sakamoto
1036 1.1 sakamoto /* Re-enable interrupts. */
1037 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1038 1.1 sakamoto
1039 1.18 thorpej if (dotx)
1040 1.1 sakamoto vr_start(ifp);
1041 1.16 thorpej
1042 1.16 thorpej return (handled);
1043 1.1 sakamoto }
1044 1.1 sakamoto
1045 1.1 sakamoto /*
1046 1.1 sakamoto * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1047 1.1 sakamoto * to the mbuf data regions directly in the transmit lists. We also save a
1048 1.1 sakamoto * copy of the pointers since the transmit list fragment pointers are
1049 1.1 sakamoto * physical addresses.
1050 1.1 sakamoto */
1051 1.15 thorpej static void
1052 1.15 thorpej vr_start(ifp)
1053 1.15 thorpej struct ifnet *ifp;
1054 1.1 sakamoto {
1055 1.18 thorpej struct vr_softc *sc = ifp->if_softc;
1056 1.18 thorpej struct mbuf *m0, *m;
1057 1.18 thorpej struct vr_desc *d;
1058 1.18 thorpej struct vr_descsoft *ds;
1059 1.18 thorpej int error, firsttx, nexttx, opending;
1060 1.1 sakamoto
1061 1.18 thorpej /*
1062 1.18 thorpej * Remember the previous txpending and the first transmit
1063 1.18 thorpej * descriptor we use.
1064 1.18 thorpej */
1065 1.18 thorpej opending = sc->vr_txpending;
1066 1.18 thorpej firsttx = VR_NEXTTX(sc->vr_txlast);
1067 1.1 sakamoto
1068 1.1 sakamoto /*
1069 1.18 thorpej * Loop through the send queue, setting up transmit descriptors
1070 1.18 thorpej * until we drain the queue, or use up all available transmit
1071 1.18 thorpej * descriptors.
1072 1.1 sakamoto */
1073 1.18 thorpej while (sc->vr_txpending < VR_NTXDESC) {
1074 1.18 thorpej /*
1075 1.18 thorpej * Grab a packet off the queue.
1076 1.18 thorpej */
1077 1.18 thorpej IF_DEQUEUE(&ifp->if_snd, m0);
1078 1.18 thorpej if (m0 == NULL)
1079 1.18 thorpej break;
1080 1.1 sakamoto
1081 1.18 thorpej /*
1082 1.18 thorpej * Get the next available transmit descriptor.
1083 1.18 thorpej */
1084 1.18 thorpej nexttx = VR_NEXTTX(sc->vr_txlast);
1085 1.18 thorpej d = VR_CDTX(sc, nexttx);
1086 1.18 thorpej ds = VR_DSTX(sc, nexttx);
1087 1.1 sakamoto
1088 1.18 thorpej /*
1089 1.18 thorpej * Load the DMA map. If this fails, the packet didn't
1090 1.18 thorpej * fit in one DMA segment, and we need to copy. Note,
1091 1.18 thorpej * the packet must also be aligned.
1092 1.18 thorpej */
1093 1.18 thorpej if ((mtod(m0, bus_addr_t) & 3) != 0 ||
1094 1.18 thorpej bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1095 1.18 thorpej BUS_DMA_NOWAIT) != 0) {
1096 1.18 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
1097 1.18 thorpej if (m == NULL) {
1098 1.18 thorpej printf("%s: unable to allocate Tx mbuf\n",
1099 1.18 thorpej sc->vr_dev.dv_xname);
1100 1.18 thorpej IF_PREPEND(&ifp->if_snd, m0);
1101 1.18 thorpej break;
1102 1.18 thorpej }
1103 1.18 thorpej if (m0->m_pkthdr.len > MHLEN) {
1104 1.18 thorpej MCLGET(m, M_DONTWAIT);
1105 1.18 thorpej if ((m->m_flags & M_EXT) == 0) {
1106 1.18 thorpej printf("%s: unable to allocate Tx "
1107 1.18 thorpej "cluster\n", sc->vr_dev.dv_xname);
1108 1.18 thorpej m_freem(m);
1109 1.18 thorpej IF_PREPEND(&ifp->if_snd, m0);
1110 1.18 thorpej break;
1111 1.18 thorpej }
1112 1.18 thorpej }
1113 1.18 thorpej m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1114 1.18 thorpej m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1115 1.18 thorpej m_freem(m0);
1116 1.18 thorpej m0 = m;
1117 1.18 thorpej error = bus_dmamap_load_mbuf(sc->vr_dmat,
1118 1.18 thorpej ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
1119 1.18 thorpej if (error) {
1120 1.18 thorpej printf("%s: unable to load Tx buffer, "
1121 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, error);
1122 1.18 thorpej IF_PREPEND(&ifp->if_snd, m0);
1123 1.18 thorpej break;
1124 1.18 thorpej }
1125 1.18 thorpej }
1126 1.1 sakamoto
1127 1.18 thorpej /* Sync the DMA map. */
1128 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1129 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1130 1.1 sakamoto
1131 1.18 thorpej /*
1132 1.18 thorpej * Store a pointer to the packet so we can free it later.
1133 1.18 thorpej */
1134 1.18 thorpej ds->ds_mbuf = m0;
1135 1.1 sakamoto
1136 1.1 sakamoto #if NBPFILTER > 0
1137 1.1 sakamoto /*
1138 1.1 sakamoto * If there's a BPF listener, bounce a copy of this frame
1139 1.1 sakamoto * to him.
1140 1.1 sakamoto */
1141 1.1 sakamoto if (ifp->if_bpf)
1142 1.18 thorpej bpf_mtap(ifp->if_bpf, m0);
1143 1.2 sakamoto #endif
1144 1.18 thorpej
1145 1.18 thorpej /*
1146 1.18 thorpej * Fill in the transmit descriptor. The Rhine
1147 1.18 thorpej * doesn't auto-pad, so we have to do this ourselves.
1148 1.18 thorpej */
1149 1.21 thorpej d->vr_data = htopci(ds->ds_dmamap->dm_segs[0].ds_addr);
1150 1.21 thorpej d->vr_ctl = htopci(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1151 1.21 thorpej VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1152 1.18 thorpej d->vr_ctl |=
1153 1.21 thorpej htopci(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|VR_TXCTL_LASTFRAG);
1154 1.18 thorpej
1155 1.18 thorpej /*
1156 1.18 thorpej * If this is the first descriptor we're enqueuing,
1157 1.18 thorpej * don't give it to the Rhine yet. That could cause
1158 1.18 thorpej * a race condition. We'll do it below.
1159 1.18 thorpej */
1160 1.18 thorpej if (nexttx == firsttx)
1161 1.18 thorpej d->vr_status = 0;
1162 1.18 thorpej else
1163 1.21 thorpej d->vr_status = htopci(VR_TXSTAT_OWN);
1164 1.18 thorpej
1165 1.18 thorpej VR_CDTXSYNC(sc, nexttx,
1166 1.18 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1167 1.18 thorpej
1168 1.18 thorpej /* Advance the tx pointer. */
1169 1.18 thorpej sc->vr_txpending++;
1170 1.18 thorpej sc->vr_txlast = nexttx;
1171 1.18 thorpej }
1172 1.18 thorpej
1173 1.18 thorpej if (sc->vr_txpending == VR_NTXDESC) {
1174 1.18 thorpej /* No more slots left; notify upper layer. */
1175 1.18 thorpej ifp->if_flags |= IFF_OACTIVE;
1176 1.1 sakamoto }
1177 1.1 sakamoto
1178 1.18 thorpej if (sc->vr_txpending != opending) {
1179 1.18 thorpej /*
1180 1.18 thorpej * We enqueued packets. If the transmitter was idle,
1181 1.18 thorpej * reset the txdirty pointer.
1182 1.18 thorpej */
1183 1.18 thorpej if (opending == 0)
1184 1.18 thorpej sc->vr_txdirty = firsttx;
1185 1.18 thorpej
1186 1.18 thorpej /*
1187 1.18 thorpej * Cause a transmit interrupt to happen on the
1188 1.18 thorpej * last packet we enqueued.
1189 1.18 thorpej */
1190 1.21 thorpej VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htopci(VR_TXCTL_FINT);
1191 1.18 thorpej VR_CDTXSYNC(sc, sc->vr_txlast,
1192 1.18 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1193 1.1 sakamoto
1194 1.18 thorpej /*
1195 1.18 thorpej * The entire packet chain is set up. Give the
1196 1.18 thorpej * first descriptor to the Rhine now.
1197 1.18 thorpej */
1198 1.21 thorpej VR_CDTX(sc, firsttx)->vr_status = htopci(VR_TXSTAT_OWN);
1199 1.18 thorpej VR_CDTXSYNC(sc, firsttx,
1200 1.18 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1201 1.1 sakamoto
1202 1.18 thorpej /* Start the transmitter. */
1203 1.18 thorpej VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1204 1.1 sakamoto
1205 1.18 thorpej /* Set the watchdog timer in case the chip flakes out. */
1206 1.18 thorpej ifp->if_timer = 5;
1207 1.18 thorpej }
1208 1.1 sakamoto }
1209 1.1 sakamoto
1210 1.13 thorpej /*
1211 1.13 thorpej * Initialize the interface. Must be called at splnet.
1212 1.13 thorpej */
1213 1.23 thorpej static int
1214 1.23 thorpej vr_init(sc)
1215 1.23 thorpej struct vr_softc *sc;
1216 1.1 sakamoto {
1217 1.15 thorpej struct ifnet *ifp = &sc->vr_ec.ec_if;
1218 1.18 thorpej struct vr_desc *d;
1219 1.23 thorpej struct vr_descsoft *ds;
1220 1.23 thorpej int i, error;
1221 1.1 sakamoto
1222 1.18 thorpej /* Cancel pending I/O. */
1223 1.23 thorpej vr_stop(sc, 0);
1224 1.18 thorpej
1225 1.18 thorpej /* Reset the Rhine to a known state. */
1226 1.1 sakamoto vr_reset(sc);
1227 1.1 sakamoto
1228 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1229 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1230 1.1 sakamoto
1231 1.1 sakamoto VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1232 1.1 sakamoto VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1233 1.1 sakamoto
1234 1.1 sakamoto /*
1235 1.18 thorpej * Initialize the transmit desciptor ring. txlast is initialized
1236 1.18 thorpej * to the end of the list so that it will wrap around to the first
1237 1.18 thorpej * descriptor when the first packet is transmitted.
1238 1.18 thorpej */
1239 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1240 1.18 thorpej d = VR_CDTX(sc, i);
1241 1.18 thorpej memset(d, 0, sizeof(struct vr_desc));
1242 1.21 thorpej d->vr_next = htopci(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1243 1.18 thorpej VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1244 1.18 thorpej }
1245 1.18 thorpej sc->vr_txpending = 0;
1246 1.18 thorpej sc->vr_txdirty = 0;
1247 1.18 thorpej sc->vr_txlast = VR_NTXDESC - 1;
1248 1.18 thorpej
1249 1.18 thorpej /*
1250 1.23 thorpej * Initialize the receive descriptor ring.
1251 1.18 thorpej */
1252 1.23 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1253 1.23 thorpej ds = VR_DSRX(sc, i);
1254 1.23 thorpej if (ds->ds_mbuf == NULL) {
1255 1.23 thorpej if ((error = vr_add_rxbuf(sc, i)) != 0) {
1256 1.23 thorpej printf("%s: unable to allocate or map rx "
1257 1.23 thorpej "buffer %d, error = %d\n",
1258 1.23 thorpej sc->vr_dev.dv_xname, i, error);
1259 1.23 thorpej /*
1260 1.23 thorpej * XXX Should attempt to run with fewer receive
1261 1.23 thorpej * XXX buffers instead of just failing.
1262 1.23 thorpej */
1263 1.23 thorpej vr_rxdrain(sc);
1264 1.23 thorpej goto out;
1265 1.23 thorpej }
1266 1.23 thorpej }
1267 1.23 thorpej }
1268 1.18 thorpej sc->vr_rxptr = 0;
1269 1.1 sakamoto
1270 1.1 sakamoto /* If we want promiscuous mode, set the allframes bit. */
1271 1.1 sakamoto if (ifp->if_flags & IFF_PROMISC)
1272 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1273 1.1 sakamoto else
1274 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1275 1.1 sakamoto
1276 1.1 sakamoto /* Set capture broadcast bit to capture broadcast frames. */
1277 1.1 sakamoto if (ifp->if_flags & IFF_BROADCAST)
1278 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1279 1.1 sakamoto else
1280 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1281 1.1 sakamoto
1282 1.18 thorpej /* Program the multicast filter, if necessary. */
1283 1.1 sakamoto vr_setmulti(sc);
1284 1.1 sakamoto
1285 1.18 thorpej /* Give the transmit and recieve rings to the Rhine. */
1286 1.18 thorpej CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1287 1.18 thorpej CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1288 1.18 thorpej
1289 1.18 thorpej /* Set current media. */
1290 1.18 thorpej mii_mediachg(&sc->vr_mii);
1291 1.1 sakamoto
1292 1.1 sakamoto /* Enable receiver and transmitter. */
1293 1.1 sakamoto CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1294 1.1 sakamoto VR_CMD_TX_ON|VR_CMD_RX_ON|
1295 1.1 sakamoto VR_CMD_RX_GO);
1296 1.1 sakamoto
1297 1.18 thorpej /* Enable interrupts. */
1298 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1299 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1300 1.1 sakamoto
1301 1.1 sakamoto ifp->if_flags |= IFF_RUNNING;
1302 1.1 sakamoto ifp->if_flags &= ~IFF_OACTIVE;
1303 1.1 sakamoto
1304 1.11 thorpej /* Start one second timer. */
1305 1.11 thorpej timeout(vr_tick, sc, hz);
1306 1.18 thorpej
1307 1.18 thorpej /* Attempt to start output on the interface. */
1308 1.18 thorpej vr_start(ifp);
1309 1.23 thorpej
1310 1.23 thorpej out:
1311 1.23 thorpej if (error)
1312 1.23 thorpej printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1313 1.23 thorpej return (error);
1314 1.1 sakamoto }
1315 1.1 sakamoto
1316 1.1 sakamoto /*
1317 1.1 sakamoto * Set media options.
1318 1.1 sakamoto */
1319 1.15 thorpej static int
1320 1.15 thorpej vr_ifmedia_upd(ifp)
1321 1.15 thorpej struct ifnet *ifp;
1322 1.1 sakamoto {
1323 1.11 thorpej struct vr_softc *sc = ifp->if_softc;
1324 1.1 sakamoto
1325 1.11 thorpej if (ifp->if_flags & IFF_UP)
1326 1.11 thorpej mii_mediachg(&sc->vr_mii);
1327 1.2 sakamoto return (0);
1328 1.1 sakamoto }
1329 1.1 sakamoto
1330 1.1 sakamoto /*
1331 1.1 sakamoto * Report current media status.
1332 1.1 sakamoto */
1333 1.15 thorpej static void
1334 1.15 thorpej vr_ifmedia_sts(ifp, ifmr)
1335 1.15 thorpej struct ifnet *ifp;
1336 1.15 thorpej struct ifmediareq *ifmr;
1337 1.1 sakamoto {
1338 1.11 thorpej struct vr_softc *sc = ifp->if_softc;
1339 1.1 sakamoto
1340 1.11 thorpej mii_pollstat(&sc->vr_mii);
1341 1.11 thorpej ifmr->ifm_status = sc->vr_mii.mii_media_status;
1342 1.11 thorpej ifmr->ifm_active = sc->vr_mii.mii_media_active;
1343 1.1 sakamoto }
1344 1.1 sakamoto
1345 1.15 thorpej static int
1346 1.15 thorpej vr_ioctl(ifp, command, data)
1347 1.15 thorpej struct ifnet *ifp;
1348 1.15 thorpej u_long command;
1349 1.15 thorpej caddr_t data;
1350 1.15 thorpej {
1351 1.15 thorpej struct vr_softc *sc = ifp->if_softc;
1352 1.15 thorpej struct ifreq *ifr = (struct ifreq *)data;
1353 1.15 thorpej struct ifaddr *ifa = (struct ifaddr *)data;
1354 1.15 thorpej int s, error = 0;
1355 1.1 sakamoto
1356 1.12 thorpej s = splnet();
1357 1.1 sakamoto
1358 1.2 sakamoto switch (command) {
1359 1.2 sakamoto case SIOCSIFADDR:
1360 1.2 sakamoto ifp->if_flags |= IFF_UP;
1361 1.2 sakamoto
1362 1.2 sakamoto switch (ifa->ifa_addr->sa_family) {
1363 1.2 sakamoto #ifdef INET
1364 1.2 sakamoto case AF_INET:
1365 1.23 thorpej if ((error = vr_init(sc)) != 0)
1366 1.23 thorpej break;
1367 1.2 sakamoto arp_ifinit(ifp, ifa);
1368 1.2 sakamoto break;
1369 1.2 sakamoto #endif /* INET */
1370 1.2 sakamoto default:
1371 1.23 thorpej error = vr_init(sc);
1372 1.2 sakamoto break;
1373 1.2 sakamoto }
1374 1.2 sakamoto break;
1375 1.2 sakamoto
1376 1.2 sakamoto case SIOCGIFADDR:
1377 1.2 sakamoto bcopy((caddr_t) sc->vr_enaddr,
1378 1.2 sakamoto (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1379 1.2 sakamoto ETHER_ADDR_LEN);
1380 1.2 sakamoto break;
1381 1.2 sakamoto
1382 1.2 sakamoto case SIOCSIFMTU:
1383 1.2 sakamoto if (ifr->ifr_mtu > ETHERMTU)
1384 1.2 sakamoto error = EINVAL;
1385 1.2 sakamoto else
1386 1.2 sakamoto ifp->if_mtu = ifr->ifr_mtu;
1387 1.2 sakamoto break;
1388 1.2 sakamoto
1389 1.1 sakamoto case SIOCSIFFLAGS:
1390 1.18 thorpej if ((ifp->if_flags & IFF_UP) == 0 &&
1391 1.18 thorpej (ifp->if_flags & IFF_RUNNING) != 0) {
1392 1.18 thorpej /*
1393 1.18 thorpej * If interface is marked down and it is running, then
1394 1.18 thorpej * stop it.
1395 1.18 thorpej */
1396 1.23 thorpej vr_stop(sc, 1);
1397 1.18 thorpej } else if ((ifp->if_flags & IFF_UP) != 0 &&
1398 1.18 thorpej (ifp->if_flags & IFF_RUNNING) == 0) {
1399 1.18 thorpej /*
1400 1.18 thorpej * If interface is marked up and it is stopped, then
1401 1.18 thorpej * start it.
1402 1.18 thorpej */
1403 1.23 thorpej error = vr_init(sc);
1404 1.18 thorpej } else if ((ifp->if_flags & IFF_UP) != 0) {
1405 1.18 thorpej /*
1406 1.18 thorpej * Reset the interface to pick up changes in any other
1407 1.18 thorpej * flags that affect the hardware state.
1408 1.18 thorpej */
1409 1.23 thorpej error = vr_init(sc);
1410 1.1 sakamoto }
1411 1.1 sakamoto break;
1412 1.18 thorpej
1413 1.1 sakamoto case SIOCADDMULTI:
1414 1.1 sakamoto case SIOCDELMULTI:
1415 1.2 sakamoto if (command == SIOCADDMULTI)
1416 1.2 sakamoto error = ether_addmulti(ifr, &sc->vr_ec);
1417 1.2 sakamoto else
1418 1.2 sakamoto error = ether_delmulti(ifr, &sc->vr_ec);
1419 1.2 sakamoto
1420 1.2 sakamoto if (error == ENETRESET) {
1421 1.18 thorpej /*
1422 1.18 thorpej * Multicast list has changed; set the hardware filter
1423 1.18 thorpej * accordingly.
1424 1.18 thorpej */
1425 1.2 sakamoto vr_setmulti(sc);
1426 1.2 sakamoto error = 0;
1427 1.2 sakamoto }
1428 1.1 sakamoto break;
1429 1.18 thorpej
1430 1.1 sakamoto case SIOCGIFMEDIA:
1431 1.1 sakamoto case SIOCSIFMEDIA:
1432 1.11 thorpej error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1433 1.1 sakamoto break;
1434 1.18 thorpej
1435 1.1 sakamoto default:
1436 1.1 sakamoto error = EINVAL;
1437 1.1 sakamoto break;
1438 1.1 sakamoto }
1439 1.1 sakamoto
1440 1.13 thorpej splx(s);
1441 1.2 sakamoto return (error);
1442 1.1 sakamoto }
1443 1.1 sakamoto
1444 1.15 thorpej static void
1445 1.15 thorpej vr_watchdog(ifp)
1446 1.15 thorpej struct ifnet *ifp;
1447 1.1 sakamoto {
1448 1.18 thorpej struct vr_softc *sc = ifp->if_softc;
1449 1.1 sakamoto
1450 1.18 thorpej printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1451 1.1 sakamoto ifp->if_oerrors++;
1452 1.1 sakamoto
1453 1.23 thorpej (void) vr_init(sc);
1454 1.1 sakamoto }
1455 1.1 sakamoto
1456 1.1 sakamoto /*
1457 1.11 thorpej * One second timer, used to tick MII.
1458 1.11 thorpej */
1459 1.11 thorpej static void
1460 1.11 thorpej vr_tick(arg)
1461 1.11 thorpej void *arg;
1462 1.11 thorpej {
1463 1.11 thorpej struct vr_softc *sc = arg;
1464 1.11 thorpej int s;
1465 1.11 thorpej
1466 1.12 thorpej s = splnet();
1467 1.11 thorpej mii_tick(&sc->vr_mii);
1468 1.11 thorpej splx(s);
1469 1.11 thorpej
1470 1.11 thorpej timeout(vr_tick, sc, hz);
1471 1.11 thorpej }
1472 1.11 thorpej
1473 1.11 thorpej /*
1474 1.23 thorpej * Drain the receive queue.
1475 1.23 thorpej */
1476 1.23 thorpej static void
1477 1.23 thorpej vr_rxdrain(sc)
1478 1.23 thorpej struct vr_softc *sc;
1479 1.23 thorpej {
1480 1.23 thorpej struct vr_descsoft *ds;
1481 1.23 thorpej int i;
1482 1.23 thorpej
1483 1.23 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1484 1.23 thorpej ds = VR_DSRX(sc, i);
1485 1.23 thorpej if (ds->ds_mbuf != NULL) {
1486 1.23 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1487 1.23 thorpej m_freem(ds->ds_mbuf);
1488 1.23 thorpej ds->ds_mbuf = NULL;
1489 1.23 thorpej }
1490 1.23 thorpej }
1491 1.23 thorpej }
1492 1.23 thorpej
1493 1.23 thorpej /*
1494 1.1 sakamoto * Stop the adapter and free any mbufs allocated to the
1495 1.18 thorpej * transmit lists.
1496 1.1 sakamoto */
1497 1.15 thorpej static void
1498 1.23 thorpej vr_stop(sc, drain)
1499 1.15 thorpej struct vr_softc *sc;
1500 1.23 thorpej int drain;
1501 1.1 sakamoto {
1502 1.18 thorpej struct vr_descsoft *ds;
1503 1.15 thorpej struct ifnet *ifp;
1504 1.15 thorpej int i;
1505 1.1 sakamoto
1506 1.11 thorpej /* Cancel one second timer. */
1507 1.11 thorpej untimeout(vr_tick, sc);
1508 1.11 thorpej
1509 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1510 1.1 sakamoto ifp->if_timer = 0;
1511 1.1 sakamoto
1512 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1513 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1514 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
1515 1.1 sakamoto CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1516 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1517 1.1 sakamoto
1518 1.1 sakamoto /*
1519 1.18 thorpej * Release any queued transmit buffers.
1520 1.1 sakamoto */
1521 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1522 1.18 thorpej ds = VR_DSTX(sc, i);
1523 1.18 thorpej if (ds->ds_mbuf != NULL) {
1524 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1525 1.18 thorpej m_freem(ds->ds_mbuf);
1526 1.18 thorpej ds->ds_mbuf = NULL;
1527 1.1 sakamoto }
1528 1.1 sakamoto }
1529 1.1 sakamoto
1530 1.23 thorpej if (drain) {
1531 1.23 thorpej /*
1532 1.23 thorpej * Release the receive buffers.
1533 1.23 thorpej */
1534 1.23 thorpej vr_rxdrain(sc);
1535 1.23 thorpej }
1536 1.23 thorpej
1537 1.1 sakamoto /*
1538 1.18 thorpej * Mark the interface down and cancel the watchdog timer.
1539 1.1 sakamoto */
1540 1.1 sakamoto ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1541 1.18 thorpej ifp->if_timer = 0;
1542 1.1 sakamoto }
1543 1.1 sakamoto
1544 1.3 sakamoto static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1545 1.2 sakamoto static int vr_probe __P((struct device *, struct cfdata *, void *));
1546 1.2 sakamoto static void vr_attach __P((struct device *, struct device *, void *));
1547 1.2 sakamoto static void vr_shutdown __P((void *));
1548 1.2 sakamoto
1549 1.2 sakamoto struct cfattach vr_ca = {
1550 1.2 sakamoto sizeof (struct vr_softc), vr_probe, vr_attach
1551 1.2 sakamoto };
1552 1.2 sakamoto
1553 1.3 sakamoto static struct vr_type *
1554 1.3 sakamoto vr_lookup(pa)
1555 1.3 sakamoto struct pci_attach_args *pa;
1556 1.3 sakamoto {
1557 1.3 sakamoto struct vr_type *vrt;
1558 1.3 sakamoto
1559 1.3 sakamoto for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1560 1.3 sakamoto if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1561 1.3 sakamoto PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1562 1.3 sakamoto return (vrt);
1563 1.3 sakamoto }
1564 1.3 sakamoto return (NULL);
1565 1.3 sakamoto }
1566 1.3 sakamoto
1567 1.2 sakamoto static int
1568 1.2 sakamoto vr_probe(parent, match, aux)
1569 1.2 sakamoto struct device *parent;
1570 1.2 sakamoto struct cfdata *match;
1571 1.2 sakamoto void *aux;
1572 1.2 sakamoto {
1573 1.2 sakamoto struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1574 1.2 sakamoto
1575 1.3 sakamoto if (vr_lookup(pa) != NULL)
1576 1.3 sakamoto return (1);
1577 1.2 sakamoto
1578 1.2 sakamoto return (0);
1579 1.2 sakamoto }
1580 1.2 sakamoto
1581 1.2 sakamoto /*
1582 1.2 sakamoto * Stop all chip I/O so that the kernel's probe routines don't
1583 1.2 sakamoto * get confused by errant DMAs when rebooting.
1584 1.2 sakamoto */
1585 1.15 thorpej static void
1586 1.15 thorpej vr_shutdown(arg)
1587 1.2 sakamoto void *arg;
1588 1.2 sakamoto {
1589 1.15 thorpej struct vr_softc *sc = (struct vr_softc *)arg;
1590 1.2 sakamoto
1591 1.23 thorpej vr_stop(sc, 1);
1592 1.2 sakamoto }
1593 1.2 sakamoto
1594 1.2 sakamoto /*
1595 1.2 sakamoto * Attach the interface. Allocate softc structures, do ifmedia
1596 1.2 sakamoto * setup and ethernet/BPF attach.
1597 1.2 sakamoto */
1598 1.2 sakamoto static void
1599 1.2 sakamoto vr_attach(parent, self, aux)
1600 1.15 thorpej struct device *parent;
1601 1.15 thorpej struct device *self;
1602 1.15 thorpej void *aux;
1603 1.2 sakamoto {
1604 1.15 thorpej struct vr_softc *sc = (struct vr_softc *) self;
1605 1.15 thorpej struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1606 1.18 thorpej bus_dma_segment_t seg;
1607 1.15 thorpej struct vr_type *vrt;
1608 1.15 thorpej u_int32_t command;
1609 1.15 thorpej struct ifnet *ifp;
1610 1.15 thorpej u_char eaddr[ETHER_ADDR_LEN];
1611 1.18 thorpej int i, rseg, error;
1612 1.15 thorpej
1613 1.2 sakamoto #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1614 1.2 sakamoto #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1615 1.2 sakamoto
1616 1.3 sakamoto vrt = vr_lookup(pa);
1617 1.3 sakamoto if (vrt == NULL) {
1618 1.3 sakamoto printf("\n");
1619 1.3 sakamoto panic("vr_attach: impossible");
1620 1.3 sakamoto }
1621 1.3 sakamoto
1622 1.3 sakamoto printf(": %s Ethernet\n", vrt->vr_name);
1623 1.2 sakamoto
1624 1.2 sakamoto /*
1625 1.2 sakamoto * Handle power management nonsense.
1626 1.2 sakamoto */
1627 1.2 sakamoto
1628 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1629 1.2 sakamoto if (command == 0x01) {
1630 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1631 1.2 sakamoto if (command & VR_PSTATE_MASK) {
1632 1.15 thorpej u_int32_t iobase, membase, irq;
1633 1.2 sakamoto
1634 1.2 sakamoto /* Save important PCI config data. */
1635 1.2 sakamoto iobase = PCI_CONF_READ(VR_PCI_LOIO);
1636 1.2 sakamoto membase = PCI_CONF_READ(VR_PCI_LOMEM);
1637 1.2 sakamoto irq = PCI_CONF_READ(VR_PCI_INTLINE);
1638 1.2 sakamoto
1639 1.2 sakamoto /* Reset the power state. */
1640 1.6 thorpej printf("%s: chip is in D%d power mode "
1641 1.2 sakamoto "-- setting to D0\n",
1642 1.6 thorpej sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1643 1.2 sakamoto command &= 0xFFFFFFFC;
1644 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1645 1.2 sakamoto
1646 1.2 sakamoto /* Restore PCI config data. */
1647 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1648 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1649 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1650 1.2 sakamoto }
1651 1.2 sakamoto }
1652 1.2 sakamoto
1653 1.19 thorpej /* Make sure bus mastering is enabled. */
1654 1.19 thorpej command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1655 1.19 thorpej command |= PCI_COMMAND_MASTER_ENABLE;
1656 1.19 thorpej PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1657 1.19 thorpej
1658 1.2 sakamoto /*
1659 1.2 sakamoto * Map control/status registers.
1660 1.2 sakamoto */
1661 1.2 sakamoto {
1662 1.2 sakamoto bus_space_tag_t iot, memt;
1663 1.2 sakamoto bus_space_handle_t ioh, memh;
1664 1.2 sakamoto int ioh_valid, memh_valid;
1665 1.2 sakamoto pci_intr_handle_t intrhandle;
1666 1.2 sakamoto const char *intrstr;
1667 1.2 sakamoto
1668 1.2 sakamoto ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1669 1.2 sakamoto PCI_MAPREG_TYPE_IO, 0,
1670 1.2 sakamoto &iot, &ioh, NULL, NULL) == 0);
1671 1.2 sakamoto memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1672 1.2 sakamoto PCI_MAPREG_TYPE_MEM |
1673 1.2 sakamoto PCI_MAPREG_MEM_TYPE_32BIT,
1674 1.2 sakamoto 0, &memt, &memh, NULL, NULL) == 0);
1675 1.2 sakamoto #if defined(VR_USEIOSPACE)
1676 1.2 sakamoto if (ioh_valid) {
1677 1.14 thorpej sc->vr_bst = iot;
1678 1.14 thorpej sc->vr_bsh = ioh;
1679 1.2 sakamoto } else if (memh_valid) {
1680 1.14 thorpej sc->vr_bst = memt;
1681 1.14 thorpej sc->vr_bsh = memh;
1682 1.2 sakamoto }
1683 1.2 sakamoto #else
1684 1.2 sakamoto if (memh_valid) {
1685 1.14 thorpej sc->vr_bst = memt;
1686 1.14 thorpej sc->vr_bsh = memh;
1687 1.2 sakamoto } else if (ioh_valid) {
1688 1.14 thorpej sc->vr_bst = iot;
1689 1.14 thorpej sc->vr_bsh = ioh;
1690 1.2 sakamoto }
1691 1.2 sakamoto #endif
1692 1.2 sakamoto else {
1693 1.2 sakamoto printf(": unable to map device registers\n");
1694 1.2 sakamoto return;
1695 1.2 sakamoto }
1696 1.2 sakamoto
1697 1.2 sakamoto /* Allocate interrupt */
1698 1.2 sakamoto if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1699 1.2 sakamoto pa->pa_intrline, &intrhandle)) {
1700 1.6 thorpej printf("%s: couldn't map interrupt\n",
1701 1.6 thorpej sc->vr_dev.dv_xname);
1702 1.15 thorpej return;
1703 1.2 sakamoto }
1704 1.2 sakamoto intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1705 1.2 sakamoto sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1706 1.16 thorpej vr_intr, sc);
1707 1.2 sakamoto if (sc->vr_ih == NULL) {
1708 1.6 thorpej printf("%s: couldn't establish interrupt",
1709 1.6 thorpej sc->vr_dev.dv_xname);
1710 1.2 sakamoto if (intrstr != NULL)
1711 1.2 sakamoto printf(" at %s", intrstr);
1712 1.2 sakamoto printf("\n");
1713 1.2 sakamoto }
1714 1.6 thorpej printf("%s: interrupting at %s\n",
1715 1.6 thorpej sc->vr_dev.dv_xname, intrstr);
1716 1.2 sakamoto }
1717 1.2 sakamoto
1718 1.2 sakamoto /* Reset the adapter. */
1719 1.2 sakamoto vr_reset(sc);
1720 1.2 sakamoto
1721 1.2 sakamoto /*
1722 1.2 sakamoto * Get station address. The way the Rhine chips work,
1723 1.2 sakamoto * you're not allowed to directly access the EEPROM once
1724 1.2 sakamoto * they've been programmed a special way. Consequently,
1725 1.2 sakamoto * we need to read the node address from the PAR0 and PAR1
1726 1.2 sakamoto * registers.
1727 1.2 sakamoto */
1728 1.2 sakamoto VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1729 1.2 sakamoto DELAY(200);
1730 1.2 sakamoto for (i = 0; i < ETHER_ADDR_LEN; i++)
1731 1.2 sakamoto eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1732 1.2 sakamoto
1733 1.2 sakamoto /*
1734 1.2 sakamoto * A Rhine chip was detected. Inform the world.
1735 1.2 sakamoto */
1736 1.6 thorpej printf("%s: Ethernet address: %s\n",
1737 1.6 thorpej sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1738 1.2 sakamoto
1739 1.2 sakamoto bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1740 1.2 sakamoto
1741 1.18 thorpej sc->vr_dmat = pa->pa_dmat;
1742 1.18 thorpej
1743 1.18 thorpej /*
1744 1.18 thorpej * Allocate the control data structures, and create and load
1745 1.18 thorpej * the DMA map for it.
1746 1.18 thorpej */
1747 1.18 thorpej if ((error = bus_dmamem_alloc(sc->vr_dmat,
1748 1.18 thorpej sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1749 1.18 thorpej 0)) != 0) {
1750 1.18 thorpej printf("%s: unable to allocate control data, error = %d\n",
1751 1.18 thorpej sc->vr_dev.dv_xname, error);
1752 1.18 thorpej goto fail_0;
1753 1.18 thorpej }
1754 1.18 thorpej
1755 1.18 thorpej if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1756 1.18 thorpej sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1757 1.18 thorpej BUS_DMA_COHERENT)) != 0) {
1758 1.18 thorpej printf("%s: unable to map control data, error = %d\n",
1759 1.18 thorpej sc->vr_dev.dv_xname, error);
1760 1.18 thorpej goto fail_1;
1761 1.18 thorpej }
1762 1.18 thorpej
1763 1.18 thorpej if ((error = bus_dmamap_create(sc->vr_dmat,
1764 1.18 thorpej sizeof(struct vr_control_data), 1,
1765 1.18 thorpej sizeof(struct vr_control_data), 0, 0,
1766 1.18 thorpej &sc->vr_cddmamap)) != 0) {
1767 1.18 thorpej printf("%s: unable to create control data DMA map, "
1768 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, error);
1769 1.18 thorpej goto fail_2;
1770 1.18 thorpej }
1771 1.18 thorpej
1772 1.18 thorpej if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1773 1.18 thorpej sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1774 1.18 thorpej 0)) != 0) {
1775 1.18 thorpej printf("%s: unable to load control data DMA map, error = %d\n",
1776 1.18 thorpej sc->vr_dev.dv_xname, error);
1777 1.18 thorpej goto fail_3;
1778 1.18 thorpej }
1779 1.18 thorpej
1780 1.18 thorpej /*
1781 1.18 thorpej * Create the transmit buffer DMA maps.
1782 1.18 thorpej */
1783 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1784 1.18 thorpej if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1785 1.18 thorpej 1, MCLBYTES, 0, 0,
1786 1.18 thorpej &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1787 1.18 thorpej printf("%s: unable to create tx DMA map %d, "
1788 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, i, error);
1789 1.18 thorpej goto fail_4;
1790 1.18 thorpej }
1791 1.18 thorpej }
1792 1.18 thorpej
1793 1.18 thorpej /*
1794 1.18 thorpej * Create the receive buffer DMA maps.
1795 1.18 thorpej */
1796 1.18 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1797 1.18 thorpej if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1798 1.18 thorpej MCLBYTES, 0, 0,
1799 1.18 thorpej &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1800 1.18 thorpej printf("%s: unable to create rx DMA map %d, "
1801 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, i, error);
1802 1.18 thorpej goto fail_5;
1803 1.18 thorpej }
1804 1.23 thorpej VR_DSRX(sc, i)->ds_mbuf = NULL;
1805 1.2 sakamoto }
1806 1.2 sakamoto
1807 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1808 1.2 sakamoto ifp->if_softc = sc;
1809 1.2 sakamoto ifp->if_mtu = ETHERMTU;
1810 1.2 sakamoto ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1811 1.2 sakamoto ifp->if_ioctl = vr_ioctl;
1812 1.2 sakamoto ifp->if_start = vr_start;
1813 1.2 sakamoto ifp->if_watchdog = vr_watchdog;
1814 1.2 sakamoto ifp->if_baudrate = 10000000;
1815 1.2 sakamoto bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1816 1.2 sakamoto
1817 1.2 sakamoto /*
1818 1.11 thorpej * Initialize MII/media info.
1819 1.2 sakamoto */
1820 1.11 thorpej sc->vr_mii.mii_ifp = ifp;
1821 1.11 thorpej sc->vr_mii.mii_readreg = vr_mii_readreg;
1822 1.11 thorpej sc->vr_mii.mii_writereg = vr_mii_writereg;
1823 1.11 thorpej sc->vr_mii.mii_statchg = vr_mii_statchg;
1824 1.11 thorpej ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1825 1.11 thorpej mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff);
1826 1.11 thorpej if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1827 1.11 thorpej ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1828 1.11 thorpej ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1829 1.11 thorpej } else
1830 1.11 thorpej ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1831 1.2 sakamoto
1832 1.2 sakamoto /*
1833 1.2 sakamoto * Call MI attach routines.
1834 1.2 sakamoto */
1835 1.2 sakamoto if_attach(ifp);
1836 1.2 sakamoto ether_ifattach(ifp, sc->vr_enaddr);
1837 1.2 sakamoto
1838 1.2 sakamoto #if NBPFILTER > 0
1839 1.6 thorpej bpfattach(&sc->vr_ec.ec_if.if_bpf,
1840 1.2 sakamoto ifp, DLT_EN10MB, sizeof (struct ether_header));
1841 1.2 sakamoto #endif
1842 1.2 sakamoto
1843 1.2 sakamoto sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1844 1.2 sakamoto if (sc->vr_ats == NULL)
1845 1.2 sakamoto printf("%s: warning: couldn't establish shutdown hook\n",
1846 1.2 sakamoto sc->vr_dev.dv_xname);
1847 1.18 thorpej return;
1848 1.18 thorpej
1849 1.18 thorpej fail_5:
1850 1.18 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1851 1.18 thorpej if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1852 1.18 thorpej bus_dmamap_destroy(sc->vr_dmat,
1853 1.18 thorpej sc->vr_rxsoft[i].ds_dmamap);
1854 1.18 thorpej }
1855 1.18 thorpej fail_4:
1856 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1857 1.18 thorpej if (sc->vr_txsoft[i].ds_dmamap != NULL)
1858 1.18 thorpej bus_dmamap_destroy(sc->vr_dmat,
1859 1.18 thorpej sc->vr_txsoft[i].ds_dmamap);
1860 1.18 thorpej }
1861 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1862 1.18 thorpej fail_3:
1863 1.18 thorpej bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1864 1.18 thorpej fail_2:
1865 1.18 thorpej bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1866 1.18 thorpej sizeof(struct vr_control_data));
1867 1.18 thorpej fail_1:
1868 1.18 thorpej bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1869 1.18 thorpej fail_0:
1870 1.18 thorpej return;
1871 1.2 sakamoto }
1872