if_vr.c revision 1.53 1 1.53 lukem /* $NetBSD: if_vr.c,v 1.53 2001/11/13 07:48:45 lukem Exp $ */
2 1.18 thorpej
3 1.18 thorpej /*-
4 1.18 thorpej * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 1.18 thorpej * All rights reserved.
6 1.18 thorpej *
7 1.18 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.18 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.18 thorpej * NASA Ames Research Center.
10 1.18 thorpej *
11 1.18 thorpej * Redistribution and use in source and binary forms, with or without
12 1.18 thorpej * modification, are permitted provided that the following conditions
13 1.18 thorpej * are met:
14 1.18 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.18 thorpej * notice, this list of conditions and the following disclaimer.
16 1.18 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.18 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.18 thorpej * documentation and/or other materials provided with the distribution.
19 1.18 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.18 thorpej * must display the following acknowledgement:
21 1.18 thorpej * This product includes software developed by the NetBSD
22 1.18 thorpej * Foundation, Inc. and its contributors.
23 1.18 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.18 thorpej * contributors may be used to endorse or promote products derived
25 1.18 thorpej * from this software without specific prior written permission.
26 1.18 thorpej *
27 1.18 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.18 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.18 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.18 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.18 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.18 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.18 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.18 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.18 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.18 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.18 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.18 thorpej */
39 1.2 sakamoto
40 1.1 sakamoto /*
41 1.1 sakamoto * Copyright (c) 1997, 1998
42 1.1 sakamoto * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 1.1 sakamoto *
44 1.1 sakamoto * Redistribution and use in source and binary forms, with or without
45 1.1 sakamoto * modification, are permitted provided that the following conditions
46 1.1 sakamoto * are met:
47 1.1 sakamoto * 1. Redistributions of source code must retain the above copyright
48 1.1 sakamoto * notice, this list of conditions and the following disclaimer.
49 1.1 sakamoto * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 sakamoto * notice, this list of conditions and the following disclaimer in the
51 1.1 sakamoto * documentation and/or other materials provided with the distribution.
52 1.1 sakamoto * 3. All advertising materials mentioning features or use of this software
53 1.1 sakamoto * must display the following acknowledgement:
54 1.1 sakamoto * This product includes software developed by Bill Paul.
55 1.1 sakamoto * 4. Neither the name of the author nor the names of any co-contributors
56 1.1 sakamoto * may be used to endorse or promote products derived from this software
57 1.1 sakamoto * without specific prior written permission.
58 1.1 sakamoto *
59 1.1 sakamoto * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 1.1 sakamoto * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 sakamoto * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 sakamoto * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 1.1 sakamoto * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 1.1 sakamoto * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 1.1 sakamoto * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 1.1 sakamoto * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 1.1 sakamoto * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 1.1 sakamoto * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 1.1 sakamoto * THE POSSIBILITY OF SUCH DAMAGE.
70 1.1 sakamoto *
71 1.2 sakamoto * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 1.1 sakamoto */
73 1.1 sakamoto
74 1.1 sakamoto /*
75 1.1 sakamoto * VIA Rhine fast ethernet PCI NIC driver
76 1.1 sakamoto *
77 1.1 sakamoto * Supports various network adapters based on the VIA Rhine
78 1.1 sakamoto * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 1.1 sakamoto * Datasheets are available at http://www.via.com.tw.
80 1.1 sakamoto *
81 1.1 sakamoto * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 1.1 sakamoto * Electrical Engineering Department
83 1.1 sakamoto * Columbia University, New York City
84 1.1 sakamoto */
85 1.1 sakamoto
86 1.1 sakamoto /*
87 1.1 sakamoto * The VIA Rhine controllers are similar in some respects to the
88 1.1 sakamoto * the DEC tulip chips, except less complicated. The controller
89 1.1 sakamoto * uses an MII bus and an external physical layer interface. The
90 1.1 sakamoto * receiver has a one entry perfect filter and a 64-bit hash table
91 1.1 sakamoto * multicast filter. Transmit and receive descriptors are similar
92 1.1 sakamoto * to the tulip.
93 1.1 sakamoto *
94 1.1 sakamoto * The Rhine has a serious flaw in its transmit DMA mechanism:
95 1.1 sakamoto * transmit buffers must be longword aligned. Unfortunately,
96 1.17 thorpej * the kernel doesn't guarantee that mbufs will be filled in starting
97 1.1 sakamoto * at longword boundaries, so we have to do a buffer copy before
98 1.1 sakamoto * transmission.
99 1.17 thorpej *
100 1.17 thorpej * Apparently, the receive DMA mechanism also has the same flaw. This
101 1.17 thorpej * means that on systems with struct alignment requirements, incoming
102 1.17 thorpej * frames must be copied to a new buffer which shifts the data forward
103 1.17 thorpej * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 1.1 sakamoto */
105 1.53 lukem
106 1.53 lukem #include <sys/cdefs.h>
107 1.53 lukem __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.53 2001/11/13 07:48:45 lukem Exp $");
108 1.1 sakamoto
109 1.1 sakamoto #include <sys/param.h>
110 1.1 sakamoto #include <sys/systm.h>
111 1.34 thorpej #include <sys/callout.h>
112 1.1 sakamoto #include <sys/sockio.h>
113 1.1 sakamoto #include <sys/mbuf.h>
114 1.1 sakamoto #include <sys/malloc.h>
115 1.1 sakamoto #include <sys/kernel.h>
116 1.1 sakamoto #include <sys/socket.h>
117 1.6 thorpej #include <sys/device.h>
118 1.1 sakamoto
119 1.35 mrg #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
120 1.18 thorpej
121 1.1 sakamoto #include <net/if.h>
122 1.1 sakamoto #include <net/if_arp.h>
123 1.1 sakamoto #include <net/if_dl.h>
124 1.1 sakamoto #include <net/if_media.h>
125 1.2 sakamoto #include <net/if_ether.h>
126 1.1 sakamoto
127 1.2 sakamoto #include "bpfilter.h"
128 1.1 sakamoto #if NBPFILTER > 0
129 1.1 sakamoto #include <net/bpf.h>
130 1.1 sakamoto #endif
131 1.1 sakamoto
132 1.1 sakamoto #include <machine/bus.h>
133 1.6 thorpej #include <machine/intr.h>
134 1.30 thorpej #include <machine/endian.h>
135 1.1 sakamoto
136 1.10 thorpej #include <dev/mii/mii.h>
137 1.11 thorpej #include <dev/mii/miivar.h>
138 1.29 thorpej #include <dev/mii/mii_bitbang.h>
139 1.10 thorpej
140 1.2 sakamoto #include <dev/pci/pcireg.h>
141 1.2 sakamoto #include <dev/pci/pcivar.h>
142 1.8 thorpej #include <dev/pci/pcidevs.h>
143 1.8 thorpej
144 1.2 sakamoto #include <dev/pci/if_vrreg.h>
145 1.1 sakamoto
146 1.2 sakamoto #define VR_USEIOSPACE
147 1.1 sakamoto
148 1.1 sakamoto /*
149 1.1 sakamoto * Various supported device vendors/types and their names.
150 1.1 sakamoto */
151 1.7 thorpej static struct vr_type {
152 1.7 thorpej pci_vendor_id_t vr_vid;
153 1.7 thorpej pci_product_id_t vr_did;
154 1.7 thorpej const char *vr_name;
155 1.7 thorpej } vr_devs[] = {
156 1.8 thorpej { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
157 1.24 hwr "VIA VT3043 (Rhine) 10/100" },
158 1.37 tron { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
159 1.36 tron "VIA VT6102 (Rhine II) 10/100" },
160 1.8 thorpej { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
161 1.24 hwr "VIA VT86C100A (Rhine-II) 10/100" },
162 1.1 sakamoto { 0, 0, NULL }
163 1.1 sakamoto };
164 1.1 sakamoto
165 1.18 thorpej /*
166 1.18 thorpej * Transmit descriptor list size.
167 1.18 thorpej */
168 1.18 thorpej #define VR_NTXDESC 64
169 1.18 thorpej #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
170 1.18 thorpej #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
171 1.18 thorpej
172 1.18 thorpej /*
173 1.18 thorpej * Receive descriptor list size.
174 1.18 thorpej */
175 1.18 thorpej #define VR_NRXDESC 64
176 1.18 thorpej #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
177 1.18 thorpej #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
178 1.7 thorpej
179 1.18 thorpej /*
180 1.18 thorpej * Control data structres that are DMA'd to the Rhine chip. We allocate
181 1.18 thorpej * them in a single clump that maps to a single DMA segment to make several
182 1.18 thorpej * things easier.
183 1.18 thorpej *
184 1.18 thorpej * Note that since we always copy outgoing packets to aligned transmit
185 1.18 thorpej * buffers, we can reduce the transmit descriptors to one per packet.
186 1.18 thorpej */
187 1.18 thorpej struct vr_control_data {
188 1.18 thorpej struct vr_desc vr_txdescs[VR_NTXDESC];
189 1.18 thorpej struct vr_desc vr_rxdescs[VR_NRXDESC];
190 1.7 thorpej };
191 1.7 thorpej
192 1.18 thorpej #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
193 1.18 thorpej #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
194 1.18 thorpej #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
195 1.7 thorpej
196 1.18 thorpej /*
197 1.18 thorpej * Software state of transmit and receive descriptors.
198 1.18 thorpej */
199 1.18 thorpej struct vr_descsoft {
200 1.18 thorpej struct mbuf *ds_mbuf; /* head of mbuf chain */
201 1.18 thorpej bus_dmamap_t ds_dmamap; /* our DMA map */
202 1.7 thorpej };
203 1.7 thorpej
204 1.7 thorpej struct vr_softc {
205 1.14 thorpej struct device vr_dev; /* generic device glue */
206 1.14 thorpej void *vr_ih; /* interrupt cookie */
207 1.14 thorpej void *vr_ats; /* shutdown hook */
208 1.14 thorpej bus_space_tag_t vr_bst; /* bus space tag */
209 1.14 thorpej bus_space_handle_t vr_bsh; /* bus space handle */
210 1.18 thorpej bus_dma_tag_t vr_dmat; /* bus DMA tag */
211 1.14 thorpej pci_chipset_tag_t vr_pc; /* PCI chipset info */
212 1.14 thorpej struct ethercom vr_ec; /* Ethernet common info */
213 1.7 thorpej u_int8_t vr_enaddr[ETHER_ADDR_LEN];
214 1.11 thorpej struct mii_data vr_mii; /* MII/media info */
215 1.18 thorpej
216 1.34 thorpej struct callout vr_tick_ch; /* tick callout */
217 1.34 thorpej
218 1.18 thorpej bus_dmamap_t vr_cddmamap; /* control data DMA map */
219 1.18 thorpej #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
220 1.18 thorpej
221 1.18 thorpej /*
222 1.18 thorpej * Software state for transmit and receive descriptors.
223 1.18 thorpej */
224 1.18 thorpej struct vr_descsoft vr_txsoft[VR_NTXDESC];
225 1.18 thorpej struct vr_descsoft vr_rxsoft[VR_NRXDESC];
226 1.18 thorpej
227 1.18 thorpej /*
228 1.18 thorpej * Control data structures.
229 1.18 thorpej */
230 1.18 thorpej struct vr_control_data *vr_control_data;
231 1.18 thorpej
232 1.18 thorpej int vr_txpending; /* number of TX requests pending */
233 1.18 thorpej int vr_txdirty; /* first dirty TX descriptor */
234 1.18 thorpej int vr_txlast; /* last used TX descriptor */
235 1.18 thorpej
236 1.18 thorpej int vr_rxptr; /* next ready RX descriptor */
237 1.7 thorpej };
238 1.7 thorpej
239 1.18 thorpej #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
240 1.18 thorpej #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
241 1.18 thorpej
242 1.18 thorpej #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
243 1.18 thorpej #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
244 1.18 thorpej
245 1.18 thorpej #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
246 1.18 thorpej #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
247 1.18 thorpej
248 1.18 thorpej #define VR_CDTXSYNC(sc, x, ops) \
249 1.18 thorpej bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
250 1.18 thorpej VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
251 1.18 thorpej
252 1.18 thorpej #define VR_CDRXSYNC(sc, x, ops) \
253 1.18 thorpej bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 1.18 thorpej VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
255 1.18 thorpej
256 1.18 thorpej /*
257 1.18 thorpej * Note we rely on MCLBYTES being a power of two below.
258 1.18 thorpej */
259 1.18 thorpej #define VR_INIT_RXDESC(sc, i) \
260 1.18 thorpej do { \
261 1.18 thorpej struct vr_desc *__d = VR_CDRX((sc), (i)); \
262 1.18 thorpej struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
263 1.18 thorpej \
264 1.30 thorpej __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
265 1.30 thorpej __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
266 1.21 thorpej VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
267 1.30 thorpej __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
268 1.30 thorpej __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
269 1.21 thorpej ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
270 1.18 thorpej VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 1.18 thorpej } while (0)
272 1.18 thorpej
273 1.7 thorpej /*
274 1.7 thorpej * register space access macros
275 1.7 thorpej */
276 1.18 thorpej #define CSR_WRITE_4(sc, reg, val) \
277 1.14 thorpej bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
278 1.18 thorpej #define CSR_WRITE_2(sc, reg, val) \
279 1.14 thorpej bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
280 1.18 thorpej #define CSR_WRITE_1(sc, reg, val) \
281 1.14 thorpej bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
282 1.7 thorpej
283 1.18 thorpej #define CSR_READ_4(sc, reg) \
284 1.14 thorpej bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
285 1.18 thorpej #define CSR_READ_2(sc, reg) \
286 1.14 thorpej bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
287 1.18 thorpej #define CSR_READ_1(sc, reg) \
288 1.14 thorpej bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
289 1.7 thorpej
290 1.7 thorpej #define VR_TIMEOUT 1000
291 1.1 sakamoto
292 1.18 thorpej static int vr_add_rxbuf __P((struct vr_softc *, int));
293 1.1 sakamoto
294 1.1 sakamoto static void vr_rxeof __P((struct vr_softc *));
295 1.1 sakamoto static void vr_rxeoc __P((struct vr_softc *));
296 1.1 sakamoto static void vr_txeof __P((struct vr_softc *));
297 1.16 thorpej static int vr_intr __P((void *));
298 1.1 sakamoto static void vr_start __P((struct ifnet *));
299 1.1 sakamoto static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
300 1.39 thorpej static int vr_init __P((struct ifnet *));
301 1.39 thorpej static void vr_stop __P((struct ifnet *, int));
302 1.23 thorpej static void vr_rxdrain __P((struct vr_softc *));
303 1.1 sakamoto static void vr_watchdog __P((struct ifnet *));
304 1.11 thorpej static void vr_tick __P((void *));
305 1.11 thorpej
306 1.1 sakamoto static int vr_ifmedia_upd __P((struct ifnet *));
307 1.1 sakamoto static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
308 1.1 sakamoto
309 1.11 thorpej static int vr_mii_readreg __P((struct device *, int, int));
310 1.11 thorpej static void vr_mii_writereg __P((struct device *, int, int, int));
311 1.11 thorpej static void vr_mii_statchg __P((struct device *));
312 1.11 thorpej
313 1.1 sakamoto static void vr_setmulti __P((struct vr_softc *));
314 1.1 sakamoto static void vr_reset __P((struct vr_softc *));
315 1.1 sakamoto
316 1.23 thorpej int vr_copy_small = 0;
317 1.23 thorpej
318 1.2 sakamoto #define VR_SETBIT(sc, reg, x) \
319 1.1 sakamoto CSR_WRITE_1(sc, reg, \
320 1.1 sakamoto CSR_READ_1(sc, reg) | x)
321 1.1 sakamoto
322 1.2 sakamoto #define VR_CLRBIT(sc, reg, x) \
323 1.1 sakamoto CSR_WRITE_1(sc, reg, \
324 1.1 sakamoto CSR_READ_1(sc, reg) & ~x)
325 1.1 sakamoto
326 1.2 sakamoto #define VR_SETBIT16(sc, reg, x) \
327 1.1 sakamoto CSR_WRITE_2(sc, reg, \
328 1.1 sakamoto CSR_READ_2(sc, reg) | x)
329 1.1 sakamoto
330 1.2 sakamoto #define VR_CLRBIT16(sc, reg, x) \
331 1.1 sakamoto CSR_WRITE_2(sc, reg, \
332 1.1 sakamoto CSR_READ_2(sc, reg) & ~x)
333 1.1 sakamoto
334 1.2 sakamoto #define VR_SETBIT32(sc, reg, x) \
335 1.1 sakamoto CSR_WRITE_4(sc, reg, \
336 1.1 sakamoto CSR_READ_4(sc, reg) | x)
337 1.1 sakamoto
338 1.2 sakamoto #define VR_CLRBIT32(sc, reg, x) \
339 1.1 sakamoto CSR_WRITE_4(sc, reg, \
340 1.1 sakamoto CSR_READ_4(sc, reg) & ~x)
341 1.1 sakamoto
342 1.29 thorpej /*
343 1.29 thorpej * MII bit-bang glue.
344 1.29 thorpej */
345 1.29 thorpej u_int32_t vr_mii_bitbang_read __P((struct device *));
346 1.29 thorpej void vr_mii_bitbang_write __P((struct device *, u_int32_t));
347 1.1 sakamoto
348 1.29 thorpej const struct mii_bitbang_ops vr_mii_bitbang_ops = {
349 1.29 thorpej vr_mii_bitbang_read,
350 1.29 thorpej vr_mii_bitbang_write,
351 1.29 thorpej {
352 1.29 thorpej VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
353 1.29 thorpej VR_MIICMD_DATAIN, /* MII_BIT_MDI */
354 1.29 thorpej VR_MIICMD_CLK, /* MII_BIT_MDC */
355 1.29 thorpej VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
356 1.29 thorpej 0, /* MII_BIT_DIR_PHY_HOST */
357 1.29 thorpej }
358 1.29 thorpej };
359 1.1 sakamoto
360 1.29 thorpej u_int32_t
361 1.29 thorpej vr_mii_bitbang_read(self)
362 1.29 thorpej struct device *self;
363 1.1 sakamoto {
364 1.29 thorpej struct vr_softc *sc = (void *) self;
365 1.1 sakamoto
366 1.29 thorpej return (CSR_READ_1(sc, VR_MIICMD));
367 1.1 sakamoto }
368 1.1 sakamoto
369 1.29 thorpej void
370 1.29 thorpej vr_mii_bitbang_write(self, val)
371 1.29 thorpej struct device *self;
372 1.29 thorpej u_int32_t val;
373 1.1 sakamoto {
374 1.29 thorpej struct vr_softc *sc = (void *) self;
375 1.1 sakamoto
376 1.29 thorpej CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 1.1 sakamoto }
378 1.1 sakamoto
379 1.1 sakamoto /*
380 1.1 sakamoto * Read an PHY register through the MII.
381 1.1 sakamoto */
382 1.15 thorpej static int
383 1.15 thorpej vr_mii_readreg(self, phy, reg)
384 1.11 thorpej struct device *self;
385 1.11 thorpej int phy, reg;
386 1.1 sakamoto {
387 1.29 thorpej struct vr_softc *sc = (void *) self;
388 1.1 sakamoto
389 1.29 thorpej CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
390 1.29 thorpej return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
391 1.1 sakamoto }
392 1.1 sakamoto
393 1.1 sakamoto /*
394 1.1 sakamoto * Write to a PHY register through the MII.
395 1.1 sakamoto */
396 1.15 thorpej static void
397 1.15 thorpej vr_mii_writereg(self, phy, reg, val)
398 1.11 thorpej struct device *self;
399 1.11 thorpej int phy, reg, val;
400 1.1 sakamoto {
401 1.29 thorpej struct vr_softc *sc = (void *) self;
402 1.1 sakamoto
403 1.29 thorpej CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
404 1.29 thorpej mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
405 1.1 sakamoto }
406 1.1 sakamoto
407 1.15 thorpej static void
408 1.15 thorpej vr_mii_statchg(self)
409 1.11 thorpej struct device *self;
410 1.1 sakamoto {
411 1.11 thorpej struct vr_softc *sc = (struct vr_softc *)self;
412 1.1 sakamoto
413 1.11 thorpej /*
414 1.11 thorpej * In order to fiddle with the 'full-duplex' bit in the netconfig
415 1.11 thorpej * register, we first have to put the transmit and/or receive logic
416 1.11 thorpej * in the idle state.
417 1.11 thorpej */
418 1.18 thorpej VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
419 1.1 sakamoto
420 1.11 thorpej if (sc->vr_mii.mii_media_active & IFM_FDX)
421 1.11 thorpej VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
422 1.11 thorpej else
423 1.11 thorpej VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 1.1 sakamoto
425 1.18 thorpej if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
426 1.11 thorpej VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
427 1.1 sakamoto }
428 1.1 sakamoto
429 1.46 tsutsui #define vr_calchash(addr) \
430 1.46 tsutsui (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
431 1.1 sakamoto
432 1.1 sakamoto /*
433 1.1 sakamoto * Program the 64-bit multicast hash filter.
434 1.1 sakamoto */
435 1.15 thorpej static void
436 1.15 thorpej vr_setmulti(sc)
437 1.15 thorpej struct vr_softc *sc;
438 1.1 sakamoto {
439 1.15 thorpej struct ifnet *ifp;
440 1.15 thorpej int h = 0;
441 1.15 thorpej u_int32_t hashes[2] = { 0, 0 };
442 1.15 thorpej struct ether_multistep step;
443 1.15 thorpej struct ether_multi *enm;
444 1.15 thorpej int mcnt = 0;
445 1.15 thorpej u_int8_t rxfilt;
446 1.1 sakamoto
447 1.6 thorpej ifp = &sc->vr_ec.ec_if;
448 1.1 sakamoto
449 1.1 sakamoto rxfilt = CSR_READ_1(sc, VR_RXCFG);
450 1.1 sakamoto
451 1.45 enami if (ifp->if_flags & IFF_PROMISC) {
452 1.45 enami allmulti:
453 1.45 enami ifp->if_flags |= IFF_ALLMULTI;
454 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
455 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
456 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
457 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
458 1.1 sakamoto return;
459 1.1 sakamoto }
460 1.1 sakamoto
461 1.1 sakamoto /* first, zot all the existing hash bits */
462 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0);
463 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0);
464 1.1 sakamoto
465 1.1 sakamoto /* now program new ones */
466 1.2 sakamoto ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
467 1.2 sakamoto while (enm != NULL) {
468 1.45 enami if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
469 1.45 enami ETHER_ADDR_LEN) != 0)
470 1.45 enami goto allmulti;
471 1.2 sakamoto
472 1.2 sakamoto h = vr_calchash(enm->enm_addrlo);
473 1.2 sakamoto
474 1.1 sakamoto if (h < 32)
475 1.1 sakamoto hashes[0] |= (1 << h);
476 1.1 sakamoto else
477 1.1 sakamoto hashes[1] |= (1 << (h - 32));
478 1.2 sakamoto ETHER_NEXT_MULTI(step, enm);
479 1.1 sakamoto mcnt++;
480 1.1 sakamoto }
481 1.45 enami
482 1.45 enami ifp->if_flags &= ~IFF_ALLMULTI;
483 1.1 sakamoto
484 1.1 sakamoto if (mcnt)
485 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
486 1.1 sakamoto else
487 1.1 sakamoto rxfilt &= ~VR_RXCFG_RX_MULTI;
488 1.1 sakamoto
489 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
490 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
491 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
492 1.1 sakamoto }
493 1.1 sakamoto
494 1.15 thorpej static void
495 1.15 thorpej vr_reset(sc)
496 1.15 thorpej struct vr_softc *sc;
497 1.1 sakamoto {
498 1.15 thorpej int i;
499 1.1 sakamoto
500 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
501 1.1 sakamoto
502 1.1 sakamoto for (i = 0; i < VR_TIMEOUT; i++) {
503 1.1 sakamoto DELAY(10);
504 1.1 sakamoto if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
505 1.1 sakamoto break;
506 1.1 sakamoto }
507 1.1 sakamoto if (i == VR_TIMEOUT)
508 1.6 thorpej printf("%s: reset never completed!\n",
509 1.6 thorpej sc->vr_dev.dv_xname);
510 1.1 sakamoto
511 1.1 sakamoto /* Wait a little while for the chip to get its brains in order. */
512 1.1 sakamoto DELAY(1000);
513 1.1 sakamoto }
514 1.1 sakamoto
515 1.1 sakamoto /*
516 1.1 sakamoto * Initialize an RX descriptor and attach an MBUF cluster.
517 1.1 sakamoto * Note: the length fields are only 11 bits wide, which means the
518 1.1 sakamoto * largest size we can specify is 2047. This is important because
519 1.1 sakamoto * MCLBYTES is 2048, so we have to subtract one otherwise we'll
520 1.1 sakamoto * overflow the field and make a mess.
521 1.1 sakamoto */
522 1.15 thorpej static int
523 1.18 thorpej vr_add_rxbuf(sc, i)
524 1.15 thorpej struct vr_softc *sc;
525 1.18 thorpej int i;
526 1.1 sakamoto {
527 1.18 thorpej struct vr_descsoft *ds = VR_DSRX(sc, i);
528 1.18 thorpej struct mbuf *m_new;
529 1.18 thorpej int error;
530 1.1 sakamoto
531 1.1 sakamoto MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 1.18 thorpej if (m_new == NULL)
533 1.2 sakamoto return (ENOBUFS);
534 1.1 sakamoto
535 1.1 sakamoto MCLGET(m_new, M_DONTWAIT);
536 1.18 thorpej if ((m_new->m_flags & M_EXT) == 0) {
537 1.1 sakamoto m_freem(m_new);
538 1.2 sakamoto return (ENOBUFS);
539 1.1 sakamoto }
540 1.1 sakamoto
541 1.18 thorpej if (ds->ds_mbuf != NULL)
542 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543 1.18 thorpej
544 1.18 thorpej ds->ds_mbuf = m_new;
545 1.18 thorpej
546 1.18 thorpej error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 1.50 thorpej m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 1.50 thorpej BUS_DMA_READ|BUS_DMA_NOWAIT);
549 1.18 thorpej if (error) {
550 1.18 thorpej printf("%s: unable to load rx DMA map %d, error = %d\n",
551 1.18 thorpej sc->vr_dev.dv_xname, i, error);
552 1.18 thorpej panic("vr_add_rxbuf"); /* XXX */
553 1.18 thorpej }
554 1.18 thorpej
555 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557 1.18 thorpej
558 1.18 thorpej VR_INIT_RXDESC(sc, i);
559 1.1 sakamoto
560 1.2 sakamoto return (0);
561 1.1 sakamoto }
562 1.1 sakamoto
563 1.1 sakamoto /*
564 1.1 sakamoto * A frame has been uploaded: pass the resulting mbuf chain up to
565 1.1 sakamoto * the higher level protocols.
566 1.1 sakamoto */
567 1.15 thorpej static void
568 1.15 thorpej vr_rxeof(sc)
569 1.15 thorpej struct vr_softc *sc;
570 1.1 sakamoto {
571 1.15 thorpej struct mbuf *m;
572 1.15 thorpej struct ifnet *ifp;
573 1.18 thorpej struct vr_desc *d;
574 1.18 thorpej struct vr_descsoft *ds;
575 1.18 thorpej int i, total_len;
576 1.15 thorpej u_int32_t rxstat;
577 1.1 sakamoto
578 1.6 thorpej ifp = &sc->vr_ec.ec_if;
579 1.1 sakamoto
580 1.18 thorpej for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
581 1.18 thorpej d = VR_CDRX(sc, i);
582 1.18 thorpej ds = VR_DSRX(sc, i);
583 1.18 thorpej
584 1.18 thorpej VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
585 1.18 thorpej
586 1.30 thorpej rxstat = le32toh(d->vr_status);
587 1.18 thorpej
588 1.18 thorpej if (rxstat & VR_RXSTAT_OWN) {
589 1.18 thorpej /*
590 1.18 thorpej * We have processed all of the receive buffers.
591 1.18 thorpej */
592 1.18 thorpej break;
593 1.18 thorpej }
594 1.1 sakamoto
595 1.1 sakamoto /*
596 1.1 sakamoto * If an error occurs, update stats, clear the
597 1.1 sakamoto * status word and leave the mbuf cluster in place:
598 1.1 sakamoto * it should simply get re-used next time this descriptor
599 1.2 sakamoto * comes up in the ring.
600 1.1 sakamoto */
601 1.1 sakamoto if (rxstat & VR_RXSTAT_RXERR) {
602 1.18 thorpej const char *errstr;
603 1.18 thorpej
604 1.1 sakamoto ifp->if_ierrors++;
605 1.2 sakamoto switch (rxstat & 0x000000FF) {
606 1.1 sakamoto case VR_RXSTAT_CRCERR:
607 1.18 thorpej errstr = "crc error";
608 1.1 sakamoto break;
609 1.1 sakamoto case VR_RXSTAT_FRAMEALIGNERR:
610 1.18 thorpej errstr = "frame alignment error";
611 1.1 sakamoto break;
612 1.1 sakamoto case VR_RXSTAT_FIFOOFLOW:
613 1.18 thorpej errstr = "FIFO overflow";
614 1.1 sakamoto break;
615 1.1 sakamoto case VR_RXSTAT_GIANT:
616 1.18 thorpej errstr = "received giant packet";
617 1.1 sakamoto break;
618 1.1 sakamoto case VR_RXSTAT_RUNT:
619 1.18 thorpej errstr = "received runt packet";
620 1.1 sakamoto break;
621 1.1 sakamoto case VR_RXSTAT_BUSERR:
622 1.18 thorpej errstr = "system bus error";
623 1.1 sakamoto break;
624 1.1 sakamoto case VR_RXSTAT_BUFFERR:
625 1.18 thorpej errstr = "rx buffer error";
626 1.1 sakamoto break;
627 1.1 sakamoto default:
628 1.18 thorpej errstr = "unknown rx error";
629 1.1 sakamoto break;
630 1.1 sakamoto }
631 1.18 thorpej printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
632 1.18 thorpej errstr);
633 1.18 thorpej
634 1.18 thorpej VR_INIT_RXDESC(sc, i);
635 1.18 thorpej
636 1.1 sakamoto continue;
637 1.1 sakamoto }
638 1.1 sakamoto
639 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
640 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
641 1.18 thorpej
642 1.2 sakamoto /* No errors; receive the packet. */
643 1.30 thorpej total_len = VR_RXBYTES(le32toh(d->vr_status));
644 1.1 sakamoto
645 1.17 thorpej #ifdef __NO_STRICT_ALIGNMENT
646 1.1 sakamoto /*
647 1.23 thorpej * If the packet is small enough to fit in a
648 1.23 thorpej * single header mbuf, allocate one and copy
649 1.23 thorpej * the data into it. This greatly reduces
650 1.23 thorpej * memory consumption when we receive lots
651 1.23 thorpej * of small packets.
652 1.23 thorpej *
653 1.23 thorpej * Otherwise, we add a new buffer to the receive
654 1.23 thorpej * chain. If this fails, we drop the packet and
655 1.23 thorpej * recycle the old buffer.
656 1.1 sakamoto */
657 1.23 thorpej if (vr_copy_small != 0 && total_len <= MHLEN) {
658 1.23 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
659 1.23 thorpej if (m == NULL)
660 1.23 thorpej goto dropit;
661 1.23 thorpej memcpy(mtod(m, caddr_t),
662 1.23 thorpej mtod(ds->ds_mbuf, caddr_t), total_len);
663 1.18 thorpej VR_INIT_RXDESC(sc, i);
664 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 1.23 thorpej ds->ds_dmamap->dm_mapsize,
666 1.23 thorpej BUS_DMASYNC_PREREAD);
667 1.23 thorpej } else {
668 1.23 thorpej m = ds->ds_mbuf;
669 1.23 thorpej if (vr_add_rxbuf(sc, i) == ENOBUFS) {
670 1.23 thorpej dropit:
671 1.23 thorpej ifp->if_ierrors++;
672 1.23 thorpej VR_INIT_RXDESC(sc, i);
673 1.23 thorpej bus_dmamap_sync(sc->vr_dmat,
674 1.23 thorpej ds->ds_dmamap, 0,
675 1.23 thorpej ds->ds_dmamap->dm_mapsize,
676 1.23 thorpej BUS_DMASYNC_PREREAD);
677 1.23 thorpej continue;
678 1.23 thorpej }
679 1.1 sakamoto }
680 1.17 thorpej #else
681 1.17 thorpej /*
682 1.17 thorpej * The Rhine's packet buffers must be 4-byte aligned.
683 1.17 thorpej * But this means that the data after the Ethernet header
684 1.17 thorpej * is misaligned. We must allocate a new buffer and
685 1.17 thorpej * copy the data, shifted forward 2 bytes.
686 1.17 thorpej */
687 1.17 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
688 1.17 thorpej if (m == NULL) {
689 1.17 thorpej dropit:
690 1.17 thorpej ifp->if_ierrors++;
691 1.18 thorpej VR_INIT_RXDESC(sc, i);
692 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
693 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
694 1.17 thorpej continue;
695 1.17 thorpej }
696 1.17 thorpej if (total_len > (MHLEN - 2)) {
697 1.17 thorpej MCLGET(m, M_DONTWAIT);
698 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
699 1.20 thorpej m_freem(m);
700 1.17 thorpej goto dropit;
701 1.20 thorpej }
702 1.17 thorpej }
703 1.17 thorpej m->m_data += 2;
704 1.17 thorpej
705 1.17 thorpej /*
706 1.17 thorpej * Note that we use clusters for incoming frames, so the
707 1.17 thorpej * buffer is virtually contiguous.
708 1.17 thorpej */
709 1.18 thorpej memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
710 1.17 thorpej total_len);
711 1.17 thorpej
712 1.47 wiz /* Allow the receive descriptor to continue using its mbuf. */
713 1.18 thorpej VR_INIT_RXDESC(sc, i);
714 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
715 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
716 1.17 thorpej #endif /* __NO_STRICT_ALIGNMENT */
717 1.40 thorpej
718 1.40 thorpej /*
719 1.40 thorpej * The Rhine chip includes the FCS with every
720 1.40 thorpej * received packet.
721 1.40 thorpej */
722 1.40 thorpej m->m_flags |= M_HASFCS;
723 1.1 sakamoto
724 1.1 sakamoto ifp->if_ipackets++;
725 1.1 sakamoto m->m_pkthdr.rcvif = ifp;
726 1.1 sakamoto m->m_pkthdr.len = m->m_len = total_len;
727 1.1 sakamoto #if NBPFILTER > 0
728 1.1 sakamoto /*
729 1.1 sakamoto * Handle BPF listeners. Let the BPF user see the packet, but
730 1.1 sakamoto * don't pass it up to the ether_input() layer unless it's
731 1.1 sakamoto * a broadcast packet, multicast packet, matches our ethernet
732 1.1 sakamoto * address or the interface is in promiscuous mode.
733 1.1 sakamoto */
734 1.38 thorpej if (ifp->if_bpf)
735 1.2 sakamoto bpf_mtap(ifp->if_bpf, m);
736 1.1 sakamoto #endif
737 1.22 thorpej /* Pass it on. */
738 1.22 thorpej (*ifp->if_input)(ifp, m);
739 1.1 sakamoto }
740 1.18 thorpej
741 1.18 thorpej /* Update the receive pointer. */
742 1.18 thorpej sc->vr_rxptr = i;
743 1.1 sakamoto }
744 1.1 sakamoto
745 1.15 thorpej void
746 1.15 thorpej vr_rxeoc(sc)
747 1.15 thorpej struct vr_softc *sc;
748 1.1 sakamoto {
749 1.1 sakamoto
750 1.1 sakamoto vr_rxeof(sc);
751 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
752 1.18 thorpej CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
753 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
754 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
755 1.1 sakamoto }
756 1.1 sakamoto
757 1.1 sakamoto /*
758 1.1 sakamoto * A frame was downloaded to the chip. It's safe for us to clean up
759 1.1 sakamoto * the list buffers.
760 1.1 sakamoto */
761 1.15 thorpej static void
762 1.15 thorpej vr_txeof(sc)
763 1.15 thorpej struct vr_softc *sc;
764 1.1 sakamoto {
765 1.18 thorpej struct ifnet *ifp = &sc->vr_ec.ec_if;
766 1.18 thorpej struct vr_desc *d;
767 1.18 thorpej struct vr_descsoft *ds;
768 1.18 thorpej u_int32_t txstat;
769 1.18 thorpej int i;
770 1.1 sakamoto
771 1.18 thorpej ifp->if_flags &= ~IFF_OACTIVE;
772 1.1 sakamoto
773 1.1 sakamoto /*
774 1.1 sakamoto * Go through our tx list and free mbufs for those
775 1.1 sakamoto * frames that have been transmitted.
776 1.1 sakamoto */
777 1.18 thorpej for (i = sc->vr_txdirty; sc->vr_txpending != 0;
778 1.18 thorpej i = VR_NEXTTX(i), sc->vr_txpending--) {
779 1.18 thorpej d = VR_CDTX(sc, i);
780 1.18 thorpej ds = VR_DSTX(sc, i);
781 1.1 sakamoto
782 1.18 thorpej VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
783 1.1 sakamoto
784 1.30 thorpej txstat = le32toh(d->vr_status);
785 1.1 sakamoto if (txstat & VR_TXSTAT_OWN)
786 1.1 sakamoto break;
787 1.1 sakamoto
788 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
789 1.18 thorpej 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
790 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
791 1.18 thorpej m_freem(ds->ds_mbuf);
792 1.18 thorpej ds->ds_mbuf = NULL;
793 1.18 thorpej
794 1.1 sakamoto if (txstat & VR_TXSTAT_ERRSUM) {
795 1.1 sakamoto ifp->if_oerrors++;
796 1.1 sakamoto if (txstat & VR_TXSTAT_DEFER)
797 1.1 sakamoto ifp->if_collisions++;
798 1.1 sakamoto if (txstat & VR_TXSTAT_LATECOLL)
799 1.1 sakamoto ifp->if_collisions++;
800 1.1 sakamoto }
801 1.1 sakamoto
802 1.18 thorpej ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
803 1.1 sakamoto ifp->if_opackets++;
804 1.1 sakamoto }
805 1.1 sakamoto
806 1.18 thorpej /* Update the dirty transmit buffer pointer. */
807 1.18 thorpej sc->vr_txdirty = i;
808 1.1 sakamoto
809 1.18 thorpej /*
810 1.18 thorpej * Cancel the watchdog timer if there are no pending
811 1.18 thorpej * transmissions.
812 1.18 thorpej */
813 1.18 thorpej if (sc->vr_txpending == 0)
814 1.18 thorpej ifp->if_timer = 0;
815 1.1 sakamoto }
816 1.1 sakamoto
817 1.16 thorpej static int
818 1.15 thorpej vr_intr(arg)
819 1.15 thorpej void *arg;
820 1.1 sakamoto {
821 1.15 thorpej struct vr_softc *sc;
822 1.15 thorpej struct ifnet *ifp;
823 1.15 thorpej u_int16_t status;
824 1.18 thorpej int handled = 0, dotx = 0;
825 1.1 sakamoto
826 1.1 sakamoto sc = arg;
827 1.6 thorpej ifp = &sc->vr_ec.ec_if;
828 1.1 sakamoto
829 1.18 thorpej /* Suppress unwanted interrupts. */
830 1.16 thorpej if ((ifp->if_flags & IFF_UP) == 0) {
831 1.39 thorpej vr_stop(ifp, 1);
832 1.16 thorpej return (0);
833 1.1 sakamoto }
834 1.1 sakamoto
835 1.1 sakamoto /* Disable interrupts. */
836 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
837 1.1 sakamoto
838 1.1 sakamoto for (;;) {
839 1.1 sakamoto status = CSR_READ_2(sc, VR_ISR);
840 1.1 sakamoto if (status)
841 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, status);
842 1.1 sakamoto
843 1.1 sakamoto if ((status & VR_INTRS) == 0)
844 1.1 sakamoto break;
845 1.1 sakamoto
846 1.16 thorpej handled = 1;
847 1.16 thorpej
848 1.1 sakamoto if (status & VR_ISR_RX_OK)
849 1.1 sakamoto vr_rxeof(sc);
850 1.1 sakamoto
851 1.18 thorpej if (status &
852 1.18 thorpej (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
853 1.18 thorpej VR_ISR_RX_DROPPED))
854 1.1 sakamoto vr_rxeoc(sc);
855 1.1 sakamoto
856 1.1 sakamoto if (status & VR_ISR_TX_OK) {
857 1.18 thorpej dotx = 1;
858 1.1 sakamoto vr_txeof(sc);
859 1.1 sakamoto }
860 1.1 sakamoto
861 1.18 thorpej if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
862 1.18 thorpej if (status & VR_ISR_TX_UNDERRUN)
863 1.18 thorpej printf("%s: transmit underrun\n",
864 1.18 thorpej sc->vr_dev.dv_xname);
865 1.18 thorpej if (status & VR_ISR_TX_ABRT)
866 1.18 thorpej printf("%s: transmit aborted\n",
867 1.18 thorpej sc->vr_dev.dv_xname);
868 1.1 sakamoto ifp->if_oerrors++;
869 1.18 thorpej dotx = 1;
870 1.1 sakamoto vr_txeof(sc);
871 1.18 thorpej if (sc->vr_txpending) {
872 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
873 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
874 1.1 sakamoto }
875 1.1 sakamoto }
876 1.1 sakamoto
877 1.1 sakamoto if (status & VR_ISR_BUSERR) {
878 1.18 thorpej printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
879 1.18 thorpej /* vr_init() calls vr_start() */
880 1.18 thorpej dotx = 0;
881 1.39 thorpej (void) vr_init(ifp);
882 1.1 sakamoto }
883 1.1 sakamoto }
884 1.1 sakamoto
885 1.1 sakamoto /* Re-enable interrupts. */
886 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
887 1.1 sakamoto
888 1.18 thorpej if (dotx)
889 1.1 sakamoto vr_start(ifp);
890 1.16 thorpej
891 1.16 thorpej return (handled);
892 1.1 sakamoto }
893 1.1 sakamoto
894 1.1 sakamoto /*
895 1.1 sakamoto * Main transmit routine. To avoid having to do mbuf copies, we put pointers
896 1.1 sakamoto * to the mbuf data regions directly in the transmit lists. We also save a
897 1.1 sakamoto * copy of the pointers since the transmit list fragment pointers are
898 1.1 sakamoto * physical addresses.
899 1.1 sakamoto */
900 1.15 thorpej static void
901 1.15 thorpej vr_start(ifp)
902 1.15 thorpej struct ifnet *ifp;
903 1.1 sakamoto {
904 1.18 thorpej struct vr_softc *sc = ifp->if_softc;
905 1.18 thorpej struct mbuf *m0, *m;
906 1.18 thorpej struct vr_desc *d;
907 1.18 thorpej struct vr_descsoft *ds;
908 1.18 thorpej int error, firsttx, nexttx, opending;
909 1.1 sakamoto
910 1.18 thorpej /*
911 1.18 thorpej * Remember the previous txpending and the first transmit
912 1.18 thorpej * descriptor we use.
913 1.18 thorpej */
914 1.18 thorpej opending = sc->vr_txpending;
915 1.18 thorpej firsttx = VR_NEXTTX(sc->vr_txlast);
916 1.1 sakamoto
917 1.1 sakamoto /*
918 1.18 thorpej * Loop through the send queue, setting up transmit descriptors
919 1.18 thorpej * until we drain the queue, or use up all available transmit
920 1.18 thorpej * descriptors.
921 1.1 sakamoto */
922 1.18 thorpej while (sc->vr_txpending < VR_NTXDESC) {
923 1.18 thorpej /*
924 1.18 thorpej * Grab a packet off the queue.
925 1.18 thorpej */
926 1.42 thorpej IFQ_POLL(&ifp->if_snd, m0);
927 1.18 thorpej if (m0 == NULL)
928 1.18 thorpej break;
929 1.43 thorpej m = NULL;
930 1.1 sakamoto
931 1.18 thorpej /*
932 1.18 thorpej * Get the next available transmit descriptor.
933 1.18 thorpej */
934 1.18 thorpej nexttx = VR_NEXTTX(sc->vr_txlast);
935 1.18 thorpej d = VR_CDTX(sc, nexttx);
936 1.18 thorpej ds = VR_DSTX(sc, nexttx);
937 1.1 sakamoto
938 1.18 thorpej /*
939 1.18 thorpej * Load the DMA map. If this fails, the packet didn't
940 1.18 thorpej * fit in one DMA segment, and we need to copy. Note,
941 1.18 thorpej * the packet must also be aligned.
942 1.18 thorpej */
943 1.52 mrg if ((mtod(m0, uintptr_t) & 3) != 0 ||
944 1.18 thorpej bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
945 1.50 thorpej BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
946 1.18 thorpej MGETHDR(m, M_DONTWAIT, MT_DATA);
947 1.18 thorpej if (m == NULL) {
948 1.18 thorpej printf("%s: unable to allocate Tx mbuf\n",
949 1.18 thorpej sc->vr_dev.dv_xname);
950 1.18 thorpej break;
951 1.18 thorpej }
952 1.18 thorpej if (m0->m_pkthdr.len > MHLEN) {
953 1.18 thorpej MCLGET(m, M_DONTWAIT);
954 1.18 thorpej if ((m->m_flags & M_EXT) == 0) {
955 1.18 thorpej printf("%s: unable to allocate Tx "
956 1.18 thorpej "cluster\n", sc->vr_dev.dv_xname);
957 1.18 thorpej m_freem(m);
958 1.18 thorpej break;
959 1.18 thorpej }
960 1.18 thorpej }
961 1.18 thorpej m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
962 1.18 thorpej m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
963 1.18 thorpej error = bus_dmamap_load_mbuf(sc->vr_dmat,
964 1.50 thorpej ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
965 1.18 thorpej if (error) {
966 1.18 thorpej printf("%s: unable to load Tx buffer, "
967 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, error);
968 1.18 thorpej break;
969 1.18 thorpej }
970 1.18 thorpej }
971 1.1 sakamoto
972 1.42 thorpej IFQ_DEQUEUE(&ifp->if_snd, m0);
973 1.43 thorpej if (m != NULL) {
974 1.43 thorpej m_freem(m0);
975 1.43 thorpej m0 = m;
976 1.43 thorpej }
977 1.42 thorpej
978 1.18 thorpej /* Sync the DMA map. */
979 1.18 thorpej bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
980 1.18 thorpej ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
981 1.1 sakamoto
982 1.18 thorpej /*
983 1.18 thorpej * Store a pointer to the packet so we can free it later.
984 1.18 thorpej */
985 1.18 thorpej ds->ds_mbuf = m0;
986 1.1 sakamoto
987 1.1 sakamoto #if NBPFILTER > 0
988 1.1 sakamoto /*
989 1.1 sakamoto * If there's a BPF listener, bounce a copy of this frame
990 1.1 sakamoto * to him.
991 1.1 sakamoto */
992 1.1 sakamoto if (ifp->if_bpf)
993 1.18 thorpej bpf_mtap(ifp->if_bpf, m0);
994 1.2 sakamoto #endif
995 1.18 thorpej
996 1.18 thorpej /*
997 1.18 thorpej * Fill in the transmit descriptor. The Rhine
998 1.18 thorpej * doesn't auto-pad, so we have to do this ourselves.
999 1.18 thorpej */
1000 1.30 thorpej d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1001 1.30 thorpej d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1002 1.21 thorpej VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1003 1.18 thorpej d->vr_ctl |=
1004 1.30 thorpej htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1005 1.30 thorpej VR_TXCTL_LASTFRAG);
1006 1.18 thorpej
1007 1.18 thorpej /*
1008 1.18 thorpej * If this is the first descriptor we're enqueuing,
1009 1.18 thorpej * don't give it to the Rhine yet. That could cause
1010 1.18 thorpej * a race condition. We'll do it below.
1011 1.18 thorpej */
1012 1.18 thorpej if (nexttx == firsttx)
1013 1.18 thorpej d->vr_status = 0;
1014 1.18 thorpej else
1015 1.30 thorpej d->vr_status = htole32(VR_TXSTAT_OWN);
1016 1.18 thorpej
1017 1.18 thorpej VR_CDTXSYNC(sc, nexttx,
1018 1.18 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1019 1.18 thorpej
1020 1.18 thorpej /* Advance the tx pointer. */
1021 1.18 thorpej sc->vr_txpending++;
1022 1.18 thorpej sc->vr_txlast = nexttx;
1023 1.18 thorpej }
1024 1.18 thorpej
1025 1.18 thorpej if (sc->vr_txpending == VR_NTXDESC) {
1026 1.18 thorpej /* No more slots left; notify upper layer. */
1027 1.18 thorpej ifp->if_flags |= IFF_OACTIVE;
1028 1.1 sakamoto }
1029 1.1 sakamoto
1030 1.18 thorpej if (sc->vr_txpending != opending) {
1031 1.18 thorpej /*
1032 1.18 thorpej * We enqueued packets. If the transmitter was idle,
1033 1.18 thorpej * reset the txdirty pointer.
1034 1.18 thorpej */
1035 1.18 thorpej if (opending == 0)
1036 1.18 thorpej sc->vr_txdirty = firsttx;
1037 1.18 thorpej
1038 1.18 thorpej /*
1039 1.18 thorpej * Cause a transmit interrupt to happen on the
1040 1.18 thorpej * last packet we enqueued.
1041 1.18 thorpej */
1042 1.30 thorpej VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1043 1.18 thorpej VR_CDTXSYNC(sc, sc->vr_txlast,
1044 1.18 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1045 1.1 sakamoto
1046 1.18 thorpej /*
1047 1.18 thorpej * The entire packet chain is set up. Give the
1048 1.18 thorpej * first descriptor to the Rhine now.
1049 1.18 thorpej */
1050 1.30 thorpej VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1051 1.18 thorpej VR_CDTXSYNC(sc, firsttx,
1052 1.18 thorpej BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1053 1.1 sakamoto
1054 1.18 thorpej /* Start the transmitter. */
1055 1.18 thorpej VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1056 1.1 sakamoto
1057 1.18 thorpej /* Set the watchdog timer in case the chip flakes out. */
1058 1.18 thorpej ifp->if_timer = 5;
1059 1.18 thorpej }
1060 1.1 sakamoto }
1061 1.1 sakamoto
1062 1.13 thorpej /*
1063 1.13 thorpej * Initialize the interface. Must be called at splnet.
1064 1.13 thorpej */
1065 1.23 thorpej static int
1066 1.39 thorpej vr_init(ifp)
1067 1.39 thorpej struct ifnet *ifp;
1068 1.1 sakamoto {
1069 1.39 thorpej struct vr_softc *sc = ifp->if_softc;
1070 1.18 thorpej struct vr_desc *d;
1071 1.23 thorpej struct vr_descsoft *ds;
1072 1.25 hwr int i, error = 0;
1073 1.1 sakamoto
1074 1.18 thorpej /* Cancel pending I/O. */
1075 1.39 thorpej vr_stop(ifp, 0);
1076 1.18 thorpej
1077 1.18 thorpej /* Reset the Rhine to a known state. */
1078 1.1 sakamoto vr_reset(sc);
1079 1.1 sakamoto
1080 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1081 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1082 1.1 sakamoto
1083 1.1 sakamoto VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1084 1.1 sakamoto VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1085 1.1 sakamoto
1086 1.1 sakamoto /*
1087 1.18 thorpej * Initialize the transmit desciptor ring. txlast is initialized
1088 1.18 thorpej * to the end of the list so that it will wrap around to the first
1089 1.18 thorpej * descriptor when the first packet is transmitted.
1090 1.18 thorpej */
1091 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1092 1.18 thorpej d = VR_CDTX(sc, i);
1093 1.18 thorpej memset(d, 0, sizeof(struct vr_desc));
1094 1.30 thorpej d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1095 1.18 thorpej VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1096 1.18 thorpej }
1097 1.18 thorpej sc->vr_txpending = 0;
1098 1.18 thorpej sc->vr_txdirty = 0;
1099 1.18 thorpej sc->vr_txlast = VR_NTXDESC - 1;
1100 1.18 thorpej
1101 1.18 thorpej /*
1102 1.23 thorpej * Initialize the receive descriptor ring.
1103 1.18 thorpej */
1104 1.23 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1105 1.23 thorpej ds = VR_DSRX(sc, i);
1106 1.23 thorpej if (ds->ds_mbuf == NULL) {
1107 1.23 thorpej if ((error = vr_add_rxbuf(sc, i)) != 0) {
1108 1.23 thorpej printf("%s: unable to allocate or map rx "
1109 1.23 thorpej "buffer %d, error = %d\n",
1110 1.23 thorpej sc->vr_dev.dv_xname, i, error);
1111 1.23 thorpej /*
1112 1.23 thorpej * XXX Should attempt to run with fewer receive
1113 1.23 thorpej * XXX buffers instead of just failing.
1114 1.23 thorpej */
1115 1.23 thorpej vr_rxdrain(sc);
1116 1.23 thorpej goto out;
1117 1.23 thorpej }
1118 1.51 thorpej } else
1119 1.51 thorpej VR_INIT_RXDESC(sc, i);
1120 1.23 thorpej }
1121 1.18 thorpej sc->vr_rxptr = 0;
1122 1.1 sakamoto
1123 1.1 sakamoto /* If we want promiscuous mode, set the allframes bit. */
1124 1.1 sakamoto if (ifp->if_flags & IFF_PROMISC)
1125 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1126 1.1 sakamoto else
1127 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1128 1.1 sakamoto
1129 1.1 sakamoto /* Set capture broadcast bit to capture broadcast frames. */
1130 1.1 sakamoto if (ifp->if_flags & IFF_BROADCAST)
1131 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1132 1.1 sakamoto else
1133 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1134 1.1 sakamoto
1135 1.18 thorpej /* Program the multicast filter, if necessary. */
1136 1.1 sakamoto vr_setmulti(sc);
1137 1.1 sakamoto
1138 1.47 wiz /* Give the transmit and receive rings to the Rhine. */
1139 1.18 thorpej CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1140 1.18 thorpej CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1141 1.18 thorpej
1142 1.18 thorpej /* Set current media. */
1143 1.18 thorpej mii_mediachg(&sc->vr_mii);
1144 1.1 sakamoto
1145 1.1 sakamoto /* Enable receiver and transmitter. */
1146 1.1 sakamoto CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1147 1.1 sakamoto VR_CMD_TX_ON|VR_CMD_RX_ON|
1148 1.1 sakamoto VR_CMD_RX_GO);
1149 1.1 sakamoto
1150 1.18 thorpej /* Enable interrupts. */
1151 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1152 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1153 1.1 sakamoto
1154 1.1 sakamoto ifp->if_flags |= IFF_RUNNING;
1155 1.1 sakamoto ifp->if_flags &= ~IFF_OACTIVE;
1156 1.1 sakamoto
1157 1.11 thorpej /* Start one second timer. */
1158 1.34 thorpej callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1159 1.18 thorpej
1160 1.18 thorpej /* Attempt to start output on the interface. */
1161 1.18 thorpej vr_start(ifp);
1162 1.23 thorpej
1163 1.23 thorpej out:
1164 1.23 thorpej if (error)
1165 1.23 thorpej printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1166 1.23 thorpej return (error);
1167 1.1 sakamoto }
1168 1.1 sakamoto
1169 1.1 sakamoto /*
1170 1.1 sakamoto * Set media options.
1171 1.1 sakamoto */
1172 1.15 thorpej static int
1173 1.15 thorpej vr_ifmedia_upd(ifp)
1174 1.15 thorpej struct ifnet *ifp;
1175 1.1 sakamoto {
1176 1.11 thorpej struct vr_softc *sc = ifp->if_softc;
1177 1.1 sakamoto
1178 1.11 thorpej if (ifp->if_flags & IFF_UP)
1179 1.11 thorpej mii_mediachg(&sc->vr_mii);
1180 1.2 sakamoto return (0);
1181 1.1 sakamoto }
1182 1.1 sakamoto
1183 1.1 sakamoto /*
1184 1.1 sakamoto * Report current media status.
1185 1.1 sakamoto */
1186 1.15 thorpej static void
1187 1.15 thorpej vr_ifmedia_sts(ifp, ifmr)
1188 1.15 thorpej struct ifnet *ifp;
1189 1.15 thorpej struct ifmediareq *ifmr;
1190 1.1 sakamoto {
1191 1.11 thorpej struct vr_softc *sc = ifp->if_softc;
1192 1.1 sakamoto
1193 1.11 thorpej mii_pollstat(&sc->vr_mii);
1194 1.11 thorpej ifmr->ifm_status = sc->vr_mii.mii_media_status;
1195 1.11 thorpej ifmr->ifm_active = sc->vr_mii.mii_media_active;
1196 1.1 sakamoto }
1197 1.1 sakamoto
1198 1.15 thorpej static int
1199 1.15 thorpej vr_ioctl(ifp, command, data)
1200 1.15 thorpej struct ifnet *ifp;
1201 1.15 thorpej u_long command;
1202 1.15 thorpej caddr_t data;
1203 1.15 thorpej {
1204 1.15 thorpej struct vr_softc *sc = ifp->if_softc;
1205 1.15 thorpej struct ifreq *ifr = (struct ifreq *)data;
1206 1.15 thorpej int s, error = 0;
1207 1.1 sakamoto
1208 1.12 thorpej s = splnet();
1209 1.1 sakamoto
1210 1.2 sakamoto switch (command) {
1211 1.39 thorpej case SIOCGIFMEDIA:
1212 1.39 thorpej case SIOCSIFMEDIA:
1213 1.39 thorpej error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1214 1.2 sakamoto break;
1215 1.2 sakamoto
1216 1.39 thorpej default:
1217 1.39 thorpej error = ether_ioctl(ifp, command, data);
1218 1.2 sakamoto if (error == ENETRESET) {
1219 1.18 thorpej /*
1220 1.18 thorpej * Multicast list has changed; set the hardware filter
1221 1.18 thorpej * accordingly.
1222 1.18 thorpej */
1223 1.2 sakamoto vr_setmulti(sc);
1224 1.2 sakamoto error = 0;
1225 1.2 sakamoto }
1226 1.1 sakamoto break;
1227 1.1 sakamoto }
1228 1.1 sakamoto
1229 1.13 thorpej splx(s);
1230 1.2 sakamoto return (error);
1231 1.1 sakamoto }
1232 1.1 sakamoto
1233 1.15 thorpej static void
1234 1.15 thorpej vr_watchdog(ifp)
1235 1.15 thorpej struct ifnet *ifp;
1236 1.1 sakamoto {
1237 1.18 thorpej struct vr_softc *sc = ifp->if_softc;
1238 1.1 sakamoto
1239 1.18 thorpej printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1240 1.1 sakamoto ifp->if_oerrors++;
1241 1.1 sakamoto
1242 1.39 thorpej (void) vr_init(ifp);
1243 1.1 sakamoto }
1244 1.1 sakamoto
1245 1.1 sakamoto /*
1246 1.11 thorpej * One second timer, used to tick MII.
1247 1.11 thorpej */
1248 1.11 thorpej static void
1249 1.11 thorpej vr_tick(arg)
1250 1.11 thorpej void *arg;
1251 1.11 thorpej {
1252 1.11 thorpej struct vr_softc *sc = arg;
1253 1.11 thorpej int s;
1254 1.11 thorpej
1255 1.12 thorpej s = splnet();
1256 1.11 thorpej mii_tick(&sc->vr_mii);
1257 1.11 thorpej splx(s);
1258 1.11 thorpej
1259 1.34 thorpej callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1260 1.11 thorpej }
1261 1.11 thorpej
1262 1.11 thorpej /*
1263 1.23 thorpej * Drain the receive queue.
1264 1.23 thorpej */
1265 1.23 thorpej static void
1266 1.23 thorpej vr_rxdrain(sc)
1267 1.23 thorpej struct vr_softc *sc;
1268 1.23 thorpej {
1269 1.23 thorpej struct vr_descsoft *ds;
1270 1.23 thorpej int i;
1271 1.23 thorpej
1272 1.23 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1273 1.23 thorpej ds = VR_DSRX(sc, i);
1274 1.23 thorpej if (ds->ds_mbuf != NULL) {
1275 1.23 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1276 1.23 thorpej m_freem(ds->ds_mbuf);
1277 1.23 thorpej ds->ds_mbuf = NULL;
1278 1.23 thorpej }
1279 1.23 thorpej }
1280 1.23 thorpej }
1281 1.23 thorpej
1282 1.23 thorpej /*
1283 1.1 sakamoto * Stop the adapter and free any mbufs allocated to the
1284 1.18 thorpej * transmit lists.
1285 1.1 sakamoto */
1286 1.15 thorpej static void
1287 1.39 thorpej vr_stop(ifp, disable)
1288 1.39 thorpej struct ifnet *ifp;
1289 1.39 thorpej int disable;
1290 1.1 sakamoto {
1291 1.39 thorpej struct vr_softc *sc = ifp->if_softc;
1292 1.18 thorpej struct vr_descsoft *ds;
1293 1.15 thorpej int i;
1294 1.1 sakamoto
1295 1.11 thorpej /* Cancel one second timer. */
1296 1.34 thorpej callout_stop(&sc->vr_tick_ch);
1297 1.28 thorpej
1298 1.28 thorpej /* Down the MII. */
1299 1.28 thorpej mii_down(&sc->vr_mii);
1300 1.11 thorpej
1301 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1302 1.1 sakamoto ifp->if_timer = 0;
1303 1.1 sakamoto
1304 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1305 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1306 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
1307 1.1 sakamoto CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1308 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1309 1.1 sakamoto
1310 1.1 sakamoto /*
1311 1.18 thorpej * Release any queued transmit buffers.
1312 1.1 sakamoto */
1313 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1314 1.18 thorpej ds = VR_DSTX(sc, i);
1315 1.18 thorpej if (ds->ds_mbuf != NULL) {
1316 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1317 1.18 thorpej m_freem(ds->ds_mbuf);
1318 1.18 thorpej ds->ds_mbuf = NULL;
1319 1.1 sakamoto }
1320 1.1 sakamoto }
1321 1.1 sakamoto
1322 1.39 thorpej if (disable)
1323 1.23 thorpej vr_rxdrain(sc);
1324 1.23 thorpej
1325 1.1 sakamoto /*
1326 1.18 thorpej * Mark the interface down and cancel the watchdog timer.
1327 1.1 sakamoto */
1328 1.1 sakamoto ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1329 1.18 thorpej ifp->if_timer = 0;
1330 1.1 sakamoto }
1331 1.1 sakamoto
1332 1.3 sakamoto static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1333 1.2 sakamoto static int vr_probe __P((struct device *, struct cfdata *, void *));
1334 1.2 sakamoto static void vr_attach __P((struct device *, struct device *, void *));
1335 1.2 sakamoto static void vr_shutdown __P((void *));
1336 1.2 sakamoto
1337 1.2 sakamoto struct cfattach vr_ca = {
1338 1.2 sakamoto sizeof (struct vr_softc), vr_probe, vr_attach
1339 1.2 sakamoto };
1340 1.2 sakamoto
1341 1.3 sakamoto static struct vr_type *
1342 1.3 sakamoto vr_lookup(pa)
1343 1.3 sakamoto struct pci_attach_args *pa;
1344 1.3 sakamoto {
1345 1.3 sakamoto struct vr_type *vrt;
1346 1.3 sakamoto
1347 1.3 sakamoto for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1348 1.3 sakamoto if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1349 1.3 sakamoto PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1350 1.3 sakamoto return (vrt);
1351 1.3 sakamoto }
1352 1.3 sakamoto return (NULL);
1353 1.3 sakamoto }
1354 1.3 sakamoto
1355 1.2 sakamoto static int
1356 1.2 sakamoto vr_probe(parent, match, aux)
1357 1.2 sakamoto struct device *parent;
1358 1.2 sakamoto struct cfdata *match;
1359 1.2 sakamoto void *aux;
1360 1.2 sakamoto {
1361 1.2 sakamoto struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1362 1.2 sakamoto
1363 1.3 sakamoto if (vr_lookup(pa) != NULL)
1364 1.3 sakamoto return (1);
1365 1.2 sakamoto
1366 1.2 sakamoto return (0);
1367 1.2 sakamoto }
1368 1.2 sakamoto
1369 1.2 sakamoto /*
1370 1.2 sakamoto * Stop all chip I/O so that the kernel's probe routines don't
1371 1.2 sakamoto * get confused by errant DMAs when rebooting.
1372 1.2 sakamoto */
1373 1.15 thorpej static void
1374 1.15 thorpej vr_shutdown(arg)
1375 1.2 sakamoto void *arg;
1376 1.2 sakamoto {
1377 1.15 thorpej struct vr_softc *sc = (struct vr_softc *)arg;
1378 1.2 sakamoto
1379 1.39 thorpej vr_stop(&sc->vr_ec.ec_if, 1);
1380 1.2 sakamoto }
1381 1.2 sakamoto
1382 1.2 sakamoto /*
1383 1.2 sakamoto * Attach the interface. Allocate softc structures, do ifmedia
1384 1.2 sakamoto * setup and ethernet/BPF attach.
1385 1.2 sakamoto */
1386 1.2 sakamoto static void
1387 1.2 sakamoto vr_attach(parent, self, aux)
1388 1.15 thorpej struct device *parent;
1389 1.15 thorpej struct device *self;
1390 1.15 thorpej void *aux;
1391 1.2 sakamoto {
1392 1.15 thorpej struct vr_softc *sc = (struct vr_softc *) self;
1393 1.15 thorpej struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1394 1.18 thorpej bus_dma_segment_t seg;
1395 1.15 thorpej struct vr_type *vrt;
1396 1.15 thorpej u_int32_t command;
1397 1.15 thorpej struct ifnet *ifp;
1398 1.15 thorpej u_char eaddr[ETHER_ADDR_LEN];
1399 1.18 thorpej int i, rseg, error;
1400 1.15 thorpej
1401 1.2 sakamoto #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1402 1.2 sakamoto #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1403 1.34 thorpej
1404 1.34 thorpej callout_init(&sc->vr_tick_ch);
1405 1.2 sakamoto
1406 1.3 sakamoto vrt = vr_lookup(pa);
1407 1.3 sakamoto if (vrt == NULL) {
1408 1.3 sakamoto printf("\n");
1409 1.3 sakamoto panic("vr_attach: impossible");
1410 1.3 sakamoto }
1411 1.3 sakamoto
1412 1.3 sakamoto printf(": %s Ethernet\n", vrt->vr_name);
1413 1.2 sakamoto
1414 1.2 sakamoto /*
1415 1.2 sakamoto * Handle power management nonsense.
1416 1.2 sakamoto */
1417 1.2 sakamoto
1418 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1419 1.2 sakamoto if (command == 0x01) {
1420 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1421 1.2 sakamoto if (command & VR_PSTATE_MASK) {
1422 1.15 thorpej u_int32_t iobase, membase, irq;
1423 1.2 sakamoto
1424 1.2 sakamoto /* Save important PCI config data. */
1425 1.2 sakamoto iobase = PCI_CONF_READ(VR_PCI_LOIO);
1426 1.2 sakamoto membase = PCI_CONF_READ(VR_PCI_LOMEM);
1427 1.2 sakamoto irq = PCI_CONF_READ(VR_PCI_INTLINE);
1428 1.2 sakamoto
1429 1.2 sakamoto /* Reset the power state. */
1430 1.6 thorpej printf("%s: chip is in D%d power mode "
1431 1.2 sakamoto "-- setting to D0\n",
1432 1.6 thorpej sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1433 1.2 sakamoto command &= 0xFFFFFFFC;
1434 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1435 1.2 sakamoto
1436 1.2 sakamoto /* Restore PCI config data. */
1437 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1438 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1439 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1440 1.2 sakamoto }
1441 1.2 sakamoto }
1442 1.2 sakamoto
1443 1.19 thorpej /* Make sure bus mastering is enabled. */
1444 1.19 thorpej command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1445 1.19 thorpej command |= PCI_COMMAND_MASTER_ENABLE;
1446 1.19 thorpej PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1447 1.19 thorpej
1448 1.2 sakamoto /*
1449 1.2 sakamoto * Map control/status registers.
1450 1.2 sakamoto */
1451 1.2 sakamoto {
1452 1.2 sakamoto bus_space_tag_t iot, memt;
1453 1.2 sakamoto bus_space_handle_t ioh, memh;
1454 1.2 sakamoto int ioh_valid, memh_valid;
1455 1.2 sakamoto pci_intr_handle_t intrhandle;
1456 1.2 sakamoto const char *intrstr;
1457 1.2 sakamoto
1458 1.2 sakamoto ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1459 1.2 sakamoto PCI_MAPREG_TYPE_IO, 0,
1460 1.2 sakamoto &iot, &ioh, NULL, NULL) == 0);
1461 1.2 sakamoto memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1462 1.2 sakamoto PCI_MAPREG_TYPE_MEM |
1463 1.2 sakamoto PCI_MAPREG_MEM_TYPE_32BIT,
1464 1.2 sakamoto 0, &memt, &memh, NULL, NULL) == 0);
1465 1.2 sakamoto #if defined(VR_USEIOSPACE)
1466 1.2 sakamoto if (ioh_valid) {
1467 1.14 thorpej sc->vr_bst = iot;
1468 1.14 thorpej sc->vr_bsh = ioh;
1469 1.2 sakamoto } else if (memh_valid) {
1470 1.14 thorpej sc->vr_bst = memt;
1471 1.14 thorpej sc->vr_bsh = memh;
1472 1.2 sakamoto }
1473 1.2 sakamoto #else
1474 1.2 sakamoto if (memh_valid) {
1475 1.14 thorpej sc->vr_bst = memt;
1476 1.14 thorpej sc->vr_bsh = memh;
1477 1.2 sakamoto } else if (ioh_valid) {
1478 1.14 thorpej sc->vr_bst = iot;
1479 1.14 thorpej sc->vr_bsh = ioh;
1480 1.2 sakamoto }
1481 1.2 sakamoto #endif
1482 1.2 sakamoto else {
1483 1.2 sakamoto printf(": unable to map device registers\n");
1484 1.2 sakamoto return;
1485 1.2 sakamoto }
1486 1.2 sakamoto
1487 1.2 sakamoto /* Allocate interrupt */
1488 1.44 sommerfe if (pci_intr_map(pa, &intrhandle)) {
1489 1.6 thorpej printf("%s: couldn't map interrupt\n",
1490 1.6 thorpej sc->vr_dev.dv_xname);
1491 1.15 thorpej return;
1492 1.2 sakamoto }
1493 1.2 sakamoto intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1494 1.2 sakamoto sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1495 1.16 thorpej vr_intr, sc);
1496 1.2 sakamoto if (sc->vr_ih == NULL) {
1497 1.6 thorpej printf("%s: couldn't establish interrupt",
1498 1.6 thorpej sc->vr_dev.dv_xname);
1499 1.2 sakamoto if (intrstr != NULL)
1500 1.2 sakamoto printf(" at %s", intrstr);
1501 1.2 sakamoto printf("\n");
1502 1.2 sakamoto }
1503 1.6 thorpej printf("%s: interrupting at %s\n",
1504 1.6 thorpej sc->vr_dev.dv_xname, intrstr);
1505 1.2 sakamoto }
1506 1.2 sakamoto
1507 1.2 sakamoto /* Reset the adapter. */
1508 1.2 sakamoto vr_reset(sc);
1509 1.2 sakamoto
1510 1.2 sakamoto /*
1511 1.2 sakamoto * Get station address. The way the Rhine chips work,
1512 1.2 sakamoto * you're not allowed to directly access the EEPROM once
1513 1.2 sakamoto * they've been programmed a special way. Consequently,
1514 1.2 sakamoto * we need to read the node address from the PAR0 and PAR1
1515 1.2 sakamoto * registers.
1516 1.2 sakamoto */
1517 1.2 sakamoto VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1518 1.2 sakamoto DELAY(200);
1519 1.2 sakamoto for (i = 0; i < ETHER_ADDR_LEN; i++)
1520 1.2 sakamoto eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1521 1.2 sakamoto
1522 1.2 sakamoto /*
1523 1.2 sakamoto * A Rhine chip was detected. Inform the world.
1524 1.2 sakamoto */
1525 1.6 thorpej printf("%s: Ethernet address: %s\n",
1526 1.6 thorpej sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1527 1.2 sakamoto
1528 1.49 thorpej memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1529 1.2 sakamoto
1530 1.18 thorpej sc->vr_dmat = pa->pa_dmat;
1531 1.18 thorpej
1532 1.18 thorpej /*
1533 1.18 thorpej * Allocate the control data structures, and create and load
1534 1.18 thorpej * the DMA map for it.
1535 1.18 thorpej */
1536 1.18 thorpej if ((error = bus_dmamem_alloc(sc->vr_dmat,
1537 1.18 thorpej sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1538 1.18 thorpej 0)) != 0) {
1539 1.18 thorpej printf("%s: unable to allocate control data, error = %d\n",
1540 1.18 thorpej sc->vr_dev.dv_xname, error);
1541 1.18 thorpej goto fail_0;
1542 1.18 thorpej }
1543 1.18 thorpej
1544 1.18 thorpej if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1545 1.18 thorpej sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1546 1.18 thorpej BUS_DMA_COHERENT)) != 0) {
1547 1.18 thorpej printf("%s: unable to map control data, error = %d\n",
1548 1.18 thorpej sc->vr_dev.dv_xname, error);
1549 1.18 thorpej goto fail_1;
1550 1.18 thorpej }
1551 1.18 thorpej
1552 1.18 thorpej if ((error = bus_dmamap_create(sc->vr_dmat,
1553 1.18 thorpej sizeof(struct vr_control_data), 1,
1554 1.18 thorpej sizeof(struct vr_control_data), 0, 0,
1555 1.18 thorpej &sc->vr_cddmamap)) != 0) {
1556 1.18 thorpej printf("%s: unable to create control data DMA map, "
1557 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, error);
1558 1.18 thorpej goto fail_2;
1559 1.18 thorpej }
1560 1.18 thorpej
1561 1.18 thorpej if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1562 1.18 thorpej sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1563 1.18 thorpej 0)) != 0) {
1564 1.18 thorpej printf("%s: unable to load control data DMA map, error = %d\n",
1565 1.18 thorpej sc->vr_dev.dv_xname, error);
1566 1.18 thorpej goto fail_3;
1567 1.18 thorpej }
1568 1.18 thorpej
1569 1.18 thorpej /*
1570 1.18 thorpej * Create the transmit buffer DMA maps.
1571 1.18 thorpej */
1572 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1573 1.18 thorpej if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1574 1.18 thorpej 1, MCLBYTES, 0, 0,
1575 1.18 thorpej &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1576 1.18 thorpej printf("%s: unable to create tx DMA map %d, "
1577 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, i, error);
1578 1.18 thorpej goto fail_4;
1579 1.18 thorpej }
1580 1.18 thorpej }
1581 1.18 thorpej
1582 1.18 thorpej /*
1583 1.18 thorpej * Create the receive buffer DMA maps.
1584 1.18 thorpej */
1585 1.18 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1586 1.18 thorpej if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1587 1.18 thorpej MCLBYTES, 0, 0,
1588 1.18 thorpej &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1589 1.18 thorpej printf("%s: unable to create rx DMA map %d, "
1590 1.18 thorpej "error = %d\n", sc->vr_dev.dv_xname, i, error);
1591 1.18 thorpej goto fail_5;
1592 1.18 thorpej }
1593 1.23 thorpej VR_DSRX(sc, i)->ds_mbuf = NULL;
1594 1.2 sakamoto }
1595 1.2 sakamoto
1596 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1597 1.2 sakamoto ifp->if_softc = sc;
1598 1.2 sakamoto ifp->if_mtu = ETHERMTU;
1599 1.2 sakamoto ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1600 1.2 sakamoto ifp->if_ioctl = vr_ioctl;
1601 1.2 sakamoto ifp->if_start = vr_start;
1602 1.2 sakamoto ifp->if_watchdog = vr_watchdog;
1603 1.39 thorpej ifp->if_init = vr_init;
1604 1.39 thorpej ifp->if_stop = vr_stop;
1605 1.42 thorpej IFQ_SET_READY(&ifp->if_snd);
1606 1.42 thorpej
1607 1.49 thorpej strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1608 1.2 sakamoto
1609 1.2 sakamoto /*
1610 1.11 thorpej * Initialize MII/media info.
1611 1.2 sakamoto */
1612 1.11 thorpej sc->vr_mii.mii_ifp = ifp;
1613 1.11 thorpej sc->vr_mii.mii_readreg = vr_mii_readreg;
1614 1.11 thorpej sc->vr_mii.mii_writereg = vr_mii_writereg;
1615 1.11 thorpej sc->vr_mii.mii_statchg = vr_mii_statchg;
1616 1.11 thorpej ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1617 1.31 thorpej mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1618 1.32 thorpej MII_OFFSET_ANY, 0);
1619 1.11 thorpej if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1620 1.11 thorpej ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1621 1.11 thorpej ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1622 1.11 thorpej } else
1623 1.11 thorpej ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1624 1.2 sakamoto
1625 1.2 sakamoto /*
1626 1.2 sakamoto * Call MI attach routines.
1627 1.2 sakamoto */
1628 1.2 sakamoto if_attach(ifp);
1629 1.2 sakamoto ether_ifattach(ifp, sc->vr_enaddr);
1630 1.2 sakamoto
1631 1.2 sakamoto sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1632 1.2 sakamoto if (sc->vr_ats == NULL)
1633 1.2 sakamoto printf("%s: warning: couldn't establish shutdown hook\n",
1634 1.2 sakamoto sc->vr_dev.dv_xname);
1635 1.18 thorpej return;
1636 1.18 thorpej
1637 1.18 thorpej fail_5:
1638 1.18 thorpej for (i = 0; i < VR_NRXDESC; i++) {
1639 1.18 thorpej if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1640 1.18 thorpej bus_dmamap_destroy(sc->vr_dmat,
1641 1.18 thorpej sc->vr_rxsoft[i].ds_dmamap);
1642 1.18 thorpej }
1643 1.18 thorpej fail_4:
1644 1.18 thorpej for (i = 0; i < VR_NTXDESC; i++) {
1645 1.18 thorpej if (sc->vr_txsoft[i].ds_dmamap != NULL)
1646 1.18 thorpej bus_dmamap_destroy(sc->vr_dmat,
1647 1.18 thorpej sc->vr_txsoft[i].ds_dmamap);
1648 1.18 thorpej }
1649 1.18 thorpej bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1650 1.18 thorpej fail_3:
1651 1.18 thorpej bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1652 1.18 thorpej fail_2:
1653 1.18 thorpej bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1654 1.18 thorpej sizeof(struct vr_control_data));
1655 1.18 thorpej fail_1:
1656 1.18 thorpej bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1657 1.18 thorpej fail_0:
1658 1.18 thorpej return;
1659 1.2 sakamoto }
1660