if_vr.c revision 1.7 1 1.7 thorpej /* $NetBSD: if_vr.c,v 1.7 1999/02/02 00:29:17 thorpej Exp $ */
2 1.2 sakamoto
3 1.1 sakamoto /*
4 1.1 sakamoto * Copyright (c) 1997, 1998
5 1.1 sakamoto * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 1.1 sakamoto *
7 1.1 sakamoto * Redistribution and use in source and binary forms, with or without
8 1.1 sakamoto * modification, are permitted provided that the following conditions
9 1.1 sakamoto * are met:
10 1.1 sakamoto * 1. Redistributions of source code must retain the above copyright
11 1.1 sakamoto * notice, this list of conditions and the following disclaimer.
12 1.1 sakamoto * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 sakamoto * notice, this list of conditions and the following disclaimer in the
14 1.1 sakamoto * documentation and/or other materials provided with the distribution.
15 1.1 sakamoto * 3. All advertising materials mentioning features or use of this software
16 1.1 sakamoto * must display the following acknowledgement:
17 1.1 sakamoto * This product includes software developed by Bill Paul.
18 1.1 sakamoto * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 sakamoto * may be used to endorse or promote products derived from this software
20 1.1 sakamoto * without specific prior written permission.
21 1.1 sakamoto *
22 1.1 sakamoto * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 sakamoto * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 sakamoto * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 sakamoto * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 sakamoto * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 sakamoto * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 sakamoto * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 sakamoto * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 sakamoto * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 sakamoto * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 sakamoto * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 sakamoto *
34 1.2 sakamoto * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
35 1.1 sakamoto */
36 1.1 sakamoto
37 1.1 sakamoto /*
38 1.1 sakamoto * VIA Rhine fast ethernet PCI NIC driver
39 1.1 sakamoto *
40 1.1 sakamoto * Supports various network adapters based on the VIA Rhine
41 1.1 sakamoto * and Rhine II PCI controllers, including the D-Link DFE530TX.
42 1.1 sakamoto * Datasheets are available at http://www.via.com.tw.
43 1.1 sakamoto *
44 1.1 sakamoto * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 1.1 sakamoto * Electrical Engineering Department
46 1.1 sakamoto * Columbia University, New York City
47 1.1 sakamoto */
48 1.1 sakamoto
49 1.1 sakamoto /*
50 1.1 sakamoto * The VIA Rhine controllers are similar in some respects to the
51 1.1 sakamoto * the DEC tulip chips, except less complicated. The controller
52 1.1 sakamoto * uses an MII bus and an external physical layer interface. The
53 1.1 sakamoto * receiver has a one entry perfect filter and a 64-bit hash table
54 1.1 sakamoto * multicast filter. Transmit and receive descriptors are similar
55 1.1 sakamoto * to the tulip.
56 1.1 sakamoto *
57 1.1 sakamoto * The Rhine has a serious flaw in its transmit DMA mechanism:
58 1.1 sakamoto * transmit buffers must be longword aligned. Unfortunately,
59 1.1 sakamoto * FreeBSD doesn't guarantee that mbufs will be filled in starting
60 1.1 sakamoto * at longword boundaries, so we have to do a buffer copy before
61 1.1 sakamoto * transmission.
62 1.1 sakamoto */
63 1.1 sakamoto
64 1.2 sakamoto #include "opt_inet.h"
65 1.1 sakamoto
66 1.1 sakamoto #include <sys/param.h>
67 1.1 sakamoto #include <sys/systm.h>
68 1.1 sakamoto #include <sys/sockio.h>
69 1.1 sakamoto #include <sys/mbuf.h>
70 1.1 sakamoto #include <sys/malloc.h>
71 1.1 sakamoto #include <sys/kernel.h>
72 1.1 sakamoto #include <sys/socket.h>
73 1.6 thorpej #include <sys/device.h>
74 1.1 sakamoto
75 1.1 sakamoto #include <net/if.h>
76 1.1 sakamoto #include <net/if_arp.h>
77 1.1 sakamoto #include <net/if_dl.h>
78 1.1 sakamoto #include <net/if_media.h>
79 1.2 sakamoto #include <net/if_ether.h>
80 1.6 thorpej
81 1.2 sakamoto #if defined(INET)
82 1.2 sakamoto #include <netinet/in.h>
83 1.2 sakamoto #include <netinet/if_inarp.h>
84 1.2 sakamoto #endif
85 1.1 sakamoto
86 1.2 sakamoto #include "bpfilter.h"
87 1.1 sakamoto #if NBPFILTER > 0
88 1.1 sakamoto #include <net/bpf.h>
89 1.1 sakamoto #endif
90 1.1 sakamoto
91 1.2 sakamoto #include <vm/vm.h> /* for vtophys */
92 1.2 sakamoto
93 1.1 sakamoto #include <machine/bus.h>
94 1.6 thorpej #include <machine/intr.h>
95 1.1 sakamoto
96 1.2 sakamoto #include <dev/pci/pcireg.h>
97 1.2 sakamoto #include <dev/pci/pcivar.h>
98 1.2 sakamoto #include <dev/pci/if_vrreg.h>
99 1.1 sakamoto
100 1.5 thorpej #if defined(__NetBSD__) && defined(__alpha__)
101 1.5 thorpej /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
102 1.5 thorpej #undef vtophys
103 1.5 thorpej #define vtophys(va) alpha_XXX_dmamap((vaddr_t)(va))
104 1.5 thorpej #endif
105 1.5 thorpej
106 1.2 sakamoto #define VR_USEIOSPACE
107 1.1 sakamoto
108 1.2 sakamoto /* #define VR_BACKGROUND_AUTONEG */
109 1.1 sakamoto
110 1.6 thorpej #define ETHER_CRC_LEN 4 /* XXX Should be in a common header. */
111 1.1 sakamoto
112 1.1 sakamoto /*
113 1.1 sakamoto * Various supported device vendors/types and their names.
114 1.1 sakamoto */
115 1.7 thorpej static struct vr_type {
116 1.7 thorpej pci_vendor_id_t vr_vid;
117 1.7 thorpej pci_product_id_t vr_did;
118 1.7 thorpej const char *vr_name;
119 1.7 thorpej } vr_devs[] = {
120 1.1 sakamoto { VIA_VENDORID, VIA_DEVICEID_RHINE,
121 1.1 sakamoto "VIA VT3043 Rhine I 10/100BaseTX" },
122 1.1 sakamoto { VIA_VENDORID, VIA_DEVICEID_RHINE_II,
123 1.1 sakamoto "VIA VT86C100A Rhine II 10/100BaseTX" },
124 1.1 sakamoto { 0, 0, NULL }
125 1.1 sakamoto };
126 1.1 sakamoto
127 1.1 sakamoto /*
128 1.1 sakamoto * Various supported PHY vendors/types and their names. Note that
129 1.1 sakamoto * this driver will work with pretty much any MII-compliant PHY,
130 1.1 sakamoto * so failure to positively identify the chip is not a fatal error.
131 1.1 sakamoto */
132 1.1 sakamoto
133 1.1 sakamoto static struct vr_type vr_phys[] = {
134 1.1 sakamoto { TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
135 1.1 sakamoto { TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
136 1.1 sakamoto { NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
137 1.2 sakamoto { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
138 1.1 sakamoto { INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
139 1.1 sakamoto { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
140 1.1 sakamoto { 0, 0, "<MII-compliant physical interface>" }
141 1.1 sakamoto };
142 1.7 thorpej
143 1.7 thorpej struct vr_mii_frame {
144 1.7 thorpej u_int8_t mii_stdelim;
145 1.7 thorpej u_int8_t mii_opcode;
146 1.7 thorpej u_int8_t mii_phyaddr;
147 1.7 thorpej u_int8_t mii_regaddr;
148 1.7 thorpej u_int8_t mii_turnaround;
149 1.7 thorpej u_int16_t mii_data;
150 1.7 thorpej };
151 1.7 thorpej
152 1.7 thorpej /*
153 1.7 thorpej * MII constants
154 1.7 thorpej */
155 1.7 thorpej #define VR_MII_STARTDELIM 0x01
156 1.7 thorpej #define VR_MII_READOP 0x02
157 1.7 thorpej #define VR_MII_WRITEOP 0x01
158 1.7 thorpej #define VR_MII_TURNAROUND 0x02
159 1.7 thorpej
160 1.7 thorpej #define VR_FLAG_FORCEDELAY 1
161 1.7 thorpej #define VR_FLAG_SCHEDDELAY 2
162 1.7 thorpej #define VR_FLAG_DELAYTIMEO 3
163 1.7 thorpej
164 1.7 thorpej struct vr_list_data {
165 1.7 thorpej struct vr_desc vr_rx_list[VR_RX_LIST_CNT];
166 1.7 thorpej struct vr_desc vr_tx_list[VR_TX_LIST_CNT];
167 1.7 thorpej };
168 1.7 thorpej
169 1.7 thorpej struct vr_chain {
170 1.7 thorpej struct vr_desc *vr_ptr;
171 1.7 thorpej struct mbuf *vr_mbuf;
172 1.7 thorpej struct vr_chain *vr_nextdesc;
173 1.7 thorpej };
174 1.7 thorpej
175 1.7 thorpej struct vr_chain_onefrag {
176 1.7 thorpej struct vr_desc *vr_ptr;
177 1.7 thorpej struct mbuf *vr_mbuf;
178 1.7 thorpej struct vr_chain_onefrag *vr_nextdesc;
179 1.7 thorpej };
180 1.7 thorpej
181 1.7 thorpej struct vr_chain_data {
182 1.7 thorpej struct vr_chain_onefrag vr_rx_chain[VR_RX_LIST_CNT];
183 1.7 thorpej struct vr_chain vr_tx_chain[VR_TX_LIST_CNT];
184 1.7 thorpej
185 1.7 thorpej struct vr_chain_onefrag *vr_rx_head;
186 1.7 thorpej
187 1.7 thorpej struct vr_chain *vr_tx_head;
188 1.7 thorpej struct vr_chain *vr_tx_tail;
189 1.7 thorpej struct vr_chain *vr_tx_free;
190 1.7 thorpej };
191 1.7 thorpej
192 1.7 thorpej struct vr_softc {
193 1.7 thorpej struct device vr_dev;
194 1.7 thorpej void *vr_ih;
195 1.7 thorpej void *vr_ats;
196 1.7 thorpej bus_space_tag_t vr_bustag;
197 1.7 thorpej bus_space_handle_t vr_bushandle;
198 1.7 thorpej pci_chipset_tag_t vr_pc;
199 1.7 thorpej struct ethercom vr_ec;
200 1.7 thorpej u_int8_t vr_enaddr[ETHER_ADDR_LEN];
201 1.7 thorpej struct ifmedia ifmedia; /* media info */
202 1.7 thorpej bus_space_handle_t vr_bhandle; /* bus space handle */
203 1.7 thorpej bus_space_tag_t vr_btag; /* bus space tag */
204 1.7 thorpej struct vr_type *vr_info; /* Rhine adapter info */
205 1.7 thorpej struct vr_type *vr_pinfo; /* phy info */
206 1.7 thorpej u_int8_t vr_unit; /* interface number */
207 1.7 thorpej u_int8_t vr_type;
208 1.7 thorpej u_int8_t vr_phy_addr; /* PHY address */
209 1.7 thorpej u_int8_t vr_tx_pend; /* TX pending */
210 1.7 thorpej u_int8_t vr_want_auto;
211 1.7 thorpej u_int8_t vr_autoneg;
212 1.7 thorpej caddr_t vr_ldata_ptr;
213 1.7 thorpej struct vr_list_data *vr_ldata;
214 1.7 thorpej struct vr_chain_data vr_cdata;
215 1.7 thorpej };
216 1.7 thorpej
217 1.7 thorpej /*
218 1.7 thorpej * register space access macros
219 1.7 thorpej */
220 1.7 thorpej #define CSR_WRITE_4(sc, reg, val) \
221 1.7 thorpej bus_space_write_4(sc->vr_btag, sc->vr_bhandle, reg, val)
222 1.7 thorpej #define CSR_WRITE_2(sc, reg, val) \
223 1.7 thorpej bus_space_write_2(sc->vr_btag, sc->vr_bhandle, reg, val)
224 1.7 thorpej #define CSR_WRITE_1(sc, reg, val) \
225 1.7 thorpej bus_space_write_1(sc->vr_btag, sc->vr_bhandle, reg, val)
226 1.7 thorpej
227 1.7 thorpej #define CSR_READ_4(sc, reg) \
228 1.7 thorpej bus_space_read_4(sc->vr_btag, sc->vr_bhandle, reg)
229 1.7 thorpej #define CSR_READ_2(sc, reg) \
230 1.7 thorpej bus_space_read_2(sc->vr_btag, sc->vr_bhandle, reg)
231 1.7 thorpej #define CSR_READ_1(sc, reg) \
232 1.7 thorpej bus_space_read_1(sc->vr_btag, sc->vr_bhandle, reg)
233 1.7 thorpej
234 1.7 thorpej #define VR_TIMEOUT 1000
235 1.1 sakamoto
236 1.1 sakamoto static int vr_newbuf __P((struct vr_softc *,
237 1.1 sakamoto struct vr_chain_onefrag *));
238 1.1 sakamoto static int vr_encap __P((struct vr_softc *, struct vr_chain *,
239 1.2 sakamoto struct mbuf *));
240 1.1 sakamoto
241 1.1 sakamoto static void vr_rxeof __P((struct vr_softc *));
242 1.1 sakamoto static void vr_rxeoc __P((struct vr_softc *));
243 1.1 sakamoto static void vr_txeof __P((struct vr_softc *));
244 1.1 sakamoto static void vr_txeoc __P((struct vr_softc *));
245 1.1 sakamoto static void vr_intr __P((void *));
246 1.1 sakamoto static void vr_start __P((struct ifnet *));
247 1.1 sakamoto static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
248 1.1 sakamoto static void vr_init __P((void *));
249 1.1 sakamoto static void vr_stop __P((struct vr_softc *));
250 1.1 sakamoto static void vr_watchdog __P((struct ifnet *));
251 1.1 sakamoto static int vr_ifmedia_upd __P((struct ifnet *));
252 1.1 sakamoto static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
253 1.1 sakamoto
254 1.1 sakamoto static void vr_mii_sync __P((struct vr_softc *));
255 1.1 sakamoto static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
256 1.1 sakamoto static int vr_mii_readreg __P((struct vr_softc *, struct vr_mii_frame *));
257 1.1 sakamoto static int vr_mii_writereg __P((struct vr_softc *, struct vr_mii_frame *));
258 1.1 sakamoto static u_int16_t vr_phy_readreg __P((struct vr_softc *, int));
259 1.1 sakamoto static void vr_phy_writereg __P((struct vr_softc *, u_int16_t, u_int16_t));
260 1.1 sakamoto
261 1.1 sakamoto static void vr_autoneg_xmit __P((struct vr_softc *));
262 1.1 sakamoto static void vr_autoneg_mii __P((struct vr_softc *, int, int));
263 1.1 sakamoto static void vr_setmode_mii __P((struct vr_softc *, int));
264 1.1 sakamoto static void vr_getmode_mii __P((struct vr_softc *));
265 1.1 sakamoto static void vr_setcfg __P((struct vr_softc *, u_int16_t));
266 1.1 sakamoto static u_int8_t vr_calchash __P((u_int8_t *));
267 1.1 sakamoto static void vr_setmulti __P((struct vr_softc *));
268 1.1 sakamoto static void vr_reset __P((struct vr_softc *));
269 1.1 sakamoto static int vr_list_rx_init __P((struct vr_softc *));
270 1.1 sakamoto static int vr_list_tx_init __P((struct vr_softc *));
271 1.1 sakamoto
272 1.2 sakamoto #define VR_SETBIT(sc, reg, x) \
273 1.1 sakamoto CSR_WRITE_1(sc, reg, \
274 1.1 sakamoto CSR_READ_1(sc, reg) | x)
275 1.1 sakamoto
276 1.2 sakamoto #define VR_CLRBIT(sc, reg, x) \
277 1.1 sakamoto CSR_WRITE_1(sc, reg, \
278 1.1 sakamoto CSR_READ_1(sc, reg) & ~x)
279 1.1 sakamoto
280 1.2 sakamoto #define VR_SETBIT16(sc, reg, x) \
281 1.1 sakamoto CSR_WRITE_2(sc, reg, \
282 1.1 sakamoto CSR_READ_2(sc, reg) | x)
283 1.1 sakamoto
284 1.2 sakamoto #define VR_CLRBIT16(sc, reg, x) \
285 1.1 sakamoto CSR_WRITE_2(sc, reg, \
286 1.1 sakamoto CSR_READ_2(sc, reg) & ~x)
287 1.1 sakamoto
288 1.2 sakamoto #define VR_SETBIT32(sc, reg, x) \
289 1.1 sakamoto CSR_WRITE_4(sc, reg, \
290 1.1 sakamoto CSR_READ_4(sc, reg) | x)
291 1.1 sakamoto
292 1.2 sakamoto #define VR_CLRBIT32(sc, reg, x) \
293 1.1 sakamoto CSR_WRITE_4(sc, reg, \
294 1.1 sakamoto CSR_READ_4(sc, reg) & ~x)
295 1.1 sakamoto
296 1.2 sakamoto #define SIO_SET(x) \
297 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, \
298 1.1 sakamoto CSR_READ_1(sc, VR_MIICMD) | x)
299 1.1 sakamoto
300 1.2 sakamoto #define SIO_CLR(x) \
301 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, \
302 1.1 sakamoto CSR_READ_1(sc, VR_MIICMD) & ~x)
303 1.1 sakamoto
304 1.1 sakamoto /*
305 1.1 sakamoto * Sync the PHYs by setting data bit and strobing the clock 32 times.
306 1.1 sakamoto */
307 1.1 sakamoto static void vr_mii_sync(sc)
308 1.1 sakamoto struct vr_softc *sc;
309 1.1 sakamoto {
310 1.1 sakamoto register int i;
311 1.1 sakamoto
312 1.1 sakamoto SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN);
313 1.1 sakamoto
314 1.1 sakamoto for (i = 0; i < 32; i++) {
315 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
316 1.1 sakamoto DELAY(1);
317 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
318 1.1 sakamoto DELAY(1);
319 1.1 sakamoto }
320 1.1 sakamoto
321 1.1 sakamoto return;
322 1.1 sakamoto }
323 1.1 sakamoto
324 1.1 sakamoto /*
325 1.1 sakamoto * Clock a series of bits through the MII.
326 1.1 sakamoto */
327 1.1 sakamoto static void vr_mii_send(sc, bits, cnt)
328 1.1 sakamoto struct vr_softc *sc;
329 1.1 sakamoto u_int32_t bits;
330 1.1 sakamoto int cnt;
331 1.1 sakamoto {
332 1.1 sakamoto int i;
333 1.1 sakamoto
334 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
335 1.1 sakamoto
336 1.1 sakamoto for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
337 1.2 sakamoto if (bits & i) {
338 1.1 sakamoto SIO_SET(VR_MIICMD_DATAIN);
339 1.2 sakamoto } else {
340 1.1 sakamoto SIO_CLR(VR_MIICMD_DATAIN);
341 1.2 sakamoto }
342 1.1 sakamoto DELAY(1);
343 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
344 1.1 sakamoto DELAY(1);
345 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
346 1.1 sakamoto }
347 1.1 sakamoto }
348 1.1 sakamoto
349 1.1 sakamoto /*
350 1.1 sakamoto * Read an PHY register through the MII.
351 1.1 sakamoto */
352 1.1 sakamoto static int vr_mii_readreg(sc, frame)
353 1.1 sakamoto struct vr_softc *sc;
354 1.1 sakamoto struct vr_mii_frame *frame;
355 1.2 sakamoto
356 1.1 sakamoto {
357 1.1 sakamoto int i, ack, s;
358 1.1 sakamoto
359 1.1 sakamoto s = splimp();
360 1.1 sakamoto
361 1.1 sakamoto /*
362 1.1 sakamoto * Set up frame for RX.
363 1.1 sakamoto */
364 1.1 sakamoto frame->mii_stdelim = VR_MII_STARTDELIM;
365 1.1 sakamoto frame->mii_opcode = VR_MII_READOP;
366 1.1 sakamoto frame->mii_turnaround = 0;
367 1.1 sakamoto frame->mii_data = 0;
368 1.2 sakamoto
369 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, 0);
370 1.1 sakamoto VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
371 1.1 sakamoto
372 1.1 sakamoto /*
373 1.2 sakamoto * Turn on data xmit.
374 1.1 sakamoto */
375 1.1 sakamoto SIO_SET(VR_MIICMD_DIR);
376 1.1 sakamoto
377 1.1 sakamoto vr_mii_sync(sc);
378 1.1 sakamoto
379 1.1 sakamoto /*
380 1.1 sakamoto * Send command/address info.
381 1.1 sakamoto */
382 1.1 sakamoto vr_mii_send(sc, frame->mii_stdelim, 2);
383 1.1 sakamoto vr_mii_send(sc, frame->mii_opcode, 2);
384 1.1 sakamoto vr_mii_send(sc, frame->mii_phyaddr, 5);
385 1.1 sakamoto vr_mii_send(sc, frame->mii_regaddr, 5);
386 1.1 sakamoto
387 1.1 sakamoto /* Idle bit */
388 1.1 sakamoto SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN));
389 1.1 sakamoto DELAY(1);
390 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
391 1.1 sakamoto DELAY(1);
392 1.1 sakamoto
393 1.1 sakamoto /* Turn off xmit. */
394 1.1 sakamoto SIO_CLR(VR_MIICMD_DIR);
395 1.1 sakamoto
396 1.1 sakamoto /* Check for ack */
397 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
398 1.1 sakamoto DELAY(1);
399 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
400 1.1 sakamoto DELAY(1);
401 1.1 sakamoto ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT;
402 1.1 sakamoto
403 1.1 sakamoto /*
404 1.1 sakamoto * Now try reading data bits. If the ack failed, we still
405 1.1 sakamoto * need to clock through 16 cycles to keep the PHY(s) in sync.
406 1.1 sakamoto */
407 1.1 sakamoto if (ack) {
408 1.2 sakamoto for (i = 0; i < 16; i++) {
409 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
410 1.1 sakamoto DELAY(1);
411 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
412 1.1 sakamoto DELAY(1);
413 1.1 sakamoto }
414 1.1 sakamoto goto fail;
415 1.1 sakamoto }
416 1.1 sakamoto
417 1.1 sakamoto for (i = 0x8000; i; i >>= 1) {
418 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
419 1.1 sakamoto DELAY(1);
420 1.1 sakamoto if (!ack) {
421 1.1 sakamoto if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT)
422 1.1 sakamoto frame->mii_data |= i;
423 1.1 sakamoto DELAY(1);
424 1.1 sakamoto }
425 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
426 1.1 sakamoto DELAY(1);
427 1.1 sakamoto }
428 1.1 sakamoto
429 1.1 sakamoto fail:
430 1.1 sakamoto
431 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
432 1.1 sakamoto DELAY(1);
433 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
434 1.1 sakamoto DELAY(1);
435 1.1 sakamoto
436 1.1 sakamoto splx(s);
437 1.1 sakamoto
438 1.1 sakamoto if (ack)
439 1.2 sakamoto return (1);
440 1.2 sakamoto return (0);
441 1.1 sakamoto }
442 1.1 sakamoto
443 1.1 sakamoto /*
444 1.1 sakamoto * Write to a PHY register through the MII.
445 1.1 sakamoto */
446 1.1 sakamoto static int vr_mii_writereg(sc, frame)
447 1.1 sakamoto struct vr_softc *sc;
448 1.1 sakamoto struct vr_mii_frame *frame;
449 1.1 sakamoto {
450 1.1 sakamoto int s;
451 1.1 sakamoto
452 1.1 sakamoto s = splimp();
453 1.1 sakamoto
454 1.1 sakamoto CSR_WRITE_1(sc, VR_MIICMD, 0);
455 1.1 sakamoto VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
456 1.1 sakamoto
457 1.1 sakamoto /*
458 1.1 sakamoto * Set up frame for TX.
459 1.1 sakamoto */
460 1.1 sakamoto
461 1.1 sakamoto frame->mii_stdelim = VR_MII_STARTDELIM;
462 1.1 sakamoto frame->mii_opcode = VR_MII_WRITEOP;
463 1.1 sakamoto frame->mii_turnaround = VR_MII_TURNAROUND;
464 1.2 sakamoto
465 1.1 sakamoto /*
466 1.2 sakamoto * Turn on data output.
467 1.1 sakamoto */
468 1.1 sakamoto SIO_SET(VR_MIICMD_DIR);
469 1.1 sakamoto
470 1.1 sakamoto vr_mii_sync(sc);
471 1.1 sakamoto
472 1.1 sakamoto vr_mii_send(sc, frame->mii_stdelim, 2);
473 1.1 sakamoto vr_mii_send(sc, frame->mii_opcode, 2);
474 1.1 sakamoto vr_mii_send(sc, frame->mii_phyaddr, 5);
475 1.1 sakamoto vr_mii_send(sc, frame->mii_regaddr, 5);
476 1.1 sakamoto vr_mii_send(sc, frame->mii_turnaround, 2);
477 1.1 sakamoto vr_mii_send(sc, frame->mii_data, 16);
478 1.1 sakamoto
479 1.1 sakamoto /* Idle bit. */
480 1.1 sakamoto SIO_SET(VR_MIICMD_CLK);
481 1.1 sakamoto DELAY(1);
482 1.1 sakamoto SIO_CLR(VR_MIICMD_CLK);
483 1.1 sakamoto DELAY(1);
484 1.1 sakamoto
485 1.1 sakamoto /*
486 1.1 sakamoto * Turn off xmit.
487 1.1 sakamoto */
488 1.1 sakamoto SIO_CLR(VR_MIICMD_DIR);
489 1.1 sakamoto
490 1.1 sakamoto splx(s);
491 1.1 sakamoto
492 1.2 sakamoto return (0);
493 1.1 sakamoto }
494 1.1 sakamoto
495 1.1 sakamoto static u_int16_t vr_phy_readreg(sc, reg)
496 1.1 sakamoto struct vr_softc *sc;
497 1.1 sakamoto int reg;
498 1.1 sakamoto {
499 1.1 sakamoto struct vr_mii_frame frame;
500 1.1 sakamoto
501 1.2 sakamoto bzero((char *)&frame, sizeof (frame));
502 1.1 sakamoto
503 1.1 sakamoto frame.mii_phyaddr = sc->vr_phy_addr;
504 1.1 sakamoto frame.mii_regaddr = reg;
505 1.1 sakamoto vr_mii_readreg(sc, &frame);
506 1.1 sakamoto
507 1.2 sakamoto return (frame.mii_data);
508 1.1 sakamoto }
509 1.1 sakamoto
510 1.1 sakamoto static void vr_phy_writereg(sc, reg, data)
511 1.1 sakamoto struct vr_softc *sc;
512 1.1 sakamoto u_int16_t reg;
513 1.1 sakamoto u_int16_t data;
514 1.1 sakamoto {
515 1.1 sakamoto struct vr_mii_frame frame;
516 1.1 sakamoto
517 1.2 sakamoto bzero((char *)&frame, sizeof (frame));
518 1.1 sakamoto
519 1.1 sakamoto frame.mii_phyaddr = sc->vr_phy_addr;
520 1.1 sakamoto frame.mii_regaddr = reg;
521 1.1 sakamoto frame.mii_data = data;
522 1.1 sakamoto
523 1.1 sakamoto vr_mii_writereg(sc, &frame);
524 1.1 sakamoto
525 1.1 sakamoto return;
526 1.1 sakamoto }
527 1.1 sakamoto
528 1.1 sakamoto /*
529 1.1 sakamoto * Calculate CRC of a multicast group address, return the lower 6 bits.
530 1.1 sakamoto */
531 1.1 sakamoto static u_int8_t vr_calchash(addr)
532 1.1 sakamoto u_int8_t *addr;
533 1.1 sakamoto {
534 1.1 sakamoto u_int32_t crc, carry;
535 1.1 sakamoto int i, j;
536 1.1 sakamoto u_int8_t c;
537 1.1 sakamoto
538 1.1 sakamoto /* Compute CRC for the address value. */
539 1.1 sakamoto crc = 0xFFFFFFFF; /* initial value */
540 1.1 sakamoto
541 1.1 sakamoto for (i = 0; i < 6; i++) {
542 1.1 sakamoto c = *(addr + i);
543 1.1 sakamoto for (j = 0; j < 8; j++) {
544 1.1 sakamoto carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
545 1.1 sakamoto crc <<= 1;
546 1.1 sakamoto c >>= 1;
547 1.1 sakamoto if (carry)
548 1.1 sakamoto crc = (crc ^ 0x04c11db6) | carry;
549 1.1 sakamoto }
550 1.1 sakamoto }
551 1.1 sakamoto
552 1.1 sakamoto /* return the filter bit position */
553 1.2 sakamoto return ((crc >> 26) & 0x0000003F);
554 1.1 sakamoto }
555 1.1 sakamoto
556 1.1 sakamoto /*
557 1.1 sakamoto * Program the 64-bit multicast hash filter.
558 1.1 sakamoto */
559 1.1 sakamoto static void vr_setmulti(sc)
560 1.1 sakamoto struct vr_softc *sc;
561 1.1 sakamoto {
562 1.1 sakamoto struct ifnet *ifp;
563 1.1 sakamoto int h = 0;
564 1.1 sakamoto u_int32_t hashes[2] = { 0, 0 };
565 1.2 sakamoto struct ether_multistep step;
566 1.2 sakamoto struct ether_multi *enm;
567 1.2 sakamoto int mcnt = 0;
568 1.1 sakamoto u_int8_t rxfilt;
569 1.1 sakamoto
570 1.6 thorpej ifp = &sc->vr_ec.ec_if;
571 1.1 sakamoto
572 1.1 sakamoto rxfilt = CSR_READ_1(sc, VR_RXCFG);
573 1.1 sakamoto
574 1.1 sakamoto if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
575 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
576 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
577 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
578 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
579 1.1 sakamoto return;
580 1.1 sakamoto }
581 1.1 sakamoto
582 1.1 sakamoto /* first, zot all the existing hash bits */
583 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, 0);
584 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, 0);
585 1.1 sakamoto
586 1.1 sakamoto /* now program new ones */
587 1.2 sakamoto ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
588 1.2 sakamoto while (enm != NULL) {
589 1.2 sakamoto if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
590 1.2 sakamoto continue;
591 1.2 sakamoto
592 1.2 sakamoto h = vr_calchash(enm->enm_addrlo);
593 1.2 sakamoto
594 1.1 sakamoto if (h < 32)
595 1.1 sakamoto hashes[0] |= (1 << h);
596 1.1 sakamoto else
597 1.1 sakamoto hashes[1] |= (1 << (h - 32));
598 1.2 sakamoto ETHER_NEXT_MULTI(step, enm);
599 1.1 sakamoto mcnt++;
600 1.1 sakamoto }
601 1.1 sakamoto
602 1.1 sakamoto if (mcnt)
603 1.1 sakamoto rxfilt |= VR_RXCFG_RX_MULTI;
604 1.1 sakamoto else
605 1.1 sakamoto rxfilt &= ~VR_RXCFG_RX_MULTI;
606 1.1 sakamoto
607 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
608 1.1 sakamoto CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
609 1.1 sakamoto CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
610 1.1 sakamoto
611 1.1 sakamoto return;
612 1.1 sakamoto }
613 1.1 sakamoto
614 1.1 sakamoto /*
615 1.1 sakamoto * Initiate an autonegotiation session.
616 1.1 sakamoto */
617 1.1 sakamoto static void vr_autoneg_xmit(sc)
618 1.1 sakamoto struct vr_softc *sc;
619 1.1 sakamoto {
620 1.1 sakamoto u_int16_t phy_sts;
621 1.1 sakamoto
622 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
623 1.1 sakamoto DELAY(500);
624 1.2 sakamoto while (vr_phy_readreg(sc, PHY_BMCR)
625 1.1 sakamoto & PHY_BMCR_RESET);
626 1.1 sakamoto
627 1.1 sakamoto phy_sts = vr_phy_readreg(sc, PHY_BMCR);
628 1.1 sakamoto phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
629 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, phy_sts);
630 1.1 sakamoto
631 1.1 sakamoto return;
632 1.1 sakamoto }
633 1.1 sakamoto
634 1.1 sakamoto /*
635 1.1 sakamoto * Invoke autonegotiation on a PHY.
636 1.1 sakamoto */
637 1.1 sakamoto static void vr_autoneg_mii(sc, flag, verbose)
638 1.1 sakamoto struct vr_softc *sc;
639 1.1 sakamoto int flag;
640 1.1 sakamoto int verbose;
641 1.1 sakamoto {
642 1.1 sakamoto u_int16_t phy_sts = 0, media, advert, ability;
643 1.1 sakamoto struct ifnet *ifp;
644 1.1 sakamoto struct ifmedia *ifm;
645 1.1 sakamoto
646 1.1 sakamoto ifm = &sc->ifmedia;
647 1.6 thorpej ifp = &sc->vr_ec.ec_if;
648 1.1 sakamoto
649 1.1 sakamoto ifm->ifm_media = IFM_ETHER | IFM_AUTO;
650 1.1 sakamoto
651 1.1 sakamoto /*
652 1.1 sakamoto * The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
653 1.1 sakamoto * bit cleared in the status register, but has the 'autoneg enabled'
654 1.1 sakamoto * bit set in the control register. This is a contradiction, and
655 1.1 sakamoto * I'm not sure how to handle it. If you want to force an attempt
656 1.1 sakamoto * to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
657 1.1 sakamoto * and see what happens.
658 1.1 sakamoto */
659 1.1 sakamoto #ifndef FORCE_AUTONEG_TFOUR
660 1.1 sakamoto /*
661 1.1 sakamoto * First, see if autoneg is supported. If not, there's
662 1.1 sakamoto * no point in continuing.
663 1.1 sakamoto */
664 1.1 sakamoto phy_sts = vr_phy_readreg(sc, PHY_BMSR);
665 1.1 sakamoto if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
666 1.1 sakamoto if (verbose)
667 1.6 thorpej printf("%s: autonegotiation not supported\n",
668 1.6 thorpej sc->vr_dev.dv_xname);
669 1.2 sakamoto ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
670 1.1 sakamoto return;
671 1.1 sakamoto }
672 1.1 sakamoto #endif
673 1.1 sakamoto
674 1.1 sakamoto switch (flag) {
675 1.1 sakamoto case VR_FLAG_FORCEDELAY:
676 1.1 sakamoto /*
677 1.2 sakamoto * XXX Never use this option anywhere but in the probe
678 1.2 sakamoto * routine: making the kernel stop dead in its tracks
679 1.2 sakamoto * for three whole seconds after we've gone multi-user
680 1.1 sakamoto * is really bad manners.
681 1.2 sakamoto */
682 1.1 sakamoto vr_autoneg_xmit(sc);
683 1.1 sakamoto DELAY(5000000);
684 1.1 sakamoto break;
685 1.1 sakamoto case VR_FLAG_SCHEDDELAY:
686 1.1 sakamoto /*
687 1.1 sakamoto * Wait for the transmitter to go idle before starting
688 1.1 sakamoto * an autoneg session, otherwise vr_start() may clobber
689 1.2 sakamoto * our timeout, and we don't want to allow transmission
690 1.1 sakamoto * during an autoneg session since that can screw it up.
691 1.2 sakamoto */
692 1.1 sakamoto if (sc->vr_cdata.vr_tx_head != NULL) {
693 1.1 sakamoto sc->vr_want_auto = 1;
694 1.1 sakamoto return;
695 1.1 sakamoto }
696 1.1 sakamoto vr_autoneg_xmit(sc);
697 1.1 sakamoto ifp->if_timer = 5;
698 1.1 sakamoto sc->vr_autoneg = 1;
699 1.1 sakamoto sc->vr_want_auto = 0;
700 1.1 sakamoto return;
701 1.1 sakamoto break;
702 1.1 sakamoto case VR_FLAG_DELAYTIMEO:
703 1.1 sakamoto ifp->if_timer = 0;
704 1.1 sakamoto sc->vr_autoneg = 0;
705 1.1 sakamoto break;
706 1.1 sakamoto default:
707 1.6 thorpej printf("%s: invalid autoneg flag: %d\n",
708 1.6 thorpej sc->vr_dev.dv_xname, flag);
709 1.1 sakamoto return;
710 1.1 sakamoto }
711 1.1 sakamoto
712 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
713 1.1 sakamoto if (verbose)
714 1.6 thorpej printf("%s: autoneg complete, ",
715 1.6 thorpej sc->vr_dev.dv_xname);
716 1.1 sakamoto phy_sts = vr_phy_readreg(sc, PHY_BMSR);
717 1.1 sakamoto } else {
718 1.1 sakamoto if (verbose)
719 1.6 thorpej printf("%s: autoneg not complete, ",
720 1.6 thorpej sc->vr_dev.dv_xname);
721 1.1 sakamoto }
722 1.1 sakamoto
723 1.1 sakamoto media = vr_phy_readreg(sc, PHY_BMCR);
724 1.1 sakamoto
725 1.1 sakamoto /* Link is good. Report modes and set duplex mode. */
726 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
727 1.1 sakamoto if (verbose)
728 1.1 sakamoto printf("link status good ");
729 1.1 sakamoto advert = vr_phy_readreg(sc, PHY_ANAR);
730 1.1 sakamoto ability = vr_phy_readreg(sc, PHY_LPAR);
731 1.1 sakamoto
732 1.1 sakamoto if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
733 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_100_T4;
734 1.1 sakamoto media |= PHY_BMCR_SPEEDSEL;
735 1.1 sakamoto media &= ~PHY_BMCR_DUPLEX;
736 1.1 sakamoto printf("(100baseT4)\n");
737 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXFULL &&
738 1.1 sakamoto ability & PHY_ANAR_100BTXFULL) {
739 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
740 1.1 sakamoto media |= PHY_BMCR_SPEEDSEL;
741 1.1 sakamoto media |= PHY_BMCR_DUPLEX;
742 1.1 sakamoto printf("(full-duplex, 100Mbps)\n");
743 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXHALF &&
744 1.1 sakamoto ability & PHY_ANAR_100BTXHALF) {
745 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
746 1.1 sakamoto media |= PHY_BMCR_SPEEDSEL;
747 1.1 sakamoto media &= ~PHY_BMCR_DUPLEX;
748 1.1 sakamoto printf("(half-duplex, 100Mbps)\n");
749 1.1 sakamoto } else if (advert & PHY_ANAR_10BTFULL &&
750 1.1 sakamoto ability & PHY_ANAR_10BTFULL) {
751 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
752 1.1 sakamoto media &= ~PHY_BMCR_SPEEDSEL;
753 1.1 sakamoto media |= PHY_BMCR_DUPLEX;
754 1.1 sakamoto printf("(full-duplex, 10Mbps)\n");
755 1.1 sakamoto } else {
756 1.1 sakamoto ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
757 1.1 sakamoto media &= ~PHY_BMCR_SPEEDSEL;
758 1.1 sakamoto media &= ~PHY_BMCR_DUPLEX;
759 1.1 sakamoto printf("(half-duplex, 10Mbps)\n");
760 1.1 sakamoto }
761 1.1 sakamoto
762 1.1 sakamoto media &= ~PHY_BMCR_AUTONEGENBL;
763 1.1 sakamoto
764 1.1 sakamoto /* Set ASIC's duplex mode to match the PHY. */
765 1.1 sakamoto vr_setcfg(sc, media);
766 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, media);
767 1.1 sakamoto } else {
768 1.1 sakamoto if (verbose)
769 1.1 sakamoto printf("no carrier\n");
770 1.1 sakamoto }
771 1.1 sakamoto
772 1.1 sakamoto vr_init(sc);
773 1.1 sakamoto
774 1.1 sakamoto if (sc->vr_tx_pend) {
775 1.1 sakamoto sc->vr_autoneg = 0;
776 1.1 sakamoto sc->vr_tx_pend = 0;
777 1.1 sakamoto vr_start(ifp);
778 1.1 sakamoto }
779 1.1 sakamoto
780 1.1 sakamoto return;
781 1.1 sakamoto }
782 1.1 sakamoto
783 1.1 sakamoto static void vr_getmode_mii(sc)
784 1.1 sakamoto struct vr_softc *sc;
785 1.1 sakamoto {
786 1.1 sakamoto u_int16_t bmsr;
787 1.1 sakamoto struct ifnet *ifp;
788 1.1 sakamoto
789 1.6 thorpej ifp = &sc->vr_ec.ec_if;
790 1.1 sakamoto
791 1.1 sakamoto bmsr = vr_phy_readreg(sc, PHY_BMSR);
792 1.1 sakamoto
793 1.1 sakamoto /* fallback */
794 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
795 1.1 sakamoto
796 1.1 sakamoto if (bmsr & PHY_BMSR_10BTHALF) {
797 1.1 sakamoto ifmedia_add(&sc->ifmedia,
798 1.1 sakamoto IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
799 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
800 1.1 sakamoto }
801 1.1 sakamoto
802 1.1 sakamoto if (bmsr & PHY_BMSR_10BTFULL) {
803 1.1 sakamoto ifmedia_add(&sc->ifmedia,
804 1.1 sakamoto IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
805 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
806 1.1 sakamoto }
807 1.1 sakamoto
808 1.1 sakamoto if (bmsr & PHY_BMSR_100BTXHALF) {
809 1.1 sakamoto ifp->if_baudrate = 100000000;
810 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
811 1.1 sakamoto ifmedia_add(&sc->ifmedia,
812 1.1 sakamoto IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
813 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
814 1.1 sakamoto }
815 1.1 sakamoto
816 1.1 sakamoto if (bmsr & PHY_BMSR_100BTXFULL) {
817 1.1 sakamoto ifp->if_baudrate = 100000000;
818 1.1 sakamoto ifmedia_add(&sc->ifmedia,
819 1.1 sakamoto IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
820 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
821 1.1 sakamoto }
822 1.1 sakamoto
823 1.1 sakamoto /* Some also support 100BaseT4. */
824 1.1 sakamoto if (bmsr & PHY_BMSR_100BT4) {
825 1.1 sakamoto ifp->if_baudrate = 100000000;
826 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
827 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
828 1.1 sakamoto #ifdef FORCE_AUTONEG_TFOUR
829 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
830 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
831 1.1 sakamoto #endif
832 1.1 sakamoto }
833 1.1 sakamoto
834 1.1 sakamoto if (bmsr & PHY_BMSR_CANAUTONEG) {
835 1.1 sakamoto ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
836 1.1 sakamoto sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
837 1.1 sakamoto }
838 1.1 sakamoto
839 1.1 sakamoto return;
840 1.1 sakamoto }
841 1.1 sakamoto
842 1.1 sakamoto /*
843 1.1 sakamoto * Set speed and duplex mode.
844 1.1 sakamoto */
845 1.1 sakamoto static void vr_setmode_mii(sc, media)
846 1.1 sakamoto struct vr_softc *sc;
847 1.1 sakamoto int media;
848 1.1 sakamoto {
849 1.1 sakamoto u_int16_t bmcr;
850 1.1 sakamoto struct ifnet *ifp;
851 1.1 sakamoto
852 1.6 thorpej ifp = &sc->vr_ec.ec_if;
853 1.1 sakamoto
854 1.1 sakamoto /*
855 1.1 sakamoto * If an autoneg session is in progress, stop it.
856 1.1 sakamoto */
857 1.1 sakamoto if (sc->vr_autoneg) {
858 1.6 thorpej printf("%s: canceling autoneg session\n",
859 1.6 thorpej sc->vr_dev.dv_xname);
860 1.1 sakamoto ifp->if_timer = sc->vr_autoneg = sc->vr_want_auto = 0;
861 1.1 sakamoto bmcr = vr_phy_readreg(sc, PHY_BMCR);
862 1.1 sakamoto bmcr &= ~PHY_BMCR_AUTONEGENBL;
863 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, bmcr);
864 1.1 sakamoto }
865 1.1 sakamoto
866 1.6 thorpej printf("%s: selecting MII, ", sc->vr_dev.dv_xname);
867 1.1 sakamoto
868 1.1 sakamoto bmcr = vr_phy_readreg(sc, PHY_BMCR);
869 1.1 sakamoto
870 1.1 sakamoto bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
871 1.1 sakamoto PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
872 1.1 sakamoto
873 1.1 sakamoto if (IFM_SUBTYPE(media) == IFM_100_T4) {
874 1.1 sakamoto printf("100Mbps/T4, half-duplex\n");
875 1.1 sakamoto bmcr |= PHY_BMCR_SPEEDSEL;
876 1.1 sakamoto bmcr &= ~PHY_BMCR_DUPLEX;
877 1.1 sakamoto }
878 1.1 sakamoto
879 1.1 sakamoto if (IFM_SUBTYPE(media) == IFM_100_TX) {
880 1.1 sakamoto printf("100Mbps, ");
881 1.1 sakamoto bmcr |= PHY_BMCR_SPEEDSEL;
882 1.1 sakamoto }
883 1.1 sakamoto
884 1.1 sakamoto if (IFM_SUBTYPE(media) == IFM_10_T) {
885 1.1 sakamoto printf("10Mbps, ");
886 1.1 sakamoto bmcr &= ~PHY_BMCR_SPEEDSEL;
887 1.1 sakamoto }
888 1.1 sakamoto
889 1.1 sakamoto if ((media & IFM_GMASK) == IFM_FDX) {
890 1.1 sakamoto printf("full duplex\n");
891 1.1 sakamoto bmcr |= PHY_BMCR_DUPLEX;
892 1.1 sakamoto } else {
893 1.1 sakamoto printf("half duplex\n");
894 1.1 sakamoto bmcr &= ~PHY_BMCR_DUPLEX;
895 1.1 sakamoto }
896 1.1 sakamoto
897 1.1 sakamoto vr_setcfg(sc, bmcr);
898 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, bmcr);
899 1.1 sakamoto
900 1.1 sakamoto return;
901 1.1 sakamoto }
902 1.1 sakamoto
903 1.1 sakamoto /*
904 1.1 sakamoto * In order to fiddle with the
905 1.1 sakamoto * 'full-duplex' and '100Mbps' bits in the netconfig register, we
906 1.1 sakamoto * first have to put the transmit and/or receive logic in the idle state.
907 1.1 sakamoto */
908 1.1 sakamoto static void vr_setcfg(sc, bmcr)
909 1.1 sakamoto struct vr_softc *sc;
910 1.1 sakamoto u_int16_t bmcr;
911 1.1 sakamoto {
912 1.1 sakamoto int restart = 0;
913 1.1 sakamoto
914 1.1 sakamoto if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
915 1.1 sakamoto restart = 1;
916 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
917 1.1 sakamoto }
918 1.1 sakamoto
919 1.1 sakamoto if (bmcr & PHY_BMCR_DUPLEX)
920 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
921 1.1 sakamoto else
922 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
923 1.1 sakamoto
924 1.1 sakamoto if (restart)
925 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
926 1.1 sakamoto
927 1.1 sakamoto return;
928 1.1 sakamoto }
929 1.1 sakamoto
930 1.1 sakamoto static void vr_reset(sc)
931 1.1 sakamoto struct vr_softc *sc;
932 1.1 sakamoto {
933 1.1 sakamoto register int i;
934 1.1 sakamoto
935 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
936 1.1 sakamoto
937 1.1 sakamoto for (i = 0; i < VR_TIMEOUT; i++) {
938 1.1 sakamoto DELAY(10);
939 1.1 sakamoto if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
940 1.1 sakamoto break;
941 1.1 sakamoto }
942 1.1 sakamoto if (i == VR_TIMEOUT)
943 1.6 thorpej printf("%s: reset never completed!\n",
944 1.6 thorpej sc->vr_dev.dv_xname);
945 1.1 sakamoto
946 1.1 sakamoto /* Wait a little while for the chip to get its brains in order. */
947 1.1 sakamoto DELAY(1000);
948 1.1 sakamoto
949 1.1 sakamoto return;
950 1.1 sakamoto }
951 1.1 sakamoto
952 1.1 sakamoto /*
953 1.1 sakamoto * Initialize the transmit descriptors.
954 1.1 sakamoto */
955 1.1 sakamoto static int vr_list_tx_init(sc)
956 1.1 sakamoto struct vr_softc *sc;
957 1.1 sakamoto {
958 1.1 sakamoto struct vr_chain_data *cd;
959 1.1 sakamoto struct vr_list_data *ld;
960 1.1 sakamoto int i;
961 1.1 sakamoto
962 1.1 sakamoto cd = &sc->vr_cdata;
963 1.1 sakamoto ld = sc->vr_ldata;
964 1.1 sakamoto for (i = 0; i < VR_TX_LIST_CNT; i++) {
965 1.1 sakamoto cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
966 1.1 sakamoto if (i == (VR_TX_LIST_CNT - 1))
967 1.2 sakamoto cd->vr_tx_chain[i].vr_nextdesc =
968 1.1 sakamoto &cd->vr_tx_chain[0];
969 1.1 sakamoto else
970 1.1 sakamoto cd->vr_tx_chain[i].vr_nextdesc =
971 1.1 sakamoto &cd->vr_tx_chain[i + 1];
972 1.1 sakamoto }
973 1.1 sakamoto
974 1.1 sakamoto cd->vr_tx_free = &cd->vr_tx_chain[0];
975 1.1 sakamoto cd->vr_tx_tail = cd->vr_tx_head = NULL;
976 1.1 sakamoto
977 1.2 sakamoto return (0);
978 1.1 sakamoto }
979 1.1 sakamoto
980 1.1 sakamoto
981 1.1 sakamoto /*
982 1.1 sakamoto * Initialize the RX descriptors and allocate mbufs for them. Note that
983 1.1 sakamoto * we arrange the descriptors in a closed ring, so that the last descriptor
984 1.1 sakamoto * points back to the first.
985 1.1 sakamoto */
986 1.1 sakamoto static int vr_list_rx_init(sc)
987 1.1 sakamoto struct vr_softc *sc;
988 1.1 sakamoto {
989 1.1 sakamoto struct vr_chain_data *cd;
990 1.1 sakamoto struct vr_list_data *ld;
991 1.1 sakamoto int i;
992 1.1 sakamoto
993 1.1 sakamoto cd = &sc->vr_cdata;
994 1.1 sakamoto ld = sc->vr_ldata;
995 1.1 sakamoto
996 1.1 sakamoto for (i = 0; i < VR_RX_LIST_CNT; i++) {
997 1.1 sakamoto cd->vr_rx_chain[i].vr_ptr =
998 1.1 sakamoto (struct vr_desc *)&ld->vr_rx_list[i];
999 1.1 sakamoto if (vr_newbuf(sc, &cd->vr_rx_chain[i]) == ENOBUFS)
1000 1.2 sakamoto return (ENOBUFS);
1001 1.1 sakamoto if (i == (VR_RX_LIST_CNT - 1)) {
1002 1.1 sakamoto cd->vr_rx_chain[i].vr_nextdesc =
1003 1.1 sakamoto &cd->vr_rx_chain[0];
1004 1.1 sakamoto ld->vr_rx_list[i].vr_next =
1005 1.1 sakamoto vtophys(&ld->vr_rx_list[0]);
1006 1.1 sakamoto } else {
1007 1.1 sakamoto cd->vr_rx_chain[i].vr_nextdesc =
1008 1.1 sakamoto &cd->vr_rx_chain[i + 1];
1009 1.1 sakamoto ld->vr_rx_list[i].vr_next =
1010 1.1 sakamoto vtophys(&ld->vr_rx_list[i + 1]);
1011 1.1 sakamoto }
1012 1.1 sakamoto }
1013 1.1 sakamoto
1014 1.1 sakamoto cd->vr_rx_head = &cd->vr_rx_chain[0];
1015 1.1 sakamoto
1016 1.2 sakamoto return (0);
1017 1.1 sakamoto }
1018 1.1 sakamoto
1019 1.1 sakamoto /*
1020 1.1 sakamoto * Initialize an RX descriptor and attach an MBUF cluster.
1021 1.1 sakamoto * Note: the length fields are only 11 bits wide, which means the
1022 1.1 sakamoto * largest size we can specify is 2047. This is important because
1023 1.1 sakamoto * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1024 1.1 sakamoto * overflow the field and make a mess.
1025 1.1 sakamoto */
1026 1.1 sakamoto static int vr_newbuf(sc, c)
1027 1.1 sakamoto struct vr_softc *sc;
1028 1.1 sakamoto struct vr_chain_onefrag *c;
1029 1.1 sakamoto {
1030 1.1 sakamoto struct mbuf *m_new = NULL;
1031 1.1 sakamoto
1032 1.1 sakamoto MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1033 1.1 sakamoto if (m_new == NULL) {
1034 1.6 thorpej printf("%s: no memory for rx list -- packet dropped!\n",
1035 1.6 thorpej sc->vr_dev.dv_xname);
1036 1.2 sakamoto return (ENOBUFS);
1037 1.1 sakamoto }
1038 1.1 sakamoto
1039 1.1 sakamoto MCLGET(m_new, M_DONTWAIT);
1040 1.1 sakamoto if (!(m_new->m_flags & M_EXT)) {
1041 1.6 thorpej printf("%s: no memory for rx list -- packet dropped!\n",
1042 1.6 thorpej sc->vr_dev.dv_xname);
1043 1.1 sakamoto m_freem(m_new);
1044 1.2 sakamoto return (ENOBUFS);
1045 1.1 sakamoto }
1046 1.1 sakamoto
1047 1.1 sakamoto c->vr_mbuf = m_new;
1048 1.1 sakamoto c->vr_ptr->vr_status = VR_RXSTAT;
1049 1.1 sakamoto c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
1050 1.1 sakamoto c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
1051 1.1 sakamoto
1052 1.2 sakamoto return (0);
1053 1.1 sakamoto }
1054 1.1 sakamoto
1055 1.1 sakamoto /*
1056 1.1 sakamoto * A frame has been uploaded: pass the resulting mbuf chain up to
1057 1.1 sakamoto * the higher level protocols.
1058 1.1 sakamoto */
1059 1.1 sakamoto static void vr_rxeof(sc)
1060 1.1 sakamoto struct vr_softc *sc;
1061 1.1 sakamoto {
1062 1.2 sakamoto struct ether_header *eh;
1063 1.2 sakamoto struct mbuf *m;
1064 1.2 sakamoto struct ifnet *ifp;
1065 1.1 sakamoto struct vr_chain_onefrag *cur_rx;
1066 1.1 sakamoto int total_len = 0;
1067 1.1 sakamoto u_int32_t rxstat;
1068 1.1 sakamoto
1069 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1070 1.1 sakamoto
1071 1.2 sakamoto while (!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
1072 1.1 sakamoto VR_RXSTAT_OWN)) {
1073 1.1 sakamoto cur_rx = sc->vr_cdata.vr_rx_head;
1074 1.1 sakamoto sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
1075 1.1 sakamoto
1076 1.1 sakamoto /*
1077 1.1 sakamoto * If an error occurs, update stats, clear the
1078 1.1 sakamoto * status word and leave the mbuf cluster in place:
1079 1.1 sakamoto * it should simply get re-used next time this descriptor
1080 1.2 sakamoto * comes up in the ring.
1081 1.1 sakamoto */
1082 1.1 sakamoto if (rxstat & VR_RXSTAT_RXERR) {
1083 1.1 sakamoto ifp->if_ierrors++;
1084 1.6 thorpej printf("%s: rx error: ", sc->vr_dev.dv_xname);
1085 1.2 sakamoto switch (rxstat & 0x000000FF) {
1086 1.1 sakamoto case VR_RXSTAT_CRCERR:
1087 1.1 sakamoto printf("crc error\n");
1088 1.1 sakamoto break;
1089 1.1 sakamoto case VR_RXSTAT_FRAMEALIGNERR:
1090 1.1 sakamoto printf("frame alignment error\n");
1091 1.1 sakamoto break;
1092 1.1 sakamoto case VR_RXSTAT_FIFOOFLOW:
1093 1.1 sakamoto printf("FIFO overflow\n");
1094 1.1 sakamoto break;
1095 1.1 sakamoto case VR_RXSTAT_GIANT:
1096 1.1 sakamoto printf("received giant packet\n");
1097 1.1 sakamoto break;
1098 1.1 sakamoto case VR_RXSTAT_RUNT:
1099 1.1 sakamoto printf("received runt packet\n");
1100 1.1 sakamoto break;
1101 1.1 sakamoto case VR_RXSTAT_BUSERR:
1102 1.1 sakamoto printf("system bus error\n");
1103 1.1 sakamoto break;
1104 1.1 sakamoto case VR_RXSTAT_BUFFERR:
1105 1.1 sakamoto printf("rx buffer error\n");
1106 1.1 sakamoto break;
1107 1.1 sakamoto default:
1108 1.1 sakamoto printf("unknown rx error\n");
1109 1.1 sakamoto break;
1110 1.1 sakamoto }
1111 1.1 sakamoto cur_rx->vr_ptr->vr_status = VR_RXSTAT;
1112 1.1 sakamoto cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
1113 1.1 sakamoto continue;
1114 1.1 sakamoto }
1115 1.1 sakamoto
1116 1.2 sakamoto /* No errors; receive the packet. */
1117 1.1 sakamoto m = cur_rx->vr_mbuf;
1118 1.1 sakamoto total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
1119 1.1 sakamoto
1120 1.1 sakamoto /*
1121 1.1 sakamoto * XXX The VIA Rhine chip includes the CRC with every
1122 1.1 sakamoto * received frame, and there's no way to turn this
1123 1.1 sakamoto * behavior off (at least, I can't find anything in
1124 1.2 sakamoto * the manual that explains how to do it) so we have
1125 1.1 sakamoto * to trim off the CRC manually.
1126 1.1 sakamoto */
1127 1.1 sakamoto total_len -= ETHER_CRC_LEN;
1128 1.1 sakamoto
1129 1.1 sakamoto /*
1130 1.1 sakamoto * Try to conjure up a new mbuf cluster. If that
1131 1.1 sakamoto * fails, it means we have an out of memory condition and
1132 1.1 sakamoto * should leave the buffer in place and continue. This will
1133 1.1 sakamoto * result in a lost packet, but there's little else we
1134 1.1 sakamoto * can do in this situation.
1135 1.1 sakamoto */
1136 1.1 sakamoto if (vr_newbuf(sc, cur_rx) == ENOBUFS) {
1137 1.1 sakamoto ifp->if_ierrors++;
1138 1.1 sakamoto cur_rx->vr_ptr->vr_status = VR_RXSTAT;
1139 1.1 sakamoto cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
1140 1.1 sakamoto continue;
1141 1.1 sakamoto }
1142 1.1 sakamoto
1143 1.1 sakamoto ifp->if_ipackets++;
1144 1.1 sakamoto eh = mtod(m, struct ether_header *);
1145 1.1 sakamoto m->m_pkthdr.rcvif = ifp;
1146 1.1 sakamoto m->m_pkthdr.len = m->m_len = total_len;
1147 1.1 sakamoto #if NBPFILTER > 0
1148 1.1 sakamoto /*
1149 1.1 sakamoto * Handle BPF listeners. Let the BPF user see the packet, but
1150 1.1 sakamoto * don't pass it up to the ether_input() layer unless it's
1151 1.1 sakamoto * a broadcast packet, multicast packet, matches our ethernet
1152 1.1 sakamoto * address or the interface is in promiscuous mode.
1153 1.1 sakamoto */
1154 1.1 sakamoto if (ifp->if_bpf) {
1155 1.2 sakamoto bpf_mtap(ifp->if_bpf, m);
1156 1.1 sakamoto if (ifp->if_flags & IFF_PROMISC &&
1157 1.2 sakamoto (memcmp(eh->ether_dhost, sc->vr_enaddr,
1158 1.1 sakamoto ETHER_ADDR_LEN) &&
1159 1.1 sakamoto (eh->ether_dhost[0] & 1) == 0)) {
1160 1.1 sakamoto m_freem(m);
1161 1.1 sakamoto continue;
1162 1.1 sakamoto }
1163 1.1 sakamoto }
1164 1.1 sakamoto #endif
1165 1.1 sakamoto /* Remove header from mbuf and pass it on. */
1166 1.2 sakamoto m_adj(m, sizeof (struct ether_header));
1167 1.1 sakamoto ether_input(ifp, eh, m);
1168 1.1 sakamoto }
1169 1.1 sakamoto
1170 1.1 sakamoto return;
1171 1.1 sakamoto }
1172 1.1 sakamoto
1173 1.1 sakamoto void vr_rxeoc(sc)
1174 1.1 sakamoto struct vr_softc *sc;
1175 1.1 sakamoto {
1176 1.1 sakamoto
1177 1.1 sakamoto vr_rxeof(sc);
1178 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
1179 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
1180 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
1181 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
1182 1.1 sakamoto
1183 1.1 sakamoto return;
1184 1.1 sakamoto }
1185 1.1 sakamoto
1186 1.1 sakamoto /*
1187 1.1 sakamoto * A frame was downloaded to the chip. It's safe for us to clean up
1188 1.1 sakamoto * the list buffers.
1189 1.1 sakamoto */
1190 1.1 sakamoto
1191 1.1 sakamoto static void vr_txeof(sc)
1192 1.1 sakamoto struct vr_softc *sc;
1193 1.1 sakamoto {
1194 1.1 sakamoto struct vr_chain *cur_tx;
1195 1.1 sakamoto struct ifnet *ifp;
1196 1.1 sakamoto register struct mbuf *n;
1197 1.1 sakamoto
1198 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1199 1.1 sakamoto
1200 1.1 sakamoto /* Clear the timeout timer. */
1201 1.1 sakamoto ifp->if_timer = 0;
1202 1.1 sakamoto
1203 1.1 sakamoto /* Sanity check. */
1204 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == NULL)
1205 1.1 sakamoto return;
1206 1.1 sakamoto
1207 1.1 sakamoto /*
1208 1.1 sakamoto * Go through our tx list and free mbufs for those
1209 1.1 sakamoto * frames that have been transmitted.
1210 1.1 sakamoto */
1211 1.2 sakamoto while (sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
1212 1.1 sakamoto u_int32_t txstat;
1213 1.1 sakamoto
1214 1.1 sakamoto cur_tx = sc->vr_cdata.vr_tx_head;
1215 1.1 sakamoto txstat = cur_tx->vr_ptr->vr_status;
1216 1.1 sakamoto
1217 1.1 sakamoto if (txstat & VR_TXSTAT_OWN)
1218 1.1 sakamoto break;
1219 1.1 sakamoto
1220 1.1 sakamoto if (txstat & VR_TXSTAT_ERRSUM) {
1221 1.1 sakamoto ifp->if_oerrors++;
1222 1.1 sakamoto if (txstat & VR_TXSTAT_DEFER)
1223 1.1 sakamoto ifp->if_collisions++;
1224 1.1 sakamoto if (txstat & VR_TXSTAT_LATECOLL)
1225 1.1 sakamoto ifp->if_collisions++;
1226 1.1 sakamoto }
1227 1.1 sakamoto
1228 1.1 sakamoto ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
1229 1.1 sakamoto
1230 1.1 sakamoto ifp->if_opackets++;
1231 1.2 sakamoto MFREE(cur_tx->vr_mbuf, n);
1232 1.1 sakamoto cur_tx->vr_mbuf = NULL;
1233 1.1 sakamoto
1234 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
1235 1.1 sakamoto sc->vr_cdata.vr_tx_head = NULL;
1236 1.1 sakamoto sc->vr_cdata.vr_tx_tail = NULL;
1237 1.1 sakamoto break;
1238 1.1 sakamoto }
1239 1.1 sakamoto
1240 1.1 sakamoto sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
1241 1.1 sakamoto }
1242 1.1 sakamoto
1243 1.1 sakamoto return;
1244 1.1 sakamoto }
1245 1.1 sakamoto
1246 1.1 sakamoto /*
1247 1.1 sakamoto * TX 'end of channel' interrupt handler.
1248 1.1 sakamoto */
1249 1.1 sakamoto static void vr_txeoc(sc)
1250 1.1 sakamoto struct vr_softc *sc;
1251 1.1 sakamoto {
1252 1.1 sakamoto struct ifnet *ifp;
1253 1.1 sakamoto
1254 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1255 1.1 sakamoto
1256 1.1 sakamoto ifp->if_timer = 0;
1257 1.1 sakamoto
1258 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == NULL) {
1259 1.1 sakamoto ifp->if_flags &= ~IFF_OACTIVE;
1260 1.1 sakamoto sc->vr_cdata.vr_tx_tail = NULL;
1261 1.1 sakamoto if (sc->vr_want_auto)
1262 1.1 sakamoto vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
1263 1.1 sakamoto }
1264 1.1 sakamoto
1265 1.1 sakamoto return;
1266 1.1 sakamoto }
1267 1.1 sakamoto
1268 1.1 sakamoto static void vr_intr(arg)
1269 1.1 sakamoto void *arg;
1270 1.1 sakamoto {
1271 1.1 sakamoto struct vr_softc *sc;
1272 1.1 sakamoto struct ifnet *ifp;
1273 1.1 sakamoto u_int16_t status;
1274 1.1 sakamoto
1275 1.1 sakamoto sc = arg;
1276 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1277 1.1 sakamoto
1278 1.1 sakamoto /* Supress unwanted interrupts. */
1279 1.1 sakamoto if (!(ifp->if_flags & IFF_UP)) {
1280 1.1 sakamoto vr_stop(sc);
1281 1.1 sakamoto return;
1282 1.1 sakamoto }
1283 1.1 sakamoto
1284 1.1 sakamoto /* Disable interrupts. */
1285 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
1286 1.1 sakamoto
1287 1.1 sakamoto for (;;) {
1288 1.1 sakamoto
1289 1.1 sakamoto status = CSR_READ_2(sc, VR_ISR);
1290 1.1 sakamoto if (status)
1291 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, status);
1292 1.1 sakamoto
1293 1.1 sakamoto if ((status & VR_INTRS) == 0)
1294 1.1 sakamoto break;
1295 1.1 sakamoto
1296 1.1 sakamoto if (status & VR_ISR_RX_OK)
1297 1.1 sakamoto vr_rxeof(sc);
1298 1.1 sakamoto
1299 1.1 sakamoto if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
1300 1.1 sakamoto (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
1301 1.1 sakamoto (status & VR_ISR_RX_DROPPED)) {
1302 1.1 sakamoto vr_rxeof(sc);
1303 1.1 sakamoto vr_rxeoc(sc);
1304 1.1 sakamoto }
1305 1.1 sakamoto
1306 1.1 sakamoto if (status & VR_ISR_TX_OK) {
1307 1.1 sakamoto vr_txeof(sc);
1308 1.1 sakamoto vr_txeoc(sc);
1309 1.1 sakamoto }
1310 1.1 sakamoto
1311 1.2 sakamoto if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)) {
1312 1.1 sakamoto ifp->if_oerrors++;
1313 1.1 sakamoto vr_txeof(sc);
1314 1.1 sakamoto if (sc->vr_cdata.vr_tx_head != NULL) {
1315 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
1316 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1317 1.1 sakamoto }
1318 1.1 sakamoto }
1319 1.1 sakamoto
1320 1.1 sakamoto if (status & VR_ISR_BUSERR) {
1321 1.1 sakamoto vr_reset(sc);
1322 1.1 sakamoto vr_init(sc);
1323 1.1 sakamoto }
1324 1.1 sakamoto }
1325 1.1 sakamoto
1326 1.1 sakamoto /* Re-enable interrupts. */
1327 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1328 1.1 sakamoto
1329 1.1 sakamoto if (ifp->if_snd.ifq_head != NULL) {
1330 1.1 sakamoto vr_start(ifp);
1331 1.1 sakamoto }
1332 1.1 sakamoto
1333 1.1 sakamoto return;
1334 1.1 sakamoto }
1335 1.1 sakamoto
1336 1.1 sakamoto /*
1337 1.1 sakamoto * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1338 1.1 sakamoto * pointers to the fragment pointers.
1339 1.1 sakamoto */
1340 1.1 sakamoto static int vr_encap(sc, c, m_head)
1341 1.1 sakamoto struct vr_softc *sc;
1342 1.1 sakamoto struct vr_chain *c;
1343 1.1 sakamoto struct mbuf *m_head;
1344 1.1 sakamoto {
1345 1.1 sakamoto int frag = 0;
1346 1.1 sakamoto struct vr_desc *f = NULL;
1347 1.1 sakamoto int total_len;
1348 1.1 sakamoto struct mbuf *m;
1349 1.1 sakamoto
1350 1.1 sakamoto m = m_head;
1351 1.1 sakamoto total_len = 0;
1352 1.1 sakamoto
1353 1.1 sakamoto /*
1354 1.1 sakamoto * The VIA Rhine wants packet buffers to be longword
1355 1.1 sakamoto * aligned, but very often our mbufs aren't. Rather than
1356 1.1 sakamoto * waste time trying to decide when to copy and when not
1357 1.1 sakamoto * to copy, just do it all the time.
1358 1.1 sakamoto */
1359 1.1 sakamoto if (m != NULL) {
1360 1.1 sakamoto struct mbuf *m_new = NULL;
1361 1.1 sakamoto
1362 1.1 sakamoto MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1363 1.1 sakamoto if (m_new == NULL) {
1364 1.6 thorpej printf("%s: no memory for tx list",
1365 1.6 thorpej sc->vr_dev.dv_xname);
1366 1.2 sakamoto return (1);
1367 1.1 sakamoto }
1368 1.1 sakamoto if (m_head->m_pkthdr.len > MHLEN) {
1369 1.1 sakamoto MCLGET(m_new, M_DONTWAIT);
1370 1.1 sakamoto if (!(m_new->m_flags & M_EXT)) {
1371 1.1 sakamoto m_freem(m_new);
1372 1.6 thorpej printf("%s: no memory for tx list",
1373 1.6 thorpej sc->vr_dev.dv_xname);
1374 1.2 sakamoto return (1);
1375 1.1 sakamoto }
1376 1.1 sakamoto }
1377 1.2 sakamoto m_copydata(m_head, 0, m_head->m_pkthdr.len,
1378 1.1 sakamoto mtod(m_new, caddr_t));
1379 1.1 sakamoto m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1380 1.1 sakamoto m_freem(m_head);
1381 1.1 sakamoto m_head = m_new;
1382 1.1 sakamoto /*
1383 1.1 sakamoto * The Rhine chip doesn't auto-pad, so we have to make
1384 1.1 sakamoto * sure to pad short frames out to the minimum frame length
1385 1.1 sakamoto * ourselves.
1386 1.1 sakamoto */
1387 1.1 sakamoto if (m_head->m_len < VR_MIN_FRAMELEN) {
1388 1.1 sakamoto m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
1389 1.1 sakamoto m_new->m_len = m_new->m_pkthdr.len;
1390 1.1 sakamoto }
1391 1.1 sakamoto f = c->vr_ptr;
1392 1.1 sakamoto f->vr_data = vtophys(mtod(m_new, caddr_t));
1393 1.1 sakamoto f->vr_ctl = total_len = m_new->m_len;
1394 1.1 sakamoto f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
1395 1.1 sakamoto f->vr_status = 0;
1396 1.1 sakamoto frag = 1;
1397 1.1 sakamoto }
1398 1.1 sakamoto
1399 1.1 sakamoto c->vr_mbuf = m_head;
1400 1.1 sakamoto c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
1401 1.1 sakamoto c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
1402 1.1 sakamoto
1403 1.2 sakamoto return (0);
1404 1.1 sakamoto }
1405 1.1 sakamoto
1406 1.1 sakamoto /*
1407 1.1 sakamoto * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1408 1.1 sakamoto * to the mbuf data regions directly in the transmit lists. We also save a
1409 1.1 sakamoto * copy of the pointers since the transmit list fragment pointers are
1410 1.1 sakamoto * physical addresses.
1411 1.1 sakamoto */
1412 1.1 sakamoto
1413 1.1 sakamoto static void vr_start(ifp)
1414 1.1 sakamoto struct ifnet *ifp;
1415 1.1 sakamoto {
1416 1.1 sakamoto struct vr_softc *sc;
1417 1.1 sakamoto struct mbuf *m_head = NULL;
1418 1.1 sakamoto struct vr_chain *cur_tx = NULL, *start_tx;
1419 1.1 sakamoto
1420 1.1 sakamoto sc = ifp->if_softc;
1421 1.1 sakamoto
1422 1.1 sakamoto if (sc->vr_autoneg) {
1423 1.1 sakamoto sc->vr_tx_pend = 1;
1424 1.1 sakamoto return;
1425 1.1 sakamoto }
1426 1.1 sakamoto
1427 1.1 sakamoto /*
1428 1.1 sakamoto * Check for an available queue slot. If there are none,
1429 1.1 sakamoto * punt.
1430 1.1 sakamoto */
1431 1.1 sakamoto if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
1432 1.1 sakamoto ifp->if_flags |= IFF_OACTIVE;
1433 1.1 sakamoto return;
1434 1.1 sakamoto }
1435 1.1 sakamoto
1436 1.1 sakamoto start_tx = sc->vr_cdata.vr_tx_free;
1437 1.1 sakamoto
1438 1.2 sakamoto while (sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
1439 1.1 sakamoto IF_DEQUEUE(&ifp->if_snd, m_head);
1440 1.1 sakamoto if (m_head == NULL)
1441 1.1 sakamoto break;
1442 1.1 sakamoto
1443 1.1 sakamoto /* Pick a descriptor off the free list. */
1444 1.1 sakamoto cur_tx = sc->vr_cdata.vr_tx_free;
1445 1.1 sakamoto sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
1446 1.1 sakamoto
1447 1.1 sakamoto /* Pack the data into the descriptor. */
1448 1.1 sakamoto vr_encap(sc, cur_tx, m_head);
1449 1.1 sakamoto
1450 1.1 sakamoto if (cur_tx != start_tx)
1451 1.1 sakamoto VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
1452 1.1 sakamoto
1453 1.1 sakamoto #if NBPFILTER > 0
1454 1.1 sakamoto /*
1455 1.1 sakamoto * If there's a BPF listener, bounce a copy of this frame
1456 1.1 sakamoto * to him.
1457 1.1 sakamoto */
1458 1.1 sakamoto if (ifp->if_bpf)
1459 1.2 sakamoto bpf_mtap(ifp->if_bpf, cur_tx->vr_mbuf);
1460 1.2 sakamoto #endif
1461 1.1 sakamoto VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
1462 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1463 1.1 sakamoto }
1464 1.1 sakamoto
1465 1.1 sakamoto /*
1466 1.1 sakamoto * If there are no frames queued, bail.
1467 1.1 sakamoto */
1468 1.1 sakamoto if (cur_tx == NULL)
1469 1.1 sakamoto return;
1470 1.1 sakamoto
1471 1.1 sakamoto sc->vr_cdata.vr_tx_tail = cur_tx;
1472 1.1 sakamoto
1473 1.1 sakamoto if (sc->vr_cdata.vr_tx_head == NULL)
1474 1.1 sakamoto sc->vr_cdata.vr_tx_head = start_tx;
1475 1.1 sakamoto
1476 1.1 sakamoto /*
1477 1.1 sakamoto * Set a timeout in case the chip goes out to lunch.
1478 1.1 sakamoto */
1479 1.1 sakamoto ifp->if_timer = 5;
1480 1.1 sakamoto
1481 1.1 sakamoto return;
1482 1.1 sakamoto }
1483 1.1 sakamoto
1484 1.1 sakamoto static void vr_init(xsc)
1485 1.1 sakamoto void *xsc;
1486 1.1 sakamoto {
1487 1.1 sakamoto struct vr_softc *sc = xsc;
1488 1.6 thorpej struct ifnet *ifp = &sc->vr_ec.ec_if;
1489 1.1 sakamoto u_int16_t phy_bmcr = 0;
1490 1.1 sakamoto int s;
1491 1.1 sakamoto
1492 1.1 sakamoto if (sc->vr_autoneg)
1493 1.1 sakamoto return;
1494 1.1 sakamoto
1495 1.1 sakamoto s = splimp();
1496 1.1 sakamoto
1497 1.1 sakamoto if (sc->vr_pinfo != NULL)
1498 1.1 sakamoto phy_bmcr = vr_phy_readreg(sc, PHY_BMCR);
1499 1.1 sakamoto
1500 1.1 sakamoto /*
1501 1.1 sakamoto * Cancel pending I/O and free all RX/TX buffers.
1502 1.1 sakamoto */
1503 1.1 sakamoto vr_stop(sc);
1504 1.1 sakamoto vr_reset(sc);
1505 1.1 sakamoto
1506 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1507 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1508 1.1 sakamoto
1509 1.1 sakamoto VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1510 1.1 sakamoto VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1511 1.1 sakamoto
1512 1.1 sakamoto /* Init circular RX list. */
1513 1.1 sakamoto if (vr_list_rx_init(sc) == ENOBUFS) {
1514 1.6 thorpej printf("%s: initialization failed: no "
1515 1.6 thorpej "memory for rx buffers\n", sc->vr_dev.dv_xname);
1516 1.1 sakamoto vr_stop(sc);
1517 1.1 sakamoto (void)splx(s);
1518 1.1 sakamoto return;
1519 1.1 sakamoto }
1520 1.1 sakamoto
1521 1.1 sakamoto /*
1522 1.1 sakamoto * Init tx descriptors.
1523 1.1 sakamoto */
1524 1.1 sakamoto vr_list_tx_init(sc);
1525 1.1 sakamoto
1526 1.1 sakamoto /* If we want promiscuous mode, set the allframes bit. */
1527 1.1 sakamoto if (ifp->if_flags & IFF_PROMISC)
1528 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1529 1.1 sakamoto else
1530 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1531 1.1 sakamoto
1532 1.1 sakamoto /* Set capture broadcast bit to capture broadcast frames. */
1533 1.1 sakamoto if (ifp->if_flags & IFF_BROADCAST)
1534 1.1 sakamoto VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1535 1.1 sakamoto else
1536 1.1 sakamoto VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1537 1.1 sakamoto
1538 1.1 sakamoto /*
1539 1.1 sakamoto * Program the multicast filter, if necessary.
1540 1.1 sakamoto */
1541 1.1 sakamoto vr_setmulti(sc);
1542 1.1 sakamoto
1543 1.1 sakamoto /*
1544 1.1 sakamoto * Load the address of the RX list.
1545 1.1 sakamoto */
1546 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
1547 1.1 sakamoto
1548 1.1 sakamoto /* Enable receiver and transmitter. */
1549 1.1 sakamoto CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1550 1.1 sakamoto VR_CMD_TX_ON|VR_CMD_RX_ON|
1551 1.1 sakamoto VR_CMD_RX_GO);
1552 1.1 sakamoto
1553 1.1 sakamoto vr_setcfg(sc, vr_phy_readreg(sc, PHY_BMCR));
1554 1.1 sakamoto
1555 1.1 sakamoto CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
1556 1.1 sakamoto
1557 1.1 sakamoto /*
1558 1.1 sakamoto * Enable interrupts.
1559 1.1 sakamoto */
1560 1.1 sakamoto CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1561 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1562 1.1 sakamoto
1563 1.1 sakamoto /* Restore state of BMCR */
1564 1.1 sakamoto if (sc->vr_pinfo != NULL)
1565 1.1 sakamoto vr_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1566 1.1 sakamoto
1567 1.1 sakamoto ifp->if_flags |= IFF_RUNNING;
1568 1.1 sakamoto ifp->if_flags &= ~IFF_OACTIVE;
1569 1.1 sakamoto
1570 1.1 sakamoto (void)splx(s);
1571 1.1 sakamoto
1572 1.1 sakamoto return;
1573 1.1 sakamoto }
1574 1.1 sakamoto
1575 1.1 sakamoto /*
1576 1.1 sakamoto * Set media options.
1577 1.1 sakamoto */
1578 1.1 sakamoto static int vr_ifmedia_upd(ifp)
1579 1.1 sakamoto struct ifnet *ifp;
1580 1.1 sakamoto {
1581 1.1 sakamoto struct vr_softc *sc;
1582 1.1 sakamoto struct ifmedia *ifm;
1583 1.1 sakamoto
1584 1.1 sakamoto sc = ifp->if_softc;
1585 1.1 sakamoto ifm = &sc->ifmedia;
1586 1.1 sakamoto
1587 1.1 sakamoto if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1588 1.2 sakamoto return (EINVAL);
1589 1.1 sakamoto
1590 1.1 sakamoto if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1591 1.1 sakamoto vr_autoneg_mii(sc, VR_FLAG_SCHEDDELAY, 1);
1592 1.1 sakamoto else
1593 1.1 sakamoto vr_setmode_mii(sc, ifm->ifm_media);
1594 1.1 sakamoto
1595 1.2 sakamoto return (0);
1596 1.1 sakamoto }
1597 1.1 sakamoto
1598 1.1 sakamoto /*
1599 1.1 sakamoto * Report current media status.
1600 1.1 sakamoto */
1601 1.1 sakamoto static void vr_ifmedia_sts(ifp, ifmr)
1602 1.1 sakamoto struct ifnet *ifp;
1603 1.1 sakamoto struct ifmediareq *ifmr;
1604 1.1 sakamoto {
1605 1.1 sakamoto struct vr_softc *sc;
1606 1.1 sakamoto u_int16_t advert = 0, ability = 0;
1607 1.1 sakamoto
1608 1.1 sakamoto sc = ifp->if_softc;
1609 1.1 sakamoto
1610 1.1 sakamoto ifmr->ifm_active = IFM_ETHER;
1611 1.1 sakamoto
1612 1.1 sakamoto if (!(vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1613 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1614 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
1615 1.1 sakamoto else
1616 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_10_T;
1617 1.1 sakamoto if (vr_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1618 1.1 sakamoto ifmr->ifm_active |= IFM_FDX;
1619 1.1 sakamoto else
1620 1.1 sakamoto ifmr->ifm_active |= IFM_HDX;
1621 1.1 sakamoto return;
1622 1.1 sakamoto }
1623 1.1 sakamoto
1624 1.1 sakamoto ability = vr_phy_readreg(sc, PHY_LPAR);
1625 1.1 sakamoto advert = vr_phy_readreg(sc, PHY_ANAR);
1626 1.1 sakamoto if (advert & PHY_ANAR_100BT4 &&
1627 1.1 sakamoto ability & PHY_ANAR_100BT4) {
1628 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
1629 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXFULL &&
1630 1.1 sakamoto ability & PHY_ANAR_100BTXFULL) {
1631 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
1632 1.1 sakamoto } else if (advert & PHY_ANAR_100BTXHALF &&
1633 1.1 sakamoto ability & PHY_ANAR_100BTXHALF) {
1634 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
1635 1.1 sakamoto } else if (advert & PHY_ANAR_10BTFULL &&
1636 1.1 sakamoto ability & PHY_ANAR_10BTFULL) {
1637 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
1638 1.1 sakamoto } else if (advert & PHY_ANAR_10BTHALF &&
1639 1.1 sakamoto ability & PHY_ANAR_10BTHALF) {
1640 1.1 sakamoto ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
1641 1.1 sakamoto }
1642 1.1 sakamoto
1643 1.1 sakamoto return;
1644 1.1 sakamoto }
1645 1.1 sakamoto
1646 1.1 sakamoto static int vr_ioctl(ifp, command, data)
1647 1.1 sakamoto struct ifnet *ifp;
1648 1.1 sakamoto u_long command;
1649 1.1 sakamoto caddr_t data;
1650 1.1 sakamoto {
1651 1.1 sakamoto struct vr_softc *sc = ifp->if_softc;
1652 1.6 thorpej struct ifreq *ifr = (struct ifreq *)data;
1653 1.2 sakamoto struct ifaddr *ifa = (struct ifaddr *)data;
1654 1.1 sakamoto int s, error = 0;
1655 1.1 sakamoto
1656 1.1 sakamoto s = splimp();
1657 1.1 sakamoto
1658 1.2 sakamoto switch (command) {
1659 1.2 sakamoto case SIOCSIFADDR:
1660 1.2 sakamoto ifp->if_flags |= IFF_UP;
1661 1.2 sakamoto
1662 1.2 sakamoto switch (ifa->ifa_addr->sa_family) {
1663 1.2 sakamoto #ifdef INET
1664 1.2 sakamoto case AF_INET:
1665 1.2 sakamoto vr_init(sc);
1666 1.2 sakamoto arp_ifinit(ifp, ifa);
1667 1.2 sakamoto break;
1668 1.2 sakamoto #endif /* INET */
1669 1.2 sakamoto default:
1670 1.2 sakamoto vr_init(sc);
1671 1.2 sakamoto break;
1672 1.2 sakamoto }
1673 1.2 sakamoto break;
1674 1.2 sakamoto
1675 1.2 sakamoto case SIOCGIFADDR:
1676 1.2 sakamoto bcopy((caddr_t) sc->vr_enaddr,
1677 1.2 sakamoto (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1678 1.2 sakamoto ETHER_ADDR_LEN);
1679 1.2 sakamoto break;
1680 1.2 sakamoto
1681 1.2 sakamoto case SIOCSIFMTU:
1682 1.2 sakamoto if (ifr->ifr_mtu > ETHERMTU)
1683 1.2 sakamoto error = EINVAL;
1684 1.2 sakamoto else
1685 1.2 sakamoto ifp->if_mtu = ifr->ifr_mtu;
1686 1.2 sakamoto break;
1687 1.2 sakamoto
1688 1.1 sakamoto case SIOCSIFFLAGS:
1689 1.1 sakamoto if (ifp->if_flags & IFF_UP) {
1690 1.1 sakamoto vr_init(sc);
1691 1.1 sakamoto } else {
1692 1.1 sakamoto if (ifp->if_flags & IFF_RUNNING)
1693 1.1 sakamoto vr_stop(sc);
1694 1.1 sakamoto }
1695 1.1 sakamoto error = 0;
1696 1.1 sakamoto break;
1697 1.1 sakamoto case SIOCADDMULTI:
1698 1.1 sakamoto case SIOCDELMULTI:
1699 1.2 sakamoto if (command == SIOCADDMULTI)
1700 1.2 sakamoto error = ether_addmulti(ifr, &sc->vr_ec);
1701 1.2 sakamoto else
1702 1.2 sakamoto error = ether_delmulti(ifr, &sc->vr_ec);
1703 1.2 sakamoto
1704 1.2 sakamoto if (error == ENETRESET) {
1705 1.2 sakamoto vr_setmulti(sc);
1706 1.2 sakamoto error = 0;
1707 1.2 sakamoto }
1708 1.1 sakamoto break;
1709 1.1 sakamoto case SIOCGIFMEDIA:
1710 1.1 sakamoto case SIOCSIFMEDIA:
1711 1.1 sakamoto error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1712 1.1 sakamoto break;
1713 1.1 sakamoto default:
1714 1.1 sakamoto error = EINVAL;
1715 1.1 sakamoto break;
1716 1.1 sakamoto }
1717 1.1 sakamoto
1718 1.1 sakamoto (void)splx(s);
1719 1.1 sakamoto
1720 1.2 sakamoto return (error);
1721 1.1 sakamoto }
1722 1.1 sakamoto
1723 1.1 sakamoto static void vr_watchdog(ifp)
1724 1.1 sakamoto struct ifnet *ifp;
1725 1.1 sakamoto {
1726 1.1 sakamoto struct vr_softc *sc;
1727 1.1 sakamoto
1728 1.1 sakamoto sc = ifp->if_softc;
1729 1.1 sakamoto
1730 1.1 sakamoto if (sc->vr_autoneg) {
1731 1.1 sakamoto vr_autoneg_mii(sc, VR_FLAG_DELAYTIMEO, 1);
1732 1.1 sakamoto return;
1733 1.1 sakamoto }
1734 1.1 sakamoto
1735 1.1 sakamoto ifp->if_oerrors++;
1736 1.6 thorpej printf("%s: watchdog timeout\n", sc->vr_dev.dv_xname);
1737 1.1 sakamoto
1738 1.1 sakamoto if (!(vr_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1739 1.6 thorpej printf("%s: no carrier - transceiver cable problem?\n",
1740 1.6 thorpej sc->vr_dev.dv_xname);
1741 1.1 sakamoto
1742 1.1 sakamoto vr_stop(sc);
1743 1.1 sakamoto vr_reset(sc);
1744 1.1 sakamoto vr_init(sc);
1745 1.1 sakamoto
1746 1.1 sakamoto if (ifp->if_snd.ifq_head != NULL)
1747 1.1 sakamoto vr_start(ifp);
1748 1.1 sakamoto
1749 1.1 sakamoto return;
1750 1.1 sakamoto }
1751 1.1 sakamoto
1752 1.1 sakamoto /*
1753 1.1 sakamoto * Stop the adapter and free any mbufs allocated to the
1754 1.1 sakamoto * RX and TX lists.
1755 1.1 sakamoto */
1756 1.1 sakamoto static void vr_stop(sc)
1757 1.1 sakamoto struct vr_softc *sc;
1758 1.1 sakamoto {
1759 1.1 sakamoto register int i;
1760 1.1 sakamoto struct ifnet *ifp;
1761 1.1 sakamoto
1762 1.6 thorpej ifp = &sc->vr_ec.ec_if;
1763 1.1 sakamoto ifp->if_timer = 0;
1764 1.1 sakamoto
1765 1.1 sakamoto VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1766 1.1 sakamoto VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1767 1.1 sakamoto CSR_WRITE_2(sc, VR_IMR, 0x0000);
1768 1.1 sakamoto CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1769 1.1 sakamoto CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1770 1.1 sakamoto
1771 1.1 sakamoto /*
1772 1.1 sakamoto * Free data in the RX lists.
1773 1.1 sakamoto */
1774 1.1 sakamoto for (i = 0; i < VR_RX_LIST_CNT; i++) {
1775 1.1 sakamoto if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
1776 1.1 sakamoto m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
1777 1.1 sakamoto sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
1778 1.1 sakamoto }
1779 1.1 sakamoto }
1780 1.1 sakamoto bzero((char *)&sc->vr_ldata->vr_rx_list,
1781 1.2 sakamoto sizeof (sc->vr_ldata->vr_rx_list));
1782 1.1 sakamoto
1783 1.1 sakamoto /*
1784 1.1 sakamoto * Free the TX list buffers.
1785 1.1 sakamoto */
1786 1.1 sakamoto for (i = 0; i < VR_TX_LIST_CNT; i++) {
1787 1.1 sakamoto if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
1788 1.1 sakamoto m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
1789 1.1 sakamoto sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
1790 1.1 sakamoto }
1791 1.1 sakamoto }
1792 1.1 sakamoto
1793 1.1 sakamoto bzero((char *)&sc->vr_ldata->vr_tx_list,
1794 1.2 sakamoto sizeof (sc->vr_ldata->vr_tx_list));
1795 1.1 sakamoto
1796 1.1 sakamoto ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1797 1.1 sakamoto
1798 1.1 sakamoto return;
1799 1.1 sakamoto }
1800 1.1 sakamoto
1801 1.3 sakamoto static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1802 1.2 sakamoto static int vr_probe __P((struct device *, struct cfdata *, void *));
1803 1.2 sakamoto static void vr_attach __P((struct device *, struct device *, void *));
1804 1.2 sakamoto static void vr_shutdown __P((void *));
1805 1.2 sakamoto
1806 1.2 sakamoto struct cfattach vr_ca = {
1807 1.2 sakamoto sizeof (struct vr_softc), vr_probe, vr_attach
1808 1.2 sakamoto };
1809 1.2 sakamoto
1810 1.3 sakamoto static struct vr_type *
1811 1.3 sakamoto vr_lookup(pa)
1812 1.3 sakamoto struct pci_attach_args *pa;
1813 1.3 sakamoto {
1814 1.3 sakamoto struct vr_type *vrt;
1815 1.3 sakamoto
1816 1.3 sakamoto for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1817 1.3 sakamoto if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1818 1.3 sakamoto PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1819 1.3 sakamoto return (vrt);
1820 1.3 sakamoto }
1821 1.3 sakamoto return (NULL);
1822 1.3 sakamoto }
1823 1.3 sakamoto
1824 1.2 sakamoto static int
1825 1.2 sakamoto vr_probe(parent, match, aux)
1826 1.2 sakamoto struct device *parent;
1827 1.2 sakamoto struct cfdata *match;
1828 1.2 sakamoto void *aux;
1829 1.2 sakamoto {
1830 1.2 sakamoto struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1831 1.2 sakamoto
1832 1.3 sakamoto if (vr_lookup(pa) != NULL)
1833 1.3 sakamoto return (1);
1834 1.2 sakamoto
1835 1.2 sakamoto return (0);
1836 1.2 sakamoto }
1837 1.2 sakamoto
1838 1.2 sakamoto /*
1839 1.2 sakamoto * Stop all chip I/O so that the kernel's probe routines don't
1840 1.2 sakamoto * get confused by errant DMAs when rebooting.
1841 1.2 sakamoto */
1842 1.2 sakamoto static void vr_shutdown(arg)
1843 1.2 sakamoto void *arg;
1844 1.2 sakamoto {
1845 1.2 sakamoto struct vr_softc *sc = (struct vr_softc *)arg;
1846 1.2 sakamoto
1847 1.2 sakamoto vr_stop(sc);
1848 1.2 sakamoto
1849 1.2 sakamoto return;
1850 1.2 sakamoto }
1851 1.2 sakamoto
1852 1.2 sakamoto /*
1853 1.2 sakamoto * Attach the interface. Allocate softc structures, do ifmedia
1854 1.2 sakamoto * setup and ethernet/BPF attach.
1855 1.2 sakamoto */
1856 1.2 sakamoto static void
1857 1.2 sakamoto vr_attach(parent, self, aux)
1858 1.2 sakamoto struct device * const parent;
1859 1.2 sakamoto struct device * const self;
1860 1.2 sakamoto void * const aux;
1861 1.2 sakamoto {
1862 1.2 sakamoto #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1863 1.2 sakamoto #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1864 1.2 sakamoto struct vr_softc * const sc = (struct vr_softc *) self;
1865 1.2 sakamoto struct pci_attach_args * const pa = (struct pci_attach_args *) aux;
1866 1.3 sakamoto struct vr_type *vrt;
1867 1.2 sakamoto int i;
1868 1.2 sakamoto u_int32_t command;
1869 1.2 sakamoto struct ifnet *ifp;
1870 1.2 sakamoto int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
1871 1.2 sakamoto unsigned int round;
1872 1.2 sakamoto caddr_t roundptr;
1873 1.2 sakamoto u_char eaddr[ETHER_ADDR_LEN];
1874 1.2 sakamoto struct vr_type *p;
1875 1.2 sakamoto u_int16_t phy_vid, phy_did, phy_sts;
1876 1.2 sakamoto
1877 1.3 sakamoto vrt = vr_lookup(pa);
1878 1.3 sakamoto if (vrt == NULL) {
1879 1.3 sakamoto printf("\n");
1880 1.3 sakamoto panic("vr_attach: impossible");
1881 1.3 sakamoto }
1882 1.3 sakamoto
1883 1.3 sakamoto printf(": %s Ethernet\n", vrt->vr_name);
1884 1.2 sakamoto
1885 1.2 sakamoto /*
1886 1.2 sakamoto * Handle power management nonsense.
1887 1.2 sakamoto */
1888 1.2 sakamoto
1889 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1890 1.2 sakamoto if (command == 0x01) {
1891 1.2 sakamoto
1892 1.2 sakamoto command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1893 1.2 sakamoto if (command & VR_PSTATE_MASK) {
1894 1.2 sakamoto u_int32_t iobase, membase, irq;
1895 1.2 sakamoto
1896 1.2 sakamoto /* Save important PCI config data. */
1897 1.2 sakamoto iobase = PCI_CONF_READ(VR_PCI_LOIO);
1898 1.2 sakamoto membase = PCI_CONF_READ(VR_PCI_LOMEM);
1899 1.2 sakamoto irq = PCI_CONF_READ(VR_PCI_INTLINE);
1900 1.2 sakamoto
1901 1.2 sakamoto /* Reset the power state. */
1902 1.6 thorpej printf("%s: chip is in D%d power mode "
1903 1.2 sakamoto "-- setting to D0\n",
1904 1.6 thorpej sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1905 1.2 sakamoto command &= 0xFFFFFFFC;
1906 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1907 1.2 sakamoto
1908 1.2 sakamoto /* Restore PCI config data. */
1909 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1910 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1911 1.2 sakamoto PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1912 1.2 sakamoto }
1913 1.2 sakamoto }
1914 1.2 sakamoto
1915 1.2 sakamoto /*
1916 1.2 sakamoto * Map control/status registers.
1917 1.2 sakamoto */
1918 1.2 sakamoto command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1919 1.2 sakamoto command |= (PCI_COMMAND_IO_ENABLE |
1920 1.2 sakamoto PCI_COMMAND_MEM_ENABLE |
1921 1.2 sakamoto PCI_COMMAND_MASTER_ENABLE);
1922 1.2 sakamoto PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1923 1.2 sakamoto command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1924 1.2 sakamoto
1925 1.2 sakamoto {
1926 1.2 sakamoto bus_space_tag_t iot, memt;
1927 1.2 sakamoto bus_space_handle_t ioh, memh;
1928 1.2 sakamoto int ioh_valid, memh_valid;
1929 1.2 sakamoto pci_intr_handle_t intrhandle;
1930 1.2 sakamoto const char *intrstr;
1931 1.2 sakamoto
1932 1.2 sakamoto ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1933 1.2 sakamoto PCI_MAPREG_TYPE_IO, 0,
1934 1.2 sakamoto &iot, &ioh, NULL, NULL) == 0);
1935 1.2 sakamoto memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1936 1.2 sakamoto PCI_MAPREG_TYPE_MEM |
1937 1.2 sakamoto PCI_MAPREG_MEM_TYPE_32BIT,
1938 1.2 sakamoto 0, &memt, &memh, NULL, NULL) == 0);
1939 1.2 sakamoto #if defined(VR_USEIOSPACE)
1940 1.2 sakamoto if (ioh_valid) {
1941 1.2 sakamoto sc->vr_btag = iot;
1942 1.2 sakamoto sc->vr_bhandle = ioh;
1943 1.2 sakamoto } else if (memh_valid) {
1944 1.2 sakamoto sc->vr_btag = memt;
1945 1.2 sakamoto sc->vr_bhandle = memh;
1946 1.2 sakamoto }
1947 1.2 sakamoto #else
1948 1.2 sakamoto if (memh_valid) {
1949 1.2 sakamoto sc->vr_btag = memt;
1950 1.2 sakamoto sc->vr_bhandle = memh;
1951 1.2 sakamoto } else if (ioh_valid) {
1952 1.2 sakamoto sc->vr_btag = iot;
1953 1.2 sakamoto sc->vr_bhandle = ioh;
1954 1.2 sakamoto }
1955 1.2 sakamoto #endif
1956 1.2 sakamoto else {
1957 1.2 sakamoto printf(": unable to map device registers\n");
1958 1.2 sakamoto return;
1959 1.2 sakamoto }
1960 1.2 sakamoto
1961 1.2 sakamoto /* Allocate interrupt */
1962 1.2 sakamoto if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1963 1.2 sakamoto pa->pa_intrline, &intrhandle)) {
1964 1.6 thorpej printf("%s: couldn't map interrupt\n",
1965 1.6 thorpej sc->vr_dev.dv_xname);
1966 1.2 sakamoto goto fail;
1967 1.2 sakamoto }
1968 1.2 sakamoto intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1969 1.2 sakamoto sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1970 1.2 sakamoto (void *)vr_intr, sc);
1971 1.2 sakamoto if (sc->vr_ih == NULL) {
1972 1.6 thorpej printf("%s: couldn't establish interrupt",
1973 1.6 thorpej sc->vr_dev.dv_xname);
1974 1.2 sakamoto if (intrstr != NULL)
1975 1.2 sakamoto printf(" at %s", intrstr);
1976 1.2 sakamoto printf("\n");
1977 1.2 sakamoto }
1978 1.6 thorpej printf("%s: interrupting at %s\n",
1979 1.6 thorpej sc->vr_dev.dv_xname, intrstr);
1980 1.2 sakamoto }
1981 1.2 sakamoto sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1982 1.2 sakamoto if (sc->vr_ats == NULL)
1983 1.6 thorpej printf("%s: warning: couldn't establish shutdown hook\n",
1984 1.6 thorpej sc->vr_dev.dv_xname);
1985 1.2 sakamoto
1986 1.2 sakamoto /* Reset the adapter. */
1987 1.2 sakamoto vr_reset(sc);
1988 1.2 sakamoto
1989 1.2 sakamoto /*
1990 1.2 sakamoto * Get station address. The way the Rhine chips work,
1991 1.2 sakamoto * you're not allowed to directly access the EEPROM once
1992 1.2 sakamoto * they've been programmed a special way. Consequently,
1993 1.2 sakamoto * we need to read the node address from the PAR0 and PAR1
1994 1.2 sakamoto * registers.
1995 1.2 sakamoto */
1996 1.2 sakamoto VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1997 1.2 sakamoto DELAY(200);
1998 1.2 sakamoto for (i = 0; i < ETHER_ADDR_LEN; i++)
1999 1.2 sakamoto eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
2000 1.2 sakamoto
2001 1.2 sakamoto /*
2002 1.2 sakamoto * A Rhine chip was detected. Inform the world.
2003 1.2 sakamoto */
2004 1.6 thorpej printf("%s: Ethernet address: %s\n",
2005 1.6 thorpej sc->vr_dev.dv_xname, ether_sprintf(eaddr));
2006 1.2 sakamoto
2007 1.2 sakamoto bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
2008 1.2 sakamoto
2009 1.2 sakamoto sc->vr_ldata_ptr = malloc(sizeof (struct vr_list_data) + 8,
2010 1.2 sakamoto M_DEVBUF, M_NOWAIT);
2011 1.2 sakamoto if (sc->vr_ldata_ptr == NULL) {
2012 1.2 sakamoto free(sc, M_DEVBUF);
2013 1.6 thorpej printf("%s: no memory for list buffers!\n",
2014 1.6 thorpej sc->vr_dev.dv_xname);
2015 1.2 sakamoto return;
2016 1.2 sakamoto }
2017 1.2 sakamoto
2018 1.2 sakamoto sc->vr_ldata = (struct vr_list_data *)sc->vr_ldata_ptr;
2019 1.5 thorpej round = (unsigned long)sc->vr_ldata_ptr & 0xF;
2020 1.2 sakamoto roundptr = sc->vr_ldata_ptr;
2021 1.2 sakamoto for (i = 0; i < 8; i++) {
2022 1.2 sakamoto if (round % 8) {
2023 1.2 sakamoto round++;
2024 1.2 sakamoto roundptr++;
2025 1.2 sakamoto } else
2026 1.2 sakamoto break;
2027 1.2 sakamoto }
2028 1.2 sakamoto sc->vr_ldata = (struct vr_list_data *)roundptr;
2029 1.2 sakamoto bzero(sc->vr_ldata, sizeof (struct vr_list_data));
2030 1.2 sakamoto
2031 1.6 thorpej ifp = &sc->vr_ec.ec_if;
2032 1.2 sakamoto ifp->if_softc = sc;
2033 1.2 sakamoto ifp->if_mtu = ETHERMTU;
2034 1.2 sakamoto ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2035 1.2 sakamoto ifp->if_ioctl = vr_ioctl;
2036 1.2 sakamoto ifp->if_output = ether_output;
2037 1.2 sakamoto ifp->if_start = vr_start;
2038 1.2 sakamoto ifp->if_watchdog = vr_watchdog;
2039 1.2 sakamoto ifp->if_baudrate = 10000000;
2040 1.2 sakamoto bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2041 1.2 sakamoto
2042 1.2 sakamoto for (i = VR_PHYADDR_MIN; i < VR_PHYADDR_MAX + 1; i++) {
2043 1.2 sakamoto sc->vr_phy_addr = i;
2044 1.2 sakamoto vr_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
2045 1.2 sakamoto DELAY(500);
2046 1.2 sakamoto while (vr_phy_readreg(sc, PHY_BMCR)
2047 1.2 sakamoto & PHY_BMCR_RESET);
2048 1.2 sakamoto if ((phy_sts = vr_phy_readreg(sc, PHY_BMSR)))
2049 1.2 sakamoto break;
2050 1.2 sakamoto }
2051 1.2 sakamoto if (phy_sts) {
2052 1.2 sakamoto phy_vid = vr_phy_readreg(sc, PHY_VENID);
2053 1.2 sakamoto phy_did = vr_phy_readreg(sc, PHY_DEVID);
2054 1.2 sakamoto p = vr_phys;
2055 1.2 sakamoto while (p->vr_vid) {
2056 1.2 sakamoto if (phy_vid == p->vr_vid &&
2057 1.2 sakamoto (phy_did | 0x000F) == p->vr_did) {
2058 1.2 sakamoto sc->vr_pinfo = p;
2059 1.2 sakamoto break;
2060 1.2 sakamoto }
2061 1.2 sakamoto p++;
2062 1.2 sakamoto }
2063 1.2 sakamoto if (sc->vr_pinfo == NULL)
2064 1.2 sakamoto sc->vr_pinfo = &vr_phys[PHY_UNKNOWN];
2065 1.2 sakamoto } else {
2066 1.6 thorpej printf("%s: MII without any phy!\n",
2067 1.6 thorpej sc->vr_dev.dv_xname);
2068 1.2 sakamoto goto fail;
2069 1.2 sakamoto }
2070 1.2 sakamoto
2071 1.2 sakamoto /*
2072 1.2 sakamoto * Do ifmedia setup.
2073 1.2 sakamoto */
2074 1.2 sakamoto ifmedia_init(&sc->ifmedia, 0, vr_ifmedia_upd, vr_ifmedia_sts);
2075 1.2 sakamoto
2076 1.2 sakamoto vr_getmode_mii(sc);
2077 1.2 sakamoto vr_autoneg_mii(sc, VR_FLAG_FORCEDELAY, 1);
2078 1.2 sakamoto media = sc->ifmedia.ifm_media;
2079 1.2 sakamoto vr_stop(sc);
2080 1.2 sakamoto
2081 1.2 sakamoto ifmedia_set(&sc->ifmedia, media);
2082 1.2 sakamoto
2083 1.2 sakamoto /*
2084 1.2 sakamoto * Call MI attach routines.
2085 1.2 sakamoto */
2086 1.2 sakamoto if_attach(ifp);
2087 1.2 sakamoto ether_ifattach(ifp, sc->vr_enaddr);
2088 1.2 sakamoto
2089 1.2 sakamoto #if NBPFILTER > 0
2090 1.6 thorpej bpfattach(&sc->vr_ec.ec_if.if_bpf,
2091 1.2 sakamoto ifp, DLT_EN10MB, sizeof (struct ether_header));
2092 1.2 sakamoto #endif
2093 1.2 sakamoto
2094 1.2 sakamoto sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
2095 1.2 sakamoto if (sc->vr_ats == NULL)
2096 1.2 sakamoto printf("%s: warning: couldn't establish shutdown hook\n",
2097 1.2 sakamoto sc->vr_dev.dv_xname);
2098 1.2 sakamoto
2099 1.2 sakamoto fail:
2100 1.2 sakamoto return;
2101 1.2 sakamoto }
2102